
HTML
Living Standard — Last Updated 9 December 2024

One-Page Version
html.spec.whatwg.org

Multipage Version
/multipage

Version for Web Devs
/dev

PDF Version
/print.pdf

Translations
日本語 • 简体中文

FAQ
on GitHub

Chat
on Matrix

Contribute on GitHub
whatwg/html repository

Commits
on GitHub

Snapshot
as of this commit

Twitter Updates
@htmlstandard

Open Issues
filed on GitHub

Open an Issue
whatwg.org/newbug

Tests
web-platform-tests html/

Issues for Tests
ongoing work

1 Introduction .. 1
2 Common infrastructure... 2
3 Semantics, structure, and APIs of HTML documents... 3
4 The elements of HTML .. 4
5 Microdata.. 12
6 User interaction .. 12
7 Loading web pages... 14
8 Web application APIs .. 16
9 Communication .. 18
10 Web workers ... 19
11 Worklets.. 19
12 Web storage ... 19
13 The HTML syntax .. 20
14 The XML syntax .. 23
15 Rendering ... 23
16 Obsolete features ... 24
17 IANA considerations.. 24
Index.. 24
References... 24
Acknowledgments ... 24
Intellectual property rights .. 24

1 Introduction .. 25
1.1 Where does this specification fit?.. 25
1.2 Is this HTML5? ... 25
1.3 Background ... 26
1.4 Audience ... 26
1.5 Scope .. 26

Table of contents

Full table of contents

1

https://html.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/dev/
https://html.spec.whatwg.org/print.pdf
https://github.com/whatwg/html/wiki/Translations
https://github.com/whatwg/html/blob/main/FAQ.md
https://whatwg.org/chat
https://github.com/whatwg/html
https://github.com/whatwg/html/commits
https://html.spec.whatwg.org/commit-snapshots/ec53481c3f5b25f6353eacb80f871423232a6b2b/
https://twitter.com/htmlstandard
https://github.com/whatwg/html/issues
https://whatwg.org/newbug
https://github.com/web-platform-tests/wpt/tree/master/html
https://github.com/web-platform-tests/wpt/labels/html
https://whatwg.org/
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

1.6 History... 26
1.7 Design notes ... 27

1.7.1 Serializability of script execution ... 28
1.7.2 Compliance with other specifications .. 28
1.7.3 Extensibility ... 28

1.8 HTML vs XML syntax ... 29
1.9 Structure of this specification.. 29

1.9.1 How to read this specification.. 30
1.9.2 Typographic conventions ... 31

1.10 A quick introduction to HTML .. 31
1.10.1 Writing secure applications with HTML .. 34
1.10.2 Common pitfalls to avoid when using the scripting APIs ... 35
1.10.3 How to catch mistakes when writing HTML: validators and conformance checkers.............36

1.11 Conformance requirements for authors .. 36
1.11.1 Presentational markup... 36
1.11.2 Syntax errors ... 37
1.11.3 Restrictions on content models and on attribute values.. 39

1.12 Suggested reading .. 42

2 Common infrastructure... 43
2.1 Terminology... 43

2.1.1 Parallelism ... 43
2.1.2 Resources .. 45
2.1.3 XML compatibility .. 45
2.1.4 DOM trees.. 45
2.1.5 Scripting .. 46
2.1.6 Plugins ... 47
2.1.7 Character encodings.. 47
2.1.8 Conformance classes ... 47
2.1.9 Dependencies .. 50
2.1.10 Extensibility ... 73
2.1.11 Interactions with XPath and XSLT... 73

2.2 Policy-controlled features .. 75
2.3 Common microsyntaxes.. 75

2.3.1 Common parser idioms.. 75
2.3.2 Boolean attributes ... 75
2.3.3 Keywords and enumerated attributes.. 76
2.3.4 Numbers .. 76

2.3.4.1 Signed integers .. 76
2.3.4.2 Non-negative integers.. 77
2.3.4.3 Floating-point numbers .. 77
2.3.4.4 Percentages and lengths .. 79
2.3.4.5 Nonzero percentages and lengths.. 80
2.3.4.6 Lists of floating-point numbers... 80
2.3.4.7 Lists of dimensions... 81

2.3.5 Dates and times... 82
2.3.5.1 Months ... 82
2.3.5.2 Dates.. 83
2.3.5.3 Yearless dates .. 83
2.3.5.4 Times.. 84
2.3.5.5 Local dates and times .. 85

2

2.3.5.6 Time zones ... 86
2.3.5.7 Global dates and times .. 87
2.3.5.8 Weeks... 89
2.3.5.9 Durations.. 90
2.3.5.10 Vaguer moments in time .. 93

2.3.6 Legacy colors... 94
2.3.7 Space-separated tokens .. 94
2.3.8 Comma-separated tokens.. 95
2.3.9 References... 95
2.3.10 Media queries .. 95
2.3.11 Unique internal values ... 96

2.4 URLs.. 96
2.4.1 Terminology ... 96
2.4.2 Parsing URLs .. 97
2.4.3 Dynamic changes to base URLs... 97

2.5 Fetching resources .. 98
2.5.1 Terminology ... 98
2.5.2 Determining the type of a resource ... 98
2.5.3 Extracting character encodings from meta elements... 99
2.5.4 CORS settings attributes.. 99
2.5.5 Referrer policy attributes ... 100
2.5.6 Nonce attributes .. 100
2.5.7 Lazy loading attributes .. 101
2.5.8 Blocking attributes... 103
2.5.9 Fetch priority attributes ... 103

2.6 Common DOM interfaces .. 103
2.6.1 Reflecting content attributes in IDL attributes... 103
2.6.2 Using reflect in specifications .. 110
2.6.3 Collections ... 110

2.6.3.1 The HTMLAllCollection interface... 111
2.6.3.1.1 [[Call]] (thisArgument, argumentsList) 112

2.6.3.2 The HTMLFormControlsCollection interface.. 112
2.6.3.3 The HTMLOptionsCollection interface ... 114

2.6.4 The DOMStringList interface.. 116
2.7 Safe passing of structured data .. 116

2.7.1 Serializable objects.. 117
2.7.2 Transferable objects... 118
2.7.3 StructuredSerializeInternal (value, forStorage [, memory]) ... 118
2.7.4 StructuredSerialize (value) .. 122
2.7.5 StructuredSerializeForStorage (value) ... 122
2.7.6 StructuredDeserialize (serialized, targetRealm [, memory]).. 122
2.7.7 StructuredSerializeWithTransfer (value, transferList)... 125
2.7.8 StructuredDeserializeWithTransfer (serializeWithTransferResult, targetRealm).................127
2.7.9 Performing serialization and transferring from other specifications 127
2.7.10 Structured cloning API ... 128

3 Semantics, structure, and APIs of HTML documents... 130
3.1 Documents.. 130

3.1.1 The Document object.. 130
3.1.2 The DocumentOrShadowRoot interface... 132
3.1.3 Resource metadata management.. 132

3

3.1.4 Reporting document loading status ... 133
3.1.5 Render-blocking mechanism.. 134
3.1.6 DOM tree accessors ... 135

3.2 Elements ... 138
3.2.1 Semantics .. 138
3.2.2 Elements in the DOM ... 141
3.2.3 HTML element constructors ... 143
3.2.4 Element definitions.. 146

3.2.4.1 Attributes ... 147
3.2.5 Content models ... 147

3.2.5.1 The "nothing" content model ... 148
3.2.5.2 Kinds of content ... 148

3.2.5.2.1 Metadata content ... 148
3.2.5.2.2 Flow content ... 149
3.2.5.2.3 Sectioning content.. 149
3.2.5.2.4 Heading content ... 149
3.2.5.2.5 Phrasing content... 150
3.2.5.2.6 Embedded content ... 150
3.2.5.2.7 Interactive content ... 150
3.2.5.2.8 Palpable content ... 150
3.2.5.2.9 Script-supporting elements... 151

3.2.5.3 Transparent content models... 151
3.2.5.4 Paragraphs ... 152

3.2.6 Global attributes .. 154
3.2.6.1 The title attribute.. 157
3.2.6.2 The lang and xml:lang attributes ... 158
3.2.6.3 The translate attribute .. 159
3.2.6.4 The dir attribute.. 160
3.2.6.5 The style attribute.. 163
3.2.6.6 Embedding custom non-visible data with the data-* attributes..................164

3.2.7 The innerText and outerText properties .. 167
3.2.8 Requirements relating to the bidirectional algorithm .. 169

3.2.8.1 Authoring conformance criteria for bidirectional-algorithm formatting
characters .. 169
3.2.8.2 User agent conformance criteria .. 170

3.2.9 Requirements related to ARIA and to platform accessibility APIs... 170

4 The elements of HTML .. 172
4.1 The document element ... 172

4.1.1 The html element .. 172
4.2 Document metadata ... 173

4.2.1 The head element .. 173
4.2.2 The title element .. 174
4.2.3 The base element .. 175
4.2.4 The link element .. 177

4.2.4.1 Processing the media attribute... 182
4.2.4.2 Processing the type attribute... 182
4.2.4.3 Fetching and processing a resource from a link element 183
4.2.4.4 Processing `Link` headers... 184
4.2.4.5 Early hints .. 187
4.2.4.6 Providing users with a means to follow hyperlinks created using the link
element .. 189

4.2.5 The meta element .. 189
4.2.5.1 Standard metadata names... 190

4

4.2.5.2 Other metadata names .. 194
4.2.5.3 Pragma directives... 195
4.2.5.4 Specifying the document's character encoding.. 199

4.2.6 The style element .. 200
4.2.7 Interactions of styling and scripting... 204

4.3 Sections .. 205
4.3.1 The body element .. 205
4.3.2 The article element .. 206
4.3.3 The section element .. 209
4.3.4 The nav element.. 211
4.3.5 The aside element .. 214
4.3.6 The h1, h2, h3, h4, h5, and h6 elements .. 216
4.3.7 The hgroup element .. 218
4.3.8 The header element .. 218
4.3.9 The footer element .. 220
4.3.10 The address element .. 222
4.3.11 Headings and outlines ... 223

4.3.11.1 Sample outlines.. 224
4.3.11.2 Exposing outlines to users ... 227

4.3.12 Usage summary... 227
4.3.12.1 Article or section?... 229

4.4 Grouping content .. 229
4.4.1 The p element.. 229
4.4.2 The hr element.. 231
4.4.3 The pre element.. 233
4.4.4 The blockquote element... 235
4.4.5 The ol element.. 238
4.4.6 The ul element.. 239
4.4.7 The menu element .. 240
4.4.8 The li element.. 241
4.4.9 The dl element.. 244
4.4.10 The dt element.. 247
4.4.11 The dd element.. 248
4.4.12 The figure element .. 249
4.4.13 The figcaption element... 252
4.4.14 The main element .. 253
4.4.15 The search element .. 254
4.4.16 The div element.. 256

4.5 Text-level semantics.. 257
4.5.1 The a element.. 257
4.5.2 The em element.. 260
4.5.3 The strong element .. 261
4.5.4 The small element .. 262
4.5.5 The s element.. 264
4.5.6 The cite element .. 265
4.5.7 The q element.. 266
4.5.8 The dfn element.. 268
4.5.9 The abbr element .. 269
4.5.10 The ruby element .. 270
4.5.11 The rt element.. 277

5

4.5.12 The rp element.. 277
4.5.13 The data element .. 278
4.5.14 The time element .. 279
4.5.15 The code element .. 286
4.5.16 The var element.. 287
4.5.17 The samp element .. 288
4.5.18 The kbd element.. 289
4.5.19 The sub and sup elements... 290
4.5.20 The i element.. 291
4.5.21 The b element.. 292
4.5.22 The u element.. 294
4.5.23 The mark element .. 294
4.5.24 The bdi element.. 297
4.5.25 The bdo element.. 298
4.5.26 The span element .. 298
4.5.27 The br element.. 299
4.5.28 The wbr element.. 300
4.5.29 Usage summary... 301

4.6 Links.. 302
4.6.1 Introduction ... 302
4.6.2 Links created by a and area elements .. 303
4.6.3 API for a and area elements .. 304
4.6.4 Following hyperlinks .. 309
4.6.5 Downloading resources.. 310
4.6.6 Hyperlink auditing ... 312

4.6.6.1 The `Ping-From` and `Ping-To` headers.. 313
4.6.7 Link types .. 314

4.6.7.1 Link type "alternate" ... 315
4.6.7.2 Link type "author" ... 316
4.6.7.3 Link type "bookmark" ... 317
4.6.7.4 Link type "canonical" ... 317
4.6.7.5 Link type "dns-prefetch".. 317
4.6.7.6 Link type "expect" ... 318
4.6.7.7 Link type "external" ... 319
4.6.7.8 Link type "help" ... 319
4.6.7.9 Link type "icon" ... 320
4.6.7.10 Link type "license" ... 321
4.6.7.11 Link type "manifest" ... 322
4.6.7.12 Link type "modulepreload" .. 323
4.6.7.13 Link type "nofollow" ... 325
4.6.7.14 Link type "noopener" ... 325
4.6.7.15 Link type "noreferrer".. 325
4.6.7.16 Link type "opener" ... 325
4.6.7.17 Link type "pingback" ... 326
4.6.7.18 Link type "preconnect".. 326
4.6.7.19 Link type "prefetch" ... 327
4.6.7.20 Link type "preload" ... 328
4.6.7.21 Link type "privacy-policy" .. 331
4.6.7.22 Link type "search" ... 331
4.6.7.23 Link type "stylesheet".. 331
4.6.7.24 Link type "tag"... 334
4.6.7.25 Link Type "terms-of-service" .. 335

6

4.6.7.26 Sequential link types .. 335
4.6.7.26.1 Link type "next" ... 335
4.6.7.26.2 Link type "prev" ... 335

4.6.7.27 Other link types.. 335
4.7 Edits .. 337

4.7.1 The ins element.. 337
4.7.2 The del element.. 338
4.7.3 Attributes common to ins and del elements .. 339
4.7.4 Edits and paragraphs... 340
4.7.5 Edits and lists .. 341
4.7.6 Edits and tables ... 341

4.8 Embedded content.. 342
4.8.1 The picture element .. 342
4.8.2 The source element .. 343
4.8.3 The img element.. 346
4.8.4 Images... 355

4.8.4.1 Introduction.. 355
4.8.4.1.1 Adaptive images ... 360

4.8.4.2 Attributes common to source, img, and link elements 362
4.8.4.2.1 Srcset attributes ... 362
4.8.4.2.2 Sizes attributes ... 363

4.8.4.3 Processing model ... 363
4.8.4.3.1 When to obtain images... 365
4.8.4.3.2 Reacting to DOM mutations .. 365
4.8.4.3.3 The list of available images .. 366
4.8.4.3.4 Decoding images .. 366
4.8.4.3.5 Updating the image data .. 367
4.8.4.3.6 Preparing an image for presentation 371
4.8.4.3.7 Selecting an image source.. 371
4.8.4.3.8 Creating a source set from attributes 372
4.8.4.3.9 Updating the source set.. 372
4.8.4.3.10 Parsing a srcset attribute .. 373
4.8.4.3.11 Parsing a sizes attribute.. 375
4.8.4.3.12 Normalizing the source densities .. 376
4.8.4.3.13 Reacting to environment changes 376

4.8.4.4 Requirements for providing text to act as an alternative for images378
4.8.4.4.1 General guidelines .. 378
4.8.4.4.2 A link or button containing nothing but the image378
4.8.4.4.3 A phrase or paragraph with an alternative graphical
representation: charts, diagrams, graphs, maps, illustrations379
4.8.4.4.4 A short phrase or label with an alternative graphical
representation: icons, logos... 380
4.8.4.4.5 Text that has been rendered to a graphic for typographical
effect ... 381
4.8.4.4.6 A graphical representation of some of the surrounding
text .. 382
4.8.4.4.7 Ancillary images ... 383
4.8.4.4.8 A purely decorative image that doesn't add any
information .. 384
4.8.4.4.9 A group of images that form a single larger picture with no
links ... 385
4.8.4.4.10 A group of images that form a single larger picture with
links ... 385
4.8.4.4.11 A key part of the content .. 385
4.8.4.4.12 An image not intended for the user 389
4.8.4.4.13 An image in an email or private document intended for a
specific person who is known to be able to view images..................... 389
4.8.4.4.14 Guidance for markup generators .. 389
4.8.4.4.15 Guidance for conformance checkers................................... 390

7

4.8.5 The iframe element .. 390
4.8.6 The embed element .. 399
4.8.7 The object element .. 402
4.8.8 The video element .. 406
4.8.9 The audio element .. 410
4.8.10 The track element .. 411
4.8.11 Media elements ... 414

4.8.11.1 Error codes ... 416
4.8.11.2 Location of the media resource .. 416
4.8.11.3 MIME types... 417
4.8.11.4 Network states ... 418
4.8.11.5 Loading the media resource... 419
4.8.11.6 Offsets into the media resource ... 430
4.8.11.7 Ready states... 433
4.8.11.8 Playing the media resource.. 435
4.8.11.9 Seeking .. 443
4.8.11.10 Media resources with multiple media tracks .. 445

4.8.11.10.1 AudioTrackList and VideoTrackList objects445
4.8.11.10.2 Selecting specific audio and video tracks declaratively....449

4.8.11.11 Timed text tracks ... 449
4.8.11.11.1 Text track model ... 449
4.8.11.11.2 Sourcing in-band text tracks ... 452
4.8.11.11.3 Sourcing out-of-band text tracks....................................... 453
4.8.11.11.4 Guidelines for exposing cues in various formats as text track
cues ... 456
4.8.11.11.5 Text track API .. 456
4.8.11.11.6 Event handlers for objects of the text track APIs462
4.8.11.11.7 Best practices for metadata text tracks............................ 462

4.8.11.12 Identifying a track kind through a URL ... 464
4.8.11.13 User interface... 464
4.8.11.14 Time ranges ... 466
4.8.11.15 The TrackEvent interface .. 466
4.8.11.16 Events summary .. 467
4.8.11.17 Security and privacy considerations... 469
4.8.11.18 Best practices for authors using media elements 469
4.8.11.19 Best practices for implementers of media elements 470

4.8.12 The map element.. 470
4.8.13 The area element .. 471
4.8.14 Image maps... 473

4.8.14.1 Authoring ... 473
4.8.14.2 Processing model ... 474

4.8.15 MathML .. 476
4.8.16 SVG.. 477
4.8.17 Dimension attributes ... 477

4.9 Tabular data .. 478
4.9.1 The table element .. 478

4.9.1.1 Techniques for describing tables .. 482
4.9.1.2 Techniques for table design.. 486

4.9.2 The caption element .. 486
4.9.3 The colgroup element .. 487
4.9.4 The col element.. 488
4.9.5 The tbody element .. 489
4.9.6 The thead element .. 490
4.9.7 The tfoot element .. 491

8

4.9.8 The tr element.. 492
4.9.9 The td element.. 493
4.9.10 The th element.. 495
4.9.11 Attributes common to td and th elements.. 496
4.9.12 Processing model... 497

4.9.12.1 Forming a table .. 498
4.9.12.2 Forming relationships between data cells and header cells 501

4.9.13 Examples ... 503
4.10 Forms .. 505

4.10.1 Introduction ... 505
4.10.1.1 Writing a form's user interface ... 505
4.10.1.2 Implementing the server-side processing for a form.................................. 508
4.10.1.3 Configuring a form to communicate with a server 508
4.10.1.4 Client-side form validation ... 509
4.10.1.5 Enabling client-side automatic filling of form controls................................ 510
4.10.1.6 Improving the user experience on mobile devices 511
4.10.1.7 The difference between the field type, the autofill field name, and the input
modality ... 512
4.10.1.8 Date, time, and number formats .. 513

4.10.2 Categories ... 513
4.10.3 The form element .. 514
4.10.4 The label element .. 518
4.10.5 The input element .. 520

4.10.5.1 States of the type attribute ... 527
4.10.5.1.1 Hidden state (type=hidden) ... 527
4.10.5.1.2 Text (type=text) state and Search state (type=search)....527
4.10.5.1.3 Telephone state (type=tel) .. 528
4.10.5.1.4 URL state (type=url).. 529
4.10.5.1.5 Email state (type=email) ... 530
4.10.5.1.6 Password state (type=password).. 531
4.10.5.1.7 Date state (type=date) .. 532
4.10.5.1.8 Month state (type=month) .. 533
4.10.5.1.9 Week state (type=week) ... 534
4.10.5.1.10 Time state (type=time) .. 535
4.10.5.1.11 Local Date and Time state (type=datetime-local).........536
4.10.5.1.12 Number state (type=number).. 537
4.10.5.1.13 Range state (type=range) .. 538
4.10.5.1.14 Color state (type=color) .. 541
4.10.5.1.15 Checkbox state (type=checkbox) 542
4.10.5.1.16 Radio Button state (type=radio)...................................... 543
4.10.5.1.17 File Upload state (type=file)... 544
4.10.5.1.18 Submit Button state (type=submit) 546
4.10.5.1.19 Image Button state (type=image)..................................... 547
4.10.5.1.20 Reset Button state (type=reset)...................................... 549
4.10.5.1.21 Button state (type=button).. 550

4.10.5.2 Implementation notes regarding localization of form controls 550
4.10.5.3 Common input element attributes .. 550

4.10.5.3.1 The maxlength and minlength attributes 551
4.10.5.3.2 The size attribute .. 551
4.10.5.3.3 The readonly attribute... 551
4.10.5.3.4 The required attribute... 552
4.10.5.3.5 The multiple attribute... 553
4.10.5.3.6 The pattern attribute... 554
4.10.5.3.7 The min and max attributes ... 555
4.10.5.3.8 The step attribute .. 556
4.10.5.3.9 The list attribute .. 557
4.10.5.3.10 The placeholder attribute ... 559

4.10.5.4 Common input element APIs... 560
9

4.10.5.5 Common event behaviors .. 564
4.10.6 The button element .. 566
4.10.7 The select element .. 568
4.10.8 The datalist element .. 574
4.10.9 The optgroup element .. 576
4.10.10 The option element .. 577
4.10.11 The textarea element .. 579
4.10.12 The output element .. 584
4.10.13 The progress element .. 587
4.10.14 The meter element .. 589
4.10.15 The fieldset element .. 594
4.10.16 The legend element .. 596
4.10.17 Form control infrastructure .. 597

4.10.17.1 A form control's value .. 597
4.10.17.2 Mutability ... 597
4.10.17.3 Association of controls and forms .. 598

4.10.18 Attributes common to form controls .. 599
4.10.18.1 Naming form controls: the name attribute .. 599
4.10.18.2 Submitting element directionality: the dirname attribute 600
4.10.18.3 Limiting user input length: the maxlength attribute 600
4.10.18.4 Setting minimum input length requirements: the minlength attribute....601
4.10.18.5 Enabling and disabling form controls: the disabled attribute601
4.10.18.6 Form submission attributes .. 602
4.10.18.7 Autofill .. 604

4.10.18.7.1 Autofilling form controls: the autocomplete attribute604
4.10.18.7.2 Processing model.. 610

4.10.19 APIs for the text control selections .. 617
4.10.20 Constraints .. 622

4.10.20.1 Definitions .. 622
4.10.20.2 Constraint validation .. 623
4.10.20.3 The constraint validation API.. 624
4.10.20.4 Security .. 627

4.10.21 Form submission.. 628
4.10.21.1 Introduction.. 628
4.10.21.2 Implicit submission... 628
4.10.21.3 Form submission algorithm .. 629
4.10.21.4 Constructing the entry list.. 632
4.10.21.5 Selecting a form submission encoding ... 634
4.10.21.6 Converting an entry list to a list of name-value pairs............................... 634
4.10.21.7 URL-encoded form data.. 635
4.10.21.8 Multipart form data .. 635
4.10.21.9 Plain text form data.. 635
4.10.21.10 The SubmitEvent interface .. 636
4.10.21.11 The FormDataEvent interface .. 636

4.10.22 Resetting a form .. 637
4.11 Interactive elements ... 637

4.11.1 The details element .. 637
4.11.2 The summary element .. 643
4.11.3 Commands... 643

4.11.3.1 Facets ... 643
4.11.3.2 Using the a element to define a command .. 644
4.11.3.3 Using the button element to define a command 644
4.11.3.4 Using the input element to define a command... 644

10

4.11.3.5 Using the option element to define a command 645
4.11.3.6 Using the accesskey attribute on a legend element to define a
command ... 645
4.11.3.7 Using the accesskey attribute to define a command on other elements...646

4.11.4 The dialog element .. 646
4.12 Scripting.. 652

4.12.1 The script element .. 652
4.12.1.1 Processing model ... 659
4.12.1.2 Scripting languages.. 666
4.12.1.3 Restrictions for contents of script elements .. 666
4.12.1.4 Inline documentation for external scripts... 668
4.12.1.5 Interaction of script elements and XSLT .. 669

4.12.2 The noscript element .. 669
4.12.3 The template element .. 671

4.12.3.1 Interaction of template elements with XSLT and XPath 675
4.12.4 The slot element .. 675
4.12.5 The canvas element .. 677

4.12.5.1 The 2D rendering context... 682
4.12.5.1.1 Implementation notes... 689
4.12.5.1.2 The canvas state... 690
4.12.5.1.3 Line styles... 691
4.12.5.1.4 Text styles ... 694
4.12.5.1.5 Building paths ... 702
4.12.5.1.6 Path2D objects.. 708
4.12.5.1.7 Transformations .. 709
4.12.5.1.8 Image sources for 2D rendering contexts 711
4.12.5.1.9 Fill and stroke styles ... 712
4.12.5.1.10 Drawing rectangles to the bitmap 716
4.12.5.1.11 Drawing text to the bitmap... 717
4.12.5.1.12 Drawing paths to the canvas .. 719
4.12.5.1.13 Drawing focus rings .. 722
4.12.5.1.14 Drawing images .. 723
4.12.5.1.15 Pixel manipulation .. 725
4.12.5.1.16 Compositing.. 730
4.12.5.1.17 Image smoothing .. 731
4.12.5.1.18 Shadows ... 732
4.12.5.1.19 Filters .. 733
4.12.5.1.20 Working with externally-defined SVG filters...................... 734
4.12.5.1.21 Drawing model.. 734
4.12.5.1.22 Best practices ... 734
4.12.5.1.23 Examples .. 735

4.12.5.2 The ImageBitmap rendering context .. 739
4.12.5.2.1 Introduction .. 739
4.12.5.2.2 The ImageBitmapRenderingContext interface739

4.12.5.3 The OffscreenCanvas interface... 741
4.12.5.3.1 The offscreen 2D rendering context.................................... 745

4.12.5.4 Color spaces and color space conversion... 746
4.12.5.5 Serializing bitmaps to a file .. 747
4.12.5.6 Security with canvas elements .. 747
4.12.5.7 Premultiplied alpha and the 2D rendering context..................................... 748

4.13 Custom elements .. 749
4.13.1 Introduction ... 749

4.13.1.1 Creating an autonomous custom element ... 750
4.13.1.2 Creating a form-associated custom element.. 751
4.13.1.3 Creating a custom element with default accessible roles, states, and
properties... 751
4.13.1.4 Creating a customized built-in element.. 752
4.13.1.5 Drawbacks of autonomous custom elements... 754

11

4.13.1.6 Upgrading elements after their creation .. 755
4.13.1.7 Exposing custom element states ... 756

4.13.2 Requirements for custom element constructors and reactions.. 758
4.13.3 Core concepts.. 759
4.13.4 The CustomElementRegistry interface... 761
4.13.5 Upgrades ... 765
4.13.6 Custom element reactions... 767
4.13.7 Element internals... 770

4.13.7.1 The ElementInternals interface... 771
4.13.7.2 Shadow root access.. 772
4.13.7.3 Form-associated custom elements... 772
4.13.7.4 Accessibility semantics .. 774
4.13.7.5 Custom state pseudo-class .. 774

4.14 Common idioms without dedicated elements ... 775
4.14.1 Breadcrumb navigation ... 775
4.14.2 Tag clouds.. 776
4.14.3 Conversations .. 776
4.14.4 Footnotes... 779

4.15 Disabled elements... 781
4.16 Matching HTML elements using selectors and CSS ... 781

4.16.1 Case-sensitivity of the CSS 'attr()' function ... 781
4.16.2 Case-sensitivity of selectors .. 781
4.16.3 Pseudo-classes .. 782

5 Microdata.. 788
5.1 Introduction... 788

5.1.1 Overview.. 788
5.1.2 The basic syntax.. 788
5.1.3 Typed items ... 791
5.1.4 Global identifiers for items .. 792
5.1.5 Selecting names when defining vocabularies .. 792

5.2 Encoding microdata .. 793
5.2.1 The microdata model... 793
5.2.2 Items.. 793
5.2.3 Names: the itemprop attribute ... 795
5.2.4 Values .. 797
5.2.5 Associating names with items ... 798
5.2.6 Microdata and other namespaces.. 799

5.3 Sample microdata vocabularies .. 799
5.3.1 vCard ... 800

5.3.1.1 Conversion to vCard... 808
5.3.1.2 Examples.. 812

5.3.2 vEvent ... 813
5.3.2.1 Conversion to iCalendar ... 818
5.3.2.2 Examples.. 819

5.3.3 Licensing works ... 820
5.3.3.1 Examples.. 821

5.4 Converting HTML to other formats .. 821
5.4.1 JSON... 821

6 User interaction .. 824
12

6.1 The hidden attribute... 824
6.2 Page visibility .. 826

6.2.1 The VisibilityStateEntry interface... 826
6.3 Inert subtrees.. 827

6.3.1 Modal dialogs and inert subtrees... 828
6.3.2 The inert attribute ... 828

6.4 Tracking user activation .. 829
6.4.1 Data model .. 829
6.4.2 Processing model... 830
6.4.3 APIs gated by user activation .. 831
6.4.4 The UserActivation interface .. 832
6.4.5 User agent automation .. 832

6.5 Activation behavior of elements.. 832
6.5.1 The ToggleEvent interface.. 833

6.6 Focus... 833
6.6.1 Introduction ... 833
6.6.2 Data model .. 834
6.6.3 The tabindex attribute.. 838
6.6.4 Processing model... 840
6.6.5 Sequential focus navigation... 844
6.6.6 Focus management APIs.. 846
6.6.7 The autofocus attribute.. 848

6.7 Assigning keyboard shortcuts ... 850
6.7.1 Introduction ... 850
6.7.2 The accesskey attribute.. 851
6.7.3 Processing model... 852

6.8 Editing... 853
6.8.1 Making document regions editable: The contenteditable content attribute..................... 853
6.8.2 Making entire documents editable: the designMode getter and setter................................ 854
6.8.3 Best practices for in-page editors .. 855
6.8.4 Editing APIs.. 855
6.8.5 Spelling and grammar checking .. 855
6.8.6 Writing suggestions ... 857
6.8.7 Autocapitalization .. 858
6.8.8 Autocorrection ... 860
6.8.9 Input modalities: the inputmode attribute... 861
6.8.10 Input modalities: the enterkeyhint attribute ... 861

6.9 Find-in-page .. 862
6.9.1 Introduction ... 862
6.9.2 Interaction with details and hidden=until-found ... 862
6.9.3 Interaction with selection .. 863

6.10 Close requests and close watchers ... 863
6.10.1 Close requests ... 863
6.10.2 Close watcher infrastructure.. 864
6.10.3 The CloseWatcher interface.. 867

6.11 Drag and drop ... 869
6.11.1 Introduction ... 870
6.11.2 The drag data store ... 871
6.11.3 The DataTransfer interface.. 872

6.11.3.1 The DataTransferItemList interface ... 875
13

6.11.3.2 The DataTransferItem interface... 877
6.11.4 The DragEvent interface ... 878
6.11.5 Processing model... 879
6.11.6 Events summary.. 884
6.11.7 The draggable attribute.. 885
6.11.8 Security risks in the drag-and-drop model... 885

6.12 The popover attribute ... 886
6.12.1 The popover target attributes.. 894
6.12.2 Popover light dismiss ... 896

7 Loading web pages... 898
7.1 Supporting concepts ... 898

7.1.1 Origins ... 898
7.1.1.1 Sites ... 899
7.1.1.2 Relaxing the same-origin restriction... 901

7.1.2 Origin-keyed agent clusters... 902
7.1.3 Cross-origin opener policies... 903

7.1.3.1 The headers ... 904
7.1.3.2 Browsing context group switches due to opener policy 905
7.1.3.3 Reporting.. 908

7.1.4 Cross-origin embedder policies.. 912
7.1.4.1 The headers ... 913
7.1.4.2 Embedder policy checks... 913

7.1.5 Sandboxing.. 914
7.1.6 Policy containers.. 917

7.2 APIs related to navigation and session history .. 919
7.2.1 Security infrastructure for Window, WindowProxy, and Location objects 919

7.2.1.1 Integration with IDL.. 919
7.2.1.2 Shared internal slot: [[CrossOriginPropertyDescriptorMap]]......................... 919
7.2.1.3 Shared abstract operations .. 919

7.2.1.3.1 CrossOriginProperties (O) ... 919
7.2.1.3.2 CrossOriginPropertyFallback (P) .. 920
7.2.1.3.3 IsPlatformObjectSameOrigin (O) ... 920
7.2.1.3.4 CrossOriginGetOwnPropertyHelper (O, P) 920
7.2.1.3.5 CrossOriginGet (O, P, Receiver) .. 921
7.2.1.3.6 CrossOriginSet (O, P, V, Receiver) 922
7.2.1.3.7 CrossOriginOwnPropertyKeys (O).. 922

7.2.2 The Window object ... 922
7.2.2.1 Opening and closing windows .. 924
7.2.2.2 Indexed access on the Window object... 928
7.2.2.3 Named access on the Window object .. 929
7.2.2.4 Accessing related windows... 930
7.2.2.5 Historical browser interface element APIs .. 932
7.2.2.6 Script settings for Window objects .. 933

7.2.3 The WindowProxy exotic object.. 934
7.2.3.1 [[GetPrototypeOf]] () ... 934
7.2.3.2 [[SetPrototypeOf]] (V) .. 934
7.2.3.3 [[IsExtensible]] ()... 934
7.2.3.4 [[PreventExtensions]] () .. 934
7.2.3.5 [[GetOwnProperty]] (P)... 934
7.2.3.6 [[DefineOwnProperty]] (P, Desc) .. 935
7.2.3.7 [[Get]] (P, Receiver) ... 935
7.2.3.8 [[Set]] (P, V, Receiver).. 936
7.2.3.9 [[Delete]] (P) .. 936

14

7.2.3.10 [[OwnPropertyKeys]] () .. 936
7.2.4 The Location interface ... 936

7.2.4.1 [[GetPrototypeOf]] () ... 943
7.2.4.2 [[SetPrototypeOf]] (V) .. 943
7.2.4.3 [[IsExtensible]] ()... 943
7.2.4.4 [[PreventExtensions]] () .. 943
7.2.4.5 [[GetOwnProperty]] (P)... 943
7.2.4.6 [[DefineOwnProperty]] (P, Desc) .. 944
7.2.4.7 [[Get]] (P, Receiver) ... 944
7.2.4.8 [[Set]] (P, V, Receiver).. 944
7.2.4.9 [[Delete]] (P) .. 944
7.2.4.10 [[OwnPropertyKeys]] () .. 944

7.2.5 The History interface ... 944
7.2.6 The navigation API ... 949

7.2.6.1 Introduction.. 949
7.2.6.2 The Navigation interface .. 952
7.2.6.3 Core infrastructure ... 953
7.2.6.4 Initializing and updating the entry list.. 954
7.2.6.5 The NavigationHistoryEntry interface ... 956
7.2.6.6 The history entry list .. 958
7.2.6.7 Initiating navigations.. 959
7.2.6.8 Ongoing navigation tracking .. 963
7.2.6.9 The NavigationActivation interface ... 969
7.2.6.10 The navigate event ... 969

7.2.6.10.1 The NavigateEvent interface ... 970
7.2.6.10.2 The NavigationDestination interface.............................. 973
7.2.6.10.3 Firing the event... 974
7.2.6.10.4 Scroll and focus behavior.. 979

7.2.7 Event interfaces... 980
7.2.7.1 The NavigationCurrentEntryChangeEvent interface 980
7.2.7.2 The PopStateEvent interface .. 981
7.2.7.3 The HashChangeEvent interface... 981
7.2.7.4 The PageSwapEvent interface .. 982
7.2.7.5 The PageRevealEvent interface... 982
7.2.7.6 The PageTransitionEvent interface ... 983
7.2.7.7 The BeforeUnloadEvent interface... 983

7.2.8 The NotRestoredReasons interface .. 984
7.3 Infrastructure for sequences of documents... 988

7.3.1 Navigables ... 989
7.3.1.1 Traversable navigables... 990
7.3.1.2 Top-level traversables .. 990
7.3.1.3 Child navigables ... 991
7.3.1.4 Jake diagrams... 993
7.3.1.5 Related navigable collections... 994
7.3.1.6 Navigable destruction .. 995
7.3.1.7 Navigable target names ... 996

7.3.2 Browsing contexts ... 998
7.3.2.1 Creating browsing contexts.. 999
7.3.2.2 Related browsing contexts ... 1001
7.3.2.3 Groupings of browsing contexts ... 1002

7.3.3 Fully active documents .. 1003
7.4 Navigation and session history ... 1004

7.4.1 Session history... 1005
7.4.1.1 Session history entries ... 1005
7.4.1.2 Document state.. 1006

15

7.4.1.3 Centralized modifications of session history .. 1008
7.4.1.4 Low-level operations on session history ... 1010

7.4.2 Navigation ... 1012
7.4.2.1 Supporting concepts .. 1012
7.4.2.2 Beginning navigation ... 1014
7.4.2.3 Ending navigation .. 1018

7.4.2.3.1 The usual cross-document navigation case 1018
7.4.2.3.2 The javascript: URL special case 1019
7.4.2.3.3 Fragment navigations ... 1021
7.4.2.3.4 Non-fetch schemes and external software.......................... 1023

7.4.2.4 Preventing navigation .. 1025
7.4.2.5 Aborting navigation.. 1027

7.4.3 Reloading and traversing... 1027
7.4.4 Non-fragment synchronous "navigations" ... 1028
7.4.5 Populating a session history entry ... 1029
7.4.6 Applying the history step... 1040

7.4.6.1 Updating the traversable ... 1040
7.4.6.2 Updating the document.. 1049
7.4.6.3 Revealing the document .. 1053
7.4.6.4 Scrolling to a fragment... 1054
7.4.6.5 Persisted history entry state .. 1055

7.5 Document lifecycle.. 1056
7.5.1 Shared document creation infrastructure .. 1056
7.5.2 Loading HTML documents.. 1059
7.5.3 Loading XML documents.. 1060
7.5.4 Loading text documents .. 1060
7.5.5 Loading multipart/x-mixed-replace documents ... 1061
7.5.6 Loading media documents... 1061
7.5.7 Loading a document for inline content that doesn't have a DOM 1062
7.5.8 Finishing the loading process... 1063
7.5.9 Unloading documents .. 1064
7.5.10 Destroying documents... 1066
7.5.11 Aborting a document load ... 1067

7.6 The `X-Frame-Options` header ... 1068
7.7 The `Refresh` header .. 1069
7.8 Browser user interface considerations .. 1069

8 Web application APIs .. 1072
8.1 Scripting.. 1072

8.1.1 Introduction ... 1072
8.1.2 Agents and agent clusters ... 1072

8.1.2.1 Integration with the JavaScript agent formalism .. 1072
8.1.2.2 Integration with the JavaScript agent cluster formalism 1073

8.1.3 Realms and their counterparts .. 1075
8.1.3.1 Environments ... 1075
8.1.3.2 Environment settings objects ... 1076
8.1.3.3 Realms, settings objects, and global objects.. 1076

8.1.3.3.1 Entry ... 1080
8.1.3.3.2 Incumbent... 1080
8.1.3.3.3 Current.. 1083
8.1.3.3.4 Relevant.. 1083

8.1.3.4 Enabling and disabling scripting... 1083
8.1.3.5 Secure contexts.. 1084

16

8.1.4 Script processing model .. 1084
8.1.4.1 Scripts .. 1084
8.1.4.2 Fetching scripts .. 1085
8.1.4.3 Creating scripts .. 1093
8.1.4.4 Calling scripts... 1096
8.1.4.5 Killing scripts .. 1097
8.1.4.6 Runtime script errors.. 1098
8.1.4.7 Unhandled promise rejections.. 1100
8.1.4.8 Import map parse results ... 1101

8.1.5 Module specifier resolution.. 1101
8.1.5.1 The resolution algorithm .. 1101
8.1.5.2 Import maps... 1104
8.1.5.3 Import map processing model.. 1107

8.1.6 JavaScript specification host hooks.. 1114
8.1.6.1 HostEnsureCanAddPrivateElement(O).. 1114
8.1.6.2 HostEnsureCanCompileStrings(realm, parameterStrings, bodyString,
codeString, compilationType, parameterArgs, bodyArg) .. 1115
8.1.6.3 HostGetCodeForEval(argument)... 1115
8.1.6.4 HostPromiseRejectionTracker(promise, operation) 1115
8.1.6.5 HostSystemUTCEpochNanoseconds(global) ... 1115
8.1.6.6 Job-related host hooks.. 1116

8.1.6.6.1 HostCallJobCallback(callback, V, argumentsList)1116
8.1.6.6.2
HostEnqueueFinalizationRegistryCleanupJob(finalizationRegistry)1116
8.1.6.6.3 HostEnqueueGenericJob(job, realm) 1117
8.1.6.6.4 HostEnqueuePromiseJob(job, realm)................................... 1117
8.1.6.6.5 HostEnqueueTimeoutJob(job, realm, milliseconds)1118
8.1.6.6.6 HostMakeJobCallback(callable) ... 1118

8.1.6.7 Module-related host hooks ... 1119
8.1.6.7.1 HostGetImportMetaProperties(moduleRecord)1121
8.1.6.7.2 HostGetSupportedImportAttributes() 1121
8.1.6.7.3 HostLoadImportedModule(referrer, moduleRequest, loadState,
payload)... 1121

8.1.7 Event loops .. 1123
8.1.7.1 Definitions .. 1123
8.1.7.2 Queuing tasks .. 1125
8.1.7.3 Processing model ... 1126
8.1.7.4 Generic task sources .. 1134
8.1.7.5 Dealing with the event loop from other specifications 1134

8.1.8 Events.. 1136
8.1.8.1 Event handlers ... 1136
8.1.8.2 Event handlers on elements, Document objects, and Window objects.........1143

8.1.8.2.1 IDL definitions ... 1146
8.1.8.3 Event firing... 1147

8.2 The WindowOrWorkerGlobalScope mixin .. 1148
8.3 Base64 utility methods ... 1149
8.4 Dynamic markup insertion .. 1150

8.4.1 Opening the input stream.. 1150
8.4.2 Closing the input stream.. 1152
8.4.3 document.write() .. 1152
8.4.4 document.writeln() .. 1153

8.5 DOM parsing and serialization APIs ... 1153
8.5.1 The DOMParser interface ... 1154
8.5.2 Unsafe HTML parsing methods .. 1155
8.5.3 HTML serialization methods... 1157

17

8.5.4 The innerHTML property .. 1157
8.5.5 The outerHTML property .. 1158
8.5.6 The insertAdjacentHTML() method .. 1159
8.5.7 The createContextualFragment() method ... 1160

8.6 Timers ... 1161
8.7 Microtask queuing ... 1165
8.8 User prompts... 1167

8.8.1 Simple dialogs ... 1167
8.8.2 Printing .. 1169

8.9 System state and capabilities ... 1170
8.9.1 The Navigator object.. 1170

8.9.1.1 Client identification .. 1170
8.9.1.2 Language preferences.. 1172
8.9.1.3 Browser state ... 1173
8.9.1.4 Custom scheme handlers: the registerProtocolHandler() method1174

8.9.1.4.1 Security and privacy ... 1176
8.9.1.4.2 User agent automation ... 1177

8.9.1.5 Cookies... 1177
8.9.1.6 PDF viewing support... 1178

8.10 Images .. 1181
8.11 Animation frames.. 1186

9 Communication .. 1189
9.1 The MessageEvent interface ... 1189
9.2 Server-sent events .. 1190

9.2.1 Introduction ... 1190
9.2.2 The EventSource interface.. 1191
9.2.3 Processing model... 1193
9.2.4 The `Last-Event-ID` header.. 1194
9.2.5 Parsing an event stream.. 1194
9.2.6 Interpreting an event stream... 1195
9.2.7 Authoring notes ... 1197
9.2.8 Connectionless push and other features.. 1197
9.2.9 Garbage collection... 1198
9.2.10 Implementation advice .. 1198

9.3 Cross-document messaging .. 1199
9.3.1 Introduction ... 1199
9.3.2 Security ... 1200

9.3.2.1 Authors... 1200
9.3.2.2 User agents .. 1200

9.3.3 Posting messages .. 1200
9.4 Channel messaging... 1202

9.4.1 Introduction ... 1202
9.4.1.1 Examples.. 1202
9.4.1.2 Ports as the basis of an object-capability model on the web...................... 1203
9.4.1.3 Ports as the basis of abstracting out service implementations1204

9.4.2 Message channels ... 1204
9.4.3 The MessageEventTarget mixin.. 1205
9.4.4 Message ports ... 1205
9.4.5 Ports and garbage collection ... 1208

9.5 Broadcasting to other browsing contexts .. 1209
18

10 Web workers ... 1212
10.1 Introduction... 1212

10.1.1 Scope... 1212
10.1.2 Examples ... 1212

10.1.2.1 A background number-crunching worker.. 1212
10.1.2.2 Using a JavaScript module as a worker .. 1213
10.1.2.3 Shared workers introduction .. 1215
10.1.2.4 Shared state using a shared worker ... 1217
10.1.2.5 Delegation.. 1221
10.1.2.6 Providing libraries... 1223

10.1.3 Tutorials ... 1226
10.1.3.1 Creating a dedicated worker .. 1226
10.1.3.2 Communicating with a dedicated worker ... 1227
10.1.3.3 Shared workers .. 1227

10.2 Infrastructure .. 1228
10.2.1 The global scope.. 1228

10.2.1.1 The WorkerGlobalScope common interface .. 1228
10.2.1.2 Dedicated workers and the DedicatedWorkerGlobalScope interface1229
10.2.1.3 Shared workers and the SharedWorkerGlobalScope interface................1230

10.2.2 The event loop... 1231
10.2.3 The worker's lifetime ... 1231
10.2.4 Processing model... 1232
10.2.5 Runtime script errors ... 1234
10.2.6 Creating workers.. 1235

10.2.6.1 The AbstractWorker mixin.. 1235
10.2.6.2 Script settings for workers.. 1235
10.2.6.3 Dedicated workers and the Worker interface ... 1236
10.2.6.4 Shared workers and the SharedWorker interface..................................... 1237

10.2.7 Concurrent hardware capabilities .. 1239
10.3 APIs available to workers .. 1239

10.3.1 Importing scripts and libraries ... 1239
10.3.2 The WorkerNavigator interface .. 1240
10.3.3 The WorkerLocation interface .. 1240

11 Worklets.. 1242
11.1 Introduction... 1242

11.1.1 Motivations .. 1242
11.1.2 Code idempotence... 1242
11.1.3 Speculative evaluation .. 1243

11.2 Examples .. 1243
11.2.1 Loading scripts... 1244
11.2.2 Registering a class and invoking its methods .. 1245

11.3 Infrastructure .. 1245
11.3.1 The global scope.. 1245

11.3.1.1 Agents and event loops.. 1246
11.3.1.2 Creation and termination ... 1246
11.3.1.3 Script settings for worklets... 1247

11.3.2 The Worklet class ... 1248
11.3.3 The worklet's lifetime .. 1250

12 Web storage ... 1251
12.1 Introduction... 1251

19

12.2 The API .. 1252
12.2.1 The Storage interface ... 1252
12.2.2 The sessionStorage getter .. 1254
12.2.3 The localStorage getter .. 1255
12.2.4 The StorageEvent interface.. 1255

12.3 Privacy .. 1256
12.3.1 User tracking ... 1256
12.3.2 Sensitivity of data.. 1257

12.4 Security... 1257
12.4.1 DNS spoofing attacks... 1257
12.4.2 Cross-directory attacks .. 1257
12.4.3 Implementation risks ... 1258

13 The HTML syntax .. 1259
13.1 Writing HTML documents .. 1259

13.1.1 The DOCTYPE... 1259
13.1.2 Elements.. 1260

13.1.2.1 Start tags ... 1261
13.1.2.2 End tags ... 1262
13.1.2.3 Attributes ... 1262
13.1.2.4 Optional tags.. 1263
13.1.2.5 Restrictions on content models .. 1269
13.1.2.6 Restrictions on the contents of raw text and escapable raw text
elements .. 1269

13.1.3 Text .. 1269
13.1.3.1 Newlines... 1269

13.1.4 Character references ... 1269
13.1.5 CDATA sections .. 1270
13.1.6 Comments ... 1270

13.2 Parsing HTML documents .. 1271
13.2.1 Overview of the parsing model.. 1272
13.2.2 Parse errors.. 1273
13.2.3 The input byte stream ... 1277

13.2.3.1 Parsing with a known character encoding .. 1278
13.2.3.2 Determining the character encoding.. 1278
13.2.3.3 Character encodings .. 1284
13.2.3.4 Changing the encoding while parsing .. 1284
13.2.3.5 Preprocessing the input stream.. 1284

13.2.4 Parse state... 1285
13.2.4.1 The insertion mode .. 1285
13.2.4.2 The stack of open elements ... 1286
13.2.4.3 The list of active formatting elements.. 1288
13.2.4.4 The element pointers ... 1289
13.2.4.5 Other parsing state flags.. 1289

13.2.5 Tokenization ... 1290
13.2.5.1 Data state .. 1291
13.2.5.2 RCDATA state.. 1291
13.2.5.3 RAWTEXT state... 1291
13.2.5.4 Script data state... 1291
13.2.5.5 PLAINTEXT state... 1292
13.2.5.6 Tag open state.. 1292
13.2.5.7 End tag open state ... 1292
13.2.5.8 Tag name state... 1293

20

13.2.5.9 RCDATA less-than sign state... 1293
13.2.5.10 RCDATA end tag open state.. 1293
13.2.5.11 RCDATA end tag name state... 1294
13.2.5.12 RAWTEXT less-than sign state .. 1294
13.2.5.13 RAWTEXT end tag open state ... 1294
13.2.5.14 RAWTEXT end tag name state.. 1294
13.2.5.15 Script data less-than sign state.. 1295
13.2.5.16 Script data end tag open state... 1295
13.2.5.17 Script data end tag name state.. 1295
13.2.5.18 Script data escape start state .. 1296
13.2.5.19 Script data escape start dash state.. 1296
13.2.5.20 Script data escaped state... 1296
13.2.5.21 Script data escaped dash state .. 1297
13.2.5.22 Script data escaped dash dash state ... 1297
13.2.5.23 Script data escaped less-than sign state.. 1297
13.2.5.24 Script data escaped end tag open state... 1298
13.2.5.25 Script data escaped end tag name state.. 1298
13.2.5.26 Script data double escape start state .. 1298
13.2.5.27 Script data double escaped state... 1299
13.2.5.28 Script data double escaped dash state .. 1299
13.2.5.29 Script data double escaped dash dash state.. 1300
13.2.5.30 Script data double escaped less-than sign state 1300
13.2.5.31 Script data double escape end state .. 1300
13.2.5.32 Before attribute name state ... 1301
13.2.5.33 Attribute name state .. 1301
13.2.5.34 After attribute name state.. 1302
13.2.5.35 Before attribute value state ... 1302
13.2.5.36 Attribute value (double-quoted) state .. 1302
13.2.5.37 Attribute value (single-quoted) state ... 1303
13.2.5.38 Attribute value (unquoted) state .. 1303
13.2.5.39 After attribute value (quoted) state.. 1304
13.2.5.40 Self-closing start tag state.. 1304
13.2.5.41 Bogus comment state .. 1304
13.2.5.42 Markup declaration open state... 1305
13.2.5.43 Comment start state .. 1305
13.2.5.44 Comment start dash state.. 1305
13.2.5.45 Comment state .. 1305
13.2.5.46 Comment less-than sign state.. 1306
13.2.5.47 Comment less-than sign bang state... 1306
13.2.5.48 Comment less-than sign bang dash state .. 1306
13.2.5.49 Comment less-than sign bang dash dash state...................................... 1306
13.2.5.50 Comment end dash state ... 1307
13.2.5.51 Comment end state.. 1307
13.2.5.52 Comment end bang state... 1307
13.2.5.53 DOCTYPE state ... 1307
13.2.5.54 Before DOCTYPE name state .. 1308
13.2.5.55 DOCTYPE name state ... 1308
13.2.5.56 After DOCTYPE name state... 1309
13.2.5.57 After DOCTYPE public keyword state.. 1309
13.2.5.58 Before DOCTYPE public identifier state .. 1310
13.2.5.59 DOCTYPE public identifier (double-quoted) state 1310
13.2.5.60 DOCTYPE public identifier (single-quoted) state..................................... 1310
13.2.5.61 After DOCTYPE public identifier state ... 1311
13.2.5.62 Between DOCTYPE public and system identifiers state.......................... 1311
13.2.5.63 After DOCTYPE system keyword state .. 1312

21

13.2.5.64 Before DOCTYPE system identifier state .. 1312
13.2.5.65 DOCTYPE system identifier (double-quoted) state 1313
13.2.5.66 DOCTYPE system identifier (single-quoted) state................................... 1313
13.2.5.67 After DOCTYPE system identifier state ... 1314
13.2.5.68 Bogus DOCTYPE state .. 1314
13.2.5.69 CDATA section state ... 1314
13.2.5.70 CDATA section bracket state .. 1314
13.2.5.71 CDATA section end state .. 1315
13.2.5.72 Character reference state .. 1315
13.2.5.73 Named character reference state... 1315
13.2.5.74 Ambiguous ampersand state ... 1316
13.2.5.75 Numeric character reference state... 1316
13.2.5.76 Hexadecimal character reference start state ... 1316
13.2.5.77 Decimal character reference start state... 1316
13.2.5.78 Hexadecimal character reference state ... 1317
13.2.5.79 Decimal character reference state ... 1317
13.2.5.80 Numeric character reference end state.. 1317

13.2.6 Tree construction ... 1318
13.2.6.1 Creating and inserting nodes ... 1319
13.2.6.2 Parsing elements that contain only text... 1324
13.2.6.3 Closing elements that have implied end tags .. 1324
13.2.6.4 The rules for parsing tokens in HTML content .. 1325

13.2.6.4.1 The "initial" insertion mode .. 1325
13.2.6.4.2 The "before html" insertion mode..................................... 1326
13.2.6.4.3 The "before head" insertion mode 1327
13.2.6.4.4 The "in head" insertion mode ... 1328
13.2.6.4.5 The "in head noscript" insertion mode.............................. 1330
13.2.6.4.6 The "after head" insertion mode....................................... 1331
13.2.6.4.7 The "in body" insertion mode ... 1332
13.2.6.4.8 The "text" insertion mode... 1342
13.2.6.4.9 The "in table" insertion mode ... 1343
13.2.6.4.10 The "in table text" insertion mode 1345
13.2.6.4.11 The "in caption" insertion mode 1346
13.2.6.4.12 The "in column group" insertion mode 1346
13.2.6.4.13 The "in table body" insertion mode 1347
13.2.6.4.14 The "in row" insertion mode ... 1348
13.2.6.4.15 The "in cell" insertion mode.. 1349
13.2.6.4.16 The "in select" insertion mode.. 1350
13.2.6.4.17 The "in select in table" insertion mode 1352
13.2.6.4.18 The "in template" insertion mode................................... 1352
13.2.6.4.19 The "after body" insertion mode..................................... 1353
13.2.6.4.20 The "in frameset" insertion mode 1354
13.2.6.4.21 The "after frameset" insertion mode 1355
13.2.6.4.22 The "after after body" insertion mode 1355
13.2.6.4.23 The "after after frameset" insertion mode 1355

13.2.6.5 The rules for parsing tokens in foreign content.. 1356
13.2.7 The end.. 1358
13.2.8 Speculative HTML parsing ... 1360
13.2.9 Coercing an HTML DOM into an infoset.. 1361
13.2.10 An introduction to error handling and strange cases in the parser................................ 1362

13.2.10.1 Misnested tags: <i></i> .. 1362
13.2.10.2 Misnested tags: <p></p>.. 1363
13.2.10.3 Unexpected markup in tables... 1364
13.2.10.4 Scripts that modify the page as it is being parsed 1366
13.2.10.5 The execution of scripts that are moving across multiple documents....1367
13.2.10.6 Unclosed formatting elements ... 1367

13.3 Serializing HTML fragments... 1368

22

13.4 Parsing HTML fragments ... 1373
13.5 Named character references... 1374

14 The XML syntax .. 1384
14.1 Writing documents in the XML syntax... 1384
14.2 Parsing XML documents .. 1384
14.3 Serializing XML fragments... 1386
14.4 Parsing XML fragments ... 1387

15 Rendering ... 1388
15.1 Introduction... 1388
15.2 The CSS user agent style sheet and presentational hints ... 1389
15.3 Non-replaced elements ... 1389

15.3.1 Hidden elements.. 1389
15.3.2 The page.. 1390
15.3.3 Flow content .. 1391
15.3.4 Phrasing content.. 1393
15.3.5 Bidirectional text ... 1395
15.3.6 Sections and headings... 1395
15.3.7 Lists ... 1396
15.3.8 Tables... 1397
15.3.9 Margin collapsing quirks .. 1402
15.3.10 Form controls... 1402
15.3.11 The hr element.. 1403
15.3.12 The fieldset and legend elements ... 1404

15.4 Replaced elements.. 1407
15.4.1 Embedded content .. 1407
15.4.2 Images... 1407
15.4.3 Attributes for embedded content and images ... 1409
15.4.4 Image maps... 1410

15.5 Widgets ... 1410
15.5.1 Native appearance .. 1410
15.5.2 Writing mode ... 1410
15.5.3 Button layout ... 1411
15.5.4 The button element .. 1411
15.5.5 The details and summary elements ... 1411
15.5.6 The input element as a text entry widget .. 1412
15.5.7 The input element as domain-specific widgets .. 1413
15.5.8 The input element as a range control .. 1414
15.5.9 The input element as a color well... 1414
15.5.10 The input element as a checkbox and radio button widgets .. 1414
15.5.11 The input element as a file upload control ... 1414
15.5.12 The input element as a button ... 1415
15.5.13 The marquee element .. 1415
15.5.14 The meter element .. 1416
15.5.15 The progress element .. 1416
15.5.16 The select element .. 1417
15.5.17 The textarea element .. 1418

15.6 Frames and framesets... 1418
23

15.7 Interactive media .. 1420
15.7.1 Links, forms, and navigation.. 1420
15.7.2 The title attribute ... 1421
15.7.3 Editing hosts .. 1421
15.7.4 Text rendered in native user interfaces ... 1421

15.8 Print media.. 1423
15.9 Unstyled XML documents.. 1423

16 Obsolete features ... 1425
16.1 Obsolete but conforming features... 1425

16.1.1 Warnings for obsolete but conforming features... 1425
16.2 Non-conforming features... 1426
16.3 Requirements for implementations ... 1431

16.3.1 The marquee element .. 1431
16.3.2 Frames... 1433
16.3.3 Other elements, attributes and APIs .. 1435

17 IANA considerations.. 1444
17.1 text/html... 1444
17.2 multipart/x-mixed-replace .. 1445
17.3 application/xhtml+xml .. 1446
17.4 text/ping... 1447
17.5 application/microdata+json... 1448
17.6 text/event-stream.. 1449
17.7 web+ scheme prefix... 1450

Index.. 1451
Elements ... 1451
Element content categories .. 1457
Attributes .. 1458
Element interfaces .. 1466
All interfaces ... 1468
Events ... 1470
HTTP headers .. 1472
MIME types.. 1473

References... 1475

Acknowledgments ... 1485

Intellectual property rights .. 1488

24

This specification defines a big part of the web platform, in lots of detail. Its place in the web platform specification stack relative to
other specifications can be best summed up as follows:

CSS SVG MathML Service Workers

ID
B

Fe
tc

h
CS

P
AV

1
Op

us

PN
G

THIS SPECIFICATION
HTTP TLS DOM Unicode Web IDL

MIME URL XML JavaScript Encoding

This section is non-normative.

In short: Yes.

In more length: the term "HTML5" is widely used as a buzzword to refer to modern web technologies, many of which (though by no

1 Introduction §p25

1.1 Where does this specification fit? §p25

1.2 Is this HTML5? §p25

25

means all) are developed at the WHATWG. This document is one such; others are available from the WHATWG Standards overview.

This section is non-normative.

HTML is the World Wide Web's core markup language. Originally, HTML was primarily designed as a language for semantically
describing scientific documents. Its general design, however, has enabled it to be adapted, over the subsequent years, to describe a
number of other types of documents and even applications.

This section is non-normative.

This specification is intended for authors of documents and scripts that use the features defined in this specification, implementers of
tools that operate on pages that use the features defined in this specification, and individuals wishing to establish the correctness of
documents or implementations with respect to the requirements of this specification.

This document is probably not suited to readers who do not already have at least a passing familiarity with web technologies, as in
places it sacrifices clarity for precision, and brevity for completeness. More approachable tutorials and authoring guides can provide a
gentler introduction to the topic.

In particular, familiarity with the basics of DOM is necessary for a complete understanding of some of the more technical parts of this
specification. An understanding of Web IDL, HTTP, XML, Unicode, character encodings, JavaScript, and CSS will also be helpful in places
but is not essential.

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated semantic-level scripting APIs for authoring
accessible pages on the web ranging from static documents to dynamic applications.

The scope of this specification does not include providing mechanisms for media-specific customization of presentation (although
default rendering rules for web browsers are included at the end of this specification, and several mechanisms for hooking into CSS are
provided as part of the language).

The scope of this specification is not to describe an entire operating system. In particular, hardware configuration software, image
manipulation tools, and applications that users would be expected to use with high-end workstations on a daily basis are out of scope.
In terms of applications, this specification is targeted specifically at applications that would be expected to be used by users on an
occasional basis, or regularly but from disparate locations, with low CPU requirements. Examples of such applications include online
purchasing systems, searching systems, games (especially multiplayer online games), public telephone books or address books,
communications software (email clients, instant messaging clients, discussion software), document editing software, etc.

This section is non-normative.

For its first five years (1990-1995), HTML went through a number of revisions and experienced a number of extensions, primarily
hosted first at CERN, and then at the IETF.

With the creation of the W3C, HTML's development changed venue again. A first abortive attempt at extending HTML in 1995 known as
HTML 3.0 then made way to a more pragmatic approach known as HTML 3.2, which was completed in 1997. HTML4 quickly followed

1.3 Background §p26

1.4 Audience §p26

1.5 Scope §p26

1.6 History §p26

26

https://spec.whatwg.org/

later that same year.

The following year, the W3C membership decided to stop evolving HTML and instead begin work on an XML-based equivalent, called
XHTML. This effort started with a reformulation of HTML4 in XML, known as XHTML 1.0, which added no new features except the new
serialization, and which was completed in 2000. After XHTML 1.0, the W3C's focus turned to making it easier for other working groups
to extend XHTML, under the banner of XHTML Modularization. In parallel with this, the W3C also worked on a new language that was
not compatible with the earlier HTML and XHTML languages, calling it XHTML2.

Around the time that HTML's evolution was stopped in 1998, parts of the API for HTML developed by browser vendors were specified
and published under the name DOM Level 1 (in 1998) and DOM Level 2 Core and DOM Level 2 HTML (starting in 2000 and culminating
in 2003). These efforts then petered out, with some DOM Level 3 specifications published in 2004 but the working group being closed
before all the Level 3 drafts were completed.

In 2003, the publication of XForms, a technology which was positioned as the next generation of web forms, sparked a renewed
interest in evolving HTML itself, rather than finding replacements for it. This interest was borne from the realization that XML's
deployment as a web technology was limited to entirely new technologies (like RSS and later Atom), rather than as a replacement for
existing deployed technologies (like HTML).

A proof of concept to show that it was possible to extend HTML4's forms to provide many of the features that XForms 1.0 introduced,
without requiring browsers to implement rendering engines that were incompatible with existing HTML web pages, was the first result
of this renewed interest. At this early stage, while the draft was already publicly available, and input was already being solicited from
all sources, the specification was only under Opera Software's copyright.

The idea that HTML's evolution should be reopened was tested at a W3C workshop in 2004, where some of the principles that underlie
the HTML5 work (described below), as well as the aforementioned early draft proposal covering just forms-related features, were
presented to the W3C jointly by Mozilla and Opera. The proposal was rejected on the grounds that the proposal conflicted with the
previously chosen direction for the web's evolution; the W3C staff and membership voted to continue developing XML-based
replacements instead.

Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue working on the effort under the umbrella of a
new venue called the WHATWG. A public mailing list was created, and the draft was moved to the WHATWG site. The copyright was
subsequently amended to be jointly owned by all three vendors, and to allow reuse of the specification.

The WHATWG was based on several core principles, in particular that technologies need to be backwards compatible, that
specifications and implementations need to match even if this means changing the specification rather than the implementations, and
that specifications need to be detailed enough that implementations can achieve complete interoperability without reverse-
engineering each other.

The latter requirement in particular required that the scope of the HTML5 specification include what had previously been specified in
three separate documents: HTML4, XHTML1, and DOM2 HTML. It also meant including significantly more detail than had previously
been considered the norm.

In 2006, the W3C indicated an interest to participate in the development of HTML5 after all, and in 2007 formed a working group
chartered to work with the WHATWG on the development of the HTML5 specification. Apple, Mozilla, and Opera allowed the W3C to
publish the specification under the W3C copyright, while keeping a version with the less restrictive license on the WHATWG site.

For a number of years, both groups then worked together. In 2011, however, the groups came to the conclusion that they had different
goals: the W3C wanted to publish a "finished" version of "HTML5", while the WHATWG wanted to continue working on a Living Standard
for HTML, continuously maintaining the specification rather than freezing it in a state with known problems, and adding new features
as needed to evolve the platform.

In 2019, the WHATWG and W3C signed an agreement to collaborate on a single version of HTML going forward: this document.

This section is non-normative.

It must be admitted that many aspects of HTML appear at first glance to be nonsensical and inconsistent.

HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been developed over a period of several decades
by a wide array of people with different priorities who, in many cases, did not know of each other's existence.

1.7 Design notes §p27

27

https://www.w3.org/blog/news/archives/7753

Features have thus arisen from many sources, and have not always been designed in especially consistent ways. Furthermore, because
of the unique characteristics of the web, implementation bugs have often become de-facto, and now de-jure, standards, as content is
often unintentionally written in ways that rely on them before they can be fixed.

Despite all this, efforts have been made to adhere to certain design goals. These are described in the next few subsections.

This section is non-normative.

To avoid exposing web authors to the complexities of multithreading, the HTML and DOM APIs are designed such that no script can
ever detect the simultaneous execution of other scripts. Even with workersp1236, the intent is that the behavior of implementations can
be thought of as completely serializing the execution of all scripts in all globals.

The exception to this general design principle is the JavaScript SharedArrayBuffer class. Using SharedArrayBuffer objects, it can in
fact be observed that scripts in other agents are executing simultaneously. Furthermore, due to the JavaScript memory model, there
are situations which not only are un-representable via serialized script execution, but also un-representable via serialized statement
execution among those scripts.

This section is non-normative.

This specification interacts with and relies on a wide variety of other specifications. In certain circumstances, unfortunately, conflicting
needs have led to this specification violating the requirements of these other specifications. Whenever this has occurred, the
transgressions have each been noted as a "willful violation", and the reason for the violation has been noted.

This section is non-normative.

HTML has a wide array of extensibility mechanisms that can be used for adding semantics in a safe manner:

• Authors can use the classp154 attribute to extend elements, effectively creating their own elements, while using the most
applicable existing "real" HTML element, so that browsers and other tools that don't know of the extension can still support it
somewhat well. This is the tack used by microformats, for example.

• Authors can include data for inline client-side scripts or server-side site-wide scripts to process using the data-*=""p164

attributes. These are guaranteed to never be touched by browsers, and allow scripts to include data on HTML elements that
scripts can then look for and process.

• Authors can use the <meta name="" content="">p189 mechanism to include page-wide metadata.

• Authors can use the rel=""p303 mechanism to annotate links with specific meanings by registering extensions to the
predefined set of link typesp335. This is also used by microformats.

• Authors can embed raw data using the <script type="">p652 mechanism with a custom type, for further handling by inline
or server-side scripts.

• Authors can extend APIs using the JavaScript prototyping mechanism. This is widely used by script libraries, for instance.

• Authors can use the microdata feature (the itemscope=""p793 and itemprop=""p795 attributes) to embed nested name-value
pairs of data to be shared with other applications and sites.

• Authors can define, share, and use custom elementsp759 to extend the vocabulary of HTML. The requirements of valid custom
element namesp760 ensure forward compatibility (since no elements will be added to HTML, SVG, or MathML with hyphen-
containing local names in the future).

1.7.1 Serializability of script execution §p28

1.7.2 Compliance with other specifications §p28

1.7.3 Extensibility §p28

28

https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agents

This section is non-normative.

This specification defines an abstract language for describing documents and applications, and some APIs for interacting with in-
memory representations of resources that use this language.

The in-memory representation is known as "DOM HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this abstract language, two of which are defined
in this specification.

The first such concrete syntax is the HTML syntax. This is the format suggested for most authors. It is compatible with most legacy web
browsers. If a document is transmitted with the text/htmlp1444 MIME type, then it will be processed as an HTML document by web
browsers. This specification defines the latest HTML syntax, known simply as "HTML".

The second concrete syntax is XML. When a document is transmitted with an XML MIME type, such as application/xhtml+xmlp1446,
then it is treated as an XML document by web browsers, to be parsed by an XML processor. Authors are reminded that the processing
for XML and HTML differs; in particular, even minor syntax errors will prevent a document labeled as XML from being rendered fully,
whereas they would be ignored in the HTML syntax.

The DOM, the HTML syntax, and the XML syntax cannot all represent the same content. For example, namespaces cannot be
represented using the HTML syntax, but they are supported in the DOM and in the XML syntax. Similarly, documents that use the
noscriptp669 feature can be represented using the HTML syntax, but cannot be represented with the DOM or in the XML syntax.
Comments that contain the string "-->" can only be represented in the DOM, not in the HTML and XML syntaxes.

This section is non-normative.

This specification is divided into the following major sections:

Introductionp25

Non-normative materials providing a context for the HTML standard.

Common infrastructurep43

The conformance classes, algorithms, definitions, and the common underpinnings of the rest of the specification.

Semantics, structure, and APIs of HTML documentsp130

Documents are built from elements. These elements form a tree using the DOM. This section defines the features of this DOM, as
well as introducing the features common to all elements, and the concepts used in defining elements.

The elements of HTMLp172

Each element has a predefined meaning, which is explained in this section. Rules for authors on how to use the element, along with
user agent requirements for how to handle each element, are also given. This includes large signature features of HTML such as
video playback and subtitles, form controls and form submission, and a 2D graphics API known as the HTML canvas.

Microdatap788

This specification introduces a mechanism for adding machine-readable annotations to documents, so that tools can extract trees of
name-value pairs from the document. This section describes this mechanism and some algorithms that can be used to convert
HTML documents into other formats. This section also defines some sample Microdata vocabularies for contact information,
calendar events, and licensing works.

User interactionp824

HTML documents can provide a number of mechanisms for users to interact with and modify content, which are described in this
section, such as how focus works, and drag-and-drop.

1.8 HTML vs XML syntax §p29

The XML syntax for HTML was formerly referred to as "XHTML", but this specification does not use that term (among other reasons,
because no such term is used for the HTML syntaxes of MathML and SVG).

Note

1.9 Structure of this specification §p29

29

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#xml-mime-type

Loading web pagesp898

HTML documents do not exist in a vacuum — this section defines many of the features that affect environments that deal with
multiple pages, such as web browsers.

Web application APIsp1072

This section introduces basic features for scripting of applications in HTML.

Web workersp1212

This section defines an API for background threads in JavaScript.

Workletsp1242

This section defines infrastructure for APIs that need to run JavaScript separately from the main JavaScript execution environment.

The communication APIsp1189

This section describes some mechanisms that applications written in HTML can use to communicate with other applications from
different domains running on the same client. It also introduces a server-push event stream mechanism known as Server Sent
Events or EventSourcep1191, and a two-way full-duplex socket protocol for scripts known as Web Sockets.

Web storagep1251

This section defines a client-side storage mechanism based on name-value pairs.

The HTML syntaxp1259

The XML syntaxp1384

All of these features would be for naught if they couldn't be represented in a serialized form and sent to other people, and so these
sections define the syntaxes of HTML and XML, along with rules for how to parse content using those syntaxes.

Renderingp1388

This section defines the default rendering rules for web browsers.

There are also some appendices, listing obsolete featuresp1425 and IANA considerationsp1444, and several indices.

This specification should be read like all other specifications. First, it should be read cover-to-cover, multiple times. Then, it should be
read backwards at least once. Then it should be read by picking random sections from the contents list and following all the cross-
references.

As described in the conformance requirements section below, this specification describes conformance criteria for a variety of
conformance classes. In particular, there are conformance requirements that apply to producers, for example authors and the
documents they create, and there are conformance requirements that apply to consumers, for example web browsers. They can be
distinguished by what they are requiring: a requirement on a producer states what is allowed, while a requirement on a consumer
states how software is to act.

Requirements on producers have no bearing whatsoever on consumers.

For example, "the foo attribute's value must be a valid integerp76" is a requirement on producers, as it lays out the allowed values;
in contrast, the requirement "the foo attribute's value must be parsed using the rules for parsing integersp76" is a requirement on
consumers, as it describes how to process the content.

Example

Continuing the above example, a requirement stating that a particular attribute's value is constrained to being a valid integerp76

emphatically does not imply anything about the requirements on consumers. It might be that the consumers are in fact required to
treat the attribute as an opaque string, completely unaffected by whether the value conforms to the requirements or not. It might
be (as in the previous example) that the consumers are required to parse the value using specific rules that define how invalid
(non-numeric in this case) values are to be processed.

Example

1.9.1 How to read this specification §p30

30

This is a definition, requirement, or explanation.

This is an open issue.

[Exposed=Window]
interface Example {

// this is an IDL definition
};

/* this is a CSS fragment */

The defining instance of a term is marked up like this. Uses of that term are marked up like thisp31 or like thisp31.

The defining instance of an element, attribute, or API is marked up like this. References to that element, attribute, or API are marked
up like thisp31.

Other code fragments are marked up like this.

Variables are marked up like this.

In an algorithm, steps in synchronous sectionsp1131 are marked with ⌛.

In some cases, requirements are given in the form of lists with conditions and corresponding requirements. In such cases, the
requirements that apply to a condition are always the first set of requirements that follow the condition, even in the case of there being
multiple sets of conditions for those requirements. Such cases are presented as follows:

↪ This is a condition
↪ This is another condition

This is the requirement that applies to the conditions above.

↪ This is a third condition
This is the requirement that applies to the third condition.

This section is non-normative.

A basic HTML document looks like this:

<!DOCTYPE html>

This is a note.
Note

This is an example.
Example

This is a warning.
⚠Warning!

variable = object.methodp31([optionalArgument])
This is a note to authors describing the usage of an interface.

For web developers (non-normative)

1.10 A quick introduction to HTML §p31

IDL

CSS

1.9.2 Typographic conventions §p31

31

<html lang="en">
<head>
<title>Sample page</title>

</head>
<body>
<h1>Sample page</h1>
<p>This is a simple sample.</p>
<!-- this is a comment -->

</body>
</html>

HTML documents consist of a tree of elements and text. Each element is denoted in the source by a start tagp1261, such as "<body>",
and an end tagp1262, such as "</body>". (Certain start tags and end tags can in certain cases be omittedp1263 and are implied by other
tags.)

Tags have to be nested such that elements are all completely within each other, without overlapping:

<p>This is very wrong!</p>

<p>This is correct.</p>

This specification defines a set of elements that can be used in HTML, along with rules about the ways in which the elements can be
nested.

Elements can have attributes, which control how the elements work. In the example below, there is a hyperlinkp302, formed using the
ap257 element and its hrefp303 attribute:

simple

Attributesp1262 are placed inside the start tag, and consist of a namep1262 and a valuep1262, separated by an "=" character. The attribute
value can remain unquotedp1262 if it doesn't contain ASCII whitespace or any of " ' ` = < or >. Otherwise, it has to be quoted using
either single or double quotes. The value, along with the "=" character, can be omitted altogether if the value is the empty string.

<!-- empty attributes -->
<input name=address disabled>
<input name=address disabled="">

<!-- attributes with a value -->
<input name=address maxlength=200>
<input name=address maxlength='200'>
<input name=address maxlength="200">

HTML user agents (e.g., web browsers) then parse this markup, turning it into a DOM (Document Object Model) tree. A DOM tree is an
in-memory representation of a document.

DOM trees contain several kinds of nodes, in particular a DocumentType node, Element nodes, Text nodes, Comment nodes, and in
some cases ProcessingInstruction nodes.

The markup snippet at the top of this sectionp31 would be turned into the following DOM tree:

DOCTYPE: html
htmlp172 langp158="en"
headp173

#text: ⏎␣␣
titlep174

#text: Sample page
#text: ⏎␣

#text: ⏎␣
bodyp205

#text: ⏎␣␣
h1p216

32

https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

The document element of this tree is the htmlp172 element, which is the element always found in that position in HTML documents. It
contains two elements, headp173 and bodyp205, as well as a Text node between them.

There are many more Text nodes in the DOM tree than one would initially expect, because the source contains a number of spaces
(represented here by "␣") and line breaks ("⏎") that all end up as Text nodes in the DOM. However, for historical reasons not all of the
spaces and line breaks in the original markup appear in the DOM. In particular, all the whitespace before headp173 start tag ends up
being dropped silently, and all the whitespace after the bodyp205 end tag ends up placed at the end of the bodyp205.

The headp173 element contains a titlep174 element, which itself contains a Text node with the text "Sample page". Similarly, the
bodyp205 element contains an h1p216 element, a pp229 element, and a comment.

This DOM tree can be manipulated from scripts in the page. Scripts (typically in JavaScript) are small programs that can be embedded
using the scriptp652 element or using event handler content attributesp1138. For example, here is a form with a script that sets the
value of the form's outputp584 element to say "Hello World":

<form name="main">
Result: <output name="result"></output>
<script>
document.forms.main.elements.result.value = 'Hello World';

</script>
</form>

Each element in the DOM tree is represented by an object, and these objects have APIs so that they can be manipulated. For instance,
a link (e.g. the ap257 element in the tree above) can have its "hrefp303" attribute changed in several ways:

var a = document.links[0]; // obtain the first link in the document
a.href = 'sample.html'; // change the destination URL of the link
a.protocol = 'https'; // change just the scheme part of the URL
a.setAttribute('href', 'https://example.com/'); // change the content attribute directly

Since DOM trees are used as the way to represent HTML documents when they are processed and presented by implementations
(especially interactive implementations like web browsers), this specification is mostly phrased in terms of DOM trees, instead of the
markup described above.

HTML documents represent a media-independent description of interactive content. HTML documents might be rendered to a screen,
or through a speech synthesizer, or on a braille display. To influence exactly how such rendering takes place, authors can use a styling
language such as CSS.

In the following example, the page has been made yellow-on-blue using CSS.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Sample styled page</title>
<style>
body { background: navy; color: yellow; }

</style>
</head>

#text: Sample page
#text: ⏎␣␣
pp229

#text: This is a
ap257 hrefp303="demo.html"
#text: simple

#text: sample.
#text: ⏎␣␣
#comment: this is a comment
#text: ⏎␣⏎

33

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

<body>
<h1>Sample styled page</h1>
<p>This page is just a demo.</p>

</body>
</html>

For more details on how to use HTML, authors are encouraged to consult tutorials and guides. Some of the examples included in this
specification might also be of use, but the novice author is cautioned that this specification, by necessity, defines the language with a
level of detail that might be difficult to understand at first.

This section is non-normative.

When HTML is used to create interactive sites, care needs to be taken to avoid introducing vulnerabilities through which attackers can
compromise the integrity of the site itself or of the site's users.

A comprehensive study of this matter is beyond the scope of this document, and authors are strongly encouraged to study the matter
in more detail. However, this section attempts to provide a quick introduction to some common pitfalls in HTML application
development.

The security model of the web is based on the concept of "origins", and correspondingly many of the potential attacks on the web
involve cross-origin actions. [ORIGIN]p1480

Not validating user input
Cross-site scripting (XSS)
SQL injection

When accepting untrusted input, e.g. user-generated content such as text comments, values in URL parameters, messages from
third-party sites, etc, it is imperative that the data be validated before use, and properly escaped when displayed. Failing to do this
can allow a hostile user to perform a variety of attacks, ranging from the potentially benign, such as providing bogus user
information like a negative age, to the serious, such as running scripts every time a user looks at a page that includes the
information, potentially propagating the attack in the process, to the catastrophic, such as deleting all data in the server.

When writing filters to validate user input, it is imperative that filters always be safelist-based, allowing known-safe constructs and
disallowing all other input. Blocklist-based filters that disallow known-bad inputs and allow everything else are not secure, as not
everything that is bad is yet known (for example, because it might be invented in the future).

There are many constructs that can be used to try to trick a site into executing code. Here are some that authors are encouraged to
consider when writing safelist filters:

For example, suppose a page looked at its URL's query string to determine what to display, and the site then redirected the user
to that page to display a message, as in:

Say Hello
Say Welcome
Say Kittens

If the message was just displayed to the user without escaping, a hostile attacker could then craft a URL that contained a script
element:

https://example.com/message.cgi?say=%3Cscript%3Ealert%28%27Oh%20no%21%27%29%3C/script%3E

If the attacker then convinced a victim user to visit this page, a script of the attacker's choosing would run on the page. Such a
script could do any number of hostile actions, limited only by what the site offers: if the site is an e-commerce shop, for
instance, such a script could cause the user to unknowingly make arbitrarily many unwanted purchases.

This is called a cross-site scripting attack.

Example

1.10.1 Writing secure applications with HTML §p34

34

• When allowing harmless-seeming elements like imgp346, it is important to safelist any provided attributes as well. If one
allowed all attributes then an attacker could, for instance, use the onloadp1145 attribute to run arbitrary script.

• When allowing URLs to be provided (e.g. for links), the scheme of each URL also needs to be explicitly safelisted, as there
are many schemes that can be abused. The most prominent example is "javascript:p1019", but user agents can
implement (and indeed, have historically implemented) others.

• Allowing a basep175 element to be inserted means any scriptp652 elements in the page with relative links can be hijacked,
and similarly that any form submissions can get redirected to a hostile site.

Cross-site request forgery (CSRF)
If a site allows a user to make form submissions with user-specific side-effects, for example posting messages on a forum under the
user's name, making purchases, or applying for a passport, it is important to verify that the request was made by the user
intentionally, rather than by another site tricking the user into making the request unknowingly.

This problem exists because HTML forms can be submitted to other origins.

Sites can prevent such attacks by populating forms with user-specific hidden tokens, or by checking `Origin` headers on all
requests.

Clickjacking
A page that provides users with an interface to perform actions that the user might not wish to perform needs to be designed so as
to avoid the possibility that users can be tricked into activating the interface.

One way that a user could be so tricked is if a hostile site places the victim site in a small iframep390 and then convinces the user to
click, for instance by having the user play a reaction game. Once the user is playing the game, the hostile site can quickly position
the iframe under the mouse cursor just as the user is about to click, thus tricking the user into clicking the victim site's interface.

To avoid this, sites that do not expect to be used in frames are encouraged to only enable their interface if they detect that they are
not in a frame (e.g. by comparing the windowp923 object to the value of the topp930 attribute).

This section is non-normative.

Scripts in HTML have "run-to-completion" semantics, meaning that the browser will generally run the script uninterrupted before doing
anything else, such as firing further events or continuing to parse the document.

On the other hand, parsing of HTML files happens incrementally, meaning that the parser can pause at any point to let scripts run. This
is generally a good thing, but it does mean that authors need to be careful to avoid hooking event handlers after the events could have
possibly fired.

There are two techniques for doing this reliably: use event handler content attributesp1138, or create the element and add the event
handlers in the same script. The latter is safe because, as mentioned earlier, scripts are run to completion before further events can
fire.

One way this could manifest itself is with imgp346 elements and the loadp1471 event. The event could fire as soon as the element has
been parsed, especially if the image has already been cached (which is common).

Here, the author uses the onloadp1145 handler on an imgp346 element to catch the loadp1471 event:

If the element is being added by script, then so long as the event handlers are added in the same script, the event will still not be
missed:

<script>
var img = new Image();
img.src = 'games.png';

Example

1.10.2 Common pitfalls to avoid when using the scripting APIs §p35

35

https://fetch.spec.whatwg.org/#http-origin

This section is non-normative.

Authors are encouraged to make use of conformance checkers (also known as validators) to catch common mistakes. The WHATWG
maintains a list of such tools at: https://whatwg.org/validator/

This section is non-normative.

Unlike previous versions of the HTML specification, this specification defines in some detail the required processing for invalid
documents as well as valid documents.

However, even though the processing of invalid content is in most cases well-defined, conformance requirements for documents are
still important: in practice, interoperability (the situation in which all implementations process particular content in a reliable and
identical or equivalent way) is not the only goal of document conformance requirements. This section details some of the more
common reasons for still distinguishing between a conforming document and one with errors.

This section is non-normative.

The majority of presentational features from previous versions of HTML are no longer allowed. Presentational markup in general has
been found to have a number of problems:

The use of presentational elements leads to poorer accessibility
While it is possible to use presentational markup in a way that provides users of assistive technologies (ATs) with an acceptable
experience (e.g. using ARIA), doing so is significantly more difficult than doing so when using semantically-appropriate markup.
Furthermore, even using such techniques doesn't help make pages accessible for non-AT non-graphical users, such as users of text-
mode browsers.

Using media-independent markup, on the other hand, provides an easy way for documents to be authored in such a way that they
work for more users (e.g. users of text browsers).

Higher cost of maintenance
It is significantly easier to maintain a site written in such a way that the markup is style-independent. For example, changing the

img.alt = 'Games';
img.onload = gamesLogoHasLoaded;
// img.addEventListener('load', gamesLogoHasLoaded, false); // would work also

</script>

However, if the author first created the imgp346 element and then in a separate script added the event listeners, there's a chance
that the loadp1471 event would be fired in between, leading it to be missed:

<!-- Do not use this style, it has a race condition! -->

<!-- the 'load' event might fire here while the parser is taking a

break, in which case you will not see it! -->
<script>
var img = document.getElementById('games');
img.onload = gamesLogoHasLoaded; // might never fire!

</script>

1.11 Conformance requirements for authors §p36

1.10.3 How to catch mistakes when writing HTML: validators and conformance checkers §p36

1.11.1 Presentational markup §p36

36

https://whatwg.org/validator/

color of a site that uses throughout requires changes across the entire site, whereas a similar change to a site
based on CSS can be done by changing a single file.

Larger document sizes
Presentational markup tends to be much more redundant, and thus results in larger document sizes.

For those reasons, presentational markup has been removed from HTML in this version. This change should not come as a surprise;
HTML4 deprecated presentational markup many years ago and provided a mode (HTML4 Transitional) to help authors move away from
presentational markup; later, XHTML 1.1 went further and obsoleted those features altogether.

The only remaining presentational markup features in HTML are the stylep163 attribute and the stylep200 element. Use of the stylep163

attribute is somewhat discouraged in production environments, but it can be useful for rapid prototyping (where its rules can be
directly moved into a separate style sheet later) and for providing specific styles in unusual cases where a separate style sheet would
be inconvenient. Similarly, the stylep200 element can be useful in syndication or for page-specific styles, but in general an external
style sheet is likely to be more convenient when the styles apply to multiple pages.

It is also worth noting that some elements that were previously presentational have been redefined in this specification to be media-
independent: bp292, ip291, hrp231, sp264, smallp262, and up294.

This section is non-normative.

The syntax of HTML is constrained to avoid a wide variety of problems.

Unintuitive error-handling behavior
Certain invalid syntax constructs, when parsed, result in DOM trees that are highly unintuitive.

Errors with optional error recovery
To allow user agents to be used in controlled environments without having to implement the more bizarre and convoluted error
handling rules, user agents are permitted to fail whenever encountering a parse errorp1273.

Errors where the error-handling behavior is not compatible with streaming user agents
Some error-handling behavior, such as the behavior for the <table><hr>... example mentioned above, are incompatible with
streaming user agents (user agents that process HTML files in one pass, without storing state). To avoid interoperability problems
with such user agents, any syntax resulting in such behavior is considered invalid.

Errors that can result in infoset coercion
When a user agent based on XML is connected to an HTML parser, it is possible that certain invariants that XML enforces, such as
element or attribute names never contain multiple colons, will be violated by an HTML file. Handling this can require that the parser
coerce the HTML DOM into an XML-compatible infoset. Most syntax constructs that require such handling are considered invalid.
(Comments containing two consecutive hyphens, or ending with a hyphen, are exceptions that are allowed in the HTML syntax.)

Errors that result in disproportionately poor performance
Certain syntax constructs can result in disproportionately poor performance. To discourage the use of such constructs, they are
typically made non-conforming.

For example, the following markup fragment results in a DOM with an hrp231 element that is an earlier sibling of the
corresponding tablep478 element:

<table><hr>...

Example

For example, the following markup results in poor performance, since all the unclosed ip291 elements have to be reconstructed
in each paragraph, resulting in progressively more elements in each paragraph:

<p><i>She dreamt.

Example

1.11.2 Syntax errors §p37

37

Errors involving fragile syntax constructs
There are syntax constructs that, for historical reasons, are relatively fragile. To help reduce the number of users who accidentally
run into such problems, they are made non-conforming.

Errors involving known interoperability problems in legacy user agents
Certain syntax constructs are known to cause especially subtle or serious problems in legacy user agents, and are therefore marked
as non-conforming to help authors avoid them.

<p><i>She dreamt that she ate breakfast.
<p><i>Then lunch.
<p><i>And finally dinner.

The resulting DOM for this fragment would be:

pp229

ip291

#text: She dreamt.
pp229

ip291

ip291

#text: She dreamt that she ate breakfast.
pp229

ip291

ip291

ip291

#text: Then lunch.
pp229

ip291

ip291

ip291

ip291

#text: And finally dinner.

For example, the parsing of certain named character references in attributes happens even with the closing semicolon being
omitted. It is safe to include an ampersand followed by letters that do not form a named character reference, but if the letters
are changed to a string that does form a named character reference, they will be interpreted as that character instead.

In this fragment, the attribute's value is "?bill&ted":

Bill and Ted

In the following fragment, however, the attribute's value is actually "?art©", not the intended "?art©", because even
without the final semicolon, "©" is handled the same as "©" and thus gets interpreted as "©":

Art and Copy

To avoid this problem, all named character references are required to end with a semicolon, and uses of named character
references without a semicolon are flagged as errors.

Thus, the correct way to express the above cases is as follows:

Bill and Ted <!-- &ted is ok, since it's not a named character reference
-->

Art and Copy <!-- the & has to be escaped, since © is a named
character reference -->

Example

Example

38

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

Errors that risk exposing authors to security attacks
Certain restrictions exist purely to avoid known security problems.

Cases where the author's intent is unclear
Markup where the author's intent is very unclear is often made non-conforming. Correcting these errors early makes later
maintenance easier.

Cases that are likely to be typos
When a user makes a simple typo, it is helpful if the error can be caught early, as this can save the author a lot of debugging time.
This specification therefore usually considers it an error to use element names, attribute names, and so forth, that do not match the
names defined in this specification.

Errors that could interfere with new syntax in the future
In order to allow the language syntax to be extended in the future, certain otherwise harmless features are disallowed.

Some authors find it helpful to be in the practice of always quoting all attributes and always including all optional tags, preferring the
consistency derived from such custom over the minor benefits of terseness afforded by making use of the flexibility of the HTML
syntax. To aid such authors, conformance checkers can provide modes of operation wherein such conventions are enforced.

This section is non-normative.

Beyond the syntax of the language, this specification also places restrictions on how elements and attributes can be specified. These
restrictions are present for similar reasons:

Errors involving content with dubious semantics
To avoid misuse of elements with defined meanings, content models are defined that restrict how elements can be nested when
such nestings would be of dubious value.

For example, this is why the U+0060 GRAVE ACCENT character (`) is not allowed in unquoted attributes. In certain legacy user
agents, it is sometimes treated as a quote character.

Another example of this is the DOCTYPE, which is required to trigger no-quirks mode, because the behavior of legacy user
agents in quirks mode is often largely undocumented.

Example

For example, the restriction on using UTF-7 exists purely to avoid authors falling prey to a known cross-site-scripting attack
using UTF-7. [UTF7]p1483

Example

For example, it is unclear whether the author intended the following to be an h1p216 heading or an h2p216 heading:

<h1>Contact details</h2>

Example

For example, if the author typed <capton> instead of <caption>, this would be flagged as an error and the author could correct
the typo immediately.

Example

For example, "attributes" in end tags are ignored currently, but they are invalid, in case a future change to the language makes
use of that syntax feature without conflicting with already-deployed (and valid!) content.

Example

1.11.3 Restrictions on content models and on attribute values §p39

39

https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-quirks

Errors that involve a conflict in expressed semantics
Similarly, to draw the author's attention to mistakes in the use of elements, clear contradictions in the semantics expressed are also
considered conformance errors.

Cases where the default styles are likely to lead to confusion
Certain elements have default styles or behaviors that make certain combinations likely to lead to confusion. Where these have
equivalent alternatives without this problem, the confusing combinations are disallowed.

Errors that indicate a likely misunderstanding of the specification
Sometimes, something is disallowed because allowing it would likely cause author confusion.

Errors involving limits that have been imposed merely to simplify the language
Some conformance errors simplify the language that authors need to learn.

Errors that involve peculiarities of the parser
Certain elements are parsed in somewhat eccentric ways (typically for historical reasons), and their content model restrictions are
intended to avoid exposing the author to these issues.

For example, this specification disallows nesting a sectionp209 element inside a kbdp289 element, since it is highly unlikely for an
author to indicate that an entire section should be keyed in.

Example

In the fragments below, for example, the semantics are nonsensical: a separator cannot simultaneously be a cell, nor can a
radio button be a progress bar.

<hr role="cell">

<input type=radio role=progressbar>

Example

Another example is the restrictions on the content models of the ulp239 element, which only allows lip241 element children. Lists
by definition consist just of zero or more list items, so if a ulp239 element contains something other than an lip241 element, it's
not clear what was meant.

Example

For example, divp256 elements are rendered as block boxes, and spanp298 elements as inline boxes. Putting a block box in an
inline box is unnecessarily confusing; since either nesting just divp256 elements, or nesting just spanp298 elements, or nesting
spanp298 elements inside divp256 elements all serve the same purpose as nesting a divp256 element in a spanp298 element, but
only the latter involves a block box in an inline box, the latter combination is disallowed.

Example

Another example would be the way interactive contentp150 cannot be nested. For example, a buttonp566 element cannot contain
a textareap579 element. This is because the default behavior of such nesting interactive elements would be highly confusing to
users. Instead of nesting these elements, they can be placed side by side.

Example

For example, setting the disabledp601 attribute to the value "false" is disallowed, because despite the appearance of meaning
that the element is enabled, it in fact means that the element is disabled (what matters for implementations is the presence of
the attribute, not its value).

Example

For example, the areap471 element's shapep472 attribute, despite accepting both circp473 and circlep472 values in practice as
synonyms, disallows the use of the circp473 value, so as to simplify tutorials and other learning aids. There would be no benefit
to allowing both, but it would cause extra confusion when teaching the language.

Example

40

https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#inline-box

Errors that would likely result in scripts failing in hard-to-debug ways
Some errors are intended to help prevent script problems that would be hard to debug.

Errors that waste authoring time
Some constructs are disallowed because historically they have been the cause of a lot of wasted authoring time, and by
encouraging authors to avoid making them, authors can save time in future efforts.

Errors that involve areas that affect authors migrating between the HTML and XML syntaxes
Some authors like to write files that can be interpreted as both XML and HTML with similar results. Though this practice is
discouraged in general due to the myriad of subtle complications involved (especially when involving scripting, styling, or any kind
of automated serialization), this specification has a few restrictions intended to at least somewhat mitigate the difficulties. This
makes it easier for authors to use this as a transitionary step when migrating between the HTML and XML syntaxes.

Errors that involve areas reserved for future expansion
As with the restrictions on the syntax intended to allow for new syntax in future revisions of the language, some restrictions on the
content models of elements and values of attributes are intended to allow for future expansion of the HTML vocabulary.

Errors that indicate a mis-use of other specifications
Certain restrictions are intended to support the restrictions made by other specifications.

For example, a formp514 element isn't allowed inside phrasing contentp150, because when parsed as HTML, a formp514 element's
start tag will imply a pp229 element's end tag. Thus, the following markup results in two paragraphsp152, not one:

<p>Welcome. <form><label>Name:</label> <input></form>

It is parsed exactly like the following:

<p>Welcome. </p><form><label>Name:</label> <input></form>

Example

This is why, for instance, it is non-conforming to have two idp154 attributes with the same value. Duplicate IDs lead to the wrong
element being selected, with sometimes disastrous effects whose cause is hard to determine.

Example

For example, a scriptp652 element's srcp654 attribute causes the element's contents to be ignored. However, this isn't obvious,
especially if the element's contents appear to be executable script — which can lead to authors spending a lot of time trying to
debug the inline script without realizing that it is not executing. To reduce this problem, this specification makes it non-
conforming to have executable script in a scriptp652 element when the srcp654 attribute is present. This means that authors
who are validating their documents are less likely to waste time with this kind of mistake.

Example

For example, there are somewhat complicated rules surrounding the langp158 and xml:lang attributes intended to keep the two
synchronized.

Example

Another example would be the restrictions on the values of xmlns attributes in the HTML serialization, which are intended to
ensure that elements in conforming documents end up in the same namespaces whether processed as HTML or XML.

Example

For example, limiting the values of the targetp303 attribute that start with an U+005F LOW LINE character (_) to only specific
predefined values allows new predefined values to be introduced at a future time without conflicting with author-defined values.

Example

For example, requiring that attributes that take media query lists use only valid media query lists reinforces the importance of
following the conformance rules of that specification.

Example

41

https://www.w3.org/TR/xml/#sec-lang-tag

This section is non-normative.

The following documents might be of interest to readers of this specification.

Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]p1475

This Architectural Specification provides authors of specifications, software developers, and content developers with a common
reference for interoperable text manipulation on the World Wide Web, building on the Universal Character Set, defined jointly by
the Unicode Standard and ISO/IEC 10646. Topics addressed include use of the terms 'character', 'encoding' and 'string', a
reference processing model, choice and identification of character encodings, character escaping, and string indexing.

Unicode Security Considerations [UTR36]p1483

Because Unicode contains such a large number of characters and incorporates the varied writing systems of the world, incorrect
usage can expose programs or systems to possible security attacks. This is especially important as more and more products are
internationalized. This document describes some of the security considerations that programmers, system analysts, standards
developers, and users should take into account, and provides specific recommendations to reduce the risk of problems.

Web Content Accessibility Guidelines (WCAG) [WCAG]p1483

Web Content Accessibility Guidelines (WCAG) covers a wide range of recommendations for making web content more
accessible. Following these guidelines will make content accessible to a wider range of people with disabilities, including
blindness and low vision, deafness and hearing loss, learning disabilities, cognitive limitations, limited movement, speech
disabilities, photosensitivity and combinations of these. Following these guidelines will also often make your web content more
usable to users in general.

Authoring Tool Accessibility Guidelines (ATAG) 2.0 [ATAG]p1475

This specification provides guidelines for designing web content authoring tools that are more accessible for people with
disabilities. An authoring tool that conforms to these guidelines will promote accessibility by providing an accessible user
interface to authors with disabilities as well as by enabling, supporting, and promoting the production of accessible web content
by all authors.

User Agent Accessibility Guidelines (UAAG) 2.0 [UAAG]p1482

This document provides guidelines for designing user agents that lower barriers to web accessibility for people with disabilities.
User agents include browsers and other types of software that retrieve and render web content. A user agent that conforms to
these guidelines will promote accessibility through its own user interface and through other internal facilities, including its
ability to communicate with other technologies (especially assistive technologies). Furthermore, all users, not just users with
disabilities, should find conforming user agents to be more usable.

1.12 Suggested reading §p42

42

This specification depends on Infra. [INFRA]p1479

This specification refers to both HTML and XML attributes and IDL attributes, often in the same context. When it is not clear which is
being referred to, they are referred to as content attributes for HTML and XML attributes, and IDL attributes for those defined on
IDL interfaces. Similarly, the term "properties" is used for both JavaScript object properties and CSS properties. When these are
ambiguous they are qualified as object properties and CSS properties respectively.

Generally, when the specification states that a feature applies to the HTML syntaxp1259 or the XML syntaxp1384, it also includes the other.
When a feature specifically only applies to one of the two languages, it is called out by explicitly stating that it does not apply to the
other format, as in "for HTML, ... (this does not apply to XML)".

This specification uses the term document to refer to any use of HTML, ranging from short static documents to long essays or reports
with rich multimedia, as well as to fully-fledged interactive applications. The term is used to refer both to Documentp130 objects and
their descendant DOM trees, and to serialized byte streams using the HTML syntaxp1259 or the XML syntaxp1384, depending on context.

In the context of the DOM structures, the terms HTML document and XML document are used as defined in DOM, and refer specifically
to two different modes that Documentp130 objects can find themselves in. [DOM]p1478 (Such uses are always hyperlinked to their
definition.)

In the context of byte streams, the term HTML document refers to resources labeled as text/htmlp1444, and the term XML document
refers to resources labeled with an XML MIME type.

For simplicity, terms such as shown, displayed, and visible might sometimes be used when referring to the way a document is
rendered to the user. These terms are not meant to imply a visual medium; they must be considered to apply to other media in
equivalent ways.

To run steps in parallel means those steps are to be run, one after another, at the same time as other logic in the standard (e.g., at
the same time as the event loopp1123). This standard does not define the precise mechanism by which this is achieved, be it time-
sharing cooperative multitasking, fibers, threads, processes, using different hyperthreads, cores, CPUs, machines, etc. By contrast, an
operation that is to run immediately must interrupt the currently running task, run itself, and then resume the previously running
task.

To avoid race conditions between different in parallelp43 algorithms that operate on the same data, a parallel queuep43 can be used.

A parallel queue represents a queue of algorithm steps that must be run in series.

A parallel queuep43 has an algorithm queue (a queue), initially empty.

To enqueue steps to a parallel queuep43, enqueue the algorithm steps to the parallel queuep43 's algorithm queuep43.

To start a new parallel queue, run the following steps:

1. Let parallelQueue be a new parallel queuep43.

2. Run the following steps in parallelp43:

2 Common infrastructure §p43

2.1 Terminology §p43

For guidance on writing specifications that leverage parallelism, see Dealing with the event loop from other specificationsp1134.
Note

2.1.1 Parallelism §p43

43

https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#xml-document
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#queue-enqueue

1. While true:

1. Let steps be the result of dequeueing from parallelQueue's algorithm queuep43.

2. If steps is not nothing, then run steps.

3. Assert: running steps did not throw an exception, as steps running in parallelp43 are not allowed to throw.

3. Return parallelQueue.

Implementations are not expected to implement this as a continuously running loop. Algorithms in standards
are to be easy to understand and are not necessarily great for battery life or performance.

Note

Steps running in parallelp43 can themselves run other steps in in parallelp43. E.g., inside a parallel queuep43 it can be useful to run a
series of steps in parallel with the queue.

Note

Imagine a standard defined nameList (a list), along with a method to add a name to nameList, unless nameList already contains
name, in which case it rejects.

The following solution suffers from race conditions:

1. Let p be a new promise created in this's relevant realmp1083.

2. Run the following steps in parallelp43:

1. If nameList contains name, then queue a global taskp1125 on the DOM manipulation task sourcep1134 given this's
relevant global objectp1083 to reject p with a TypeError, and abort these steps.

2. Do some potentially lengthy work.

3. Append name to nameList.

4. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given this's relevant global objectp1083 to
resolve p with undefined.

3. Return p.

Two invocations of the above could run simultaneously, meaning name isn't in nameList during step 2.1, but it might be added
before step 2.3 runs, meaning name ends up in nameList twice.

Parallel queues solve this. The standard would let nameListQueue be the result of starting a new parallel queuep43, then:

1. Let p be a new promise created in this's relevant realmp1083.

2. Enqueue the following stepsp43 to nameListQueue:

1. If nameList contains name, then queue a global taskp1125 on the DOM manipulation task sourcep1134 given this's
relevant global objectp1083 to reject p with a TypeError, and abort these steps.

2. Do some potentially lengthy work.

3. Append name to nameList.

4. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given this's relevant global objectp1083 to
resolve p with undefined.

3. Return p.

The steps would now queue and the race is avoided.

Example

44

https://infra.spec.whatwg.org/#queue-dequeue
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#this
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#this
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#this

The specification uses the term supported when referring to whether a user agent has an implementation capable of decoding the
semantics of an external resource. A format or type is said to be supported if the implementation can process an external resource of
that format or type without critical aspects of the resource being ignored. Whether a specific resource is supported can depend on
what features of the resource's format are in use.

What some specifications, in particular the HTTP specifications, refer to as a representation is referred to in this specification as a
resource. [HTTP]p1478

A resource's critical subresources are those that the resource needs to have available to be correctly processed. Which resources
are considered critical or not is defined by the specification that defines the resource's format.

For CSS style sheets, we tentatively define here that their critical subresources are other style sheets imported via @import rules,
including those indirectly imported by other imported style sheets.

This definition is not fully interoperable; furthermore, some user agents seem to count resources like background images or web
fonts as critical subresources. Ideally, the CSS Working Group would define this; see w3c/csswg-drafts issue #1088 to track
progress on that front.

To ease migration from HTML to XML, user agents conforming to this specification will place elements in HTML in the
http://www.w3.org/1999/xhtml namespace, at least for the purposes of the DOM and CSS. The term "HTML elements" refers to
any element in that namespace, even in XML documents.

Except where otherwise stated, all elements defined or mentioned in this specification are in the HTML namespace
("http://www.w3.org/1999/xhtml"), and all attributes defined or mentioned in this specification have no namespace.

The term element type is used to refer to the set of elements that have a given local name and namespace. For example, buttonp566

elements are elements with the element type buttonp566, meaning they have the local name "button" and (implicitly as defined
above) the HTML namespace.

Attribute names are said to be XML-compatible if they match the Name production defined in XML and they contain no U+003A
COLON characters (:). [XML]p1484

When it is stated that some element or attribute is ignored, or treated as some other value, or handled as if it was something else,
this refers only to the processing of the node after it is in the DOM. A user agent must not mutate the DOM in such situations.

A content attribute is said to change value only if its new value is different than its previous value; setting an attribute to a value it
already has does not change it.

The term empty, when used for an attribute value, Text node, or string, means that the length of the text is zero (i.e., not even
containing controls or U+0020 SPACE).

An HTML element can have specific HTML element insertion steps, HTML element post-connection steps, and HTML element
removing steps, all defined for the element's local name.

For example, a PNG image would be considered to be in a supported format if its pixel data could be decoded and rendered, even
if, unbeknownst to the implementation, the image also contained animation data.

Example

An MPEG-4 video file would not be considered to be in a supported format if the compression format used was not supported, even
if the implementation could determine the dimensions of the movie from the file's metadata.

Example

2.1.2 Resources §p45

2.1.3 XML compatibility §p45

2.1.4 DOM trees §p45

45

https://drafts.csswg.org/cssom/#css-style-sheet
https://github.com/w3c/csswg-drafts/issues/1088
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://www.w3.org/TR/xml/#NT-Name
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#control
https://dom.spec.whatwg.org/#concept-element-local-name

The insertion steps for the HTML Standard, given insertedNode, are defined as the following:

1. If insertedNode is an element whose namespace is the HTML namespace, and this standard defines HTML element insertion
stepsp45 for insertedNode's local name, then run the corresponding HTML element insertion stepsp45 given insertedNode.

2. If insertedNode is a form-associated elementp513 or the ancestor of a form-associated elementp513, then:

1. If the form-associated elementp513 's parser inserted flagp598 is set, then return.

2. Reset the form ownerp598 of the form-associated elementp513.

3. If insertedNode is an Element that is not on the stack of open elementsp1286 of an HTML parserp1271, then process internal
resource linksp319 given insertedNode's node document.

The post-connection steps for the HTML Standard, given insertedNode, are defined as the following:

1. If insertedNode is an element whose namespace is the HTML namespace, and this standard defines HTML element post-
connection stepsp45 for insertedNode's local name, then run the corresponding HTML element post-connection stepsp45 given
insertedNode.

The removing steps for the HTML Standard, given removedNode and oldParent, are defined as the following:

1. Let document be removedNode's node document.

2. If document's focused areap836 is removedNode, then set document's focused areap836 to document's viewport, and set
document's relevant global objectp1083 's navigation APIp952 's focus changed during ongoing navigationp964 to false.

3. If removedNode is an element whose namespace is the HTML namespace, and this standard defines HTML element removing
stepsp45 for removedNode's local name, then run the corresponding HTML element removing stepsp45 given removedNode
and oldParent.

4. If removedNode is a form-associated elementp513 or the ancestor of a form-associated elementp513, then:

1. If the form-associated elementp513 has a form ownerp598 and the form-associated elementp513 and its form ownerp598

are no longer in the same tree, then reset the form ownerp598 of the form-associated elementp513.

5. If removedNode's popoverp886 attribute is not in the no popover statep887, then run the hide popover algorithmp890 given
removedNode, false, false, and false.

A node is inserted into a document when the insertion steps are invoked with it as the argument and it is now in a document tree.
Analogously, a node is removed from a document when the removing steps are invoked with it as the argument and it is now no
longer in a document tree.

A node becomes connected when the insertion steps are invoked with it as the argument and it is now connected. Analogously, a
node becomes disconnected when the removing steps are invoked with it as the argument and it is now no longer connected.

A node is browsing-context connected when it is connected and its shadow-including root's browsing contextp999 is non-null. A node
becomes browsing-context connected when the insertion steps are invoked with it as the argument and it is now browsing-context
connectedp46. A node becomes browsing-context disconnected either when the removing steps are invoked with it as the
argument and it is now no longer browsing-context connectedp46, or when its shadow-including root's browsing contextp999 becomes
null.

The construction "a Foo object", where Foo is actually an interface, is sometimes used instead of the more accurate "an object
implementing the interface Foo".

An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting when a new
value is assigned to it.

This does not perform the unfocusing stepsp842, focusing stepsp842, or focus update stepsp843, and thus no blurp1471 or
changep1471 events are fired.

Note

2.1.5 Scripting §p46

46

https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-post-connection-ext
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-shadow-including-root

If a DOM object is said to be live, then the attributes and methods on that object must operate on the actual underlying data, not a
snapshot of the data.

The term plugin refers to an implementation-defined set of content handlers used by the user agent that can take part in the user
agent's rendering of a Documentp130 object, but that neither act as child navigablesp992 of the Documentp130 nor introduce any Node
objects to the Documentp130 's DOM.

Typically such content handlers are provided by third parties, though a user agent can also designate built-in content handlers as
plugins.

A user agent must not consider the types text/plain and application/octet-stream as having a registered pluginp47.

Since different users having different sets of pluginsp47 provides a tracking vector that increases the chances of users being
uniquely identified, user agents are encouraged to support the exact same set of pluginsp47 for each user.

A character encoding, or just encoding where that is not ambiguous, is a defined way to convert between byte streams and Unicode
strings, as defined in Encoding. An encoding has an encoding name and one or more encoding labels, referred to as the encoding's
name and labels in the Encoding standard. [ENCODING]p1478

This specification describes the conformance criteria for user agents (relevant to implementers) and documents (relevant to authors
and authoring tool implementers).

Conforming documents are those that comply with all the conformance criteria for documents. For readability, some of these
conformance requirements are phrased as conformance requirements on authors; such requirements are implicitly requirements on
documents: by definition, all documents are assumed to have had an author. (In some cases, that author may itself be a user agent —
such user agents are subject to additional rules, as explained below.)

One example of a plugin would be a PDF viewer that is instantiated in a navigablep989 when the user navigates to a PDF file. This
would count as a plugin regardless of whether the party that implemented the PDF viewer component was the same as that which
implemented the user agent itself. However, a PDF viewer application that launches separate from the user agent (as opposed to
using the same interface) is not a plugin by this definition.

Example

This specification does not define a mechanism for interacting with plugins, as it is expected to be user-agent- and platform-
specific. Some UAs might opt to support a plugin mechanism such as the Netscape Plugin API; others might use remote content
converters or have built-in support for certain types. Indeed, this specification doesn't require user agents to support plugins at all.
[NPAPI]p1480

Note

Browsers should take extreme care when interacting with external content intended for pluginsp47. When third-
party software is run with the same privileges as the user agent itself, vulnerabilities in the third-party software
become as dangerous as those in the user agent.

⚠Warning!

For example, if a requirement states that "authors must not use the foobar element", it would imply that documents are not
allowed to contain elements named foobar.

Example

2.1.6 Plugins §p47

2.1.7 Character encodings §p47

2.1.8 Conformance classes §p47

47

https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#interface-node
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://infra.spec.whatwg.org/#tracking-vector
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#name
https://encoding.spec.whatwg.org/#label

User agents fall into several (overlapping) categories with different conformance requirements.

Web browsers and other interactive user agents
Web browsers that support the XML syntaxp1384 must process elements and attributes from the HTML namespace found in XML
documents as described in this specification, so that users can interact with them, unless the semantics of those elements have
been overridden by other specifications.

Web browsers that support the HTML syntaxp1259 must process documents labeled with an HTML MIME type as described in this
specification, so that users can interact with them.

User agents that support scripting must also be conforming implementations of the IDL fragments in this specification, as described
in Web IDL. [WEBIDL]p1483

Non-interactive presentation user agents
User agents that process HTML and XML documents purely to render non-interactive versions of them must comply to the same
conformance criteria as web browsers, except that they are exempt from requirements regarding user interaction.

Visual user agents that support the suggested default rendering
User agents, whether interactive or not, may be designated (possibly as a user option) as supporting the suggested default
rendering defined by this specification.

This is not required. In particular, even user agents that do implement the suggested default rendering are encouraged to offer
settings that override this default to improve the experience for the user, e.g. changing the color contrast, using different focus
styles, or otherwise making the experience more accessible and usable to the user.

User agents that are designated as supporting the suggested default rendering must, while so designated, implement the rules the
Rendering sectionp1388 defines as the behavior that user agents are expected to implement.

User agents with no scripting support
Implementations that do not support scripting (or which have their scripting features disabled entirely) are exempt from supporting
the events and DOM interfaces mentioned in this specification. For the parts of this specification that are defined in terms of an
events model or in terms of the DOM, such user agents must still act as if events and the DOM were supported.

There is no implied relationship between document conformance requirements and implementation conformance requirements.
User agents are not free to handle non-conformant documents as they please; the processing model described in this specification
applies to implementations regardless of the conformity of the input documents.

Note

A conforming web browser would, upon finding a scriptp652 element in an XML document, execute the script contained in that
element. However, if the element is found within a transformation expressed in XSLT (assuming the user agent also supports
XSLT), then the processor would instead treat the scriptp652 element as an opaque element that forms part of the transform.

Example

Unless explicitly stated, specifications that override the semantics of HTML elements do not override the requirements on DOM
objects representing those elements. For example, the scriptp652 element in the example above would still implement the
HTMLScriptElementp653 interface.

Note

Typical examples of non-interactive presentation user agents are printers (static UAs) and overhead displays (dynamic UAs). It
is expected that most static non-interactive presentation user agents will also opt to lack scripting supportp48.

Note

A non-interactive but dynamic presentation UA would still execute scripts, allowing forms to be dynamically submitted, and so
forth. However, since the concept of "focus" is irrelevant when the user cannot interact with the document, the UA would not
need to support any of the focus-related DOM APIs.

Example

48

https://infra.spec.whatwg.org/#html-namespace
https://mimesniff.spec.whatwg.org/#html-mime-type

Conformance checkers
Conformance checkers must verify that a document conforms to the applicable conformance criteria described in this specification.
Automated conformance checkers are exempt from detecting errors that require interpretation of the author's intent (for example,
while a document is non-conforming if the content of a blockquotep235 element is not a quote, conformance checkers running
without the input of human judgement do not have to check that blockquotep235 elements only contain quoted material).

Conformance checkers must check that the input document conforms when parsed without a browsing contextp999 (meaning that no
scripts are run, and that the parser's scripting flagp1289 is disabled), and should also check that the input document conforms when
parsed with a browsing contextp999 in which scripts execute, and that the scripts never cause non-conforming states to occur other
than transiently during script execution itself. (This is only a "SHOULD" and not a "MUST" requirement because it has been proven to
be impossible. [COMPUTABLE]p1475)

The term "HTML validator" can be used to refer to a conformance checker that itself conforms to the applicable requirements of this
specification.

Data mining tools
Applications and tools that process HTML and XML documents for reasons other than to either render the documents or check them
for conformance should act in accordance with the semantics of the documents that they process.

Authoring tools and markup generators
Authoring tools and markup generators must generate conforming documentsp47. Conformance criteria that apply to authors also
apply to authoring tools, where appropriate.

Authoring tools are exempt from the strict requirements of using elements only for their specified purpose, but only to the extent
that authoring tools are not yet able to determine author intent. However, authoring tools must not automatically misuse elements
or encourage their users to do so.

Scripting can form an integral part of an application. Web browsers that do not support scripting, or that have scripting
disabled, might be unable to fully convey the author's intent.

Note

XML DTDs cannot express all the conformance requirements of this specification. Therefore, a validating XML processor and a
DTD cannot constitute a conformance checker. Also, since neither of the two authoring formats defined in this specification are
applications of SGML, a validating SGML system cannot constitute a conformance checker either.

To put it another way, there are three types of conformance criteria:

1. Criteria that can be expressed in a DTD.

2. Criteria that cannot be expressed by a DTD, but can still be checked by a machine.

3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple DTD-based validator only checks for the first class of errors and is
therefore not a conforming conformance checker according to this specification.

Note

A tool that generates document outlinesp224 but increases the nesting level for each paragraph and does not increase the
nesting level for headingsp224 would not be conforming.

Example

For example, it is not conforming to use an addressp222 element for arbitrary contact information; that element can only be used
for marking up contact information for its nearest articlep206 or bodyp205 element ancestor. However, since an authoring tool is
likely unable to determine the difference, an authoring tool is exempt from that requirement. This does not mean, though, that
authoring tools can use addressp222 elements for any block of italics text (for instance); it just means that the authoring tool
doesn't have to verify that when the user uses a tool for inserting contact information for an articlep206 element, that the user
really is doing that and not inserting something else instead.

Example

49

When an authoring tool is used to edit a non-conforming document, it may preserve the conformance errors in sections of the
document that were not edited during the editing session (i.e. an editing tool is allowed to round-trip erroneous content). However,
an authoring tool must not claim that the output is conformant if errors have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from structure or semantic data, and tools that work on
a What-You-See-Is-What-You-Get media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the structure in the source information can be used to
make informed choices regarding which HTML elements and attributes are most appropriate.

However, WYSIWYG tools are legitimate. WYSIWYG tools should use elements they know are appropriate, and should not use
elements that they do not know to be appropriate. This might in certain extreme cases mean limiting the use of flow elements to
just a few elements, like divp256, bp292, ip291, and spanp298 and making liberal use of the stylep163 attribute.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling users to create well-structured,
semantically rich, media-independent content.

For compatibility with existing content and prior specifications, this specification describes two authoring formats: one based on
XMLp1384, and one using a custom formatp1259 inspired by SGML (referred to as the HTML syntaxp1259). Implementations must support at
least one of these two formats, although supporting both is encouraged.

Some conformance requirements are phrased as requirements on elements, attributes, methods or objects. Such requirements fall into
two categories: those describing content model restrictions, and those describing implementation behavior. Those in the former
category are requirements on documents and authoring tools. Those in the second category are requirements on user agents.
Similarly, some conformance requirements are phrased as requirements on authors; such requirements are to be interpreted as
conformance requirements on the documents that authors produce. (In other words, this specification does not distinguish between
conformance criteria on authors and conformance criteria on documents.)

This specification relies on several other underlying specifications.

Infra
The following terms are defined in Infra: [INFRA]p1479

• The general iteration terms while, continue, and break.
• Assert
• implementation-defined
• tracking vector
• code point and its synonym character
• surrogate
• scalar value
• tuple
• noncharacter
• string, code unit, code unit prefix, code unit less than, starts with, ends with, length, and code point length
• The string equality operations is and identical to
• scalar value string
• convert
• ASCII string
• ASCII tab or newline
• ASCII whitespace
• control
• ASCII digit
• ASCII upper hex digit
• ASCII lower hex digit
• ASCII hex digit
• ASCII upper alpha
• ASCII lower alpha
• ASCII alpha
• ASCII alphanumeric
• isomorphic decode
• isomorphic encode
• ASCII lowercase
• ASCII uppercase

In terms of conformance checking, an editor has to output documents that conform to the same extent that a conformance
checker will verify.

Note

2.1.9 Dependencies §p50

50

https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#tuple
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit-prefix
https://infra.spec.whatwg.org/#code-unit-less-than
https://infra.spec.whatwg.org/#string-starts-with
https://infra.spec.whatwg.org/#string-ends-with
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#javascript-string-convert
https://infra.spec.whatwg.org/#ascii-string
https://infra.spec.whatwg.org/#ascii-tab-or-newline
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://infra.spec.whatwg.org/#ascii-lower-hex-digit
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#isomorphic-decode
https://infra.spec.whatwg.org/#isomorphic-encode
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-uppercase

• ASCII case-insensitive
• strip newlines
• normalize newlines
• strip leading and trailing ASCII whitespace
• strip and collapse ASCII whitespace
• split a string on ASCII whitespace
• split a string on commas
• collect a sequence of code points and its associated position variable
• skip ASCII whitespace
• The ordered map data structure and the associated definitions for key, value, empty, entry, exists, getting the

value of an entry, setting the value of an entry, removing an entry, clear, getting the keys, getting the
values, sorting in descending order, size, and iterate

• The list data structure and the associated definitions for append, extend, prepend, replace, remove, empty,
contains, size, indices, is empty, item, iterate, and clone sort in ascending order sort in descending order

• The stack data structure and the associated definitions for push and pop
• The queue data structure and the associated definitions for enqueue and dequeue
• The ordered set data structure and the associated definition for append and union
• The struct specification type and the associated definition for item
• The byte sequence data structure
• The forgiving-base64 encode and forgiving-base64 decode algorithms
• exclusive range
• parse a JSON string to an Infra value
• HTML namespace
• MathML namespace
• SVG namespace
• XLink namespace
• XML namespace
• XMLNS namespace

Unicode and Encoding
The Unicode character set is used to represent textual data, and Encoding defines requirements around character encodings.
[UNICODE]p1483

The following terms are used as defined in Encoding: [ENCODING]p1478

• Getting an encoding
• Get an output encoding
• The generic decode algorithm which takes a byte stream and an encoding and returns a character stream
• The UTF-8 decode algorithm which takes a byte stream and returns a character stream, additionally stripping one

leading UTF-8 Byte Order Mark (BOM), if any
• The UTF-8 decode without BOM algorithm which is identical to UTF-8 decode except that it does not strip one leading

UTF-8 Byte Order Mark (BOM)
• The encode algorithm which takes a character stream and an encoding and returns a byte stream
• The UTF-8 encode algorithm which takes a character stream and returns a byte stream
• The BOM sniff algorithm which takes a byte stream and returns an encoding or null.

XML and related specifications
Implementations that support the XML syntaxp1384 for HTML must support some version of XML, as well as its corresponding
namespaces specification, because that syntax uses an XML serialization with namespaces. [XML]p1484 [XMLNS]p1484

Data mining tools and other user agents that perform operations on content without running scripts, evaluating CSS or XPath
expressions, or otherwise exposing the resulting DOM to arbitrary content, may "support namespaces" by just asserting that their
DOM node analogues are in certain namespaces, without actually exposing the namespace strings.

The attribute with the name space in the XML namespace is defined by Extensible Markup Language (XML). [XML]p1484

The Name production is defined in XML. [XML]p1484

This specification also references the <?xml-stylesheet?> processing instruction, defined in Associating Style Sheets with XML
documents. [XMLSSPI]p1484

This specification also non-normatively mentions the XSLTProcessor interface and its transformToFragment() and
transformToDocument() methods. [XSLTP]p1484

This specification introduces terminologyp47 based on the terms defined in those specifications, as described earlier.
Note

In the HTML syntaxp1259, namespace prefixes and namespace declarations do not have the same effect as in XML. For instance,
the colon has no special meaning in HTML element names.

Note

51

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-commas
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#string-position-variable
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#map-value
https://infra.spec.whatwg.org/#map-is-empty
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-get
https://infra.spec.whatwg.org/#map-get
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#map-clear
https://infra.spec.whatwg.org/#map-getting-the-keys
https://infra.spec.whatwg.org/#map-getting-the-values
https://infra.spec.whatwg.org/#map-getting-the-values
https://infra.spec.whatwg.org/#map-sort-in-descending-order
https://infra.spec.whatwg.org/#map-size
https://infra.spec.whatwg.org/#map-iterate
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-extend
https://infra.spec.whatwg.org/#list-prepend
https://infra.spec.whatwg.org/#list-replace
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-get-the-indices
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-item
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#list-sort-in-ascending-order
https://infra.spec.whatwg.org/#list-sort-in-descending-order
https://infra.spec.whatwg.org/#stack
https://infra.spec.whatwg.org/#stack-push
https://infra.spec.whatwg.org/#stack-pop
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#queue-enqueue
https://infra.spec.whatwg.org/#queue-dequeue
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#set-union
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#byte-sequence
https://infra.spec.whatwg.org/#forgiving-base64-encode
https://infra.spec.whatwg.org/#forgiving-base64-decode
https://infra.spec.whatwg.org/#the-exclusive-range
https://infra.spec.whatwg.org/#parse-a-json-string-to-an-infra-value
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#get-an-output-encoding
https://encoding.spec.whatwg.org/#decode
https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#encode
https://encoding.spec.whatwg.org/#utf-8-encode
https://encoding.spec.whatwg.org/#bom-sniff
https://www.w3.org/TR/xml/#sec-white-space
https://infra.spec.whatwg.org/#xml-namespace
https://www.w3.org/TR/xml/#NT-Name
https://www.w3.org/TR/xml-stylesheet/#the-xml-stylesheet-processing-instruction

URLs
The following terms are defined in URL: [URL]p1483

• host
• public suffix
• domain
• IP address
• URL
• Origin of URLs
• Absolute URL
• Relative URL
• registrable domain
• The URL parser
• The basic URL parser and its url and state override arguments, as well as these parser states:

◦ scheme start state
◦ host state
◦ hostname state
◦ port state
◦ path start state
◦ query state
◦ fragment state

• URL record, as well as its individual components:
◦ scheme
◦ username
◦ password
◦ host
◦ port
◦ path
◦ query
◦ fragment
◦ blob URL entry

• valid URL string
• The cannot have a username/password/port concept
• The opaque path concept
• URL serializer and its exclude fragment argument
• URL path serializer
• The host parser
• The host serializer
• Host equals
• URL equals and its exclude fragments argument
• serialize an integer
• Default encode set
• component percent-encode set
• UTF-8 percent-encode
• percent-decode
• set the username
• set the password
• The application/x-www-form-urlencoded format
• The application/x-www-form-urlencoded serializer
• is special

A number of schemes and protocols are referenced by this specification also:

• The about: scheme [ABOUT]p1475

• The blob: scheme [FILEAPI]p1478

• The data: scheme [RFC2397]p1481

• The http: scheme [HTTP]p1478

• The https: scheme [HTTP]p1478

• The mailto: scheme [MAILTO]p1479

• The sms: scheme [SMS]p1482

• The urn: scheme [URN]p1483

Media fragment syntax is defined in Media Fragments URI. [MEDIAFRAG]p1480

HTTP and related specifications
The following terms are defined in the HTTP specifications: [HTTP]p1478

• `Accept` header
• `Accept-Language` header
• `Cache-Control` header
• `Content-Disposition` header
• `Content-Language` header
• `Content-Range` header
• `Last-Modified` header
• `Range` header
• `Referer` header

The following terms are defined in HTTP State Management Mechanism: [COOKIES]p1476

52

https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#host-public-suffix
https://url.spec.whatwg.org/#concept-domain
https://url.spec.whatwg.org/#ip-address
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-relative
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://url.spec.whatwg.org/#scheme-start-state
https://url.spec.whatwg.org/#host-state
https://url.spec.whatwg.org/#hostname-state
https://url.spec.whatwg.org/#port-state
https://url.spec.whatwg.org/#path-start-state
https://url.spec.whatwg.org/#query-state
https://url.spec.whatwg.org/#fragment-state
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-username
https://url.spec.whatwg.org/#concept-url-password
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-blob-entry
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#url-serializer-exclude-fragment
https://url.spec.whatwg.org/#url-path-serializer
https://url.spec.whatwg.org/#concept-host-parser
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#concept-url-equals
https://url.spec.whatwg.org/#url-equals-exclude-fragments
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#default-encode-set
https://url.spec.whatwg.org/#component-percent-encode-set
https://url.spec.whatwg.org/#string-utf-8-percent-encode
https://url.spec.whatwg.org/#string-percent-decode
https://url.spec.whatwg.org/#set-the-username
https://url.spec.whatwg.org/#set-the-password
https://url.spec.whatwg.org/#concept-urlencoded
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#is-special
https://www.rfc-editor.org/rfc/rfc6694#section-2
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://httpwg.org/specs/rfc7230.html#http.uri
https://httpwg.org/specs/rfc7230.html#https.uri
https://www.rfc-editor.org/rfc/rfc6068#section-2
https://www.rfc-editor.org/rfc/rfc5724#section-2
https://www.rfc-editor.org/rfc/rfc2141#section-2
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://httpwg.org/specs/rfc7231.html#header.accept
https://httpwg.org/specs/rfc7231.html#header.accept-language
https://httpwg.org/specs/rfc7234.html#header.cache-control
https://httpwg.org/specs/rfc6266.html
https://httpwg.org/specs/rfc7231.html#header.content-language
https://httpwg.org/specs/rfc7233.html#header.content-range
https://httpwg.org/specs/rfc7232.html#header.last-modified
https://httpwg.org/specs/rfc7233.html#header.range
https://httpwg.org/specs/rfc7231.html#header.referer

• cookie-string
• receives a set-cookie-string
• `Cookie` header

The following term is defined in Web Linking: [WEBLINK]p1484

• `Link` header
• Parsing a `Link` field value

The following terms are defined in Structured Field Values for HTTP: [STRUCTURED-FIELDS]p1482

• structured header
• boolean
• token
• parameters

The following terms are defined in MIME Sniffing: [MIMESNIFF]p1480

• MIME type
• MIME type essence
• valid MIME type string
• valid MIME type string with no parameters
• HTML MIME type
• JavaScript MIME type and JavaScript MIME type essence match
• JSON MIME type
• XML MIME type
• image MIME type
• audio or video MIME type
• font MIME type
• parse a MIME type
• is MIME type supported by the user agent?

Fetch
The following terms are defined in Fetch: [FETCH]p1478

• ABNF
• about:blank
• An HTTP(S) scheme
• A URL which is local
• A local scheme
• A fetch scheme
• CORS protocol
• default `User-Agent` value
• extract a MIME type
• legacy extract an encoding
• fetch
• fetch controller
• process the next manual redirect
• ok status
• navigation request
• network error
• aborted network error
• `Origin` header
• `Cross-Origin-Resource-Policy` header
• getting a structured field value
• header list
• set
• get, decode, and split
• abort
• cross-origin resource policy check
• the RequestCredentials enumeration
• the RequestDestination enumeration
• the fetch() method
• report timing
• serialize a response URL for reporting
• safely extracting a body
• incrementally reading a body
• processResponseConsumeBody
• processResponseEndOfBody
• processResponse
• useParallelQueue
• processEarlyHintsResponse
• connection pool
• obtain a connection
• determine the network partition key
• extract full timing info
• as a body
• response body info
• resolve an origin
• response and its associated:

◦ type
53

https://httpwg.org/specs/rfc6265.html#sane-cookie-syntax
https://httpwg.org/specs/rfc6265.html#storage-model
https://httpwg.org/specs/rfc6265.html#cookie
https://httpwg.org/specs/rfc8288.html#header
https://httpwg.org/specs/rfc8288.html#parse-fv
https://httpwg.org/specs/rfc8941.html
https://httpwg.org/specs/rfc8941.html#boolean
https://httpwg.org/specs/rfc8941.html#token
https://httpwg.org/specs/rfc8941.html#param
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type-essence
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://mimesniff.spec.whatwg.org/#html-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#json-mime-type
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#image-mime-type
https://mimesniff.spec.whatwg.org/#audio-or-video-mime-type
https://mimesniff.spec.whatwg.org/#font-mime-type
https://mimesniff.spec.whatwg.org/#parse-a-mime-type
https://mimesniff.spec.whatwg.org/#supported-by-the-user-agent
https://fetch.spec.whatwg.org/#abnf
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#is-local
https://fetch.spec.whatwg.org/#local-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#default-user-agent-value
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#legacy-extract-an-encoding
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#fetch-controller
https://fetch.spec.whatwg.org/#fetch-controller-process-the-next-manual-redirect
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#navigation-request
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-aborted-network-error
https://fetch.spec.whatwg.org/#http-origin
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-header-list
https://fetch.spec.whatwg.org/#concept-header-list-set
https://fetch.spec.whatwg.org/#concept-header-list-get-decode-split
https://fetch.spec.whatwg.org/#fetch-controller-abort
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#requestcredentials
https://fetch.spec.whatwg.org/#requestdestination
https://fetch.spec.whatwg.org/#dom-global-fetch
https://fetch.spec.whatwg.org/#finalize-and-report-timing
https://fetch.spec.whatwg.org/#serialize-a-response-url-for-reporting
https://fetch.spec.whatwg.org/#bodyinit-safely-extract
https://fetch.spec.whatwg.org/#body-incrementally-read
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#fetch-processresponseendofbody
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#fetch-useparallelqueue
https://fetch.spec.whatwg.org/#fetch-processearlyhintsresponse
https://fetch.spec.whatwg.org/#concept-connection-pool
https://fetch.spec.whatwg.org/#concept-connection-obtain
https://fetch.spec.whatwg.org/#determine-the-network-partition-key
https://fetch.spec.whatwg.org/#extract-full-timing-info
https://fetch.spec.whatwg.org/#byte-sequence-as-a-body
https://fetch.spec.whatwg.org/#response-body-info
https://fetch.spec.whatwg.org/#resolve-an-origin
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type

◦ URL
◦ URL list
◦ status
◦ header list
◦ body
◦ body info
◦ internal response
◦ location URL
◦ timing info
◦ service worker timing info
◦ has-cross-origin-redirects
◦ timing allow passed
◦ extract content-range values

• request and its associated:
◦ URL
◦ method
◦ header list
◦ body
◦ client
◦ URL list
◦ current URL
◦ reserved client
◦ replaces client id
◦ initiator
◦ destination
◦ potential destination
◦ translating a potential destination
◦ script-like destinations
◦ priority
◦ origin
◦ referrer
◦ synchronous flag
◦ mode
◦ credentials mode
◦ use-URL-credentials flag
◦ unsafe-request flag
◦ cache mode
◦ redirect count
◦ redirect mode
◦ policy container
◦ referrer policy
◦ cryptographic nonce metadata
◦ integrity metadata
◦ parser metadata
◦ reload-navigation flag
◦ history-navigation flag
◦ user-activation
◦ render-blocking
◦ initiator type
◦ add a range header

• fetch timing info and its associated:
◦ start time
◦ end time

The following terms are defined in Referrer Policy: [REFERRERPOLICY]p1481

• referrer policy
• The `Referrer-Policy` HTTP header
• The parse a referrer policy from a `Referrer-Policy` header algorithm
• The "no-referrer", "no-referrer-when-downgrade", "origin-when-cross-origin", and "unsafe-url" referrer policies
• The default referrer policy

The following terms are defined in Mixed Content: [MIX]p1480

• a priori authenticated URL

The following terms are defined in Subresource Integrity: [SRI]p1482

• parse integrity metadata
• the requirements of the integrity attribute
• get the strongest metadata from set

Paint Timing
The following terms are defined in Paint Timing: [PAINTTIMING]p1480

• mark paint timing

Navigation Timing
The following terms are defined in Navigation Timing: [NAVIGATIONTIMING]p1480

54

https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url-list
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#concept-response-header-list
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-response-body-info
https://fetch.spec.whatwg.org/#concept-internal-response
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-response-timing-info
https://fetch.spec.whatwg.org/#response-service-worker-timing-info
https://fetch.spec.whatwg.org/#response-has-cross-origin-redirects
https://fetch.spec.whatwg.org/#concept-response-timing-allow-passed
https://wicg.github.io/background-fetch/#extract-content-range-values
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-method
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-url-list
https://fetch.spec.whatwg.org/#concept-request-current-url
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-request-replaces-client-id
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-request-origin
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#unsafe-request-flag
https://fetch.spec.whatwg.org/#concept-request-cache-mode
https://fetch.spec.whatwg.org/#concept-request-redirect-count
https://fetch.spec.whatwg.org/#concept-request-redirect-mode
https://fetch.spec.whatwg.org/#concept-request-policy-container
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-reload-navigation-flag
https://fetch.spec.whatwg.org/#concept-request-history-navigation-flag
https://fetch.spec.whatwg.org/#request-user-activation
https://fetch.spec.whatwg.org/#request-render-blocking
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-add-range-header
https://fetch.spec.whatwg.org/#fetch-timing-info
https://fetch.spec.whatwg.org/#fetch-timing-info-start-time
https://fetch.spec.whatwg.org/#fetch-timing-info-end-time
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-header-dfn
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer-when-downgrade
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-origin-when-cross-origin
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-unsafe-url
https://w3c.github.io/webappsec-referrer-policy/#default-referrer-policy
https://w3c.github.io/webappsec-mixed-content/#a-priori-authenticated-url
https://w3c.github.io/webappsec-subresource-integrity/#parse-metadata
https://w3c.github.io/webappsec-subresource-integrity/#the-integrity-attribute
https://w3c.github.io/webappsec-subresource-integrity/#get-the-strongest-metadata
https://w3c.github.io/paint-timing/#mark-paint-timing

• create the navigation timing entry
• queue the navigation timing entry
• NavigationTimingType and its "navigate", "reload", and "back_forward" values.

Resource Timing
The following terms are defined in Resource Timing: [RESOURCETIMING]p1481

• Mark resource timing

Performance Timeline
The following terms are defined in Performance Timeline: [PERFORMANCETIMELINE]p1480

• PerformanceEntry and its name, entryType, startTime, and duration attributes.
• Queue a performance entry

Long Animation Frames
The following terms are defined in Long Animation Frames: [LONGANIMATIONFRAMES]p1479

• record task start time
• record task end time
• record rendering time
• record classic script creation time
• record classic script execution start time
• record module script execution start time
• Record pause duration
• record timing info for timer handler
• record timing info for microtask checkpoint

Long Tasks
The following terms are defined in Long Tasks: [LONGTASKS]p1479

• report long tasks

Web IDL
The IDL fragments in this specification must be interpreted as required for conforming IDL fragments, as described in Web IDL.
[WEBIDL]p1483

The following terms are defined in Web IDL:

• this
• extended attribute
• named constructor
• constructor operation
• overridden constructor steps
• internally create a new object implementing the interface
• array index property name
• supports indexed properties
• supported property indices
• determine the value of an indexed property
• set the value of an existing indexed property
• set the value of a new indexed property
• support named properties
• supported property names
• determine the value of a named property
• set the value of an existing named property
• set the value of a new named property
• delete an existing named property
• perform a security check
• platform object
• legacy platform object
• primary interface
• interface object
• named properties object
• include
• inherit
• interface prototype object
• implements
• associated realm
• [[Realm]] field of a platform object
• [[GetOwnProperty]] internal method of a named properties object
• callback context
• frozen array and creating a frozen array
• create a new object implementing the interface
• callback this value
• converting between Web IDL types and JS types
• invoking and constructing callback functions
• overload resolution algorithm
• exposed

55

https://w3c.github.io/navigation-timing/#dfn-create-the-navigation-timing-entry
https://w3c.github.io/navigation-timing/#dfn-queue-the-navigation-timing-entry
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-navigate
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-reload
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-back_forward
https://w3c.github.io/resource-timing/#dfn-mark-resource-timing
https://w3c.github.io/performance-timeline/#dom-performanceentry
https://w3c.github.io/performance-timeline/#dom-performanceentry-name
https://w3c.github.io/performance-timeline/#dom-performanceentry-entrytype
https://w3c.github.io/performance-timeline/#dom-performanceentry-starttime
https://w3c.github.io/performance-timeline/#dom-performanceentry-duration
https://w3c.github.io/performance-timeline/#queue-a-performanceentry
https://w3c.github.io/long-animation-frames/#record-task-start-time
https://w3c.github.io/long-animation-frames/#record-task-end-time
https://w3c.github.io/long-animation-frames/#record-rendering-time
https://w3c.github.io/long-animation-frames/#record-classic-script-creation-time
https://w3c.github.io/long-animation-frames/#record-classic-script-execution-start-time
https://w3c.github.io/long-animation-frames/#record-module-script-execution-start-time
https://w3c.github.io/long-animation-frames/#record-pause-duration
https://w3c.github.io/long-animation-frames/#record-timing-info-for-timer-handler
https://w3c.github.io/long-animation-frames/#record-timing-info-for-microtask-checkpoint
https://w3c.github.io/longtasks/#report-long-tasks
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-extended-attribute
https://webidl.spec.whatwg.org/#dfn-named-constructor
https://webidl.spec.whatwg.org/#idl-constructors
https://webidl.spec.whatwg.org/#overridden-constructor-steps
https://webidl.spec.whatwg.org/#internally-create-a-new-object-implementing-the-interface
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://webidl.spec.whatwg.org/#dfn-support-indexed-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-an-indexed-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-an-existing-indexed-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-a-new-indexed-property
https://webidl.spec.whatwg.org/#dfn-support-named-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-a-named-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-an-existing-named-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-a-new-named-property
https://webidl.spec.whatwg.org/#dfn-delete-an-existing-named-property
https://webidl.spec.whatwg.org/#dfn-perform-a-security-check
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-legacy-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://webidl.spec.whatwg.org/#dfn-interface-object
https://webidl.spec.whatwg.org/#dfn-named-properties-object
https://webidl.spec.whatwg.org/#include
https://webidl.spec.whatwg.org/#dfn-inherit
https://webidl.spec.whatwg.org/#dfn-interface-prototype-object
https://webidl.spec.whatwg.org/#implements
https://webidl.spec.whatwg.org/#dfn-associated-realm
https://webidl.spec.whatwg.org/#es-platform-objects
https://webidl.spec.whatwg.org/#named-properties-object-getownproperty
https://webidl.spec.whatwg.org/#dfn-callback-context
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://webidl.spec.whatwg.org/#dfn-create-frozen-array
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#construct-a-callback-function
https://webidl.spec.whatwg.org/#dfn-overload-resolution-algorithm
https://webidl.spec.whatwg.org/#dfn-exposed

• a promise resolved with
• a promise rejected with
• wait for all
• upon rejection
• upon fulfillment
• mark as handled
• [Global]
• [LegacyFactoryFunction]
• [LegacyLenientThis]
• [LegacyNullToEmptyString]
• [LegacyOverrideBuiltIns]
• LegacyPlatformObjectGetOwnProperty
• [LegacyTreatNonObjectAsNull]
• [LegacyUnenumerableNamedProperties]
• [LegacyUnforgeable]
• set entries

Web IDL also defines the following types that are used in Web IDL fragments in this specification:

• ArrayBuffer
• ArrayBufferView
• boolean
• DOMString
• double
• enumeration
• Function
• long
• object
• Promise
• Uint8ClampedArray
• unrestricted double
• unsigned long
• USVString
• VoidFunction

The term throw in this specification is used as defined in Web IDL. The DOMException type and the following exception names are
defined by Web IDL and used by this specification:

• "IndexSizeError"
• "HierarchyRequestError"
• "InvalidCharacterError"
• "NoModificationAllowedError"
• "NotFoundError"
• "NotSupportedError"
• "InvalidStateError"
• "SyntaxError"
• "InvalidAccessError"
• "SecurityError"
• "NetworkError"
• "AbortError"
• "QuotaExceededError"
• "DataCloneError"
• "EncodingError"
• "NotAllowedError"

When this specification requires a user agent to create a Date object representing a particular time (which could be the special
value Not-a-Number), the milliseconds component of that time, if any, must be truncated to an integer, and the time value of the
newly created Date object must represent the resulting truncated time.

JavaScript
Some parts of the language described by this specification only support JavaScript as the underlying scripting language.
[JAVASCRIPT]p1479

The following terms are defined in the JavaScript specification and used in this specification:

For instance, given the time 23045 millionths of a second after 01:00 UTC on January 1st 2000, i.e. the time
2000-01-01T00:00:00.023045Z, then the Date object created representing that time would represent the same time as that
created representing the time 2000-01-01T00:00:00.023Z, 45 millionths earlier. If the given time is NaN, then the result is a
Date object that represents a time value NaN (indicating that the object does not represent a specific instant of time).

Example

The term "JavaScript" is used to refer to ECMA-262, rather than the official term ECMAScript, since the term JavaScript is more
widely known.

Note

56

https://webidl.spec.whatwg.org/#a-promise-resolved-with
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#wait-for-all
https://webidl.spec.whatwg.org/#upon-rejection
https://webidl.spec.whatwg.org/#upon-fulfillment
https://webidl.spec.whatwg.org/#mark-a-promise-as-handled
https://webidl.spec.whatwg.org/#Global
https://webidl.spec.whatwg.org/#LegacyFactoryFunction
https://webidl.spec.whatwg.org/#LegacyLenientThis
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyOverrideBuiltIns
https://webidl.spec.whatwg.org/#LegacyPlatformObjectGetOwnProperty
https://webidl.spec.whatwg.org/#LegacyTreatNonObjectAsNull
https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#dfn-set-entries
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#common-ArrayBufferView
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#idl-enums
https://webidl.spec.whatwg.org/#common-Function
https://webidl.spec.whatwg.org/#idl-long
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://webidl.spec.whatwg.org/#idl-unrestricted-double
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#idl-USVString
https://webidl.spec.whatwg.org/#VoidFunction
https://webidl.spec.whatwg.org/#dfn-throw
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#invalidcharactererror
https://webidl.spec.whatwg.org/#nomodificationallowederror
https://webidl.spec.whatwg.org/#notfounderror
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#invalidaccesserror
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#networkerror
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#quotaexceedederror
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#encodingerror
https://webidl.spec.whatwg.org/#notallowederror
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-date-objects

• active function object
• agent and agent cluster
• automatic semicolon insertion
• candidate execution
• The current realm
• clamping a mathematical value
• early error
• forward progress
• invariants of the essential internal methods
• JavaScript execution context
• JavaScript execution context stack
• realm
• JobCallback Record
• NewTarget
• running JavaScript execution context
• surrounding agent
• abstract closure
• immutable prototype exotic object
• Well-Known Symbols, including %Symbol.hasInstance%, %Symbol.isConcatSpreadable%,

%Symbol.toPrimitive%, and %Symbol.toStringTag%
• Well-Known Intrinsic Objects, including %Array.prototype%, %Error.prototype%, %EvalError.prototype%,

%Function.prototype%, %JSON.parse%, %Object.prototype%, %Object.prototype.valueOf%,
%RangeError.prototype%, %ReferenceError.prototype%, %SyntaxError.prototype%, %TypeError.prototype%,
and %URIError.prototype%

• The FunctionBody production
• The Module production
• The Pattern production
• The Script production
• The BigInt, Boolean, Number, String, Symbol, and Object ECMAScript language types
• The Completion Record specification type
• The List and Record specification types
• The Property Descriptor specification type
• The Script Record specification type
• The Cyclic Module Record specification type
• The Source Text Module Record specification type and its Evaluate, Link and LoadRequestedModules methods
• The ArrayCreate abstract operation
• The Call abstract operation
• The ClearKeptObjects abstract operation
• The CleanupFinalizationRegistry abstract operation
• The Construct abstract operation
• The CopyDataBlockBytes abstract operation
• The CreateBuiltinFunction abstract operation
• The CreateByteDataBlock abstract operation
• The CreateDataProperty abstract operation
• The DefinePropertyOrThrow abstract operation
• The DetachArrayBuffer abstract operation
• The EnumerableOwnProperties abstract operation
• The FinishLoadingImportedModule abstract operation
• The OrdinaryFunctionCreate abstract operation
• The Get abstract operation
• The GetActiveScriptOrModule abstract operation
• The GetFunctionRealm abstract operation
• The HasOwnProperty abstract operation
• The HostCallJobCallback abstract operation
• The HostEnqueueFinalizationRegistryCleanupJob abstract operation
• The HostEnqueueGenericJob abstract operation
• The HostEnqueuePromiseJob abstract operation
• The HostEnqueueTimeoutJob abstract operation
• The HostEnsureCanAddPrivateElement abstract operation
• The HostLoadImportedModule abstract operation
• The HostMakeJobCallback abstract operation
• The HostPromiseRejectionTracker abstract operation
• The InitializeHostDefinedRealm abstract operation
• The IsAccessorDescriptor abstract operation
• The IsCallable abstract operation
• The IsConstructor abstract operation
• The IsDataDescriptor abstract operation
• The IsDetachedBuffer abstract operation
• The IsSharedArrayBuffer abstract operation
• The NewObjectEnvironment abstract operation
• The NormalCompletion abstract operation
• The OrdinaryGetPrototypeOf abstract operation
• The OrdinarySetPrototypeOf abstract operation
• The OrdinaryIsExtensible abstract operation
• The OrdinaryPreventExtensions abstract operation
• The OrdinaryGetOwnProperty abstract operation
• The OrdinaryDefineOwnProperty abstract operation
• The OrdinaryGet abstract operation
• The OrdinarySet abstract operation
• The OrdinaryDelete abstract operation
• The OrdinaryOwnPropertyKeys abstract operation
• The OrdinaryObjectCreate abstract operation
• The ParseModule abstract operation

57

https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-automatic-semicolon-insertion
https://tc39.es/ecma262/#sec-candidate-executions
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#clamping
https://tc39.es/ecma262/#early-error-rule
https://tc39.es/ecma262/#sec-forward-progress
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-jobcallback-records
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-abstract-closure
https://tc39.es/ecma262/#immutable-prototype-exotic-object
https://tc39.es/ecma262/#sec-well-known-symbols
https://tc39.es/ecma262/#sec-well-known-intrinsic-objects
https://tc39.es/ecma262/#sec-properties-of-the-array-prototype-object
https://tc39.es/ecma262/#sec-properties-of-the-error-prototype-object
https://tc39.es/ecma262/#sec-properties-of-the-function-prototype-object
https://tc39.es/ecma262/#sec-json.parse
https://tc39.es/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.es/ecma262/#sec-object.prototype.valueof
https://tc39.es/ecma262/#prod-FunctionBody
https://tc39.es/ecma262/#prod-Module
https://tc39.es/ecma262/#prod-Pattern
https://tc39.es/ecma262/#prod-Script
https://tc39.es/ecma262/#sec-ecmascript-language-types-bigint-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-boolean-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-number-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-symbol-type
https://tc39.es/ecma262/#sec-object-type
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-script-records
https://tc39.es/ecma262/#sec-cyclic-module-records
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/ecma262/#sec-moduleevaluation
https://tc39.es/ecma262/#sec-moduledeclarationlinking
https://tc39.es/ecma262/#sec-LoadRequestedModules
https://tc39.es/ecma262/#sec-arraycreate
https://tc39.es/ecma262/#sec-call
https://tc39.es/ecma262/#sec-clear-kept-objects
https://tc39.es/ecma262/#sec-cleanup-finalization-registry
https://tc39.es/ecma262/#sec-construct
https://tc39.es/ecma262/#sec-copydatablockbytes
https://tc39.es/ecma262/#sec-createbuiltinfunction
https://tc39.es/ecma262/#sec-createbytedatablock
https://tc39.es/ecma262/#sec-createdataproperty
https://tc39.es/ecma262/#sec-definepropertyorthrow
https://tc39.es/ecma262/#sec-detacharraybuffer
https://tc39.es/ecma262/#sec-enumerableownproperties
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule
https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-getactivescriptormodule
https://tc39.es/ecma262/#sec-getfunctionrealm
https://tc39.es/ecma262/#sec-hasownproperty
https://tc39.es/ecma262/#sec-hostcalljobcallback
https://tc39.es/ecma262/#sec-host-cleanup-finalization-registry
https://tc39.es/ecma262/#sec-hostenqueuegenericjob
https://tc39.es/ecma262/#sec-hostenqueuepromisejob
https://tc39.es/ecma262/#sec-hostenqueuetimeoutjob
https://tc39.es/ecma262/#sec-hostensurecanaddprivateelement
https://tc39.es/proposal-import-attributes/#sec-HostLoadImportedModule
https://tc39.es/ecma262/#sec-hostmakejobcallback
https://tc39.es/ecma262/#sec-host-promise-rejection-tracker
https://tc39.es/ecma262/#sec-initializehostdefinedrealm
https://tc39.es/ecma262/#sec-isaccessordescriptor
https://tc39.es/ecma262/#sec-iscallable
https://tc39.es/ecma262/#sec-isconstructor
https://tc39.es/ecma262/#sec-isdatadescriptor
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://tc39.es/ecma262/#sec-issharedarraybuffer
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#sec-normalcompletion
https://tc39.es/ecma262/#sec-ordinarygetprototypeof
https://tc39.es/ecma262/#sec-ordinarysetprototypeof
https://tc39.es/ecma262/#sec-ordinaryisextensible
https://tc39.es/ecma262/#sec-ordinarypreventextensions
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://tc39.es/ecma262/#sec-ordinaryget
https://tc39.es/ecma262/#sec-ordinaryset
https://tc39.es/ecma262/#sec-ordinarydelete
https://tc39.es/ecma262/#sec-ordinaryownpropertykeys
https://tc39.es/ecma262/#sec-objectcreate
https://tc39.es/ecma262/#sec-parsemodule

• The ParseScript abstract operation
• The NewPromiseReactionJob abstract operation
• The NewPromiseResolveThenableJob abstract operation
• The RegExpBuiltinExec abstract operation
• The RegExpCreate abstract operation
• The RunJobs abstract operation
• The SameValue abstract operation
• The ScriptEvaluation abstract operation
• The SetImmutablePrototype abstract operation
• The ToBoolean abstract operation
• The ToString abstract operation
• The ToUint32 abstract operation
• The TypedArrayCreate abstract operation
• The IsLooselyEqual abstract operation
• The IsStrictlyEqual abstract operation
• The Atomics object
• The Atomics.waitAsync object
• The Date class
• The FinalizationRegistry class
• The RegExp class
• The SharedArrayBuffer class
• The SyntaxError class
• The TypeError class
• The RangeError class
• The WeakRef class
• The eval() function
• The WeakRef.prototype.deref() function
• The [[IsHTMLDDA]] internal slot
• import()
• import.meta
• The HostGetImportMetaProperties abstract operation
• The typeof operator
• The delete operator
• The TypedArray Constructors table

Users agents that support JavaScript must also implement the Dynamic Code Brand Checks proposal. The following terms are
defined there, and used in this specification: [JSDYNAMICCODEBRANDCHECKS]p1479

• The HostEnsureCanCompileStrings abstract operation
• The HostGetCodeForEval abstract operation

Users agents that support JavaScript must also implement ECMAScript Internationalization API. [JSINTL]p1479

User agents that support JavaScript must also implement the Import Attributes proposal. The following terms are defined there, and
used in this specification: [JSIMPORTATTRIBUTES]p1479

• The ModuleRequest Record specification type
• The HostGetSupportedImportAttributes abstract operation

User agents that support JavaScript must also implement the JSON modules proposal. The following terms are defined there, and
used in this specification: [JSJSONMODULES]p1479

• The CreateDefaultExportSyntheticModule abstract operation
• The SetSyntheticModuleExport abstract operation
• The Synthetic Module Record specification type
• The ParseJSONModule abstract operation

User agents that support JavaScript must also implement the Resizable ArrayBuffer and growable SharedArrayBuffer proposal. The
following terms are defined there, and used in this specification: [JSRESIZABLEBUFFERS]p1479

• The IsArrayBufferViewOutOfBounds abstract operation

User agents that support JavaScript must also implement the Temporal proposal. The following terms are defined there, and used in
this specification: [JSTEMPORAL]p1479

• The HostSystemUTCEpochNanoseconds abstract operation
• The nsMaxInstant and nsMinInstant values

WebAssembly
The following term is defined in WebAssembly JavaScript Interface: [WASMJS]p1483

• WebAssembly.Module

DOM
The Document Object Model (DOM) is a representation — a model — of a document and its content. The DOM is not just an API; the
conformance criteria of HTML implementations are defined, in this specification, in terms of operations on the DOM. [DOM]p1478

58

https://tc39.es/ecma262/#sec-parse-script
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-regexpbuiltinexec
https://tc39.es/ecma262/#sec-regexpcreate
https://tc39.es/ecma262/#sec-runjobs
https://tc39.es/ecma262/#sec-samevalue
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-set-immutable-prototype
https://tc39.es/ecma262/#sec-toboolean
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-touint32
https://tc39.es/ecma262/#typedarray-create
https://tc39.es/ecma262/#sec-islooselyequal
https://tc39.es/ecma262/#sec-isstrictlyequal
https://tc39.es/ecma262/#sec-atomics-object
https://tc39.es/ecma262/#sec-atomics.waitasync
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-finalization-registry-objects
https://tc39.es/ecma262/#sec-regexp-regular-expression-objects
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-syntaxerror
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://tc39.es/ecma262/#sec-weak-ref-objects
https://tc39.es/ecma262/#sec-eval-x
https://tc39.es/ecma262/#sec-weak-ref.prototype.deref
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-meta-properties
https://tc39.es/ecma262/#sec-hostgetimportmetaproperties
https://tc39.es/ecma262/#sec-typeof-operator
https://tc39.es/ecma262/#sec-delete-operator
https://tc39.es/ecma262/#table-49
https://tc39.es/proposal-dynamic-code-brand-checks/#sec-hostensurecancompilestrings
https://tc39.es/proposal-dynamic-code-brand-checks/#sec-hostgetcodeforeval
https://tc39.es/proposal-import-attributes/#sec-modulerequest-record
https://tc39.es/proposal-import-attributes/#sec-hostgetsupportedimportattributes
https://tc39.es/proposal-json-modules/#sec-create-default-export-synthetic-module
https://tc39.es/proposal-json-modules/#sec-setsyntheticmoduleexport
https://tc39.es/proposal-json-modules/#sec-synthetic-module-records
https://tc39.es/proposal-json-modules/#sec-parse-json-module
https://tc39.es/proposal-resizablearraybuffer/#sec-isarraybufferviewoutofbounds
https://tc39.es/proposal-temporal/#sec-hostsystemutcepochnanoseconds
https://tc39.es/proposal-temporal/#eqn-nsMaxInstant
https://tc39.es/proposal-temporal/#eqn-nsMinInstant
https://webassembly.github.io/spec/js-api/#module

Implementations must support DOM and the events defined in UI Events, because this specification is defined in terms of the DOM,
and some of the features are defined as extensions to the DOM interfaces. [DOM]p1478 [UIEVENTS]p1483

In particular, the following features are defined in DOM: [DOM]p1478

• Attr interface
• CharacterData interface
• Comment interface
• DOMImplementation interface
• Document interface and its doctype attribute
• DocumentOrShadowRoot interface
• DocumentFragment interface
• DocumentType interface
• ChildNode interface
• Element interface
• attachShadow() method.
• An element's shadow root
• A shadow root's mode
• A shadow root's declarative member
• The attach a shadow root algorithm
• The retargeting algorithm
• Node interface
• NodeList interface
• ProcessingInstruction interface
• ShadowRoot interface
• Text interface
• Range interface
• node document concept
• document type concept
• host concept
• The shadow root concept, and its delegates focus, available to element internals, clonable, and serializable.
• The shadow host concept
• HTMLCollection interface, its length attribute, and its item() and namedItem() methods
• The terms collection and represented by the collection
• DOMTokenList interface, and its value attribute and supports operation
• createDocument() method
• createHTMLDocument() method
• createElement() method
• createElementNS() method
• getElementById() method
• getElementsByClassName() method
• append() method
• appendChild() method
• cloneNode() method
• importNode() method
• preventDefault() method
• id attribute
• setAttribute() method
• textContent attribute
• The tree, shadow tree, and node tree concepts
• The tree order and shadow-including tree order concepts
• The element concept
• The child concept
• The root and shadow-including root concepts
• The inclusive ancestor, descendant, shadow-including ancestor, shadow-including descendant, shadow-

including inclusive descendant, and shadow-including inclusive ancestor concepts
• The first child, next sibling, previous sibling, and parent concepts
• The parent element concept
• The document element concept
• The in a document tree, in a document (legacy), and connected concepts
• The slot concept, and its name and assigned nodes
• The assigned slot concept
• The slot assignment concept
• The slottable concept
• The assign slottables for a tree algorithm
• The slotchange event
• The inclusive descendant concept
• The find flattened slottables algorithm
• The manual slot assignment concept
• The assign a slot algorithm
• The pre-insert, insert, append, replace, replace all, string replace all, remove, and adopt algorithms for nodes
• The descendant concept
• The insertion steps,
• The post-connection steps, removing steps, adopting steps, and children changed steps hooks for elements
• The change, append, remove, replace, get an attribute by namespace and local name, set value, and remove

an attribute by namespace and local name algorithms for attributes
• The attribute change steps hook for attributes
• The value concept for attributes
• The local name concept for attributes
• The attribute list concept
• The data of a CharacterData node and its replace data algorithm
• The child text content of a node

59

https://dom.spec.whatwg.org/#interface-attr
https://dom.spec.whatwg.org/#interface-characterdata
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-domimplementation
https://dom.spec.whatwg.org/#interface-document
https://dom.spec.whatwg.org/#dom-document-doctype
https://dom.spec.whatwg.org/#documentorshadowroot
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-childnode
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-mode
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-declarative
https://dom.spec.whatwg.org/#concept-attach-a-shadow-root
https://dom.spec.whatwg.org/#retarget
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-shadowroot
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-range
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#shadowroot-available-to-element-internals
https://dom.spec.whatwg.org/#shadowroot-clonable
https://dom.spec.whatwg.org/#shadowroot-serializable
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#dom-domtokenlist-supports
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://dom.spec.whatwg.org/#dom-domimplementation-createhtmldocument
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#dom-document-createelementns
https://dom.spec.whatwg.org/#dom-nonelementparentnode-getelementbyid
https://dom.spec.whatwg.org/#dom-document-getelementsbyclassname
https://dom.spec.whatwg.org/#dom-node-append
https://dom.spec.whatwg.org/#dom-node-appendchild
https://dom.spec.whatwg.org/#dom-node-clonenode
https://dom.spec.whatwg.org/#dom-document-importnode
https://dom.spec.whatwg.org/#dom-event-preventdefault
https://dom.spec.whatwg.org/#dom-element-id
https://dom.spec.whatwg.org/#dom-element-setattribute
https://dom.spec.whatwg.org/#dom-node-textcontent
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-element
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-ancestor
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://dom.spec.whatwg.org/#concept-tree-previous-sibling
https://dom.spec.whatwg.org/#concept-tree-parent
https://dom.spec.whatwg.org/#parent-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#slot-name
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#slotable-assigned-slot
https://dom.spec.whatwg.org/#dom-shadowroot-slot-assignment
https://dom.spec.whatwg.org/#concept-slotable
https://dom.spec.whatwg.org/#assign-slotables-for-a-tree
https://dom.spec.whatwg.org/#eventdef-htmlslotelement-slotchange
https://dom.spec.whatwg.org/#concept-tree-inclusive-descendant
https://dom.spec.whatwg.org/#find-flattened-slotables
https://dom.spec.whatwg.org/#slottable-manual-slot-assignment
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-node-pre-insert
https://dom.spec.whatwg.org/#concept-node-insert
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-replace
https://dom.spec.whatwg.org/#concept-node-replace-all
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-adopt
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-post-connection-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-node-adopt-ext
https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://dom.spec.whatwg.org/#concept-element-attributes-change
https://dom.spec.whatwg.org/#concept-element-attributes-append
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#concept-element-attributes-replace
https://dom.spec.whatwg.org/#concept-element-attributes-get-by-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-remove-by-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-remove-by-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://dom.spec.whatwg.org/#concept-attribute-value
https://dom.spec.whatwg.org/#concept-attribute-local-name
https://dom.spec.whatwg.org/#concept-element-attribute
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-characterdata
https://dom.spec.whatwg.org/#concept-cd-replace
https://dom.spec.whatwg.org/#concept-child-text-content

• The descendant text content of a node
• The name, public ID, and system ID of a doctype
• Event interface
• Event and derived interfaces constructor behavior
• EventTarget interface
• The activation behavior hook
• The legacy-pre-activation behavior hook
• The legacy-canceled-activation behavior hook
• The create an event algorithm
• The fire an event algorithm
• The canceled flag
• The dispatch flag
• The dispatch algorithm
• EventInit dictionary type
• type attribute
• An event's target
• currentTarget attribute
• bubbles attribute
• cancelable attribute
• composed attribute
• composed flag
• isTrusted attribute
• initEvent() method
• add an event listener
• addEventListener() method
• The remove an event listener and remove all event listeners algorithms
• EventListener callback interface
• The type of an event
• An event listener and its type and callback
• The encoding (herein the character encoding), mode, allow declarative shadow roots, and content type of a

Documentp130

• The distinction between XML documents and HTML documents
• The terms quirks mode, limited-quirks mode, and no-quirks mode
• The algorithm to clone a Node, and the concept of cloning steps used by that algorithm
• The concept of base URL change steps and the definition of what happens when an element is affected by a base

URL change
• The concept of an element's unique identifier (ID)
• The concept of an element's classes
• The term supported tokens
• The concept of a DOM range, and the terms start node, start, end, and boundary point as applied to ranges.
• The create an element algorithm
• The element interface concept
• The concepts of custom element state, and of defined and custom elements
• An element's namespace, namespace prefix, local name, custom element definition, and is value
• MutationObserver interface and mutation observers in general
• AbortController and its signal
• AbortSignal
• aborted
• signal abort
• add
• The get an attribute by name algorithm

The following features are defined in UI Events: [UIEVENTS]p1483

• The MouseEvent interface
• The MouseEvent interface's relatedTarget attribute
• MouseEventInit dictionary type
• The FocusEvent interface
• The FocusEvent interface's relatedTarget attribute
• The UIEvent interface
• The UIEvent interface's view attribute
• auxclick event
• beforeinput event
• click event
• contextmenu event
• dblclick event
• input event
• mousedown event
• mouseenter event
• mouseleave event
• mousemove event
• mouseout event
• mouseover event
• mouseup event
• wheel event
• keydown event
• keypress event
• keyup event

The following features are defined in Touch Events: [TOUCH]p1482

• Touch interface
60

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#concept-doctype-name
https://dom.spec.whatwg.org/#concept-doctype-publicid
https://dom.spec.whatwg.org/#concept-doctype-systemid
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-canceled-activation-behavior
https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#dispatch-flag
https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#concept-event-target
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#composed-flag
https://dom.spec.whatwg.org/#dom-event-istrusted
https://dom.spec.whatwg.org/#dom-event-initevent
https://dom.spec.whatwg.org/#add-an-event-listener
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://dom.spec.whatwg.org/#remove-an-event-listener
https://dom.spec.whatwg.org/#remove-all-event-listeners
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#event-listener-type
https://dom.spec.whatwg.org/#event-listener-callback
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-mode
https://dom.spec.whatwg.org/#concept-document-allow-declarative-shadow-roots
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-class
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-range
https://dom.spec.whatwg.org/#concept-range-start-node
https://dom.spec.whatwg.org/#concept-range-start
https://dom.spec.whatwg.org/#concept-range-end
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-element-interface
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-defined
https://dom.spec.whatwg.org/#concept-element-custom
https://dom.spec.whatwg.org/#concept-element-namespace
https://dom.spec.whatwg.org/#concept-element-namespace-prefix
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#mutationobserver
https://dom.spec.whatwg.org/#mutation-observers
https://dom.spec.whatwg.org/#abortcontroller
https://dom.spec.whatwg.org/#abortcontroller-signal
https://dom.spec.whatwg.org/#abortsignal
https://dom.spec.whatwg.org/#abortsignal-aborted
https://dom.spec.whatwg.org/#abortcontroller-signal-abort
https://dom.spec.whatwg.org/#abortsignal-add
https://dom.spec.whatwg.org/#concept-element-attributes-get-by-name
https://w3c.github.io/uievents/#mouseevent
https://w3c.github.io/uievents/#mouseevent
https://w3c.github.io/uievents/#dom-mouseevent-relatedtarget
https://w3c.github.io/uievents/#dictdef-mouseeventinit
https://w3c.github.io/uievents/#focusevent
https://w3c.github.io/uievents/#focusevent
https://w3c.github.io/uievents/#dom-focusevent-relatedtarget
https://w3c.github.io/uievents/#uievent
https://w3c.github.io/uievents/#uievent
https://w3c.github.io/uievents/#dom-uievent-view
https://w3c.github.io/uievents/#event-type-auxclick
https://w3c.github.io/uievents/#event-type-beforeinput
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-contextmenu
https://w3c.github.io/uievents/#event-type-dblclick
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mouseenter
https://w3c.github.io/uievents/#event-type-mouseleave
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-mouseout
https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mouseup
https://w3c.github.io/uievents/#event-type-wheel
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keypress
https://w3c.github.io/uievents/#event-type-keyup
https://w3c.github.io/touch-events/#touch-interface

• Touch point concept
• touchend event

The following features are defined in Pointer Events: [POINTEREVENTS]p1481

• The PointerEvent interface
• The PointerEvent interface's pointerType attribute
• fire a pointer event
• pointerdown event
• pointerup event
• pointercancel event

The following events are defined in Clipboard API and events: [CLIPBOARD-APIS]p1475

• copy event
• cut event
• paste event

This specification sometimes uses the term name to refer to the event's type; as in, "an event named click" or "if the event name
is keypress". The terms "name" and "type" for events are synonymous.

The following features are defined in DOM Parsing and Serialization: [DOMPARSING]p1478

• XML serialization

The following features are defined in Selection API: [SELECTION]p1482

• selection
• Selection

The following features are defined in Fullscreen API: [FULLSCREEN]p1478

• requestFullscreen()
• fullscreenchange
• run the fullscreen steps
• fully exit fullscreen
• fullscreen element
• fullscreen flag

High Resolution Time provides the following features: [HRT]p1478

• current high resolution time
• relative high resolution time
• unsafe shared current time
• shared monotonic clock
• unsafe moment
• duration from
• coarsen time
• current wall time
• Unix epoch
• DOMHighResTimeStamp

File API
This specification uses the following features defined in File API: [FILEAPI]p1478

• The Blob interface and its type attribute
• The File interface and its name and lastModified attributes
• The FileList interface
• The concept of a Blob's snapshot state
• The concept of read errors
• Blob URL Store
• blob URL entry and its environment
• The obtain a blob object algorithm

Indexed Database API
The following terms are defined in Indexed Database API: [INDEXEDDB]p1478

• cleanup Indexed Database transactions
• IDBVersionChangeEvent

Media Source Extensions
The following terms are defined in Media Source Extensions: [MEDIASOURCE]p1480

User agents are encouraged to implement the features described in execCommand. [EXECCOMMAND]p1478

Note

61

https://w3c.github.io/touch-events/#dfn-touch-point
https://w3c.github.io/touch-events/#event-touchend
https://w3c.github.io/pointerevents/#pointerevent-interface
https://w3c.github.io/pointerevents/#pointerevent-interface
https://w3c.github.io/pointerevents/#dom-pointerevent-pointertype
https://w3c.github.io/pointerevents/#dfn-fire-a-pointer-event
https://w3c.github.io/pointerevents/#the-pointerdown-event
https://w3c.github.io/pointerevents/#the-pointerup-event
https://w3c.github.io/pointerevents/#the-pointercancel-event
https://w3c.github.io/clipboard-apis/#clipboard-event-copy
https://w3c.github.io/clipboard-apis/#clipboard-event-cut
https://w3c.github.io/clipboard-apis/#clipboard-event-paste
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/DOM-Parsing/#dfn-xml-serialization
https://w3c.github.io/selection-api/#dfn-selection
https://w3c.github.io/selection-api/#selection-interface
https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://fullscreen.spec.whatwg.org/#eventdef-document-fullscreenchange
https://fullscreen.spec.whatwg.org/#run-the-fullscreen-steps
https://fullscreen.spec.whatwg.org/#fully-exit-fullscreen
https://fullscreen.spec.whatwg.org/#fullscreen-element
https://fullscreen.spec.whatwg.org/#fullscreen-flag
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-relative-high-resolution-time
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://w3c.github.io/hr-time/#dfn-shared-monotonic-clock
https://w3c.github.io/hr-time/#dfn-unsafe-moment
https://w3c.github.io/hr-time/#dfn-duration-from
https://w3c.github.io/hr-time/#dfn-coarsen-time
https://w3c.github.io/hr-time/#dfn-current-wall-time
https://w3c.github.io/hr-time/#dfn-unix-epoch
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#dfn-type
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-name
https://w3c.github.io/FileAPI/#dfn-lastModified
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#snapshot-state
https://w3c.github.io/FileAPI/#BlobURLStore
https://w3c.github.io/FileAPI/#blob-url-entry
https://w3c.github.io/FileAPI/#blob-url-entry-environment
https://w3c.github.io/FileAPI/#blob-url-obtain-object
https://w3c.github.io/IndexedDB/#cleanup-indexed-database-transactions
https://w3c.github.io/IndexedDB/#idbversionchangeevent

• MediaSource interface
• detaching from a media element

Media Capture and Streams
The following terms are defined in Media Capture and Streams: [MEDIASTREAM]p1480

• MediaStream interface
• MediaStreamTrack
• live state
• getUserMedia()

Reporting
The following terms are defined in Reporting: [REPORTING]p1480

• Queue a report
• report type
• visible to ReportingObservers

XMLHttpRequest
The following features and terms are defined in XMLHttpRequest: [XHR]p1484

• The XMLHttpRequest interface, and its responseXML attribute
• The ProgressEvent interface, and its lengthComputable, loaded, and total attributes
• The FormData interface, and its associated entry list

Battery Status
The following features are defined in Battery Status API: [BATTERY]p1475

• getBattery() method

Media Queries
Implementations must support Media Queries. The <media-condition> feature is defined therein. [MQ]p1480

CSS modules
While support for CSS as a whole is not required of implementations of this specification (though it is encouraged, at least for web
browsers), some features are defined in terms of specific CSS requirements.

When this specification requires that something be parsed according to a particular CSS grammar, the relevant algorithm in
CSS Syntax must be followed, including error handling rules. [CSSSYNTAX]p1477

The following terms and features are defined in Cascading Style Sheets (CSS): [CSS]p1476

• viewport
• line box
• out-of-flow
• in-flow
• collapsing margins
• containing block
• inline box
• block box
• The 'top', 'bottom', 'left', and 'right' properties
• The 'float' property
• The 'clear' property
• The 'width' property
• The 'height' property
• The 'min-width' property
• The 'min-height' property
• The 'max-width' property
• The 'max-height' property
• The 'line-height' property
• The 'vertical-align' property
• The 'content' property
• The 'inline-block' value of the 'display' property
• The 'visibility' property

The basic version of the 'display' property is defined in CSS, and the property is extended by other CSS modules. [CSS]p1476

For example, user agents are required to close all open constructs upon finding the end of a style sheet unexpectedly. Thus,
when parsing the string "rgb(0,0,0" (with a missing close-parenthesis) for a color value, the close parenthesis is implied by this
error handling rule, and a value is obtained (the color 'black'). However, the similar construct "rgb(0,0," (with both a missing
parenthesis and a missing "blue" value) cannot be parsed, as closing the open construct does not result in a viable value.

Example

62

https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/media-source/#mediasource-detach
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://w3c.github.io/mediacapture-main/getusermedia.html#mediastreamtrack
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-MediaStreamTrackState.live
https://w3c.github.io/mediacapture-main/getusermedia.html#dom-mediadevices-getusermedia
https://w3c.github.io/reporting/#queue-report
https://w3c.github.io/reporting/#report-type
https://w3c.github.io/reporting/#visible-to-reportingobservers
https://xhr.spec.whatwg.org/#xmlhttprequest
https://xhr.spec.whatwg.org/#dom-xmlhttprequest-responsexml
https://xhr.spec.whatwg.org/#interface-progressevent
https://xhr.spec.whatwg.org/#dom-progressevent-lengthcomputable
https://xhr.spec.whatwg.org/#dom-progressevent-loaded
https://xhr.spec.whatwg.org/#dom-progressevent-total
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#concept-formdata-entry-list
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#line-box
https://drafts.csswg.org/css2/#out-of-flow
https://drafts.csswg.org/css2/#in-flow
https://drafts.csswg.org/css2/#collapsing-margins
https://drafts.csswg.org/css2/#containing-block-details
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#block-boxes%E2%91%A0
https://drafts.csswg.org/css2/#propdef-top
https://drafts.csswg.org/css2/#propdef-bottom
https://drafts.csswg.org/css2/#propdef-left
https://drafts.csswg.org/css2/#propdef-right
https://drafts.csswg.org/css2/#float-position
https://drafts.csswg.org/css2/#flow-control
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#min-max-widths
https://drafts.csswg.org/css2/#min-max-heights
https://drafts.csswg.org/css2/#min-max-widths
https://drafts.csswg.org/css2/#min-max-heights
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css2/#content%E2%91%A0
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#propdef-visibility
https://drafts.csswg.org/css2/#display-prop

[CSSRUBY]p1477 [CSSTABLE]p1477

The following terms and features are defined in CSS Box Model: [CSSBOX]p1476

• content area

• content box

• border box

• margin box

• border edge

• margin edge

• The 'margin-top', 'margin-bottom', 'margin-left', and 'margin-right' properties

• The 'padding-top', 'padding-bottom', 'padding-left', and 'padding-right' properties

The following features are defined in CSS Logical Properties: [CSSLOGICAL]p1477

• The 'margin-block', 'margin-block-start', 'margin-block-end', 'margin-inline', 'margin-inline-start', and 'margin-
inline-end' properties

• The 'padding-block', 'padding-block-start', 'padding-block-end', 'padding-inline', 'padding-inline-start', and
'padding-inline-end' properties

• The 'border-block-width', 'border-block-start-width', 'border-block-end-width', 'border-inline-width', 'border-
inline-start-width', 'border-inline-end-width', 'border-block-style', 'border-block-start-style', 'border-block-
end-style', 'border-inline-style', 'border-inline-start-style', 'border-inline-end-style', 'border-block-start-color',
'border-block-end-color', 'border-inline-start-color', 'border-inline-end-color', 'border-start-start-radius',
'border-start-end-radius', 'border-end-start-radius', and 'border-end-end-radius' properties

• The 'block-size' property
• The 'inline-size' property
• The 'inset-block-start' property
• The 'inset-block-end' property

The following terms and features are defined in CSS Color: [CSSCOLOR]p1476

• named color
• <color>
• The 'color' property
• The 'currentcolor' value
• opaque black
• transparent black
• 'srgb' color space
• 'display-p3' color space
• 'relative-colorimetric' rendering intent
• parse a CSS <color> value
• serialize a CSS <color> value including HTML-compatible serialization is requested
• Converting Colors
• 'color()'

The following terms are defined in CSS Images: [CSSIMAGES]p1476

• default object size
• concrete object size
• natural dimensions
• natural height
• natural width
• The 'image-orientation' property
• 'conic-gradient'
• The 'object-fit' property

The term paint source is used as defined in CSS Images Level 4 to define the interaction of certain HTML elements with the CSS
'element()' function. [CSSIMAGES4]p1476

The following features are defined in CSS Backgrounds and Borders: [CSSBG]p1476

• The 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-
position', 'background-clip', 'background-origin', and 'background-size' properties

• The 'border-radius', 'border-top-left-radius', 'border-top-right-radius', 'border-bottom-right-radius', 'border-
bottom-left-radius' properties

• The 'border-image-source', 'border-image-slice', 'border-image-width', 'border-image-outset', and 'border-
image-repeat' properties

CSS Backgrounds and Borders also defines the following border properties: [CSSBG]p1476

63

https://drafts.csswg.org/css-box/#content-area
https://drafts.csswg.org/css-box/#content-box
https://drafts.csswg.org/css-box/#border-box
https://drafts.csswg.org/css-box/#margin-box
https://drafts.csswg.org/css-box/#border-edge
https://drafts.csswg.org/css-box/#margin-edge
https://drafts.csswg.org/css-box/#propdef-margin-top
https://drafts.csswg.org/css-box/#propdef-margin-bottom
https://drafts.csswg.org/css-box/#propdef-margin-left
https://drafts.csswg.org/css-box/#propdef-margin-right
https://drafts.csswg.org/css-box/#propdef-padding-top
https://drafts.csswg.org/css-box/#propdef-padding-bottom
https://drafts.csswg.org/css-box/#propdef-padding-left
https://drafts.csswg.org/css-box/#propdef-padding-right
https://drafts.csswg.org/css-logical/#propdef-margin-block
https://drafts.csswg.org/css-logical/#propdef-margin-block-start
https://drafts.csswg.org/css-logical/#propdef-margin-block-end
https://drafts.csswg.org/css-logical/#propdef-margin-inline
https://drafts.csswg.org/css-logical/#propdef-margin-inline-start
https://drafts.csswg.org/css-logical/#propdef-margin-inline-end
https://drafts.csswg.org/css-logical/#propdef-margin-inline-end
https://drafts.csswg.org/css-logical/#propdef-padding-block
https://drafts.csswg.org/css-logical/#propdef-padding-block-start
https://drafts.csswg.org/css-logical/#propdef-padding-block-end
https://drafts.csswg.org/css-logical/#propdef-padding-inline
https://drafts.csswg.org/css-logical/#propdef-padding-inline-start
https://drafts.csswg.org/css-logical/#propdef-padding-inline-end
https://drafts.csswg.org/css-logical/#propdef-border-block-width
https://drafts.csswg.org/css-logical/#propdef-border-block-start-width
https://drafts.csswg.org/css-logical/#propdef-border-block-end-width
https://drafts.csswg.org/css-logical/#propdef-border-inline-width
https://drafts.csswg.org/css-logical/#propdef-border-inline-start-width
https://drafts.csswg.org/css-logical/#propdef-border-inline-start-width
https://drafts.csswg.org/css-logical/#propdef-border-inline-end-width
https://drafts.csswg.org/css-logical/#propdef-border-block-style
https://drafts.csswg.org/css-logical/#propdef-border-block-start-style
https://drafts.csswg.org/css-logical/#propdef-border-block-end-style
https://drafts.csswg.org/css-logical/#propdef-border-block-end-style
https://drafts.csswg.org/css-logical/#propdef-border-inline-style
https://drafts.csswg.org/css-logical/#propdef-border-inline-start-style
https://drafts.csswg.org/css-logical/#propdef-border-inline-end-style
https://drafts.csswg.org/css-logical/#propdef-border-block-start-color
https://drafts.csswg.org/css-logical/#propdef-border-block-end-color
https://drafts.csswg.org/css-logical/#propdef-border-inline-start-color
https://drafts.csswg.org/css-logical/#propdef-border-inline-end-color
https://drafts.csswg.org/css-logical/#propdef-border-start-start-radius
https://drafts.csswg.org/css-logical/#propdef-border-start-end-radius
https://drafts.csswg.org/css-logical/#propdef-border-end-start-radius
https://drafts.csswg.org/css-logical/#propdef-border-end-end-radius
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css-logical/#propdef-inset-block-start
https://drafts.csswg.org/css-logical/#propdef-inset-block-end
https://drafts.csswg.org/css-color/#named-color
https://drafts.csswg.org/css-color/#typedef-color
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-color/#valdef-color-currentcolor
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-color/#valdef-color-display-p3
https://drafts.csswg.org/css-color-5/#valdef-color-profile-rendering-intent-relative-colorimetric
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://drafts.csswg.org/css-color/#serializing-color-values
https://drafts.csswg.org/css-color/#color-serialization-html-compatible-serialization-is-requested
https://drafts.csswg.org/css-color/#color-conversion
https://drafts.csswg.org/css-color/#color-function
https://drafts.csswg.org/css-images/#default-object-size
https://drafts.csswg.org/css-images/#concrete-object-size
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images-3/#the-image-orientation
https://drafts.csswg.org/css-images-4/#funcdef-conic-gradient
https://drafts.csswg.org/css-images/#the-object-fit
https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css-backgrounds/#propdef-background-image
https://drafts.csswg.org/css-backgrounds/#propdef-background-repeat
https://drafts.csswg.org/css-backgrounds/#propdef-background-attachment
https://drafts.csswg.org/css-backgrounds/#propdef-background-position
https://drafts.csswg.org/css-backgrounds/#propdef-background-position
https://drafts.csswg.org/css-backgrounds/#propdef-background-clip
https://drafts.csswg.org/css-backgrounds/#propdef-background-origin
https://drafts.csswg.org/css-backgrounds/#propdef-background-size
https://drafts.csswg.org/css-backgrounds/#propdef-border-radius
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-left-radius
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-right-radius
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-right-radius
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-left-radius
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-left-radius
https://drafts.csswg.org/css-backgrounds/#propdef-border-image-source
https://drafts.csswg.org/css-backgrounds/#propdef-border-image-slice
https://drafts.csswg.org/css-backgrounds/#propdef-border-image-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-image-outset
https://drafts.csswg.org/css-backgrounds/#propdef-border-image-repeat
https://drafts.csswg.org/css-backgrounds/#propdef-border-image-repeat

Border properties
Top Bottom Left Right

Width 'border-top-width' 'border-bottom-width' 'border-left-width' 'border-right-width'
Style 'border-top-style' 'border-bottom-style' 'border-left-style' 'border-right-style'
Color 'border-top-color' 'border-bottom-color' 'border-left-color' 'border-right-color'

The following features are defined in CSS Box Alignment: [CSSALIGN]p1476

• The 'align-content' property
• The 'align-items' property
• The 'align-self' property
• The 'justify-self' property
• The 'justify-content' property
• The 'justify-items' property

The following terms and features are defined in CSS Display: [CSSDISPLAY]p1476

• outer display type
• inner display type
• block-level
• block container
• formatting context
• block formatting context
• inline formatting context
• replaced element
• CSS box

The following features are defined in CSS Flexible Box Layout: [CSSFLEXBOX]p1476

• The 'flex-direction' property
• The 'flex-wrap' property

The following terms and features are defined in CSS Fonts: [CSSFONTS]p1476

• first available font
• The 'font-family' property
• The 'font-weight' property
• The 'font-size' property
• The 'font' property
• The 'font-kerning' property
• The 'font-stretch' property
• The 'font-variant-caps' property
• The 'small-caps' value
• The 'all-small-caps' value
• The 'petite-caps' value
• The 'all-petite-caps' value
• The 'unicase' value
• The 'titling-caps' value
• The 'ultra-condensed' value
• The 'extra-condensed' value
• The 'condensed' value
• The 'semi-condensed' value
• The 'semi-expanded' value
• The 'expanded' value
• The 'extra-expanded' value
• The 'ultra-expanded' value

The following features are defined in CSS Grid Layout: [CSSGRID]p1476

• The 'grid-auto-columns' property
• The 'grid-auto-flow' property
• The 'grid-auto-rows' property
• The 'grid-column-gap' property
• The 'grid-row-gap' property
• The 'grid-template-areas' property
• The 'grid-template-columns' property
• The 'grid-template-rows' property

The following terms are defined in CSS Inline Layout: [CSSINLINE]p1477

• alphabetic baseline
• ascent metric
• descent metric
• em-over baseline
• em-under baseline
• hanging baseline
• ideographic-under baseline

64

https://drafts.csswg.org/css-backgrounds/#propdef-border-top-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-color
https://drafts.csswg.org/css-align/#propdef-align-content
https://drafts.csswg.org/css-align/#propdef-align-items
https://drafts.csswg.org/css-align/#propdef-align-self
https://drafts.csswg.org/css-align/#propdef-justify-self
https://drafts.csswg.org/css-align/#propdef-propdef-justify-content
https://drafts.csswg.org/css-align/#propdef-propdef-justify-items
https://drafts.csswg.org/css-display/#outer-display-type
https://drafts.csswg.org/css-display/#inner-display-type
https://drafts.csswg.org/css-display/#block-level
https://drafts.csswg.org/css-display/#block-container
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css-display/#block-formatting-context
https://drafts.csswg.org/css-display/#inline-formatting-context
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-flexbox/#propdef-flex-direction
https://drafts.csswg.org/css-flexbox/#propdef-flex-wrap
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-fonts/#font-family-prop
https://drafts.csswg.org/css-fonts/#font-weight-prop
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-fonts/#font-prop
https://drafts.csswg.org/css-fonts/#propdef-font-kerning
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-small-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-all-small-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-petite-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-all-petite-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-unicase
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-titling-caps
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-ultra-condensed
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-extra-condensed
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-condensed
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-semi-condensed
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-semi-expanded
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-expanded
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-extra-expanded
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-ultra-expanded
https://drafts.csswg.org/css-grid/#propdef-grid-auto-columns
https://drafts.csswg.org/css-grid/#propdef-grid-auto-flow
https://drafts.csswg.org/css-grid/#propdef-grid-auto-rows
https://drafts.csswg.org/css-grid/#propdef-grid-column-gap
https://drafts.csswg.org/css-grid/#propdef-grid-row-gap
https://drafts.csswg.org/css-grid/#propdef-grid-template-areas
https://drafts.csswg.org/css-grid/#propdef-grid-template-columns
https://drafts.csswg.org/css-grid/#propdef-grid-template-rows
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#ascent-metric
https://drafts.csswg.org/css-inline/#descent-metric
https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline

The following terms and features are defined in CSS Box Sizing: [CSSSIZING]p1477

• fit-content inline size
• 'aspect-ratio' property
• intrinsic size

The following features are defined in CSS Lists and Counters. [CSSLISTS]p1477

• list item
• The 'counter-reset' property
• The 'counter-set' property
• The 'list-style-type' property

The following features are defined in CSS Overflow. [CSSOVERFLOW]p1477

• The 'overflow' property and its 'hidden' value
• The 'text-overflow' property
• The term scroll container

The following terms and features are defined in CSS Positioned Layout: [CSSPOSITION]p1477

• absolutely-positioned
• The 'position' property and its 'static' value
• The top layer (an ordered set)
• add an element to the top layer
• request an element to be removed from the top layer
• remove an element from the top layer immediately
• process top layer removals

The following features are defined in CSS Multi-column Layout. [CSSMULTICOL]p1477

• The 'column-count' property
• The 'column-fill' property
• The 'column-gap' property
• The 'column-rule' property
• The 'column-width' property

The 'ruby-base' value of the 'display' property is defined in CSS Ruby Layout. [CSSRUBY]p1477

The following features are defined in CSS Table: [CSSTABLE]p1477

• The 'border-spacing' property
• The 'border-collapse' property
• The 'table-cell', 'table-row', 'table-caption', and 'table' values of the 'display' property

The following features are defined in CSS Text: [CSSTEXT]p1477

• The 'text-transform' property
• The 'white-space' property
• The 'text-align' property
• The 'letter-spacing' property
• The 'word-spacing' property

The following features are defined in CSS Writing Modes: [CSSWM]p1477

• The 'direction' property
• The 'unicode-bidi' property
• The 'writing-mode' property
• The block flow direction, block axis, inline axis, block size, inline size, block-start, block-end, inline-start,

inline-end, line-left, and line-right concepts

The following features are defined in CSS Basic User Interface: [CSSUI]p1477

• The 'outline' property
• The 'cursor' property
• The 'appearance' property, its <compat-auto> non-terminal value type, its 'textfield' value, and its 'menulist-

button' value.
• The 'field-sizing' property, and its 'content' value.
• The concept widget
• The concept native appearance
• The concept primitive appearance
• The concept element with default preferred size
• The non-devolvable widget and devolvable widget classification, and the related devolved widget state.
• The 'pointer-events' property
• The 'user-select' property

The algorithm to update animations and send events is defined in Web Animations. [WEBANIMATIONS]p1483

65

https://drafts.csswg.org/css-sizing/#fit-content-inline-size
https://drafts.csswg.org/css-sizing-4/#aspect-ratio
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-lists/#list-item
https://drafts.csswg.org/css-lists/#propdef-counter-reset
https://drafts.csswg.org/css-lists/#propdef-counter-set
https://drafts.csswg.org/css-lists/#propdef-list-style-type
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css-overflow/#valdef-overflow-hidden
https://drafts.csswg.org/css-overflow/#propdef-text-overflow
https://drafts.csswg.org/css-overflow/#scroll-container
https://drafts.csswg.org/css-position/#absolute-position
https://drafts.csswg.org/css-position/#position-property
https://drafts.csswg.org/css-position/#valdef-position-static
https://drafts.csswg.org/css-position-4/#document-top-layer
https://infra.spec.whatwg.org/#ordered-set
https://drafts.csswg.org/css-position-4/#add-an-element-to-the-top-layer
https://drafts.csswg.org/css-position-4/#request-an-element-to-be-removed-from-the-top-layer
https://drafts.csswg.org/css-position-4/#remove-an-element-from-the-top-layer-immediately
https://drafts.csswg.org/css-position-4/#process-top-layer-removals
https://drafts.csswg.org/css-multicol/#propdef-column-count
https://drafts.csswg.org/css-multicol/#propdef-column-fill
https://drafts.csswg.org/css-multicol/#propdef-column-gap
https://drafts.csswg.org/css-multicol/#propdef-column-rule
https://drafts.csswg.org/css-multicol/#propdef-column-width
https://drafts.csswg.org/css-ruby/#valdef-display-ruby-base
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-tables/#propdef-border-spacing
https://drafts.csswg.org/css-tables/#border-collapse-property
https://drafts.csswg.org/css-tables/#table-cell
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-tables/#table-caption
https://drafts.csswg.org/css-tables/#table
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-text/#text-transform-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css-text/#letter-spacing-property
https://drafts.csswg.org/css-text/#propdef-word-spacing
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#propdef-writing-mode
https://drafts.csswg.org/css-writing-modes/#block-flow-direction
https://drafts.csswg.org/css-writing-modes/#block-axis
https://drafts.csswg.org/css-writing-modes/#inline-axis
https://drafts.csswg.org/css-writing-modes/#block-size
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-writing-modes/#block-start
https://drafts.csswg.org/css-writing-modes/#block-end
https://drafts.csswg.org/css-writing-modes/#inline-start
https://drafts.csswg.org/css-writing-modes/#inline-end
https://drafts.csswg.org/css-writing-modes/#line-left
https://drafts.csswg.org/css-writing-modes/#line-right
https://drafts.csswg.org/css-ui/#outline
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#appearance-switching
https://drafts.csswg.org/css-ui/#typedef-appearance-compat-auto
https://drafts.csswg.org/css-ui/#valdef-appearance-textfield
https://drafts.csswg.org/css-ui/#valdef-appearance-menulist-button
https://drafts.csswg.org/css-ui/#valdef-appearance-menulist-button
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css-ui/#widget
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#non-devolvable
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#devolved
https://drafts.csswg.org/css-ui-4/#pointer-events-control
https://drafts.csswg.org/css-ui-4/#content-selection
https://drafts.csswg.org/web-animations-1/#update-animations-and-send-events

Implementations that support scripting must support the CSS Object Model. The following features and terms are defined in the
CSSOM specifications: [CSSOM]p1477 [CSSOMVIEW]p1477

• Screen interface
• LinkStyle interface
• CSSStyleDeclaration interface
• style IDL attribute
• cssText attribute of CSSStyleDeclaration
• StyleSheet interface
• CSSStyleSheet interface
• create a CSS style sheet
• remove a CSS style sheet
• associated CSS style sheet
• create a constructed CSSStyleSheet
• synchronously replace the rules of a CSSStyleSheet
• disable a CSS style sheet
• CSS style sheets and their properties:

◦ type
◦ location
◦ parent CSS style sheet
◦ owner node
◦ owner CSS rule
◦ media
◦ title
◦ alternate flag
◦ disabled flag
◦ CSS rules
◦ origin-clean flag

• CSS style sheet set
• CSS style sheet set name
• preferred CSS style sheet set name
• change the preferred CSS style sheet set name
• Serializing a CSS value
• run the resize steps
• run the scroll steps
• evaluate media queries and report changes
• Scroll a target into view
• Scroll to the beginning of the document
• The resize event
• The scroll event
• The scrollend event
• set up browsing context features

The following features and terms are defined in CSS Syntax: [CSSSYNTAX]p1477

• conformant style sheet
• parse a list of component values
• parse a comma-separated list of component values
• component value
• environment encoding
• <whitespace-token>

The following terms are defined in Selectors: [SELECTORS]p1482

• type selector
• attribute selector
• pseudo-class
• :focus-visible pseudo-class
• indicate focus
• pseudo-element

The following features are defined in CSS Values and Units: [CSSVALUES]p1477

• <length>
• The 'em' unit
• The 'ex' unit
• The 'vw' unit
• The 'in' unit
• The 'px' unit
• The 'pt' unit
• The 'attr()' function
• The math functions

The following features are defined in CSS View Transitions: [CSSVIEWTRANSITIONS]p1477

• perform pending transition operations
• rendering suppression for view transitions
• activate view transition
• ViewTransition
• view transition page visibility change steps
• resolving inbound cross-document view-transition

66

https://drafts.csswg.org/cssom-view/#the-screen-interface
https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://drafts.csswg.org/cssom/#the-cssstyledeclaration-interface
https://drafts.csswg.org/cssom/#dom-elementcssinlinestyle-style
https://drafts.csswg.org/cssom/#dom-cssstyledeclaration-csstext
https://drafts.csswg.org/cssom/#the-cssstyledeclaration-interface
https://drafts.csswg.org/cssom/#the-stylesheet-interface
https://drafts.csswg.org/cssom/#the-cssstylesheet-interface
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://drafts.csswg.org/cssom/#remove-a-css-style-sheet
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#create-a-constructed-cssstylesheet
https://drafts.csswg.org/cssom/#synchronously-replace-the-rules-of-a-cssstylesheet
https://drafts.csswg.org/cssom/#disable-a-css-style-sheet
https://drafts.csswg.org/cssom/#css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-type
https://drafts.csswg.org/cssom/#concept-css-style-sheet-location
https://drafts.csswg.org/cssom/#concept-css-style-sheet-parent-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-node
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-css-rule
https://drafts.csswg.org/cssom/#concept-css-style-sheet-media
https://drafts.csswg.org/cssom/#concept-css-style-sheet-title
https://drafts.csswg.org/cssom/#concept-css-style-sheet-alternate-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-css-rules
https://drafts.csswg.org/cssom/#concept-css-style-sheet-origin-clean-flag
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://drafts.csswg.org/cssom/#preferred-css-style-sheet-set-name
https://drafts.csswg.org/cssom/#change-the-preferred-css-style-sheet-set-name
https://drafts.csswg.org/cssom/#serialize-a-css-value
https://drafts.csswg.org/cssom-view/#document-run-the-resize-steps
https://drafts.csswg.org/cssom-view/#document-run-the-scroll-steps
https://drafts.csswg.org/cssom-view/#evaluate-media-queries-and-report-changes
https://drafts.csswg.org/cssom-view/#scroll-a-target-into-view
https://drafts.csswg.org/cssom-view/#scroll-to-the-beginning-of-the-document
https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://drafts.csswg.org/cssom-view/#eventdef-document-scrollend
https://drafts.csswg.org/cssom-view/#set-up-browsing-context-features
https://drafts.csswg.org/css-syntax/#conform-classes
https://drafts.csswg.org/css-syntax/#parse-a-list-of-component-values
https://drafts.csswg.org/css-syntax/#parse-a-comma-separated-list-of-component-values
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/css-syntax/#environment-encoding
https://drafts.csswg.org/css-syntax/#typedef-whitespace-token
https://drafts.csswg.org/selectors/#type-selector
https://drafts.csswg.org/selectors/#attribute-selector
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#the-focus-visible-pseudo
https://drafts.csswg.org/selectors/#indicate-focus
https://drafts.csswg.org/selectors/#pseudo-element
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#em
https://drafts.csswg.org/css-values/#ex
https://drafts.csswg.org/css-values/#vw
https://drafts.csswg.org/css-values/#in
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#pt
https://drafts.csswg.org/css-values/#funcdef-attr
https://drafts.csswg.org/css-values/#math-function
https://drafts.csswg.org/css-view-transitions/#perform-pending-transition-operations
https://drafts.csswg.org/css-view-transitions/#document-rendering-suppression-for-view-transitions
https://drafts.csswg.org/css-view-transitions/#activate-view-transition
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://drafts.csswg.org/css-view-transitions/#view-transition-page-visibility-change-steps
https://drafts.csswg.org/css-view-transitions-2/#resolve-inbound-cross-document-view-transition

• setting up a cross-document view-transition
• can navigation trigger a cross-document view-transition?

The term style attribute is defined in CSS Style Attributes. [CSSATTR]p1476

The following terms are defined in the CSS Cascading and Inheritance: [CSSCASCADE]p1476

• cascaded value
• specified value
• computed value
• used value
• cascade origin
• Author Origin
• User Origin
• User Agent Origin
• Animation Origin
• Transition Origin
• initial value

The CanvasRenderingContext2Dp682 object's use of fonts depends on the features described in the CSS Fonts and Font Loading
specifications, including in particular FontFace objects and the font source concept. [CSSFONTS]p1476 [CSSFONTLOAD]p1476

The following interfaces and terms are defined in Geometry Interfaces: [GEOMETRY]p1478

• DOMMatrix interface, and associated m11 element, m12 element, m21 element, m22 element, m41 element, and
m42 element

• DOMMatrix2DInit and DOMMatrixInit dictionaries
• The create a DOMMatrix from a dictionary and create a DOMMatrix from a 2D dictionary algorithms for

DOMMatrix2DInit or DOMMatrixInit
• The DOMPointInit dictionary, and associated x and y members
• Matrix multiplication

The following terms are defined in the CSS Scoping: [CSSSCOPING]p1477

• flat tree

The following terms and features are defined in CSS Color Adjustment: [CSSCOLORADJUST]p1476

• 'color-scheme'
• page's supported color-schemes

The following terms are defined in CSS Pseudo-Elements: [CSSPSEUDO]p1477

• '::details-content'
• '::file-selector-button'

The following terms are defined in CSS Containment: [CSSCONTAIN]p1476

• skips its contents
• relevant to the user
• proximity to the viewport
• layout containment
• 'content-visibility' property
• 'auto' value for 'content-visibility'

The following terms are defined in CSS Anchor Positioning: [CSSANCHOR]p1476

• implicit anchor element

Intersection Observer
The following term is defined in Intersection Observer: [INTERSECTIONOBSERVER]p1479

• run the update intersection observations steps
• IntersectionObserver
• IntersectionObserverInit
• observe
• unobserve
• isIntersecting
• target

Resize Observer
The following terms are defined in Resize Observer: [RESIZEOBSERVER]p1479

• gather active resize observations at depth
• has active resize observations
• has skipped resize observations
• broadcast active resize observations

67

https://drafts.csswg.org/css-view-transitions-2/#setup-cross-document-view-transition
https://drafts.csswg.org/css-view-transitions-2/#can-navigation-trigger-a-cross-document-view-transition
https://drafts.csswg.org/css-style-attr/#style-attribute
https://drafts.csswg.org/css-cascade/#cascaded-value
https://drafts.csswg.org/css-cascade/#specified-value
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-cascade/#origin
https://drafts.csswg.org/css-cascade/#cascade-origin-author
https://drafts.csswg.org/css-cascade/#cascade-origin-user
https://drafts.csswg.org/css-cascade/#cascade-origin-ua
https://drafts.csswg.org/css-cascade/#cascade-origin-animation
https://drafts.csswg.org/css-cascade/#cascade-origin-transition
https://drafts.csswg.org/css-cascade/#initial-value
https://drafts.csswg.org/css-font-loading/#font-source
https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://drafts.fxtf.org/geometry/#dictdef-dommatrixinit
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-dictionary
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://drafts.fxtf.org/geometry/#dictdef-dommatrixinit
https://drafts.fxtf.org/geometry/#dictdef-dompointinit
https://drafts.fxtf.org/geometry/#matrix-multiply
https://drafts.csswg.org/css-scoping/#flat-tree
https://drafts.csswg.org/css-color-adjust/#color-scheme-prop
https://drafts.csswg.org/css-color-adjust/#pages-supported-color-schemes
https://drafts.csswg.org/css-pseudo/#details-content-pseudo
https://drafts.csswg.org/css-pseudo/#file-selector-button-pseudo
https://drafts.csswg.org/css-contain/#skips-its-contents
https://drafts.csswg.org/css-contain/#relevant-to-the-user
https://drafts.csswg.org/css-contain/#proximity-to-the-viewport
https://drafts.csswg.org/css-contain/#containment-layout
https://drafts.csswg.org/css-contain/#content-visibility
https://drafts.csswg.org/css-contain/#propdef-content-visibility
https://drafts.csswg.org/css-contain/#content-visibility
https://drafts.csswg.org/css-anchor-position/#implicit-anchor-element
https://w3c.github.io/IntersectionObserver/#run-the-update-intersection-observations-steps
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://w3c.github.io/IntersectionObserver/#dictdef-intersectionobserverinit
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-observe
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-unobserve
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-isintersecting
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/csswg-drafts/resize-observer-1/#gather-active-observations-h
https://w3c.github.io/csswg-drafts/resize-observer-1/#has-active-observations-h
https://w3c.github.io/csswg-drafts/resize-observer-1/#has-skipped-observations-h
https://w3c.github.io/csswg-drafts/resize-observer-1/#broadcast-resize-notifications-h

• deliver resize loop error

WebGL
The following interfaces are defined in the WebGL specifications: [WEBGL]p1483

• WebGLRenderingContext interface
• WebGL2RenderingContext interface
• WebGLContextAttributes dictionary

WebGPU
The following interfaces are defined in WebGPU: [WEBGPU]p1483

• GPUCanvasContext interface

WebVTT
Implementations may support WebVTT as a text track format for subtitles, captions, metadata, etc., for media resources.
[WEBVTT]p1484

The following terms, used in this specification, are defined in WebVTT:

• WebVTT file
• WebVTT file using cue text
• WebVTT file using only nested cues
• WebVTT parser
• The rules for updating the display of WebVTT text tracks
• The WebVTT text track cue writing direction
• VTTCue interface

ARIA
The role attribute is defined in Accessible Rich Internet Applications (ARIA), as are the following roles: [ARIA]p1475

• button
• presentation

In addition, the following aria-* content attributes are defined in ARIA: [ARIA]p1475

• aria-checked
• aria-describedby
• aria-disabled
• aria-label

Finally, the following terms are defined ARIA: [ARIA]p1475

• role
• accessible name
• The ARIAMixin interface, with its associated ARIAMixin getter steps and ARIAMixin setter steps hooks

Content Security Policy
The following terms are defined in Content Security Policy: [CSP]p1476

• Content Security Policy
• disposition
• directive set
• Content Security Policy directive
• CSP list
• The Content Security Policy syntax
• enforce the policy
• The parse a serialized Content Security Policy algorithm
• The Run CSP initialization for a Document algorithm
• The Run CSP initialization for a global object algorithm
• The Should element's inline behavior be blocked by Content Security Policy? algorithm
• The Should navigation request of type be blocked by Content Security Policy? algorithm
• The Should navigation response to navigation request of type in target be blocked by Content Security

Policy? algorithm
• The report-uri directive
• The EnsureCSPDoesNotBlockStringCompilation abstract operation
• The Is base allowed for Document? algorithm
• The frame-ancestors directive
• The sandbox directive
• The contains a header-delivered Content Security Policy property.
• The Parse a response's Content Security Policies algorithm.
• SecurityPolicyViolationEvent interface
• The securitypolicyviolation event

Service Workers
The following terms are defined in Service Workers: [SW]p1482

68

https://w3c.github.io/csswg-drafts/resize-observer-1/#deliver-resize-error
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLContextAttributes
https://gpuweb.github.io/gpuweb/#canvas-context
https://w3c.github.io/webvtt/#webvtt-file
https://w3c.github.io/webvtt/#webvtt-file-using-cue-text
https://w3c.github.io/webvtt/#webvtt-file-using-only-nested-cues
https://w3c.github.io/webvtt/#webvtt-parser
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#webvtt-cue-writing-direction
https://w3c.github.io/webvtt/#vttcue
https://w3c.github.io/aria/#button
https://w3c.github.io/aria/#presentation
https://w3c.github.io/aria/#aria-checked
https://w3c.github.io/aria/#aria-describedby
https://w3c.github.io/aria/#aria-disabled
https://w3c.github.io/aria/#aria-label
https://w3c.github.io/aria/#dfn-role
https://w3c.github.io/aria/#dfn-accessible-name
https://w3c.github.io/aria/#ARIAMixin
https://w3c.github.io/aria/#dfn-ariamixin-getter-steps
https://w3c.github.io/aria/#dfn-ariamixin-setter-steps
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#policy-disposition
https://w3c.github.io/webappsec-csp/#policy-directive-set
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#csp-list
https://w3c.github.io/webappsec-csp/#grammardef-serialized-policy
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#parse-serialized-policy
https://w3c.github.io/webappsec-csp/#run-document-csp-initialization
https://w3c.github.io/webappsec-csp/#run-global-object-csp-initialization
https://w3c.github.io/webappsec-csp/#should-block-inline
https://w3c.github.io/webappsec-csp/#should-block-navigation-request
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webappsec-csp/#report-uri
https://w3c.github.io/webappsec-csp/#can-compile-strings
https://w3c.github.io/webappsec-csp/#allow-base-for-document
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#sandbox
https://w3c.github.io/webappsec-csp/#contains-a-header-delivered-content-security-policy
https://w3c.github.io/webappsec-csp/#parse-response-csp
https://w3c.github.io/webappsec-csp/#securitypolicyviolationevent
https://w3c.github.io/webappsec-csp/#eventdef-globaleventhandlers-securitypolicyviolation

• active worker
• client message queue
• control
• handle fetch
• match service worker registration
• service worker
• service worker client
• service worker registration
• ServiceWorker interface
• ServiceWorkerContainer interface
• ServiceWorkerGlobalScope interface
• unregister

Secure Contexts
The following algorithms are defined in Secure Contexts: [SECURE-CONTEXTS]p1482

• Is url potentially trustworthy?

Permissions Policy
The following terms are defined in Permissions Policy: [PERMISSIONSPOLICY]p1480

• permissions policy
• policy-controlled feature
• container policy
• serialized permissions policy
• default allowlist
• The creating a permissions policy algorithm
• The creating a permissions policy from a response algorithm
• The is feature enabled by policy for origin algorithm
• The process permissions policy attributes algorithm

Payment Request API
The following feature is defined in Payment Request API: [PAYMENTREQUEST]p1480

• PaymentRequest interface

MathML
While support for MathML as a whole is not required by this specification (though it is encouraged, at least for web browsers),
certain features depend upon small parts of MathML being implemented. [MATHML]p1479

The following features are defined in Mathematical Markup Language (MathML):

• MathML annotation-xml element
• MathML math element
• MathML merror element
• MathML mi element
• MathML mn element
• MathML mo element
• MathML ms element
• MathML mtext element

SVG
While support for SVG as a whole is not required by this specification (though it is encouraged, at least for web browsers), certain
features depend upon parts of SVG being implemented.

User agents that implement SVG must implement the SVG 2 specification, and not any earlier revisions.

The following features are defined in the SVG 2 specification: [SVG]p1482

• SVGElement interface
• SVGImageElement interface
• SVGScriptElement interface
• SVGSVGElement interface
• SVG a element
• SVG desc element
• SVG foreignObject element
• SVG image element
• SVG script element
• SVG svg element
• SVG title element
• SVG use element
• SVG text-rendering property

Filter Effects
The following features are defined in Filter Effects: [FILTERS]p1478

69

https://w3c.github.io/ServiceWorker/#dfn-active-worker
https://w3c.github.io/ServiceWorker/#dfn-client-message-queue
https://w3c.github.io/ServiceWorker/#dfn-control
https://w3c.github.io/ServiceWorker/#on-fetch-request-algorithm
https://w3c.github.io/ServiceWorker/#scope-match-algorithm
https://w3c.github.io/ServiceWorker/#dfn-service-worker
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/service-workers/#dfn-service-worker-registration
https://w3c.github.io/ServiceWorker/#serviceworker
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://w3c.github.io/service-workers/#navigator-service-worker-unregister
https://w3c.github.io/webappsec-secure-contexts/#potentially-trustworthy-url
https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://w3c.github.io/webappsec-feature-policy/#policy-controlled-feature
https://w3c.github.io/webappsec-feature-policy/#container-policy
https://w3c.github.io/webappsec-feature-policy/#serialized-permissions-policy
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://w3c.github.io/webappsec-feature-policy/#create-for-navigable
https://w3c.github.io/webappsec-feature-policy/#create-from-response
https://w3c.github.io/webappsec-feature-policy/#is-feature-enabled
https://w3c.github.io/webappsec-feature-policy/#process-permissions-policy-attributes
https://w3c.github.io/payment-request/#dom-paymentrequest
https://w3c.github.io/mathml-core/#dfn-annotation-xml
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://w3c.github.io/mathml-core/#error-message-merror
https://w3c.github.io/mathml-core/#the-mi-element
https://w3c.github.io/mathml-core/#number-mn
https://w3c.github.io/mathml-core/#operator-fence-separator-or-accent-mo
https://w3c.github.io/mathml-core/#string-literal-ms
https://w3c.github.io/mathml-core/#text-mtext
https://svgwg.org/svg2-draft/types.html#InterfaceSVGElement
https://svgwg.org/svg2-draft/embedded.html#InterfaceSVGImageElement
https://svgwg.org/svg2-draft/interact.html#InterfaceSVGScriptElement
https://svgwg.org/svg2-draft/struct.html#InterfaceSVGSVGElement
https://svgwg.org/svg2-draft/linking.html#AElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://svgwg.org/svg2-draft/struct.html#UseElement
https://svgwg.org/svg2-draft/painting.html#TextRendering

• <filter-value-list>

Compositing
The following features are defined in Compositing and Blending: [COMPOSITE]p1475

• <blend-mode>
• <composite-mode>
• source-over
• copy

Cooperative Scheduling of Background Tasks
The following features are defined in Cooperative Scheduling of Background Tasks: [REQUESTIDLECALLBACK]p1481

• requestIdleCallback()
• start an idle period algorithm

Screen Orientation
The following terms are defined in Screen Orientation: [SCREENORIENTATION]p1482

• screen orientation change steps

Storage
The following terms are defined in Storage: [STORAGE]p1482

• obtain a local storage bottle map
• obtain a session storage bottle map
• obtain a storage key for non-storage purposes
• storage key equal
• storage proxy map
• legacy-clone a traversable storage shed

Web App Manifest
The following features are defined in Web App Manifest: [MANIFEST]p1479

• application manifest
• installed web application
• process the manifest

WebAssembly JavaScript Interface: ESM Integration
The following terms are defined in WebAssembly JavaScript Interface: ESM Integration: [WASMESM]p1483

• WebAssembly Module Record
• parse a WebAssembly module

WebCodecs
The following features are defined in WebCodecs: [WEBCODECS]p1483

• VideoFrame interface.
• [[display width]]
• [[display height]]

WebDriver
The following terms are defined in WebDriver: [WEBDRIVER]p1483

• extension command
• remote end steps
• WebDriver error
• WebDriver error code
• invalid argument
• getting a property
• success
• WebDriver's security considerations
• current browsing context

WebDriver BiDi
The following terms are defined in WebDriver BiDi: [WEBDRIVERBIDI]p1483

• WebDriver BiDi navigation status
• navigation status id
• navigation status status
• navigation status canceled
• navigation status pending
• navigation status complete
• navigation status url

70

https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list
https://drafts.fxtf.org/compositing/#ltblendmodegt
https://drafts.fxtf.org/compositing/#compositemode
https://drafts.fxtf.org/compositing/#porterduffcompositingoperators_srcover
https://drafts.fxtf.org/compositing/#porterduffcompositingoperators_src
https://w3c.github.io/requestidlecallback/#the-requestidlecallback-method
https://w3c.github.io/requestidlecallback/#start-an-idle-period-algorithm
https://w3c.github.io/screen-orientation/#dfn-screen-orientation-change-steps
https://storage.spec.whatwg.org/#obtain-a-local-storage-bottle-map
https://storage.spec.whatwg.org/#obtain-a-session-storage-bottle-map
https://storage.spec.whatwg.org/#obtain-a-storage-key-for-non-storage-purposes
https://storage.spec.whatwg.org/#storage-key-equal
https://storage.spec.whatwg.org/#storage-proxy-map
https://storage.spec.whatwg.org/#legacy-clone-a-traversable-storage-shed
https://w3c.github.io/manifest/#dfn-manifest
https://w3c.github.io/manifest/#dfn-installed-web-application
https://w3c.github.io/manifest/#dfn-processing-a-manifest
https://webassembly.github.io/esm-integration/js-api/index.html#webassembly-module-record
https://webassembly.github.io/esm-integration/js-api/index.html#parse-a-webassembly-module
https://w3c.github.io/webcodecs/#videoframe-interface
https://w3c.github.io/webcodecs/#dom-videoframe-display-width-slot
https://w3c.github.io/webcodecs/#dom-videoframe-display-height-slot
https://w3c.github.io/webdriver/#dfn-extension-commands
https://w3c.github.io/webdriver/#dfn-remote-end-steps
https://w3c.github.io/webdriver/#dfn-errors
https://w3c.github.io/webdriver/#dfn-error-code
https://w3c.github.io/webdriver/#dfn-invalid-argument
https://w3c.github.io/webdriver/#dfn-getting-properties
https://w3c.github.io/webdriver/#dfn-success
https://w3c.github.io/webdriver/#security
https://w3c.github.io/webdriver/#dfn-current-browsing-context
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-canceled
https://w3c.github.io/webdriver-bidi/#navigation-status-pending
https://w3c.github.io/webdriver-bidi/#navigation-status-complete
https://w3c.github.io/webdriver-bidi/#navigation-status-url

• WebDriver BiDi navigation started
• WebDriver BiDi navigation aborted
• WebDriver BiDi navigation failed
• WebDriver BiDi download started
• WebDriver BiDi fragment navigated
• WebDriver BiDi DOM content loaded
• WebDriver BiDi load complete
• WebDriver BiDi history updated
• WebDriver BiDi navigable created
• WebDriver BiDi navigable destroyed
• WebDriver BiDi user prompt closed
• WebDriver BiDi user prompt opened

Web Cryptography API
The following terms are defined in Web Cryptography API: [WEBCRYPTO]p1483

• generating a random UUID

WebSockets
The following terms are defined in WebSockets: [WEBSOCKETS]p1484

• WebSocket
• make disappear

WebTransport
The following terms are defined in WebTransport: [WEBTRANSPORT]p1484

• WebTransport
• context cleanup steps

Web Authentication: An API for accessing Public Key Credentials
The following terms are defined in Web Authentication: An API for accessing Public Key Credentials: [WEBAUTHN]p1483

• public key credential

Credential Management
The following terms are defined in Credential Management: [CREDMAN]p1476

• conditional mediation
• credential
• navigator.credentials.get()

Console
The following terms are defined in Console: [CONSOLE]p1475

• report a warning to the console

Web Locks API
The following terms are defined in Web Locks API: [WEBLOCKS]p1484

• locks
• lock requests

Trusted Types
This specification uses the following features defined in Trusted Types: [TRUSTED-TYPES]p1482

• TrustedHTML
• data
• TrustedScript
• data
• TrustedScriptURL
• Get Trusted Type compliant string

WebRTC API
The following terms are defined in WebRTC API: [WEBRTC]p1484

• RTCDataChannel
• RTCPeerConnection

Picture-in-Picture API
The following terms are defined in Picture-in-Picture API: [PICTUREINPICTURE]p1480

• PictureInPictureWindow

71

https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-started
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-aborted
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-failed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-download-started
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-fragment-navigated
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-dom-content-loaded
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-load-complete
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-history-updated
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigable-created
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigable-destroyed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-closed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-opened
https://w3c.github.io/webcrypto/#dfn-generate-a-random-uuid
https://websockets.spec.whatwg.org/#websocket
https://websockets.spec.whatwg.org/#make-disappear
https://w3c.github.io/webtransport/#webtransport
https://w3c.github.io/webtransport/#context-cleanup-steps
https://w3c.github.io/webauthn/#public-key-credential
https://w3c.github.io/webappsec-credential-management/#dom-credentialmediationrequirement-conditional
https://w3c.github.io/webappsec-credential-management/#credential
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://w3c.github.io/web-locks/#lock-concept
https://w3c.github.io/web-locks/#lock-request
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml-data
https://w3c.github.io/trusted-types/dist/spec/#trusted-script
https://w3c.github.io/trusted-types/dist/spec/#trustedscript-data
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/webrtc-pc/#dom-rtcdatachannel
https://w3c.github.io/webrtc-pc/#dom-rtcpeerconnection
https://w3c.github.io/picture-in-picture/#pictureinpicturewindow

Idle Detection API
The following terms are defined in Idle Detection API:

• IdleDetector

Web Speech API
The following terms are defined in Web Speech API:

• SpeechRecognition

WebOTP API
The following terms are defined in WebOTP API:

• OTPCredential

Web Share API
The following terms are defined in Web Share API:

• share()

Web Smart Card API
The following terms are defined in Web Smart Card API:

• SmartCardConnection

Web Background Synchronization
The following terms are defined in Web Background Synchronization:

• SyncManager
• register()

Web Periodic Background Synchronization
The following terms are defined in Web Periodic Background Synchronization:

• PeriodicSyncManager
• register()

Web Background Fetch
The following terms are defined in Background Fetch:

• BackgroundFetchManager
• fetch()

Keyboard Lock
The following terms are defined in Keyboard Lock:

• Keyboard
• lock()

Web MIDI API
The following terms are defined in Web MIDI API:

• requestMIDIAccess()

Generic Sensor API
The following terms are defined in Generic Sensor API:

• request sensor access

WebHID API
The following terms are defined in WebHID API:

• requestDevice

WebXR Device API
The following terms are defined in WebXR Device API:

• XRSystem

72

https://wicg.github.io/idle-detection/#idledetector
https://wicg.github.io/speech-api/#speechrecognition
https://wicg.github.io/web-otp/#otpcredential
https://w3c.github.io/web-share/#share-method
https://wicg.github.io/web-smart-card/#dom-smartcardconnection
https://wicg.github.io/background-sync/spec/#syncmanager
https://wicg.github.io/background-sync/spec/#dom-syncmanager-register
https://wicg.github.io/periodic-background-sync/#periodicsyncmanager
https://wicg.github.io/periodic-background-sync/#dom-periodicsyncmanager-register
https://wicg.github.io/background-fetch/#backgroundfetchmanager
https://wicg.github.io/background-fetch/#dom-backgroundfetchmanager-fetch
https://wicg.github.io/keyboard-lock/#keyboard
https://wicg.github.io/keyboard-lock/#dom-keyboard-lock
https://webaudio.github.io/web-midi-api/#dom-navigator-requestmidiaccess
https://w3c.github.io/sensors/#request-sensor-access
https://wicg.github.io/webhid/#requestdevice-method
https://immersive-web.github.io/webxr/#xrsystem

This specification does not require support of any particular network protocol, style sheet language, scripting language, or any of the
DOM specifications beyond those required in the list above. However, the language described by this specification is biased towards
CSS as the styling language, JavaScript as the scripting language, and HTTP as the network protocol, and several features assume that
those languages and protocols are in use.

A user agent that implements the HTTP protocol must implement HTTP State Management Mechanism (Cookies) as well. [HTTP]p1478

[COOKIES]p1476

Vendor-specific proprietary user agent extensions to this specification are strongly discouraged. Documents must not use such
extensions, as doing so reduces interoperability and fragments the user base, allowing only users of specific user agents to access the
content in question.

All extensions must be defined so that the use of extensions neither contradicts nor causes the non-conformance of functionality
defined in the specification.

When vendor-neutral extensions to this specification are needed, either this specification can be updated accordingly, or an extension
specification can be written that overrides the requirements in this specification. When someone applying this specification to their
activities decides that they will recognize the requirements of such an extension specification, it becomes an applicable
specification for the purposes of conformance requirements in this specification.

User agents must treat elements and attributes that they do not understand as semantically neutral; leaving them in the DOM (for
DOM processors), and styling them according to CSS (for CSS processors), but not inferring any meaning from them.

When support for a feature is disabled (e.g. as an emergency measure to mitigate a security problem, or to aid in development, or for
performance reasons), user agents must act as if they had no support for the feature whatsoever, and as if the feature was not
mentioned in this specification. For example, if a particular feature is accessed via an attribute in a Web IDL interface, the attribute
itself would be omitted from the objects that implement that interface — leaving the attribute on the object but making it return null or
throw an exception is insufficient.

Implementations of XPath 1.0 that operate on HTML documents parsed or created in the manners described in this specification (e.g.
as part of the document.evaluate() API) must act as if the following edit was applied to the XPath 1.0 specification.

First, remove this paragraph:

This specification might have certain additional requirements on character encodings, image formats, audio formats, and video
formats in the respective sections.

Note

For example, while strongly discouraged from doing so, an implementation could add a new IDL attribute "typeTime" to a control
that returned the time it took the user to select the current value of a control (say). On the other hand, defining a new control that
appears in a form's elementsp516 array would be in violation of the above requirement, as it would violate the definition of
elementsp516 given in this specification.

Example

Someone could write a specification that defines any arbitrary byte stream as conforming, and then claim that their random junk is
conforming. However, that does not mean that their random junk actually is conforming for everyone's purposes: if someone else
decides that that specification does not apply to their work, then they can quite legitimately say that the aforementioned random
junk is just that, junk, and not conforming at all. As far as conformance goes, what matters in a particular community is what that
community agrees is applicable.

Note

2.1.10 Extensibility §p73

2.1.11 Interactions with XPath and XSLT §p73

73

https://dom.spec.whatwg.org/#html-document

A QName in the node test is expanded into an expanded-name using the namespace declarations from the expression context.
This is the same way expansion is done for element type names in start and end-tags except that the default namespace declared
with xmlns is not used: if the QName does not have a prefix, then the namespace URI is null (this is the same way attribute names
are expanded). It is an error if the QName has a prefix for which there is no namespace declaration in the expression context.

Then, insert in its place the following:

A QName in the node test is expanded into an expanded-name using the namespace declarations from the expression context. If
the QName has a prefix, then there must be a namespace declaration for this prefix in the expression context, and the
corresponding namespace URI is the one that is associated with this prefix. It is an error if the QName has a prefix for which there
is no namespace declaration in the expression context.

If the QName has no prefix and the principal node type of the axis is element, then the default element namespace is used.
Otherwise, if the QName has no prefix, the namespace URI is null. The default element namespace is a member of the context for
the XPath expression. The value of the default element namespace when executing an XPath expression through the DOM3 XPath
API is determined in the following way:

1. If the context node is from an HTML DOM, the default element namespace is "http://www.w3.org/1999/xhtml".

2. Otherwise, the default element namespace URI is null.

XSLT 1.0 processors outputting to a DOM when the output method is "html" (either explicitly or via the defaulting rule in XSLT 1.0) are
affected as follows:

If the transformation program outputs an element in no namespace, the processor must, prior to constructing the corresponding DOM
element node, change the namespace of the element to the HTML namespace, ASCII-lowercase the element's local name, and ASCII-
lowercase the names of any non-namespaced attributes on the element.

This specification does not specify precisely how XSLT processing interacts with the HTML parserp1271 infrastructure (for example,
whether an XSLT processor acts as if it puts any elements into a stack of open elementsp1286). However, XSLT processors must stop
parsingp1358 if they successfully complete, and must update the current document readinessp133 first to "interactive" and then to
"complete" if they are aborted.

This specification does not specify how XSLT interacts with the navigationp1014 algorithm, how it fits in with the event loopp1123, nor how
error pages are to be handled (e.g. whether XSLT errors are to replace an incremental XSLT output, or are rendered inline, etc.).

This is equivalent to adding the default element namespace feature of XPath 2.0 to XPath 1.0, and using the HTML namespace
as the default element namespace for HTML documents. It is motivated by the desire to have implementations be compatible
with legacy HTML content while still supporting the changes that this specification introduces to HTML regarding the
namespace used for HTML elements, and by the desire to use XPath 1.0 rather than XPath 2.0.

Note

This change is a willful violationp28 of the XPath 1.0 specification, motivated by desire to have implementations be compatible with
legacy content while still supporting the changes that this specification introduces to HTML regarding which namespace is used for
HTML elements. [XPATH10]p1484

Note

This requirement is a willful violationp28 of the XSLT 1.0 specification, required because this specification changes the namespaces
and case-sensitivity rules of HTML in a manner that would otherwise be incompatible with DOM-based XSLT transformations.
(Processors that serialize the output are unaffected.) [XSLT10]p1484

Note

There are also additional non-normative comments regarding the interaction of XSLT and HTML in the script element sectionp669,
and of XSLT, XPath, and HTML in the template element sectionp675.

Note

74

https://www.w3.org/TR/REC-xml-names/#NT-QName
https://www.w3.org/TR/1999/REC-xpath-19991116/#dt-expanded-name
https://www.w3.org/TR/REC-xml-names/#NT-QName
https://www.w3.org/TR/REC-xml-names/#NT-QName
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase

This document defines the following policy-controlled features:

• "autoplay", which has a default allowlist of 'self'.
• "cross-origin-isolated", which has a default allowlist of 'self'.

There are various places in HTML that accept particular data types, such as dates or numbers. This section describes what the
conformance criteria for content in those formats is, and how to parse them.

Some of the micro-parsers described below follow the pattern of having an input variable that holds the string being parsed, and
having a position variable pointing at the next character to parse in input.

A number of attributes are boolean attributes. The presence of a boolean attribute on an element represents the true value, and the
absence of the attribute represents the false value.

If the attribute is present, its value must either be the empty string or a value that is an ASCII case-insensitive match for the attribute's
canonical name, with no leading or trailing whitespace.

2.2 Policy-controlled features §p75

2.3 Common microsyntaxes §p75

Implementers are strongly urged to carefully examine any third-party libraries they might consider using to implement the parsing
of syntaxes described below. For example, date libraries are likely to implement error handling behavior that differs from what is
required in this specification, since error-handling behavior is often not defined in specifications that describe date syntaxes similar
to those used in this specification, and thus implementations tend to vary greatly in how they handle errors.

Note

The values "true" and "false" are not allowed on boolean attributes. To represent a false value, the attribute has to be omitted
altogether.

Note

Here is an example of a checkbox that is checked and disabled. The checkedp525 and disabledp601 attributes are the boolean
attributes.

<label><input type=checkbox checked name=cheese disabled> Cheese</label>

This could be equivalently written as this:

<label><input type=checkbox checked=checked name=cheese disabled=disabled> Cheese</label>

You can also mix styles; the following is still equivalent:

<label><input type='checkbox' checked name=cheese disabled=""> Cheese</label>

Example

2.3.1 Common parser idioms §p75

2.3.2 Boolean attributes §p75

⚠ MDN

MDN

75

https://w3c.github.io/webappsec-feature-policy/#policy-controlled-feature
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://w3c.github.io/webappsec-feature-policy/#default-allowlist
https://infra.spec.whatwg.org/#ascii-case-insensitive

Some attributes, called enumerated attributes, take on a finite set of states. The state for such an attribute is derived by combining
the attribute's value, a set of keyword/state mappings given in the specification of each attribute, and two possible special states that
can also be given in the specification of the attribute. These special states are the invalid value default and the missing value
default.

To determine the state of an attribute, use the following steps:

1. If the attribute is not specified:

1. If the attribute has a missing value defaultp76 state defined, then return that missing value defaultp76 state.

2. Otherwise, return no state.

2. If the attribute's value is an ASCII case-insensitive match for one of the keywords defined for the attribute, then return the
state represented by that keyword.

3. If the attribute has an invalid value defaultp76 state defined, then return that invalid value defaultp76 state.

4. Return no state.

For authoring conformance purposes, if an enumerated attribute is specified, the attribute's value must be an ASCII case-insensitive
match for one of the conforming keywords for that attribute, with no leading or trailing whitespace.

For reflectionp104 purposes, states which have any keywords mapping to them are said to have a canonical keyword. This is
determined as follows:

• If there is only one keyword mapping to the given state, then it is that keyword.

• If there is only one conforming keyword mapping to the given state, then it is that conforming keyword.

• Otherwise, the canonical keyword for the state will be explicitly given in the specification for the attribute.

A string is a valid integer if it consists of one or more ASCII digits, optionally prefixed with a U+002D HYPHEN-MINUS character (-).

A valid integerp76 without a U+002D HYPHEN-MINUS (-) prefix represents the number that is represented in base ten by that string of
digits. A valid integerp76 with a U+002D HYPHEN-MINUS (-) prefix represents the number represented in base ten by the string of digits
that follows the U+002D HYPHEN-MINUS, subtracted from zero.

The rules for parsing integers are as given in the following algorithm. When invoked, the steps must be followed in the order given,
aborting at the first step that returns a value. This algorithm will return either an integer or an error.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let sign have the value "positive".

4. Skip ASCII whitespace within input given position.

5. If position is past the end of input, return an error.

Multiple keywords can map to the same state.
Note

The empty string can be a valid keyword. Note that the missing value defaultp76 applies only when the attribute is missing, not
when it is present with an empty string value.

Note

2.3.4.1 Signed integers §p76

2.3.3 Keywords and enumerated attributes §p76

2.3.4 Numbers §p76

76

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#skip-ascii-whitespace

6. If the character indicated by position (the first character) is a U+002D HYPHEN-MINUS character (-):

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

Otherwise, if the character indicated by position (the first character) is a U+002B PLUS SIGN character (+):

1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)

2. If position is past the end of input, return an error.

7. If the character indicated by position is not an ASCII digit, then return an error.

8. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting sequence as a
base-ten integer. Let value be that integer.

9. If sign is "positive", return value, otherwise return the result of subtracting value from zero.

A string is a valid non-negative integer if it consists of one or more ASCII digits.

A valid non-negative integerp77 represents the number that is represented in base ten by that string of digits.

The rules for parsing non-negative integers are as given in the following algorithm. When invoked, the steps must be followed in
the order given, aborting at the first step that returns a value. This algorithm will return either zero, a positive integer, or an error.

1. Let input be the string being parsed.

2. Let value be the result of parsing input using the rules for parsing integersp76.

3. If value is an error, return an error.

4. If value is less than zero, return an error.

5. Return value.

A string is a valid floating-point number if it consists of:

1. Optionally, a U+002D HYPHEN-MINUS character (-).

2. One or both of the following, in the given order:

1. A series of one or more ASCII digits.

2. Both of the following, in the given order:

1. A single U+002E FULL STOP character (.).

2. A series of one or more ASCII digits.

3. Optionally:

1. Either a U+0065 LATIN SMALL LETTER E character (e) or a U+0045 LATIN CAPITAL LETTER E character (E).

2. Optionally, a U+002D HYPHEN-MINUS character (-) or U+002B PLUS SIGN character (+).

3. A series of one or more ASCII digits.

A valid floating-point numberp77 represents the number obtained by multiplying the significand by ten raised to the power of the
exponent, where the significand is the first number, interpreted as base ten (including the decimal point and the number after the
decimal point, if any, and interpreting the significand as a negative number if the whole string starts with a U+002D HYPHEN-MINUS

2.3.4.2 Non-negative integers §p77

2.3.4.3 Floating-point numbers §p77

77

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

character (-) and the number is not zero), and where the exponent is the number after the E, if any (interpreted as a negative number
if there is a U+002D HYPHEN-MINUS character (-) between the E and the number and the number is not zero, or else ignoring a
U+002B PLUS SIGN character (+) between the E and the number if there is one). If there is no E, then the exponent is treated as zero.

The best representation of the number n as a floating-point number is the string obtained from running ToString(n). The
abstract operation ToString is not uniquely determined. When there are multiple possible strings that could be obtained from ToString
for a particular value, the user agent must always return the same string for that value (though it may differ from the value used by
other user agents).

The rules for parsing floating-point number values are as given in the following algorithm. This algorithm must be aborted at the
first step that returns something. This algorithm will return either a number or an error.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 1.

4. Let divisor have the value 1.

5. Let exponent have the value 1.

6. Skip ASCII whitespace within input given position.

7. If position is past the end of input, return an error.

8. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

1. Change value and divisor to −1.

2. Advance position to the next character.

3. If position is past the end of input, return an error.

Otherwise, if the character indicated by position (the first character) is a U+002B PLUS SIGN character (+):

1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)

2. If position is past the end of input, return an error.

9. If the character indicated by position is a U+002E FULL STOP (.), and that is not the last character in input, and the character
after the character indicated by position is an ASCII digit, then set value to zero and jump to the step labeled fraction.

10. If the character indicated by position is not an ASCII digit, then return an error.

11. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting sequence as a
base-ten integer. Multiply value by that integer.

12. If position is past the end of input, jump to the step labeled conversion.

13. Fraction: If the character indicated by position is a U+002E FULL STOP (.), run these substeps:

1. Advance position to the next character.

2. If position is past the end of input, or if the character indicated by position is not an ASCII digit, U+0065 LATIN
SMALL LETTER E (e), or U+0045 LATIN CAPITAL LETTER E (E), then jump to the step labeled conversion.

3. If the character indicated by position is a U+0065 LATIN SMALL LETTER E character (e) or a U+0045 LATIN CAPITAL
LETTER E character (E), skip the remainder of these substeps.

The Infinity and Not-a-Number (NaN) values are not valid floating-point numbersp77.
Note

The valid floating-point numberp77 concept is typically only used to restrict what is allowed for authors, while the user agent
requirements use the rules for parsing floating-point number valuesp78 below (e.g., the maxp587 attribute of the progressp587

element). However, in some cases the user agent requirements include checking if a string is a valid floating-point numberp77 (e.g.,
the value sanitization algorithmp525 for the Numberp537 state of the inputp520 element, or the parse a srcset attributep373 algorithm).

Note

78

https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-tostring
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

4. Fraction loop: Multiply divisor by ten.

5. Add the value of the character indicated by position, interpreted as a base-ten digit (0..9) and divided by divisor, to
value.

6. Advance position to the next character.

7. If position is past the end of input, then jump to the step labeled conversion.

8. If the character indicated by position is an ASCII digit, jump back to the step labeled fraction loop in these
substeps.

14. If the character indicated by position is U+0065 (e) or a U+0045 (E), then:

1. Advance position to the next character.

2. If position is past the end of input, then jump to the step labeled conversion.

3. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

1. Change exponent to −1.

2. Advance position to the next character.

3. If position is past the end of input, then jump to the step labeled conversion.

Otherwise, if the character indicated by position is a U+002B PLUS SIGN character (+):

1. Advance position to the next character.

2. If position is past the end of input, then jump to the step labeled conversion.

4. If the character indicated by position is not an ASCII digit, then jump to the step labeled conversion.

5. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting
sequence as a base-ten integer. Multiply exponent by that integer.

6. Multiply value by ten raised to the exponentth power.

15. Conversion: Let S be the set of finite IEEE 754 double-precision floating-point values except −0, but with two special values
added: 21024 and −21024.

16. Let rounded-value be the number in S that is closest to value, selecting the number with an even significand if there are two
equally close values. (The two special values 21024 and −21024 are considered to have even significands for this purpose.)

17. If rounded-value is 21024 or −21024, return an error.

18. Return rounded-value.

The rules for parsing dimension values are as given in the following algorithm. When invoked, the steps must be followed in the
order given, aborting at the first step that returns a value. This algorithm will return either a number greater than or equal to 0.0, or
failure; if a number is returned, then it is further categorized as either a percentage or a length.

1. Let input be the string being parsed.

2. Let position be a position variable for input, initially pointing at the start of input.

3. Skip ASCII whitespace within input given position.

4. If position is past the end of input or the code point at position within input is not an ASCII digit, then return failure.

5. Collect a sequence of code points that are ASCII digits from input given position, and interpret the resulting sequence as a
base-ten integer. Let value be that number.

6. If position is past the end of input, then return value as a length.

7. If the code point at position within input is U+002E (.), then:

2.3.4.4 Percentages and lengths §p79

79

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#string-position-variable
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

1. Advance position by 1.

2. If position is past the end of input or the code point at position within input is not an ASCII digit, then return the
current dimension valuep80 with value, input, and position.

3. Let divisor have the value 1.

4. While true:

1. Multiply divisor by ten.

2. Add the value of the code point at position within input, interpreted as a base-ten digit (0..9) and divided
by divisor, to value.

3. Advance position by 1.

4. If position is past the end of input, then return value as a length.

5. If the code point at position within input is not an ASCII digit, then break.

8. Return the current dimension valuep80 with value, input, and position.

The current dimension value, given value, input, and position, is determined as follows:

1. If position is past the end of input, then return value as a length.

2. If the code point at position within input is U+0025 (%), then return value as a percentage.

3. Return value as a length.

The rules for parsing nonzero dimension values are as given in the following algorithm. When invoked, the steps must be
followed in the order given, aborting at the first step that returns a value. This algorithm will return either a number greater than 0.0,
or an error; if a number is returned, then it is further categorized as either a percentage or a length.

1. Let input be the string being parsed.

2. Let value be the result of parsing input using the rules for parsing dimension valuesp79.

3. If value is an error, return an error.

4. If value is zero, return an error.

5. If value is a percentage, return value as a percentage.

6. Return value as a length.

A valid list of floating-point numbers is a number of valid floating-point numbersp77 separated by U+002C COMMA characters, with
no other characters (e.g. no ASCII whitespace). In addition, there might be restrictions on the number of floating-point numbers that
can be given, or on the range of values allowed.

The rules for parsing a list of floating-point numbers are as follows:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let numbers be an initially empty list of floating-point numbers. This list will be the result of this algorithm.

4. Collect a sequence of code points that are ASCII whitespace, U+002C COMMA, or U+003B SEMICOLON characters from input
given position. This skips past any leading delimiters.

5. While position is not past the end of input:

2.3.4.5 Nonzero percentages and lengths §p80

2.3.4.6 Lists of floating-point numbers §p80

80

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace

1. Collect a sequence of code points that are not ASCII whitespace, U+002C COMMA, U+003B SEMICOLON, ASCII
digits, U+002E FULL STOP, or U+002D HYPHEN-MINUS characters from input given position. This skips past leading
garbage.

2. Collect a sequence of code points that are not ASCII whitespace, U+002C COMMA, or U+003B SEMICOLON
characters from input given position, and let unparsed number be the result.

3. Let number be the result of parsing unparsed number using the rules for parsing floating-point number valuesp78.

4. If number is an error, set number to zero.

5. Append number to numbers.

6. Collect a sequence of code points that are ASCII whitespace, U+002C COMMA, or U+003B SEMICOLON characters
from input given position. This skips past the delimiter.

6. Return numbers.

The rules for parsing a list of dimensions are as follows. These rules return a list of zero or more pairs consisting of a number and
a unit, the unit being one of percentage, relative, and absolute.

1. Let raw input be the string being parsed.

2. If the last character in raw input is a U+002C COMMA character (,), then remove that character from raw input.

3. Split the string raw input on commas. Let raw tokens be the resulting list of tokens.

4. Let result be an empty list of number/unit pairs.

5. For each token in raw tokens, run the following substeps:

1. Let input be the token.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value be the number 0.

4. Let unit be absolute.

5. If position is past the end of input, set unit to relative and jump to the last substep.

6. If the character at position is an ASCII digit, collect a sequence of code points that are ASCII digits from input given
position, interpret the resulting sequence as an integer in base ten, and increment value by that integer.

7. If the character at position is U+002E (.), then:

1. Collect a sequence of code points consisting of ASCII whitespace and ASCII digits from input given
position. Let s be the resulting sequence.

2. Remove all ASCII whitespace in s.

3. If s is not the empty string, then:

1. Let length be the number of characters in s (after the spaces were removed).

2. Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number
by 10length.

3. Increment value by fraction.

8. Skip ASCII whitespace within input given position.

9. If the character at position is a U+0025 PERCENT SIGN character (%), then set unit to percentage.

Otherwise, if the character at position is a U+002A ASTERISK character (*), then set unit to relative.

10. Add an entry to result consisting of the number given by value and the unit given by unit.

2.3.4.7 Lists of dimensions §p81

81

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#split-on-commas
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace

6. Return the list result.

In the algorithms below, the number of days in month month of year year is: 31 if month is 1, 3, 5, 7, 8, 10, or 12; 30 if month is
4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28
otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]p1478

When ASCII digits are used in the date and time syntaxes defined in this section, they express numbers in base ten.

Where this specification refers to the proleptic Gregorian calendar, it means the modern Gregorian calendar, extrapolated
backwards to year 1. A date in the proleptic Gregorian calendarp82, sometimes explicitly referred to as a proleptic-Gregorian date, is
one that is described using that calendar even if that calendar was not in use at the time (or place) in question. [GREGORIAN]p1478

A month consists of a specific proleptic-Gregorian datep82 with no time-zone information and no date information beyond a year and a
month. [GREGORIAN]p1478

A string is a valid month string representing a year year and month month if it consists of the following components in the given
order:

1. Four or more ASCII digits, representing year, where year > 0

2. A U+002D HYPHEN-MINUS character (-)

3. Two ASCII digits, representing the month month, in the range 1 ≤ month ≤ 12

The rules to parse a month string are as follows. This will return either a year and month, or nothing. If at any point the algorithm
says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a month componentp82 to obtain year and month. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Return year and month.

The rules to parse a month component, given an input string and a position, are as follows. This will return either a year and a
month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not at least four
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.

2. If year is not a number greater than zero, then fail.

3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.

While the formats described here are intended to be subsets of the corresponding ISO8601 formats, this specification defines
parsing rules in much more detail than ISO8601. Implementers are therefore encouraged to carefully examine any date parsing
libraries before using them to implement the parsing rules described below; ISO8601 libraries might not parse dates and times in
exactly the same manner. [ISO8601]p1479

Note

The use of the Gregorian calendar as the wire format in this specification is an arbitrary choice resulting from the cultural biases of
those involved in the decision. See also the section discussing date, time, and number formatsp513 in forms (for authors),
implementation notes regarding localization of form controlsp550, and the timep279 element.

Note

2.3.5.1 Months §p82

2.3.5 Dates and times §p82

82

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

Otherwise, move position forwards one character.

4. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.

5. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

6. Return year and month.

A date consists of a specific proleptic-Gregorian datep82 with no time-zone information, consisting of a year, a month, and a day.
[GREGORIAN]p1478

A string is a valid date string representing a year year, month month, and day day if it consists of the following components in the
given order:

1. A valid month stringp82, representing year and month

2. A U+002D HYPHEN-MINUS character (-)

3. Two ASCII digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of days in the month month
and year yearp82

The rules to parse a date string are as follows. This will return either a date, or nothing. If at any point the algorithm says that it
"fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp83 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Let date be the date with year year, month month, and day day.

6. Return date.

The rules to parse a date component, given an input string and a position, are as follows. This will return either a year, a month, and
a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Parse a month componentp82 to obtain year and month. If this returns nothing, then fail.

2. Let maxday be the number of days in month month of year yearp82.

3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

4. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.

5. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

6. Return year, month, and day.

A yearless date consists of a Gregorian month and a day within that month, but with no associated year. [GREGORIAN]p1478

A string is a valid yearless date string representing a month month and a day day if it consists of the following components in the
given order:

1. Optionally, two U+002D HYPHEN-MINUS characters (-)

2.3.5.2 Dates §p83

2.3.5.3 Yearless dates §p83

83

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

2. Two ASCII digits, representing the month month, in the range 1 ≤ month ≤ 12

3. A U+002D HYPHEN-MINUS character (-)

4. Two ASCII digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of daysp82 in the month
month and any arbitrary leap year (e.g. 4 or 2000)

The rules to parse a yearless date string are as follows. This will return either a month and a day, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a yearless date componentp84 to obtain month and day. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Return month and day.

The rules to parse a yearless date component, given an input string and a position, are as follows. This will return either a month
and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Collect a sequence of code points that are U+002D HYPHEN-MINUS characters (-) from input given position. If the collected
sequence is not exactly zero or two characters long, then fail.

2. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.

3. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

4. Let maxday be the number of daysp82 in month month of any arbitrary leap year (e.g. 4 or 2000).

5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

6. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.

7. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

8. Return month and day.

A time consists of a specific time with no time-zone information, consisting of an hour, a minute, a second, and a fraction of a second.

A string is a valid time string representing an hour hour, a minute minute, and a second second if it consists of the following
components in the given order:

1. Two ASCII digits, representing hour, in the range 0 ≤ hour ≤ 23

2. A U+003A COLON character (:)

3. Two ASCII digits, representing minute, in the range 0 ≤ minute ≤ 59

4. If second is nonzero, or optionally if second is zero:
1. A U+003A COLON character (:)
2. Two ASCII digits, representing the integer part of second, in the range 0 ≤ s ≤ 59
3. If second is not an integer, or optionally if second is an integer:

1. A U+002E FULL STOP character (.)
2. One, two, or three ASCII digits, representing the fractional part of second

In other words, if the month is "02", meaning February, then the day can be 29, as if the year was a leap year.
Note

2.3.5.4 Times §p84

84

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

The rules to parse a time string are as follows. This will return either a time, or nothing. If at any point the algorithm says that it
"fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a time componentp85 to obtain hour, minute, and second. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Let time be the time with hour hour, minute minute, and second second.

6. Return time.

The rules to parse a time component, given an input string and a position, are as follows. This will return either an hour, a minute,
and a second, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns
nothing.

1. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the hour.

2. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

3. If position is beyond the end of input or if the character at position is not a U+003A COLON character, then fail. Otherwise,
move position forwards one character.

4. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the minute.

5. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

6. Let second be 0.

7. If position is not beyond the end of input and the character at position is U+003A (:), then:

1. Advance position to the next character in input.

2. If position is beyond the end of input, or at the last character in input, or if the next two characters in input starting
at position are not both ASCII digits, then fail.

3. Collect a sequence of code points that are either ASCII digits or U+002E FULL STOP characters from input given
position. If the collected sequence is three characters long, or if it is longer than three characters long and the third
character is not a U+002E FULL STOP character, or if it has more than one U+002E FULL STOP character, then fail.
Otherwise, interpret the resulting sequence as a base-ten number (possibly with a fractional part). Set second to
that number.

4. If second is not a number in the range 0 ≤ second < 60, then fail.

8. Return hour, minute, and second.

A local date and time consists of a specific proleptic-Gregorian datep82, consisting of a year, a month, and a day, and a time,
consisting of an hour, a minute, a second, and a fraction of a second, but expressed without a time zone. [GREGORIAN]p1478

A string is a valid local date and time string representing a date and time if it consists of the following components in the given
order:

1. A valid date stringp83 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T) or a U+0020 SPACE character

3. A valid time stringp84 representing the time

The second component cannot be 60 or 61; leap seconds cannot be represented.
Note

2.3.5.5 Local dates and times §p85

85

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

A string is a valid normalized local date and time string representing a date and time if it consists of the following components in
the given order:

1. A valid date stringp83 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T)

3. A valid time stringp84 representing the time, expressed as the shortest possible string for the given time (e.g. omitting the
seconds component entirely if the given time is zero seconds past the minute)

The rules to parse a local date and time string are as follows. This will return either a date and time, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp83 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is beyond the end of input or if the character at position is neither a U+0054 LATIN CAPITAL LETTER T character (T)
nor a U+0020 SPACE character, then fail. Otherwise, move position forwards one character.

5. Parse a time componentp85 to obtain hour, minute, and second. If this returns nothing, then fail.

6. If position is not beyond the end of input, then fail.

7. Let date be the date with year year, month month, and day day.

8. Let time be the time with hour hour, minute minute, and second second.

9. Return date and time.

A time-zone offset consists of a signed number of hours and minutes.

A string is a valid time-zone offset string representing a time-zone offset if it consists of either:

• A U+005A LATIN CAPITAL LETTER Z character (Z), allowed only if the time zone is UTC

• Or, the following components, in the given order:

1. Either a U+002B PLUS SIGN character (+) or, if the time-zone offset is not zero, a U+002D HYPHEN-MINUS
character (-), representing the sign of the time-zone offset

2. Two ASCII digits, representing the hours component hour of the time-zone offset, in the range 0 ≤ hour ≤ 23

3. Optionally, a U+003A COLON character (:)

4. Two ASCII digits, representing the minutes component minute of the time-zone offset, in the range 0 ≤ minute ≤ 59

The rules to parse a time-zone offset string are as follows. This will return either a time-zone offset, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2.3.5.6 Time zones §p86

This format allows for time-zone offsets from -23:59 to +23:59. Right now, in practice, the range of offsets of actual time zones is
-12:00 to +14:00, and the minutes component of offsets of actual time zones is always either 00, 30, or 45. There is no guarantee
that this will remain so forever, however, since time zones are used as political footballs and are thus subject to very whimsical
policy decisions.

Note

See also the usage notes and examples in the global date and timep87 section below for details on using time-zone offsets with
historical times that predate the formation of formal time zones.

Note

86

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a time-zone offset componentp87 to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Return the time-zone offset that is timezonehours hours and timezoneminutes minutes from UTC.

The rules to parse a time-zone offset component, given an input string and a position, are as follows. This will return either time-
zone hours and time-zone minutes, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that
point and returns nothing.

1. If the character at position is a U+005A LATIN CAPITAL LETTER Z character (Z), then:

1. Let timezonehours be 0.

2. Let timezoneminutes be 0.

3. Advance position to the next character in input.

Otherwise, if the character at position is either a U+002B PLUS SIGN (+) or a U+002D HYPHEN-MINUS (-), then:

1. If the character at position is a U+002B PLUS SIGN (+), let sign be "positive". Otherwise, it's a U+002D HYPHEN-
MINUS (-); let sign be "negative".

2. Advance position to the next character in input.

3. Collect a sequence of code points that are ASCII digits from input given position. Let s be the collected sequence.

4. If s is exactly two characters long, then:

1. Interpret s as a base-ten integer. Let that number be the timezonehours.

2. If position is beyond the end of input or if the character at position is not a U+003A COLON character,
then fail. Otherwise, move position forwards one character.

3. Collect a sequence of code points that are ASCII digits from input given position. If the collected
sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a
base-ten integer. Let that number be the timezoneminutes.

If s is exactly four characters long, then:

1. Interpret the first two characters of s as a base-ten integer. Let that number be the timezonehours.

2. Interpret the last two characters of s as a base-ten integer. Let that number be the timezoneminutes.

Otherwise, fail.

5. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then fail.

6. If sign is "negative", then negate timezonehours.

7. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59, then fail.

8. If sign is "negative", then negate timezoneminutes.

Otherwise, fail.

2. Return timezonehours and timezoneminutes.

A global date and time consists of a specific proleptic-Gregorian datep82, consisting of a year, a month, and a day, and a time,
consisting of an hour, a minute, a second, and a fraction of a second, expressed with a time-zone offset, consisting of a signed number
of hours and minutes. [GREGORIAN]p1478

A string is a valid global date and time string representing a date, time, and a time-zone offset if it consists of the following
components in the given order:

2.3.5.7 Global dates and times §p87

87

https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

1. A valid date stringp83 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T) or a U+0020 SPACE character

3. A valid time stringp84 representing the time

4. A valid time-zone offset stringp86 representing the time-zone offset

Times in dates before the formation of UTC in the mid-twentieth century must be expressed and interpreted in terms of UT1
(contemporary Earth solar time at the 0° longitude), not UTC (the approximation of UT1 that ticks in SI seconds). Time before the
formation of time zones must be expressed and interpreted as UT1 times with explicit time zones that approximate the contemporary
difference between the appropriate local time and the time observed at the location of Greenwich, London.

The rules to parse a global date and time string are as follows. This will return either a time in UTC, with associated time-zone
offset information for round-tripping or display purposes, or nothing. If at any point the algorithm says that it "fails", this means that it
is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp83 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is beyond the end of input or if the character at position is neither a U+0054 LATIN CAPITAL LETTER T character (T)
nor a U+0020 SPACE character, then fail. Otherwise, move position forwards one character.

5. Parse a time componentp85 to obtain hour, minute, and second. If this returns nothing, then fail.

6. If position is beyond the end of input, then fail.

7. Parse a time-zone offset componentp87 to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

The following are some examples of dates written as valid global date and time stringsp87.

"0037-12-13 00:00Z"
Midnight in areas using London time on the birthday of Nero (the Roman Emperor). See below for further discussion on which
date this actually corresponds to.

"1979-10-14T12:00:00.001-04:00"
One millisecond after noon on October 14th 1979, in the time zone in use on the east coast of the USA during daylight saving
time.

"8592-01-01T02:09+02:09"
Midnight UTC on the 1st of January, 8592. The time zone associated with that time is two hours and nine minutes ahead of UTC,
which is not currently a real time zone, but is nonetheless allowed.

Several things are notable about these dates:

• Years with fewer than four digits have to be zero-padded. The date "37-12-13" would not be a valid date.

• If the "T" is replaced by a space, it must be a single space character. The string "2001-12-21 12:00Z" (with two spaces
between the components) would not be parsed successfully.

• To unambiguously identify a moment in time prior to the introduction of the Gregorian calendar (insofar as moments in
time before the formation of UTC can be unambiguously identified), the date has to be first converted to the Gregorian
calendar from the calendar in use at the time (e.g. from the Julian calendar). The date of Nero's birth is the 15th of
December 37, in the Julian Calendar, which is the 13th of December 37 in the proleptic Gregorian calendarp82.

• The time and time-zone offset components are not optional.

• Dates before the year one can't be represented as a datetime in this version of HTML.

• Times of specific events in ancient times are, at best, approximations, since time was not well coordinated or measured
until relatively recent decades.

• Time-zone offsets differ based on daylight saving time.

Example

88

8. If position is not beyond the end of input, then fail.

9. Let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second, subtracting
timezonehours hours and timezoneminutes minutes. That moment in time is a moment in the UTC time zone.

10. Let timezone be timezonehours hours and timezoneminutes minutes from UTC.

11. Return time and timezone.

A week consists of a week-year number and a week number representing a seven-day period starting on a Monday. Each week-year in
this calendaring system has either 52 or 53 such seven-day periods, as defined below. The seven-day period starting on the Gregorian
date Monday December 29th 1969 (1969-12-29) is defined as week number 1 in week-year 1970. Consecutive weeks are numbered
sequentially. The week before the number 1 week in a week-year is the last week in the previous week-year, and vice versa.
[GREGORIAN]p1478

A week-year with a number year has 53 weeks if it corresponds to either a year year in the proleptic Gregorian calendarp82 that has a
Thursday as its first day (January 1st), or a year year in the proleptic Gregorian calendarp82 that has a Wednesday as its first day
(January 1st) and where year is a number divisible by 400, or a number divisible by 4 but not by 100. All other week-years have 52
weeks.

The week number of the last day of a week-year with 53 weeks is 53; the week number of the last day of a week-year with 52
weeks is 52.

A string is a valid week string representing a week-year year and week week if it consists of the following components in the given
order:

1. Four or more ASCII digits, representing year, where year > 0

2. A U+002D HYPHEN-MINUS character (-)

3. A U+0057 LATIN CAPITAL LETTER W character (W)

4. Two ASCII digits, representing the week week, in the range 1 ≤ week ≤ maxweek, where maxweek is the week number of the
last dayp89 of week-year year

The rules to parse a week string are as follows. This will return either a week-year number and week number, or nothing. If at any
point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not at least four
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.

4. If year is not a number greater than zero, then fail.

5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail.
Otherwise, move position forwards one character.

6. If position is beyond the end of input or if the character at position is not a U+0057 LATIN CAPITAL LETTER W character (W),
then fail. Otherwise, move position forwards one character.

7. Collect a sequence of code points that are ASCII digits from input given position. If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the week.

2.3.5.8 Weeks §p89

The week-year number of a particular day can be different than the number of the year that contains that day in the proleptic
Gregorian calendarp82. The first week in a week-year y is the week that contains the first Thursday of the Gregorian year y.

Note

For modern purposes, a weekp89 as defined here is equivalent to ISO weeks as defined in ISO 8601. [ISO8601]p1479

Note

89

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit

8. Let maxweek be the week number of the last dayp89 of year year.

9. If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.

10. If position is not beyond the end of input, then fail.

11. Return the week-year number year and the week number week.

A duration consists of a number of seconds.

A string is a valid duration string representing a durationp90 t if it consists of either of the following:

• A literal U+0050 LATIN CAPITAL LETTER P character followed by one or more of the following subcomponents, in the order
given, where the number of days, hours, minutes, and seconds corresponds to the same number of seconds as in t:

1. One or more ASCII digits followed by a U+0044 LATIN CAPITAL LETTER D character, representing a number of days.

2. A U+0054 LATIN CAPITAL LETTER T character followed by one or more of the following subcomponents, in the order
given:

1. One or more ASCII digits followed by a U+0048 LATIN CAPITAL LETTER H character, representing a
number of hours.

2. One or more ASCII digits followed by a U+004D LATIN CAPITAL LETTER M character, representing a
number of minutes.

3. The following components:

1. One or more ASCII digits, representing a number of seconds.

2. Optionally, a U+002E FULL STOP character (.) followed by one, two, or three ASCII digits,
representing a fraction of a second.

3. A U+0053 LATIN CAPITAL LETTER S character.

• One or more duration time componentsp90, each with a different duration time component scalep90, in any order; the sum of
the represented seconds being equal to the number of seconds in t.

A duration time component is a string consisting of the following components:

1. Zero or more ASCII whitespace.

2. One or more ASCII digits, representing a number of time units, scaled by the duration time component scalep90

specified (see below) to represent a number of seconds.

3. If the duration time component scalep90 specified is 1 (i.e. the units are seconds), then, optionally, a U+002E FULL
STOP character (.) followed by one, two, or three ASCII digits, representing a fraction of a second.

4. Zero or more ASCII whitespace.

5. One of the following characters, representing the duration time component scale of the time unit used in the
numeric part of the duration time componentp90:

2.3.5.9 Durations §p90

Since months and seconds are not comparable (a month is not a precise number of seconds, but is instead a period whose exact
length depends on the precise day from which it is measured) a durationp90 as defined in this specification cannot include months
(or years, which are equivalent to twelve months). Only durations that describe a specific number of seconds can be described.

Note

This, as with a number of other date- and time-related microsyntaxes defined in this specification, is based on one of the
formats defined in ISO 8601. [ISO8601]p1479

Note

90

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-whitespace

U+0057 LATIN CAPITAL LETTER W character
U+0077 LATIN SMALL LETTER W character

Weeks. The scale is 604800.

U+0044 LATIN CAPITAL LETTER D character
U+0064 LATIN SMALL LETTER D character

Days. The scale is 86400.

U+0048 LATIN CAPITAL LETTER H character
U+0068 LATIN SMALL LETTER H character

Hours. The scale is 3600.

U+004D LATIN CAPITAL LETTER M character
U+006D LATIN SMALL LETTER M character

Minutes. The scale is 60.

U+0053 LATIN CAPITAL LETTER S character
U+0073 LATIN SMALL LETTER S character

Seconds. The scale is 1.

6. Zero or more ASCII whitespace.

The rules to parse a duration string are as follows. This will return either a durationp90 or nothing. If at any point the algorithm says
that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let months, seconds, and component count all be zero.

4. Let M-disambiguator be minutes.

5. Skip ASCII whitespace within input given position.

6. If position is past the end of input, then fail.

7. If the character in input pointed to by position is a U+0050 LATIN CAPITAL LETTER P character, then advance position to the
next character, set M-disambiguator to months, and skip ASCII whitespace within input given position.

8. While true:

1. Let units be undefined. It will be assigned one of the following values: years, months, weeks, days, hours, minutes,
and seconds.

2. Let next character be undefined. It is used to process characters from the input.

3. If position is past the end of input, then break.

4. If the character in input pointed to by position is a U+0054 LATIN CAPITAL LETTER T character, then advance
position to the next character, set M-disambiguator to minutes, skip ASCII whitespace within input given position,
and continue.

5. Set next character to the character in input pointed to by position.

6. If next character is a U+002E FULL STOP character (.), then let N equal zero. (Do not advance position. That is
taken care of below.)

This is not based on any of the formats in ISO 8601. It is intended to be a more human-readable alternative to the ISO
8601 duration format.

Note

This flag's other value is months. It is used to disambiguate the "M" unit in ISO8601 durations, which use the same unit
for months and minutes. Months are not allowed, but are parsed for future compatibility and to avoid misinterpreting
ISO8601 durations that would be valid in other contexts.

Note

91

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#iteration-continue

Otherwise, if next character is an ASCII digit, then collect a sequence of code points that are ASCII digits from input
given position, interpret the resulting sequence as a base-ten integer, and let N be that number.

Otherwise, next character is not part of a number; fail.

7. If position is past the end of input, then fail.

8. Set next character to the character in input pointed to by position, and this time advance position to the next
character. (If next character was a U+002E FULL STOP character (.) before, it will still be that character this time.)

9. If next character is U+002E (.), then:

1. Collect a sequence of code points that are ASCII digits from input given position. Let s be the resulting
sequence.

2. If s is the empty string, then fail.

3. Let length be the number of characters in s.

4. Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number by
10length.

5. Increment N by fraction.

6. Skip ASCII whitespace within input given position.

7. If position is past the end of input, then fail.

8. Set next character to the character in input pointed to by position, and advance position to the next
character.

9. If next character is neither a U+0053 LATIN CAPITAL LETTER S character nor a U+0073 LATIN SMALL
LETTER S character, then fail.

10. Set units to seconds.

Otherwise:

1. If next character is ASCII whitespace, then skip ASCII whitespace within input given position, set next
character to the character in input pointed to by position, and advance position to the next character.

2. If next character is a U+0059 LATIN CAPITAL LETTER Y character, or a U+0079 LATIN SMALL LETTER Y
character, set units to years and set M-disambiguator to months.

If next character is a U+004D LATIN CAPITAL LETTER M character or a U+006D LATIN SMALL LETTER M
character, and M-disambiguator is months, then set units to months.

If next character is a U+0057 LATIN CAPITAL LETTER W character or a U+0077 LATIN SMALL LETTER W
character, set units to weeks and set M-disambiguator to minutes.

If next character is a U+0044 LATIN CAPITAL LETTER D character or a U+0064 LATIN SMALL LETTER D
character, set units to days and set M-disambiguator to minutes.

If next character is a U+0048 LATIN CAPITAL LETTER H character or a U+0068 LATIN SMALL LETTER H
character, set units to hours and set M-disambiguator to minutes.

If next character is a U+004D LATIN CAPITAL LETTER M character or a U+006D LATIN SMALL LETTER M
character, and M-disambiguator is minutes, then set units to minutes.

If next character is a U+0053 LATIN CAPITAL LETTER S character or a U+0073 LATIN SMALL LETTER S
character, set units to seconds and set M-disambiguator to minutes.

Otherwise, if next character is none of the above characters, then fail.

10. Increment component count.

11. Let multiplier be 1.

12. If units is years, multiply multiplier by 12 and set units to months.

13. If units is months, add the product of N and multiplier to months.

92

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace

Otherwise:

1. If units is weeks, multiply multiplier by 7 and set units to days.

2. If units is days, multiply multiplier by 24 and set units to hours.

3. If units is hours, multiply multiplier by 60 and set units to minutes.

4. If units is minutes, multiply multiplier by 60 and set units to seconds.

5. Forcibly, units is now seconds. Add the product of N and multiplier to seconds.

14. Skip ASCII whitespace within input given position.

9. If component count is zero, fail.

10. If months is not zero, fail.

11. Return the durationp90 consisting of seconds seconds.

A string is a valid date string with optional time if it is also one of the following:

• A valid date stringp83

• A valid global date and time stringp87

The rules to parse a date or time string are as follows. The algorithm will return either a datep83, a timep84, a global date and
timep87, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Set start position to the same position as position.

4. Set the date present and time present flags to true.

5. Parse a date componentp83 to obtain year, month, and day. If this fails, then set the date present flag to false.

6. If date present is true, and position is not beyond the end of input, and the character at position is either a U+0054 LATIN
CAPITAL LETTER T character (T) or a U+0020 SPACE character, then advance position to the next character in input.

Otherwise, if date present is true, and either position is beyond the end of input or the character at position is neither a
U+0054 LATIN CAPITAL LETTER T character (T) nor a U+0020 SPACE character, then set time present to false.

Otherwise, if date present is false, set position back to the same position as start position.

7. If the time present flag is true, then parse a time componentp85 to obtain hour, minute, and second. If this returns nothing,
then fail.

8. If the date present and time present flags are both true, but position is beyond the end of input, then fail.

9. If the date present and time present flags are both true, parse a time-zone offset componentp87 to obtain timezonehours and
timezoneminutes. If this returns nothing, then fail.

10. If position is not beyond the end of input, then fail.

11. If the date present flag is true and the time present flag is false, then let date be the date with year year, month month, and
day day, and return date.

Otherwise, if the time present flag is true and the date present flag is false, then let time be the time with hour hour, minute
minute, and second second, and return time.

Otherwise, let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second,
subtracting timezonehours hours and timezoneminutes minutes, that moment in time being a moment in the UTC time zone;
let timezone be timezonehours hours and timezoneminutes minutes from UTC; and return time and timezone.

2.3.5.10 Vaguer moments in time §p93

93

https://infra.spec.whatwg.org/#skip-ascii-whitespace

Some obsolete legacy attributes parse colors using the rules for parsing a legacy color value, given a string input. They will return
either a CSS color or failure.

1. If input is the empty string, then return failure.

2. Strip leading and trailing ASCII whitespace from input.

3. If input is an ASCII case-insensitive match for "transparent", then return failure.

4. If input is an ASCII case-insensitive match for one of the named colors, then return the CSS color corresponding to that
keyword. [CSSCOLOR]p1476

5. If input's code point length is four, and the first character in input is U+0023 (#), and the last three characters of input are all
ASCII hex digits, then:

1. Let result be a CSS color.

2. Interpret the second character of input as a hexadecimal digit; let the red component of result be the resulting
number multiplied by 17.

3. Interpret the third character of input as a hexadecimal digit; let the green component of result be the resulting
number multiplied by 17.

4. Interpret the fourth character of input as a hexadecimal digit; let the blue component of result be the resulting
number multiplied by 17.

5. Return result.

6. Replace any code points greater than U+FFFF in input (i.e., any characters that are not in the basic multilingual plane) with
"00".

7. If input's code point length is greater than 128, truncate input, leaving only the first 128 characters.

8. If the first character in input is U+0023 (#), then remove it.

9. Replace any character in input that is not an ASCII hex digit with U+0030 (0).

10. While input's code point length is zero or not a multiple of three, append U+0030 (0) to input.

11. Split input into three strings of equal code point length, to obtain three components. Let length be the code point length that
all of those components have (one third the code point length of input).

12. If length is greater than 8, then remove the leading length-8 characters in each component, and let length be 8.

13. While length is greater than two and the first character in each component is U+0030 (0), remove that character and reduce
length by one.

14. If length is still greater than two, truncate each component, leaving only the first two characters in each.

15. Let result be a CSS color.

16. Interpret the first component as a hexadecimal number; let the red component of result be the resulting number.

17. Interpret the second component as a hexadecimal number; let the green component of result be the resulting number.

18. Interpret the third component as a hexadecimal number; let the blue component of result be the resulting number.

19. Return result.

A set of space-separated tokens is a string containing zero or more words (known as tokens) separated by one or more ASCII
whitespace, where words consist of any string of one or more characters, none of which are ASCII whitespace.

CSS2 System Colors are not recognized.
Note

2.3.6 Legacy colors §p94

2.3.7 Space-separated tokens §p94

94

https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-color/#named-color
https://www.w3.org/TR/css3-color/#css2-system
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#string-code-point-length
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

A string containing a set of space-separated tokensp94 may have leading or trailing ASCII whitespace.

An unordered set of unique space-separated tokens is a set of space-separated tokensp94 where none of the tokens are
duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokensp94 where none of the tokens are duplicated
but where the order of the tokens is meaningful.

Sets of space-separated tokensp94 sometimes have a defined set of allowed values. When a set of allowed values is defined, the tokens
must all be from that list of allowed values; other values are non-conforming. If no such set of allowed values is provided, then all
values are conforming.

A set of comma-separated tokens is a string containing zero or more tokens each separated from the next by a single U+002C
COMMA character (,), where tokens consist of any string of zero or more characters, neither beginning nor ending with ASCII
whitespace, nor containing any U+002C COMMA characters (,), and optionally surrounded by ASCII whitespace.

Sets of comma-separated tokensp95 sometimes have further restrictions on what consists a valid token. When such restrictions are
defined, the tokens must all fit within those restrictions; other values are non-conforming. If no such restrictions are specified, then all
values are conforming.

A valid hash-name reference to an element of type type is a string consisting of a U+0023 NUMBER SIGN character (#) followed by
a string which exactly matches the value of the name attribute of an element with type type in the same tree.

The rules for parsing a hash-name reference to an element of type type, given a context node scope, are as follows:

1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if the first such character in the string is
the last character in the string, then return null.

2. Let s be the string from the character immediately after the first U+0023 NUMBER SIGN character in the string being parsed
up to the end of that string.

3. Return the first element of type type in scope's tree, in tree order, that has an idp154 or name attribute whose value is s, or
null if there is no such element.

A string is a valid media query list if it matches the <media-query-list> production of Media Queries. [MQ]p1480

A string matches the environment of the user if it is the empty string, a string consisting of only ASCII whitespace, or is a media
query list that matches the user's environment according to the definitions given in Media Queries. [MQ]p1480

How tokens in a set of space-separated tokensp94 are to be compared (e.g. case-sensitively or not) is defined on a per-set basis.
Note

For instance, the string " a ,b,,d d " consists of four tokens: "a", "b", the empty string, and "d d". Leading and trailing
whitespace around each token doesn't count as part of the token, and the empty string can be a token.

Example

Although idp154 attributes are accounted for when parsing, they are not used in determining whether a value is a valid
hash-name referencep95. That is, a hash-name reference that refers to an element based on idp154 is a conformance error
(unless that element also has a name attribute with the same value).

Note

2.3.8 Comma-separated tokens §p95

2.3.9 References §p95

2.3.10 Media queries §p95

95

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#ascii-whitespace

A unique internal value is a value that is serializable, comparable by value, and never exposed to script.

To create a new unique internal value, return a unique internal valuep96 that has never previously been returned by this algorithm.

A string is a valid non-empty URL if it is a valid URL string but it is not the empty string.

A string is a valid URL potentially surrounded by spaces if, after stripping leading and trailing ASCII whitespace from it, it is a valid
URL string.

A string is a valid non-empty URL potentially surrounded by spaces if, after stripping leading and trailing ASCII whitespace from
it, it is a valid non-empty URLp96.

This specification defines the URL about:legacy-compat as a reserved, though unresolvable, about: URL, for use in DOCTYPEp1259s in
HTML documents when needed for compatibility with XML tools. [ABOUT]p1475

This specification defines the URL about:html-kind as a reserved, though unresolvable, about: URL, that is used as an identifier for
kinds of media tracks. [ABOUT]p1475

This specification defines the URL about:srcdoc as a reserved, though unresolvable, about: URL, that is used as the URL of iframe
srcdoc documentsp391. [ABOUT]p1475

The fallback base URL of a Documentp130 object document is the URL record obtained by running these steps:

1. If document is an iframe srcdoc documentp391, then:

1. Assert: document's about base URLp131 is non-null.

2. Return document's about base URLp131.

2. If document's URL matches about:blankp96 and document's about base URLp131 is non-null, then return document's about
base URLp131.

3. Return document's URL.

The document base URL of a Documentp130 object is the URL record obtained by running these steps:

1. If there is no basep175 element that has an hrefp176 attribute in the Documentp130, then return the Documentp130 's fallback base
URLp96.

2. Otherwise, return the frozen base URLp176 of the first basep175 element in the Documentp130 that has an hrefp176 attribute, in
tree order.

A URL matches about:blank if its scheme is "about", its path contains a single string "blank", its username and password are the
empty string, and its host is null.

A URL matches about:srcdoc if its scheme is "about", its path contains a single string "srcdoc", its query is null, its username and
password are the empty string, and its host is null.

2.4 URLs §p96

Such a URL's query and fragment can be non-null. For example, the URL record created by parsing "about:blank?foo#bar"
matches about:blankp96.

Note

The reason that matches about:srcdocp96 ensures that the URL's query is null is because it is not possible to create an iframe
Note

2.3.11 Unique internal values §p96

2.4.1 Terminology §p96

96

https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://www.rfc-editor.org/rfc/rfc6694#section-2
https://dom.spec.whatwg.org/#html-document
https://www.rfc-editor.org/rfc/rfc6694#section-2
https://www.rfc-editor.org/rfc/rfc6694#section-2
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-tree-order
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-username
https://url.spec.whatwg.org/#concept-url-password
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-username
https://url.spec.whatwg.org/#concept-url-password
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-query

Parsing a URL is the process of taking a string and obtaining the URL record that it represents. While this process is defined in URL, the
HTML standard defines several wrappers to abstract base URLs and encodings. [URL]p1483

To parse a URL, given a string url, relative to a Documentp130 object or environment settings objectp1076 environment, run these steps.
They return failure or a URL.

1. Let baseURL be environment's base URLp96, if environment is a Documentp130 object; otherwise environment's API base
URLp1076.

2. Return the result of applying the URL parser to url, with baseURL.

To encoding-parse a URL, given a string url, relative to a Documentp130 object or environment settings objectp1076 environment, run
these steps. They return failure or a URL.

1. Let encoding be UTF-8.

2. If environment is a Documentp130 object, then set encoding to environment's character encoding.

3. Otherwise, if environment's relevant global objectp1083 is a Windowp922 object, set encoding to environment's relevant global
objectp1083 's associated Documentp923 's character encoding.

4. Let baseURL be environment's base URLp96, if environment is a Documentp130 object; otherwise environment's API base
URLp1076.

5. Return the result of applying the URL parser to url, with baseURL and encoding.

To encoding-parse-and-serialize a URL, given a string url, relative to a Documentp130 object or environment settings objectp1076

environment, run these steps. They return failure or a string.

1. Let url be the result of encoding-parsing a URLp97 given url, relative to environment.

2. If url is failure, then return failure.

3. Return the result of applying the URL serializer to url.

When a document's document base URLp96 changes, all elements in that document are affected by a base URL changep60.

The following are base URL change stepsp60, which run when an element is affected by a base URL changep60 (as defined by DOM):

↪ If the element creates a hyperlinkp302

If the URL identified by the hyperlink is being shown to the user, or if any data derived from that URL is affecting the display,
then the hrefp303 attribute's value should be reparsedp97, relative to the element's node document and the UI updated
appropriately.

srcdoc documentp391 whose URL has a non-null query, unlike Documentp130s whose URL matches about:blankp96. In other words,
the set of all URLs that match about:srcdocp96 only vary in their fragment.

Most new APIs are to use parse a URLp97. Older APIs and HTML elements might have reason to use encoding-parse a URLp97. When
a custom base URL is needed or no base URL is desired, the URL parser can of course be used directly as well.

Note

For example, the CSS :linkp783/:visitedp783 pseudo-classes might have been affected.
Example

2.4.2 Parsing URLs §p97

2.4.3 Dynamic changes to base URLs §p97

97

https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-query
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://encoding.spec.whatwg.org/#utf-8
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/selectors/#pseudo-class

If the hyperlink has a pingp303 attribute and its URL(s) are being shown to the user, then the pingp303 attribute's tokens should
be reparsedp97, relative to the element's node document and the UI updated appropriately.

↪ If the element is a qp266, blockquotep235, insp337, or delp338 element with a cite attribute
If the URL identified by the cite attribute is being shown to the user, or if any data derived from that URL is affecting the
display, then the cite attribute's value should be reparsedp97, relative to the element's node document and the UI updated
appropriately.

↪ Otherwise
The element is not directly affected.

A response whose type is "basic", "cors", or "default" is CORS-same-origin. [FETCH]p1478

A response whose type is "opaque" or "opaqueredirect" is CORS-cross-origin.

A response's unsafe response is its internal response if it has one, and the response itself otherwise.

To create a potential-CORS request, given a url, destination, corsAttributeState, and an optional same-origin fallback flag, run
these steps:

1. Let mode be "no-cors" if corsAttributeState is No CORSp99, and "cors" otherwise.

2. If same-origin fallback flag is set and mode is "no-cors", set mode to "same-origin".

3. Let credentialsMode be "include".

4. If corsAttributeState is Anonymousp99, set credentialsMode to "same-origin".

5. Let request be a new request whose URL is url, destination is destination, mode is mode, credentials mode is
credentialsMode, and whose use-URL-credentials flag is set.

The Content-Type metadata of a resource must be obtained and interpreted in a manner consistent with the requirements of MIME
Sniffing. [MIMESNIFF]p1480

The computed MIME type of a resource must be found in a manner consistent with the requirements given in MIME Sniffing.
[MIMESNIFF]p1480

The rules for sniffing images specifically, the rules for distinguishing if a resource is text or binary, and the rules for
sniffing audio and video specifically are also defined in MIME Sniffing. These rules return a MIME type as their result.
[MIMESNIFF]p1480

For instance, changing the base URL doesn't affect the image displayed by imgp346 elements, although subsequent accesses
of the srcp350 IDL attribute from script will return a new absolute URL that might no longer correspond to the image being
shown.

Example

2.5 Fetching resources §p98

It is imperative that the rules in MIME Sniffing be followed exactly. When a user agent uses different heuristics for
content type detection than the server expects, security problems can occur. For more details, see MIME Sniffing.
[MIMESNIFF]p1480

⚠Warning!

2.5.1 Terminology §p98

2.5.2 Determining the type of a resource §p98

98

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#syntax-url-absolute
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-type
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-internal-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://mimesniff.spec.whatwg.org/#rules-for-text-or-binary
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://mimesniff.spec.whatwg.org/#mime-type

The algorithm for extracting a character encoding from a meta element, given a string s, is as follows. It either returns a
character encoding or nothing.

1. Let position be a pointer into s, initially pointing at the start of the string.

2. Loop: Find the first seven characters in s after position that are an ASCII case-insensitive match for the word "charset". If no
such match is found, return nothing.

3. Skip any ASCII whitespace that immediately follow the word "charset" (there might not be any).

4. If the next character is not a U+003D EQUALS SIGN (=), then move position to point just before that next character, and
jump back to the step labeled loop.

5. Skip any ASCII whitespace that immediately follow the equals sign (there might not be any).

6. Process the next character as follows:

↪ If it is a U+0022 QUOTATION MARK character (") and there is a later U+0022 QUOTATION MARK character
(") in s

↪ If it is a U+0027 APOSTROPHE character (') and there is a later U+0027 APOSTROPHE character (') in s
Return the result of getting an encoding from the substring that is between this character and the next earliest
occurrence of this character.

↪ If it is an unmatched U+0022 QUOTATION MARK character (")
↪ If it is an unmatched U+0027 APOSTROPHE character (')
↪ If there is no next character

Return nothing.

↪ Otherwise
Return the result of getting an encoding from the substring that consists of this character up to but not including the
first ASCII whitespace or U+003B SEMICOLON character (;), or the end of s, whichever comes first.

A CORS settings attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

anonymous Anonymous Requests for the element will have their mode set to "cors" and their credentials mode set to "same-origin".
(the empty string)
use-credentials Use Credentials Requests for the element will have their mode set to "cors" and their credentials mode set to "include".

The attribute's missing value defaultp76 is the No CORS state, and its invalid value defaultp76 is the Anonymousp99 state. For the
purposes of reflectionp104, the canonical keywordp76 for the Anonymousp99 state is the anonymousp99 keyword.

The majority of fetches governed by CORS settings attributesp99 will be done via the create a potential-CORS requestp98 algorithm.

For more modern features, where the request's mode is always "cors", certain CORS settings attributesp99 have been repurposed to
have a slightly different meaning, wherein they only impact the request's credentials mode. To perform this translation, we define the
CORS settings attribute credentials mode for a given CORS settings attributep99 to be determined by switching on the attribute's
state:

↪ No CORSp99

↪ Anonymousp99

"same-origin"

This algorithm is distinct from those in the HTTP specifications (for example, HTTP doesn't allow the use of single quotes and
requires supporting a backslash-escape mechanism that is not supported by this algorithm). While the algorithm is used in
contexts that, historically, were related to HTTP, the syntax as supported by implementations diverged some time ago. [HTTP]p1478

Note

2.5.3 Extracting character encodings from metap189 elements §p99

2.5.4 CORS settings attributes §p99
✔ MDN

99

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#concept-encoding-get
https://infra.spec.whatwg.org/#ascii-whitespace
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-credentials-mode

↪ Use Credentialsp99

"include"

A referrer policy attribute is an enumerated attributep76. Each referrer policy, including the empty string, is a keyword for this
attribute, mapping to a state of the same name.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the empty string state.

The impact of these states on the processing model of various fetches is defined in more detail throughout this specification, in Fetch,
and in Referrer Policy. [FETCH]p1478 [REFERRERPOLICY]p1481

A nonce content attribute represents a cryptographic nonce ("number used once") which can be used by Content Security Policy to
determine whether or not a given fetch will be allowed to proceed. The value is text. [CSP]p1476

Elements that have a noncep100 content attribute ensure that the cryptographic nonce is only exposed to script (and not to side-
channels like CSS attribute selectors) by taking the value from the content attribute, moving it into an internal slot named
[[CryptographicNonce]], exposing it to script via the HTMLOrSVGElementp143 interface mixin, and setting the content attribute to the
empty string. Unless otherwise specified, the slot's value is the empty string.

The nonce IDL attribute must, on getting, return the value of this element's [[CryptographicNonce]]p100; and on setting, set this
element's [[CryptographicNonce]]p100 to the given value.

The following attribute change steps are used for the noncep100 content attribute:

1. If element does not include HTMLOrSVGElementp143, then return.

2. If localName is not noncep100 or namespace is not null, then return.

Several signals can contribute to which processing model is used for a given fetch; a referrer policy attributep100 is only one of
them. In general, the order in which these signals are processed are:

1. First, the presence of a noreferrerp325 link type;

2. Then, the value of a referrer policy attributep100;

3. Then, the presence of any metap189 element with namep190 attribute set to referrerp192.

4. Finally, the `Referrer-Policy` HTTP header.

Note

element.noncep100

Returns the value set for element's cryptographic nonce. If the setter was not used, this will be the value originally found in the
noncep100 content attribute.

element.noncep100 = value
Updates element's cryptographic nonce value.

For web developers (non-normative)

Note how the setter for the noncep100 IDL attribute does not update the corresponding content attribute. This, as well as the below
setting of the noncep100 content attribute to the empty string when an element becomes browsing-context connectedp46, is meant
to prevent exfiltration of the nonce value through mechanisms that can easily read content attributes, such as selectors. Learn
more in issue #2369, where this behavior was introduced.

Note

2.5.5 Referrer policy attributes §p10

0

2.5.6 Nonce attributes §p10

0

✔ MDN

MDN

100

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-header-dfn
https://github.com/whatwg/html/issues/2369
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://webidl.spec.whatwg.org/#include

3. If value is null, then set element's [[CryptographicNonce]]p100 to the empty string.

4. Otherwise, set element's [[CryptographicNonce]]p100 to value.

Whenever an element including HTMLOrSVGElementp143 becomes browsing-context connectedp46, the user agent must execute the
following steps on the element:

1. Let CSP list be element's shadow-including root's policy containerp131 's CSP listp917.

2. If CSP list contains a header-delivered Content Security Policy, and element has a noncep100 content attribute attr whose
value is not the empty string, then:

1. Let nonce be element's [[CryptographicNonce]]p100.

2. Set an attribute value for element using "noncep100" and the empty string.

3. Set element's [[CryptographicNonce]]p100 to nonce.

The cloning steps for elements that include HTMLOrSVGElementp143 must set the [[CryptographicNonce]]p100 slot on the copy to the
value of the slot on the element being cloned.

A lazy loading attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

lazy Lazy Used to defer fetching a resource until some conditions are met.
eager Eager Used to fetch a resource immediately; the default state.

The attribute directs the user agent to fetch a resource immediately or to defer fetching until some conditions associated with the
element are met, according to the attribute's current state.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the Eagerp101 state.

The will lazy load element steps, given an element element, are as follows:

1. If scripting is disabledp1083 for element, then return false.

2. If element's lazy loading attributep101 is in the Lazyp101 state, then return true.

3. Return false.

Each imgp346 and iframep390 element has associated lazy load resumption steps, initially null.

Each Documentp130 has a lazy load intersection observer, initially set to null but can be set to an IntersectionObserver instance.

To start intersection-observing a lazy loading element element, run these steps:

1. Let doc be element's node document.

If element's [[CryptographicNonce]]p100 were not restored it would be the empty string at this point.
Note

This is an anti-tracking measure, because if a user agent supported lazy loading when scripting is disabled, it would still
be possible for a site to track a user's approximate scroll position throughout a session, by strategically placing images in
a page's markup such that a server can track how many images are requested and when.

Note

For imgp346 and iframep390 elements that will lazy loadp101, these steps are run from the lazy load intersection observerp101 's
callback or when their lazy loading attributep101 is set to the Eagerp101 state. This causes the element to continue loading.

Note

2.5.7 Lazy loading attributes §p10

1

✔ MDN

101

https://webidl.spec.whatwg.org/#include
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://w3c.github.io/webappsec-csp/#contains-a-header-delivered-content-security-policy
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://webidl.spec.whatwg.org/#include
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://dom.spec.whatwg.org/#concept-node-document

2. If doc's lazy load intersection observerp101 is null, set it to a new IntersectionObserver instance, initialized as follows:

The intention is to use the original value of the IntersectionObserver constructor. However, we're forced to use the
JavaScript-exposed constructor in this specification, until Intersection Observer exposes low-level hooks for use in
specifications. See bug w3c/IntersectionObserver#464 which tracks this. [INTERSECTIONOBSERVER]p1479

◦ The callback is these steps, with arguments entries and observer:

1. For each entry in entries using a method of iteration which does not trigger developer-modifiable array
accessors or iteration hooks :

1. Let resumptionSteps be null.

2. If entry.isIntersecting is true, then set resumptionSteps to entry.target's lazy load
resumption stepsp101.

3. If resumptionSteps is null, then return.

4. Stop intersection-observing a lazy loading elementp102 for entry.target.

5. Set entry.target's lazy load resumption stepsp101 to null.

6. Invoke resumptionSteps.

The intention is to use the original value of the isIntersecting and target getters. See w3c/
IntersectionObserver#464. [INTERSECTIONOBSERVER]p1479

◦ The options is an IntersectionObserverInit dictionary with the following dictionary members: «[
"scrollMargin" → lazy load scroll marginp102]»

The lazy load scroll marginp102 suggestions imply dynamic changes to the value, but the
IntersectionObserver API does not support changing the scroll margin. See issue w3c/
IntersectionObserver#428.

3. Call doc's lazy load intersection observerp101 's observe method with element as the argument.

The intention is to use the original value of the observe method. See w3c/IntersectionObserver#464.
[INTERSECTIONOBSERVER]p1479

To stop intersection-observing a lazy loading element element, run these steps:

1. Let doc be element's node document.

2. Assert: doc's lazy load intersection observerp101 is not null.

3. Call doc's lazy load intersection observerp101 's unobserve method with element as the argument.

The intention is to use the original value of the unobserve method. See w3c/IntersectionObserver#464.
[INTERSECTIONOBSERVER]p1479

The lazy load scroll margin is an implementation-defined value, but with the following suggestions to consider:

• Set a minimum value that most often results in the resources being loaded before they intersect the viewport under
normal usage patterns for the given device.

• The typical scrolling speed: increase the value for devices with faster typical scrolling speeds.

• The current scrolling speed or momentum: the UA can attempt to predict where the scrolling will likely stop, and adjust the
value accordingly.

This allows for fetching the image during scrolling, when it does not yet — but is about to — intersect the
viewport.

Note

102

https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://github.com/w3c/IntersectionObserver/issues/464
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-isintersecting
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-isintersecting
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserverentry-target
https://github.com/w3c/IntersectionObserver/issues/464
https://github.com/w3c/IntersectionObserver/issues/464
https://w3c.github.io/IntersectionObserver/#dictdef-intersectionobserverinit
https://w3c.github.io/IntersectionObserver/#intersectionobserver
https://github.com/w3c/IntersectionObserver/issues/428
https://github.com/w3c/IntersectionObserver/issues/428
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-observe
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-observe
https://github.com/w3c/IntersectionObserver/issues/464
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-unobserve
https://w3c.github.io/IntersectionObserver/#dom-intersectionobserver-unobserve
https://github.com/w3c/IntersectionObserver/issues/464
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined

• The network quality: increase the value for slow or high-latency connections.

• User preferences can influence the value.

A blocking attribute explicitly indicates that certain operations should be blocked on the fetching of an external resource. The
operations that can be blocked are represented by possible blocking tokens, which are strings listed by the following table:

Possible blocking token Description

"render" The element is potentially render-blockingp103.

A blocking attributep103 must have a value that is an unordered set of unique space-separated tokensp95, each of which are possible
blocking tokensp103. The supported tokens of a blocking attributep103 are the possible blocking tokensp103. Any element can have at
most one blocking attributep103.

The blocking tokens set for an element el are the result of the following steps:

1. Let value be the value of el's blocking attributep103, or the empty string if no such attribute exists.

2. Set value to value, converted to ASCII lowercase.

3. Let rawTokens be the result of splitting value on ASCII whitespace.

4. Return a set containing the elements of rawTokens that are possible blocking tokensp103.

An element is potentially render-blocking if its blocking tokens setp103 contains "renderp103", or if it is implicitly potentially
render-blocking, which will be defined at the individual elements. By default, an element is not implicitly potentially render-
blockingp103.

A fetch priority attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

high high Signals a high-priority fetch relative to other resources with the same destination.
low low Signals a low-priority fetch relative to other resources with the same destination.
auto auto Signals automatic determination of fetch priority relative to other resources with the same destination.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the autop103 state.

The building blocks for reflecting are as follows:

• A reflected target is an element or ElementInternalsp771 object. It is typically clear from context and typically identical to

It is important for privacy that the lazy load scroll marginp102 not leak additional information. For example, the typical scrolling
speed on the current device could be imprecise so as to not introduce a new fingerprinting vector.

Note

In the future, there might be more possible blocking tokensp103.
Note

2.6 Common DOM interfaces §p10

3

2.5.8 Blocking attributes §p10

3

2.5.9 Fetch priority attributes §p10

3

2.6.1 Reflecting content attributes in IDL attributes §p10

3

103

https://infra.spec.whatwg.org/#tracking-vector
https://dom.spec.whatwg.org/#concept-supported-tokens
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-destination

the interface of the reflected IDL attributep104. It is always identical to that interface when it is an ElementInternalsp771

object.

• A reflected IDL attribute is an attribute interface member.

• A reflected content attribute name is a string. When the reflected targetp103 is an element, it represents the local name
of a content attribute whose namespace is null. When the reflected targetp103 is an ElementInternalsp771 object, it
represents a key of the reflected targetp103 's target elementp772 's internal content attribute mapp774.

A reflected IDL attributep104 can be defined to reflect a reflected content attribute namep104 of a reflected targetp103. In general this
means that the IDL attribute getter returns the current value of the content attribute, and the setter changes the value of the content
attribute to the given value.

If the reflected targetp103 is an element, then the reflected IDL attributep104 can additionally declare to support ElementInternals.
This means that the ElementInternalsp771 interface also has a reflected IDL attributep104, with the same identifier, and that reflected
IDL attributep104 reflectsp104 the same reflected content attribute namep104.

Reflected targetsp103 have these associated algorithms:

• get the element: takes no arguments; returns an element.
• get the content attribute: takes no arguments; returns null or a string.
• set the content attribute: takes a string value; returns nothing.
• delete the content attribute: takes no arguments; returns nothing.

For a reflected targetp103 that is an element element, these are defined as follows:

get the elementp104

1. Return element.

get the content attributep104

1. Let attribute be the result of running get an attribute by namespace and local name given null, the reflected content
attribute namep104, and element.

2. If attribute is null, then return null.

3. Return attribute's value.

set the content attributep104 with a string value

1. Set an attribute value given element, the reflected content attribute namep104, and value.

delete the content attributep104

1. Remove an attribute by namespace and local name given null, the reflected content attribute namep104, and element.

For a reflected targetp103 that is an ElementInternalsp771 object elementInternals, they are defined as follows:

get the elementp104

1. Return elementInternals's target elementp772.

get the content attributep104

1. If elementInternals's target elementp772 's internal content attribute mapp774[the reflected content attribute namep104] does
not exist, then return null.

2. Return elementInternals's target elementp772 's internal content attribute mapp774[the reflected content attribute namep104].

set the content attributep104 with a string value

1. Set elementInternals's target elementp772 's internal content attribute mapp774[the reflected content attribute namep104] to
value.

The fooBar IDL attribute must reflectp104 the foobar content attribute and support ElementInternalsp104.
Example

104

https://dom.spec.whatwg.org/#concept-element-attributes-get-by-namespace
https://dom.spec.whatwg.org/#concept-attribute-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-remove-by-namespace
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-set

delete the content attributep104

1. Remove elementInternals's target elementp772 's internal content attribute mapp774[the reflected content attribute
namep104].

IDL attributes of type DOMString or DOMString? that reflectp104 enumeratedp76 content attributes can be limited to only known
values. Per the processing models below, those will cause the getters for such IDL attributes to only return keywords for those
enumerated attributes, or the empty string or null.

If a reflected IDL attributep104 has the type DOMString:

• The getter steps are:

1. Let element be the result of running this's get the elementp104.

2. Let contentAttributeValue be the result of running this's get the content attributep104.

3. Let attributeDefinition be the attribute definition of element's content attribute whose namespace is null and local
name is the reflected content attribute namep104.

4. If attributeDefinition indicates it is an enumerated attributep76 and the reflected IDL attributep104 is defined to be
limited to only known valuesp105:

1. If contentAttributeValue does not correspond to any state of attributeDefinition (e.g., it is null and there is
no missing value defaultp76), or if it is in a state of attributeDefinition with no associated keyword value,
then return the empty string.

2. Return the canonical keywordp76 for the state of attributeDefinition that contentAttributeValue
corresponds to.

5. If contentAttributeValue is null, then return the empty string.

6. Return contentAttributeValue.

• The setter steps are to run this's set the content attributep104 with the given value.

If a reflected IDL attributep104 has the type DOMString?:

• The getter steps are:

1. Let element be the result of running this's get the elementp104.

2. Let contentAttributeValue be the result of running this's get the content attributep104.

3. Let attributeDefinition be the attribute definition of element's content attribute whose namespace is null and local
name is the reflected content attribute namep104.

4. Assert: attributeDefinition indicates it is an enumerated attributep76.

5. Assert: the reflected IDL attributep104 is limited to only known valuesp105.

6. Assert: contentAttributeValue corresponds to a state of attributeDefinition.

7. If contentAttributeValue corresponds to a state of attributeDefinition with no associated keyword value, then return
null.

8. Return the canonical keywordp76 for the state of attributeDefinition that contentAttributeValue corresponds to.

• The setter steps are:

1. If the given value is null, then run this's delete the content attributep104.

This results in somewhat redundant data structures for ElementInternalsp771 objects as their target elementp772 's internal content
attribute mapp774 cannot be directly manipulated and as such reflection is only happening in a single direction. This approach was
nevertheless chosen to make it less error-prone to define IDL attributes that are shared between reflected targetsp103 and benefit
from common API semantics.

Note

105

https://infra.spec.whatwg.org/#map-remove
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#this

2. Otherwise, run this's set the content attributep104 with the given value.

If a reflected IDL attributep104 has the type USVString:

• The getter steps are:

1. Let element be the result of running this's get the elementp104.

2. Let contentAttributeValue be the result of running this's get the content attributep104.

3. Let attributeDefinition be the attribute definition of element's content attribute whose namespace is null and local
name is the reflected content attribute namep104.

4. If attributeDefinition indicates it contains a URL:

1. If contentAttributeValue is null, then return the empty string.

2. Let urlString be the result of encoding-parsing-and-serializing a URLp97 given contentAttributeValue,
relative to element's node document.

3. If urlString is not failure, then return urlString.

5. Return contentAttributeValue, converted to a scalar value string.

• The setter steps are to run this's set the content attributep104 with the given value.

If a reflected IDL attributep104 has the type boolean:

• The getter steps are:

1. Let contentAttributeValue be the result of running this's get the content attributep104.

2. If contentAttributeValue is null, then return false.

3. Return true.

• The setter steps are:

1. If the given value is false, then run this's delete the content attributep104.

2. If the given value is true, then run this's set the content attributep104 with the empty string.

If a reflected IDL attributep104 has the type long, optionally limited to only non-negative numbers and optionally with a default
value defaultValue:

• The getter steps are:

1. Let contentAttributeValue be the result of running this's get the content attributep104.

2. If contentAttributeValue is not null:

1. Let parsedValue be the result of integer parsingp76 contentAttributeValue if the reflected IDL attributep104

is not limited to only non-negative numbersp106; otherwise the result of non-negative integer parsingp77

contentAttributeValue.

2. If parsedValue is not an error and is within the long range, then return parsedValue.

3. If the reflected IDL attributep104 has a default valuep106, then return defaultValue.

4. If the reflected IDL attributep104 is limited to only non-negative numbersp106, then return −1.

5. Return 0.

• The setter steps are:

1. If the reflected IDL attributep104 is limited to only non-negative numbersp106 and the given value is negative, then
throw an "IndexSizeError" DOMException.

This corresponds to the rules for boolean content attributesp75.
Note

106

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#javascript-string-convert
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-long
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-long
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

2. Run this's set the content attributep104 with the given value converted to the shortest possible string representing
the number as a valid integerp76.

If a reflected IDL attributep104 has the type unsigned long, optionally limited to only positive numbers, limited to only positive
numbers with fallback, or clamped to the range [clampedMin, clampedMax], and optionally with a default valuep106 defaultValue:

• The getter steps are:

1. Let contentAttributeValue be the result of running this's get the content attributep104.

2. Let minimum be 0.

3. If the reflected IDL attributep104 is limited to only positive numbersp107 or limited to only positive numbers with
fallbackp107, then set minimum to 1.

4. If the reflected IDL attributep104 is clamped to the rangep107, then set minimum to clampedMin.

5. Let maximum be 2147483647 if the reflected IDL attributep104 is not clamped to the rangep107; otherwise
clampedMax.

6. If contentAttributeValue is not null:

1. Let parsedValue be the result of non-negative integer parsingp77 contentAttributeValue.

2. If parsedValue is not an error and is in the range minimum to maximum, inclusive, then return
parsedValue.

3. If parsedValue is not an error and the reflected IDL attributep104 is clamped to the rangep107:

1. If parsedValue is less than minimum, then return minimum.

2. Return maximum.

7. If the reflected IDL attributep104 has a default valuep106, then return defaultValue.

8. Return minimum.

• The setter steps are:

1. If the reflected IDL attributep104 is limited to only positive numbersp107 and the given value is 0, then throw an
"IndexSizeError" DOMException.

2. Let minimum be 0.

3. If the reflected IDL attributep104 is limited to only positive numbersp107 or limited to only positive numbers with
fallbackp107, then set minimum to 1.

4. Let newValue be minimum.

5. If the reflected IDL attributep104 has a default valuep106, then set newValue to defaultValue.

6. If the given value is in the range minimum to 2147483647, inclusive, then set newValue to it.

7. Run this's set the content attributep104 with newValue converted to the shortest possible string representing the
number as a valid non-negative integerp77.

If a reflected IDL attributep104 has the type double, optionally limited to only positive numbersp107 and optionally with a default
valuep106 defaultValue:

• The getter steps are:

1. Let contentAttributeValue be the result of running this's get the content attributep104.

2. If contentAttributeValue is not null:

1. Let parsedValue be the result of floating-point number parsingp78 contentAttributeValue.

Clamped to the rangep107 has no effect on the setter steps.
Note

107

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-double
https://webidl.spec.whatwg.org/#this

2. If parsedValue is not an error and is greater than 0, then return parsedValue.

3. If parsedValue is not an error and the reflected IDL attributep104 is not limited to only positive
numbersp107, then return parsedValue.

3. If the reflected IDL attributep104 has a default valuep106, then return defaultValue.

4. Return 0.

• The setter steps are:

1. If the reflected IDL attributep104 is limited to only positive numbersp107 and the given value is not greater than 0,
then return.

2. Run this's set the content attributep104 with the given value, converted to the best representation of the number as
a floating-point numberp78.

If a reflected IDL attributep104 has the type DOMTokenList, then its getter steps are to return a DOMTokenList object whose associated
element is this and associated attribute's local name is the reflected content attribute namep104. Specification authors cannot use
support ElementInternalsp104 for IDL attributes of this type.

If a reflected IDL attributep104 has the type T?, where T is either Element or an interface that inherits from Element, then with attr
being the reflected content attribute namep104:

• Its reflected targetp103 has an explicitly set attr-element, which is a weak reference to an element or null. It is initially null.

• Its reflected targetp103 reflectedTarget has a get the attr-associated element algorithm, that runs these steps:

1. Let element be the result of running reflectedTarget's get the elementp104.

2. Let contentAttributeValue be the result of running reflectedTarget's get the content attributep104.

3. If reflectedTarget's explicitly set attr-elementp108 is not null:

1. If reflectedTarget's explicitly set attr-elementp108 is a descendant of any of element's shadow-including
ancestors, then return reflectedTarget's explicitly set attr-elementp108.

2. Return null.

4. Otherwise, if contentAttributeValue is not null, return the first element candidate, in tree order, that meets the
following criteria:

▪ candidate's root is the same as element's root;

▪ candidate's ID is contentAttributeValue; and

▪ candidate implements T.

If no such element exists, then return null.

5. Return null.

• The getter steps are to return the result of running this's get the attr-associated elementp108.

• The setter steps are:

1. If the given value is null, then:

1. Set this's explicitly set attr-elementp108 to null.

2. Run this's delete the content attributep104.

3. Return.

2. Run this's set the content attributep104 with the empty string.

3. Set this's explicitly set attr-elementp108 to a weak reference to the given value.

The values Infinity and Not-a-Number (NaN) values throw an exception on setting, as defined in Web IDL. [WEBIDL]p1483

Note

108

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#interface-domtokenlist
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-ancestor
https://dom.spec.whatwg.org/#concept-shadow-including-ancestor
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-id
https://webidl.spec.whatwg.org/#implements
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

• For element reflected targetsp103 only: the following attribute change steps, given element, localName, oldValue, value, and
namespace, are used to synchronize between the content attribute and the IDL attribute:

1. If localName is not attr or namespace is not null, then return.

2. Set element's explicitly set attr-elementp108 to null.

If a reflected IDL attributep104 has the type FrozenArray<T>?, where T is either Element or an interface that inherits from Element,
then with attr being the reflected content attribute namep104:

• Its reflected targetp103 has an explicitly set attr-elements, which is either a list of weak references to elements or null. It is
initially null.

• Its reflected targetp103 has a cached attr-associated elements, which is a list of elements. It is initially « ».

• Its reflected targetp103 has a cached attr-associated elements object, which is a FrozenArray<T>?. It is initially null.

• Its reflected targetp103 reflectedTarget has a get the attr-associated elements algorithm, which runs these steps:

1. Let elements be an empty list.

2. Let element be the result of running reflectedTarget's get the elementp104.

3. If reflectedTarget's explicitly set attr-elementsp109 is not null:

1. For each attrElement in reflectedTarget's explicitly set attr-elementsp109:

1. If attrElement is not a descendant of any of element's shadow-including ancestors, then
continue.

2. Append attrElement to elements.

4. Otherwise:

1. Let contentAttributeValue be the result of running reflectedTarget's get the content attributep104.

2. If contentAttributeValue is null, then return null.

3. Let tokens be contentAttributeValue, split on ASCII whitespace.

4. For each id of tokens:

1. Let candidate be the first element, in tree order, that meets the following criteria:

▪ candidate's root is the same as element's root;

▪ candidate's ID is id; and

▪ candidate implements T.

If no such element exists, then continue.

2. Append candidate to elements.

5. Return elements.

• The getter steps are:

1. Let elements be the result of running this's get the attr-associated elementsp109.

2. If the contents of elements is equal to the contents of this's cached attr-associated elementsp109, then return this's
cached attr-associated elements objectp109.

3. Let elementsAsFrozenArray be elements, converted to a FrozenArray<T>?.

4. Set this's cached attr-associated elementsp109 to elements.

5. Set this's cached attr-associated elements objectp109 to elementsAsFrozenArray.

Reflected IDL attributesp104 of this type are strongly encouraged to have their identifier end in "Element" for consistency.
Note

109

https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-ancestor
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-id
https://webidl.spec.whatwg.org/#implements
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

6. Return elementsAsFrozenArray.

• The setter steps are:

1. If the given value is null:

1. Set this's explicitly set attr-elementsp109 to null.

2. Run this's delete the content attributep104.

3. Return.

2. Run this's set the content attributep104 with the empty string.

3. Let elements be an empty list.

4. For each element in the given value:

1. Append a weak reference to element to elements.

5. Set this's explicitly set attr-elementsp109 to elements.

• For element reflected targetsp103 only: the following attribute change steps, given element, localName, oldValue, value, and
namespace, are used to synchronize between the content attribute and the IDL attribute:

1. If localName is not attr or namespace is not null, then return.

2. Set element's explicitly set attr-elementsp109 to null.

Reflectionp104 is primarily about improving web developer ergonomics by giving them typed access to content attributes through
reflected IDL attributesp104. The ultimate source of truth, which the web platform builds upon, is the content attributes themselves.
That is, specification authors must not use the reflected IDL attributep104 getter or setter steps, but instead must use the content
attribute presence and value. (Or an abstraction on top, such as the state of an enumerated attributep76.)

Two important exceptions to this are reflected IDL attributesp104 whose type is one of the following:

• T?, where T is either Element or an interface that inherits from Element

• FrozenArray<T>?, where T is either Element or an interface that inherits from Element

For those, specification authors must use the reflected targetp103 's get the attr-associated elementp108 and get the attr-associated
elementsp109, respectively. The content attribute presence and value must not be used as they cannot be fully synchronized with the
reflected IDL attributep104.

A reflected targetp103 's explicitly set attr-elementp108, explicitly set attr-elementsp109, cached attr-associated elementsp109, and cached
attr-associated elements objectp109 are to be treated as internal implementation details and not to be built upon.

The HTMLFormControlsCollectionp112 and HTMLOptionsCollectionp114 interfaces are collections derived from the HTMLCollection
interface. The HTMLAllCollectionp111 interface is a collection, but is not so derived.

This extra caching layer is necessary to preserve the invariant that element.reflectedElements ===
element.reflectedElements.

Note

Reflected IDL attributesp104 of this type are strongly encouraged to have their identifier end in "Elements" for consistency.
Note

2.6.2 Using reflect in specifications §p11

0

2.6.3 Collections §p11

0

110

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-collection

The HTMLAllCollectionp111 interface is used for the legacy document.allp1443 attribute. It operates similarly to HTMLCollection; the
main differences are that it allows a staggering variety of different (ab)uses of its methods to all end up returning something, and that
it can be called as a function as an alternative to property access.

Objects that implement the HTMLAllCollectionp111 interface are legacy platform objects with an additional [[Call]] internal method
described in the section belowp112. They also have an [[IsHTMLDDA]] internal slot.

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface HTMLAllCollection {
readonly attribute unsigned long length;
getter Element (unsigned long index);
getter (HTMLCollection or Element)? namedItem(DOMString name);
(HTMLCollection or Element)? item(optional DOMString nameOrIndex);

// Note: HTMLAllCollection objects have a custom [[Call]] internal method and an [[IsHTMLDDA]]
internal slot.
};

The object's supported property indices are as defined for HTMLCollection objects.

The supported property names consist of the non-empty values of all the idp154 attributes of all the elements represented by the
collection, and the non-empty values of all the name attributes of all the "all"-named elementsp112 represented by the collection, in tree
order, ignoring later duplicates, with the idp154 of an element preceding its name if it contributes both, they differ from each other, and
neither is the duplicate of an earlier entry.

The length getter steps are to return the number of nodes represented by the collection.

The indexed property getter must return the result of getting the "all"-indexed elementp112 from this given the passed index.

The namedItem(name) method steps are to return the result of getting the "all"-named element(s)p112 from this given name.

The item(nameOrIndex) method steps are:

1. If nameOrIndex was not provided, return null.

2. Return the result of getting the "all"-indexed or named element(s)p112 from this, given nameOrIndex.

2.6.3.1 The HTMLAllCollectionp111 interface §p11

1

All HTMLAllCollectionp111 objects are rooted at a Documentp130 and have a filter that matches all elements, so the elements
represented by the collection of an HTMLAllCollectionp111 object consist of all the descendant elements of the root Documentp130.

Note

Objects that implement the HTMLAllCollectionp111 interface have several unusual behaviors, due of the fact that they have an
[[IsHTMLDDA]] internal slot:

• The ToBoolean abstract operation in JavaScript returns false when given objects implementing the
HTMLAllCollectionp111 interface.

• The IsLooselyEqual abstract operation, when given objects implementing the HTMLAllCollectionp111 interface, returns
true when compared to the undefined and null values. (Comparisons using the IsStrictlyEqual abstract operation, and
IsLooselyEqual comparisons to other values such as strings or objects, are unaffected.)

• The typeof operator in JavaScript returns the string "undefined" when applied to objects implementing the
HTMLAllCollectionp111 interface.

These special behaviors are motivated by a desire for compatibility with two classes of legacy content: one that uses the presence
of document.allp1443 as a way to detect legacy user agents, and one that only supports those legacy user agents and uses the
document.allp1443 object without testing for its presence first. [JAVASCRIPT]p1479

Note

IDL

111

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://webidl.spec.whatwg.org/#dfn-legacy-platform-object
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://tc39.es/ecma262/#sec-toboolean
https://tc39.es/ecma262/#sec-islooselyequal
https://tc39.es/ecma262/#sec-isstrictlyequal
https://tc39.es/ecma262/#sec-typeof-operator
https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-element
https://tc39.es/ecma262/#sec-IsHTMLDDA-internal-slot
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#represented-by-the-collection
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The following elements are "all"-named elements: ap257, buttonp566, embedp399, formp514, framep1433, framesetp1433, iframep390, imgp346,
inputp520, mapp470, metap189, objectp402, selectp568, and textareap579

To get the "all"-indexed element from an HTMLAllCollectionp111 collection given an index index, return the indexth element in
collection, or null if there is no such indexth element.

To get the "all"-named element(s) from an HTMLAllCollectionp111 collection given a name name, perform the following steps:

1. If name is the empty string, return null.

2. Let subCollection be an HTMLCollection object rooted at the same Documentp130 as collection, whose filter matches only
elements that are either:

◦ "all"-named elementsp112 with a name attribute equal to name, or,

◦ elements with an ID equal to name.

3. If there is exactly one element in subCollection, then return that element.

4. Otherwise, if subCollection is empty, return null.

5. Otherwise, return subCollection.

To get the "all"-indexed or named element(s) from an HTMLAllCollectionp111 collection given nameOrIndex:

1. If nameOrIndex, converted to a JavaScript String value, is an array index property name, return the result of getting the "all"-
indexed elementp112 from collection given the number represented by nameOrIndex.

2. Return the result of getting the "all"-named element(s)p112 from collection given nameOrIndex.

1. If argumentsList's size is zero, or if argumentsList[0] is undefined, return null.

2. Let nameOrIndex be the result of converting argumentsList[0] to a DOMString.

3. Let result be the result of getting the "all"-indexed or named element(s)p112 from this HTMLAllCollectionp111 given
nameOrIndex.

4. Return the result of converting result to an ECMAScript value.

The HTMLFormControlsCollectionp112 interface is used for collections of listed elementsp513 in formp514 elements.

[Exposed=Window]
interface HTMLFormControlsCollection : HTMLCollection {

// inherits length and item()
getter (RadioNodeList or Element)? namedItem(DOMString name); // shadows inherited namedItem()

};

[Exposed=Window]
interface RadioNodeList : NodeList {

attribute DOMString value;
};

2.6.3.1.1 [[Call]] (thisArgument, argumentsList) §p11

2

The thisArgument is ignored, and thus code such as Function.prototype.call.call(document.all, null, "x") will still search
for elements. (document.all.call does not exist, since document.all does not inherit from Function.prototype.)

Note

2.6.3.2 The HTMLFormControlsCollectionp112 interface §p11

2

IDL

✔ MDN

112

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-id
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#es-type-mapping
https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#interface-nodelist

The object's supported property indices are as defined for HTMLCollection objects.

The supported property names consist of the non-empty values of all the idp154 and namep599 attributes of all the elements represented
by the collection, in tree order, ignoring later duplicates, with the idp154 of an element preceding its namep599 if it contributes both, they
differ from each other, and neither is the duplicate of an earlier entry.

The namedItem(name) method must act according to the following algorithm:

1. If name is the empty string, return null and stop the algorithm.

2. If, at the time the method is called, there is exactly one node in the collection that has either an idp154 attribute or a namep599

attribute equal to name, then return that node and stop the algorithm.

3. Otherwise, if there are no nodes in the collection that have either an idp154 attribute or a namep599 attribute equal to name,
then return null and stop the algorithm.

4. Otherwise, create a new RadioNodeListp112 object representing a livep47 view of the HTMLFormControlsCollectionp112

object, further filtered so that the only nodes in the RadioNodeListp112 object are those that have either an idp154 attribute or
a namep599 attribute equal to name. The nodes in the RadioNodeListp112 object must be sorted in tree order.

5. Return that RadioNodeListp112 object.

Members of the RadioNodeListp112 interface inherited from the NodeList interface must behave as they would on a NodeList object.

The value IDL attribute on the RadioNodeListp112 object, on getting, must return the value returned by running the following steps:

1. Let element be the first element in tree order represented by the RadioNodeListp112 object that is an inputp520 element
whose typep523 attribute is in the Radio Buttonp543 state and whose checkednessp597 is true. Otherwise, let it be null.

2. If element is null, return the empty string.

3. If element is an element with no valuep525 attribute, return the string "on".

4. Otherwise, return the value of element's valuep525 attribute.

On setting, the valuep113 IDL attribute must run the following steps:

1. If the new value is the string "on": let element be the first element in tree order represented by the RadioNodeListp112 object
that is an inputp520 element whose typep523 attribute is in the Radio Buttonp543 state and whose valuep525 content attribute is
either absent, or present and equal to the new value, if any. If no such element exists, then instead let element be null.

Otherwise: let element be the first element in tree order represented by the RadioNodeListp112 object that is an inputp520

element whose typep523 attribute is in the Radio Buttonp543 state and whose valuep525 content attribute is present and equal

collection.length
Returns the number of elements in collection.

element = collection.item(index)
element = collection[index]

Returns the item at index index in collection. The items are sorted in tree order.

element = collection.namedItemp113(name)
radioNodeList = collection.namedItemp113(name)
element = collection[name]
radioNodeList = collection[name]

Returns the item with ID or namep599 name from collection.
If there are multiple matching items, then a RadioNodeListp112 object containing all those elements is returned.

radioNodeList.valuep113

Returns the value of the first checked radio button represented by radioNodeList.

radioNodeList.valuep113 = value
Checks the first radio button represented by radioNodeList that has value value.

For web developers (non-normative)

✔ MDN

113

https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

to the new value, if any. If no such element exists, then instead let element be null.

2. If element is not null, then set its checkednessp597 to true.

The HTMLOptionsCollectionp114 interface is used for collections of optionp577 elements. It is always rooted on a selectp568 element
and has attributes and methods that manipulate that element's descendants.

[Exposed=Window]
interface HTMLOptionsCollection : HTMLCollection {

// inherits item(), namedItem()
[CEReactions] attribute unsigned long length; // shadows inherited length
[CEReactions] setter undefined (unsigned long index, HTMLOptionElement? option);
[CEReactions] undefined add((HTMLOptionElement or HTMLOptGroupElement) element, optional (HTMLElement

or long)? before = null);
[CEReactions] undefined remove(long index);
attribute long selectedIndex;

};

2.6.3.3 The HTMLOptionsCollectionp114 interface §p11

4

collection.lengthp115

Returns the number of elements in collection.

collection.lengthp115 = value
When set to a smaller number than the existing length, truncates the number of optionp577 elements in the container
corresponding to collection.
When set to a greater number than the existing length, if that number is less than or equal to 100000, adds new blank
optionp577 elements to the container corresponding to collection.

element = collection.item(index)
element = collection[index]

Returns the item at index index in collection. The items are sorted in tree order.

collection[index] = element
When index is a greater number than the number of items in collection, adds new blank optionp577 elements in the
corresponding container.
When set to null, removes the item at index index from collection.
When set to an optionp577 element, adds or replaces it at index index in collection.

element = collection.namedItem(name)
element = collection[name]

Returns the item with ID or namep1427 name from collection.
If there are multiple matching items, then the first is returned.

collection.addp115(element[, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that number, or an element from
collection, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.
Throws a "HierarchyRequestError" DOMException if element is an ancestor of the element into which it is to be inserted.

collection.removep116(index)
Removes the item with index index from collection.

collection.selectedIndexp116

Returns the index of the first selected item, if any, or −1 if there is no selected item.

For web developers (non-normative)

IDL

✔ MDN

114

https://dom.spec.whatwg.org/#concept-collection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#dom-htmlcollection-length
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://dom.spec.whatwg.org/#concept-id
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException

The object's supported property indices are as defined for HTMLCollection objects.

The length getter steps are to return the number of nodes represented by the collection.

The lengthp115 setter steps are:

1. Let current be the number of nodes represented by the collection.

2. If the given value is greater than current, then:

1. If the given value is greater than 100,000, then return.

2. Let n be value − current.

3. Append n new optionp577 elements with no attributes and no child nodes to the selectp568 element on which this is
rooted.

3. If the given value is less than current, then:

1. Let n be current − value.

2. Remove the last n nodes in the collection from their parent nodes.

The supported property names consist of the non-empty values of all the idp154 and namep1427 attributes of all the elements represented
by the collection, in tree order, ignoring later duplicates, with the idp154 of an element preceding its namep1427 if it contributes both, they
differ from each other, and neither is the duplicate of an earlier entry.

When the user agent is to set the value of a new indexed property or set the value of an existing indexed property for a given property
index index to a new value value, it must run the following algorithm:

1. If value is null, invoke the steps for the removep116 method with index as the argument, and return.

2. Let length be the number of nodes represented by the collection.

3. Let n be index minus length.

4. If n is greater than zero, then append a DocumentFragment consisting of n-1 new optionp577 elements with no attributes and
no child nodes to the selectp568 element on which the HTMLOptionsCollectionp114 is rooted.

5. If n is greater than or equal to zero, append value to the selectp568 element. Otherwise, replace the indexth element in the
collection by value.

The add(element, before) method must act according to the following algorithm:

1. If element is an ancestor of the selectp568 element on which the HTMLOptionsCollectionp114 is rooted, then throw a
"HierarchyRequestError" DOMException.

2. If before is an element, but that element isn't a descendant of the selectp568 element on which the
HTMLOptionsCollectionp114 is rooted, then throw a "NotFoundError" DOMException.

3. If element and before are the same element, then return.

4. If before is a node, then let reference be that node. Otherwise, if before is an integer, and there is a beforeth node in the
collection, let reference be that node. Otherwise, let reference be null.

5. If reference is not null, let parent be the parent node of reference. Otherwise, let parent be the selectp568 element on which
the HTMLOptionsCollectionp114 is rooted.

6. Pre-insert element into parent node before reference.

collection.selectedIndexp116 = index
Changes the selection to the optionp577 element at index index in collection.

Setting lengthp115 never removes or adds any optgroupp576 elements, and never adds new children to existing optgroupp576

elements (though it can remove children from them).

Note

115

https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-tree-order
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-a-new-indexed-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-an-existing-indexed-property
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-replace
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notfounderror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-pre-insert

The remove(index) method must act according to the following algorithm:

1. If the number of nodes represented by the collection is zero, return.

2. If index is not a number greater than or equal to 0 and less than the number of nodes represented by the collection, return.

3. Let element be the indexth element in the collection.

4. Remove element from its parent node.

The selectedIndex IDL attribute must act like the identically named attribute on the selectp568 element on which the
HTMLOptionsCollectionp114 is rooted

The DOMStringListp116 interface is a non-fashionable retro way of representing a list of strings.

[Exposed=(Window,Worker)]
interface DOMStringList {

readonly attribute unsigned long length;
getter DOMString? item(unsigned long index);
boolean contains(DOMString string);

};

Each DOMStringListp116 object has an associated list.

The DOMStringListp116 interface supports indexed properties. The supported property indices are the indices of this's associated list.

The length getter steps are to return this's associated list's size.

The item(index) method steps are to return the indexth item in this's associated list, or null if index plus one is greater than this's
associated list's size.

The contains(string) method steps are to return true if this's associated list contains string, and false otherwise.

To support passing JavaScript objects, including platform objects, across realm boundaries, this specification defines the following
infrastructure for serializing and deserializing objects, including in some cases transferring the underlying data instead of copying it.
Collectively this serialization/deserialization process is known as "structured cloning", although most APIs perform separate
serialization and deserialization steps. (With the notable exception being the structuredClone()p129 method.)

This section uses the terminology and typographic conventions from the JavaScript specification. [JAVASCRIPT]p1479

New APIs must use sequence<DOMString> or equivalent rather than DOMStringListp116.
⚠Warning!

strings.lengthp116

Returns the number of strings in strings.

strings[index]
strings.itemp116(index)

Returns the string with index index from strings.

strings.containsp116(string)
Returns true if strings contains string, and false otherwise.

For web developers (non-normative)

2.7 Safe passing of structured data §p11

6

IDL

2.6.4 The DOMStringListp116 interface §p11

6

✔ MDN

✔ MDN

✔ MDN

✔ MDN

116

https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#represented-by-the-collection
https://infra.spec.whatwg.org/#list
https://webidl.spec.whatwg.org/#dfn-support-indexed-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-get-the-indices
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-code-realms

Serializable objectsp117 support being serialized, and later deserialized, in a way that is independent of any given realm. This allows
them to be stored on disk and later restored, or cloned across agent and even agent cluster boundaries.

Not all objects are serializable objectsp117, and not all aspects of objects that are serializable objectsp117 are necessarily preserved when
they are serialized.

Platform objects can be serializable objectsp117 if their primary interface is decorated with the [Serializable] IDL extended attribute.
Such interfaces must also define the following algorithms:

serialization steps, taking a platform object value, a Record serialized, and a boolean forStorage
A set of steps that serializes the data in value into fields of serialized. The resulting data serialized into serialized must be
independent of any realm.

These steps may throw an exception if serialization is not possible.

These steps may perform a sub-serializationp122 to serialize nested data structures. They should not call StructuredSerializep122

directly, as doing so will omit the important memory argument.

The introduction of these steps should omit mention of the forStorage argument if it is not relevant to the algorithm.

deserialization steps, taking a Record serialized, a platform object value, and a realm targetRealm
A set of steps that deserializes the data in serialized, using it to set up value as appropriate. value will be a newly-created instance
of the platform object type in question, with none of its internal data set up; setting that up is the job of these steps.

These steps may throw an exception if deserialization is not possible.

These steps may perform a sub-deserializationp125 to deserialize nested data structures. They should not call
StructuredDeserializep122 directly, as doing so will omit the important targetRealm and memory arguments.

It is up to the definition of individual platform objects to determine what data is serialized and deserialized by these steps. Typically the
steps are very symmetric.

The [Serializable]p117 extended attribute must take no arguments, and must only appear on an interface. It must not appear more
than once on an interface.

For a given platform object, only the object's primary interface is considered during the (de)serialization process. Thus, if inheritance is
involved in defining the interface, each [Serializable]p117-annotated interface in the inheritance chain needs to define standalone
serialization stepsp117 and deserialization stepsp117, including taking into account any important data that might come from inherited
interfaces.

Let's say we were defining a platform object Person, which had associated with it two pieces of associated data:

• a name value, which is a string; and

• a best friend value, which is either another Person instance or null.

We could then define Person instances to be serializable objectsp117 by annotating the Person interface with the
[Serializable]p117 extended attribute, and defining the following accompanying algorithms:

serialization stepsp117

1. Set serialized.[[Name]] to value's associated name value.

2. Let serializedBestFriend be the sub-serializationp122 of value's associated best friend value.

3. Set serialized.[[BestFriend]] to serializedBestFriend.

deserialization stepsp117

1. Set value's associated name value to serialized.[[Name]].

2. Let deserializedBestFriend be the sub-deserializationp125 of serialized.[[BestFriend]].

Example

2.7.1 Serializable objects §p11

7

MDN

117

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://webidl.spec.whatwg.org/#dfn-extended-attribute
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-code-realms
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://webidl.spec.whatwg.org/#dfn-extended-attribute

Objects defined in the JavaScript specification are handled by the StructuredSerializep122 abstract operation directly.

Transferable objectsp118 support being transferred across agents. Transferring is effectively recreating the object while sharing a
reference to the underlying data and then detaching the object being transferred. This is useful to transfer ownership of expensive
resources. Not all objects are transferable objectsp118 and not all aspects of objects that are transferable objectsp118 are necessarily
preserved when transferred.

Platform objects can be transferable objectsp118 if their primary interface is decorated with the [Transferable] IDL extended attribute.
Such interfaces must also define the following algorithms:

transfer steps, taking a platform object value and a Record dataHolder
A set of steps that transfers the data in value into fields of dataHolder. The resulting data held in dataHolder must be independent
of any realm.

These steps may throw an exception if transferral is not possible.

transfer-receiving steps, taking a Record dataHolder and a platform object value
A set of steps that receives the data in dataHolder, using it to set up value as appropriate. value will be a newly-created instance of
the platform object type in question, with none of its internal data set up; setting that up is the job of these steps.

These steps may throw an exception if it is not possible to receive the transfer.

It is up to the definition of individual platform objects to determine what data is transferred by these steps. Typically the steps are very
symmetric.

The [Transferable]p118 extended attribute must take no arguments, and must only appear on an interface. It must not appear more
than once on an interface.

For a given platform object, only the object's primary interface is considered during the transferring process. Thus, if inheritance is
involved in defining the interface, each [Transferable]p118-annotated interface in the inheritance chain needs to define standalone
transfer stepsp118 and transfer-receiving stepsp118, including taking into account any important data that might come from inherited
interfaces.

Platform objects that are transferable objectsp118 have a [[Detached]] internal slot. This is used to ensure that once a platform object
has been transferred, it cannot be transferred again.

Objects defined in the JavaScript specification are handled by the StructuredSerializeWithTransferp125 abstract operation directly.

The StructuredSerializeInternalp118 abstract operation takes as input a JavaScript value value and serializes it to a realm-independent
form, represented here as a Record. This serialized form has all the information necessary to later deserialize into a new JavaScript

3. Set value's associated best friend value to deserializedBestFriend.

Originally, this specification defined the concept of "cloneable objects", which could be cloned from one realm to another. However,
to better specify the behavior of certain more complex situations, the model was updated to make the serialization and
deserialization explicit.

Note

Transferring is an irreversible and non-idempotent operation. Once an object has been transferred, it cannot be transferred, or
indeed used, again.

Note

2.7.2 Transferable objects §p11

8

2.7.3 StructuredSerializeInternal (value, forStorage [, memory]) §p11

8

118

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://webidl.spec.whatwg.org/#dfn-extended-attribute
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-list-and-record-specification-type

value in a different realm.

This process can throw an exception, for example when trying to serialize un-serializable objects.

1. If memory was not supplied, let memory be an empty map.

2. If memory[value] exists, then return memory[value].

3. Let deep be false.

4. If value is undefined, null, a Boolean, a Number, a BigInt, or a String, then return { [[Type]]: "primitive", [[Value]]: value }.

5. If value is a Symbol, then throw a "DataCloneError" DOMException.

6. Let serialized be an uninitialized value.

7. If value has a [[BooleanData]] internal slot, then set serialized to { [[Type]]: "Boolean", [[BooleanData]]:
value.[[BooleanData]] }.

8. Otherwise, if value has a [[NumberData]] internal slot, then set serialized to { [[Type]]: "Number", [[NumberData]]:
value.[[NumberData]] }.

9. Otherwise, if value has a [[BigIntData]] internal slot, then set serialized to { [[Type]]: "BigInt", [[BigIntData]]:
value.[[BigIntData]] }.

10. Otherwise, if value has a [[StringData]] internal slot, then set serialized to { [[Type]]: "String", [[StringData]]:
value.[[StringData]] }.

11. Otherwise, if value has a [[DateValue]] internal slot, then set serialized to { [[Type]]: "Date", [[DateValue]]:
value.[[DateValue]] }.

12. Otherwise, if value has a [[RegExpMatcher]] internal slot, then set serialized to { [[Type]]: "RegExp", [[RegExpMatcher]]:
value.[[RegExpMatcher]], [[OriginalSource]]: value.[[OriginalSource]], [[OriginalFlags]]: value.[[OriginalFlags]] }.

13. Otherwise, if value has an [[ArrayBufferData]] internal slot, then:

1. If IsSharedArrayBuffer(value) is true, then:

1. If the current settings objectp1083 's cross-origin isolated capabilityp1076 is false, then throw a
"DataCloneError" DOMException.

2. If forStorage is true, then throw a "DataCloneError" DOMException.

3. If value has an [[ArrayBufferMaxByteLength]] internal slot, then set serialized to { [[Type]]:
"GrowableSharedArrayBuffer", [[ArrayBufferData]]: value.[[ArrayBufferData]],
[[ArrayBufferByteLengthData]]: value.[[ArrayBufferByteLengthData]], [[ArrayBufferMaxByteLength]]:
value.[[ArrayBufferMaxByteLength]], [[AgentCluster]]: the surrounding agent's agent cluster }.

4. Otherwise, set serialized to { [[Type]]: "SharedArrayBuffer", [[ArrayBufferData]]:
value.[[ArrayBufferData]], [[ArrayBufferByteLength]]: value.[[ArrayBufferByteLength]], [[AgentCluster]]:
the surrounding agent's agent cluster }.

2. Otherwise:

1. If IsDetachedBuffer(value) is true, then throw a "DataCloneError" DOMException.

2. Let size be value.[[ArrayBufferByteLength]].

3. Let dataCopy be ? CreateByteDataBlock(size).

The purpose of the memory map is to avoid serializing objects twice. This ends up preserving cycles and the identity of
duplicate objects in graphs.

Note

This check is only needed when serializing (and not when deserializing) as the cross-origin isolated
capabilityp1076 cannot change over time and a SharedArrayBuffer cannot leave an agent cluster.

Note

119

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists
https://tc39.es/ecma262/#sec-ecmascript-language-types-boolean-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-number-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-bigint-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.es/ecma262/#sec-ecmascript-language-types-symbol-type
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-issharedarraybuffer
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agent-clusters
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-createbytedatablock

4. Perform CopyDataBlockBytes(dataCopy, 0, value.[[ArrayBufferData]], 0, size).

5. If value has an [[ArrayBufferMaxByteLength]] internal slot, then set serialized to { [[Type]]:
"ResizableArrayBuffer", [[ArrayBufferData]]: dataCopy, [[ArrayBufferByteLength]]: size,
[[ArrayBufferMaxByteLength]]: value.[[ArrayBufferMaxByteLength]] }.

6. Otherwise, set serialized to { [[Type]]: "ArrayBuffer", [[ArrayBufferData]]: dataCopy,
[[ArrayBufferByteLength]]: size }.

14. Otherwise, if value has a [[ViewedArrayBuffer]] internal slot, then:

1. If IsArrayBufferViewOutOfBounds(value) is true, then throw a "DataCloneError" DOMException.

2. Let buffer be the value of value's [[ViewedArrayBuffer]] internal slot.

3. Let bufferSerialized be ? StructuredSerializeInternalp118(buffer, forStorage, memory).

4. Assert: bufferSerialized.[[Type]] is "ArrayBuffer", "ResizableArrayBuffer", "SharedArrayBuffer", or
"GrowableSharedArrayBuffer".

5. If value has a [[DataView]] internal slot, then set serialized to { [[Type]]: "ArrayBufferView", [[Constructor]]:
"DataView", [[ArrayBufferSerialized]]: bufferSerialized, [[ByteLength]]: value.[[ByteLength]], [[ByteOffset]]:
value.[[ByteOffset]] }.

6. Otherwise:

1. Assert: value has a [[TypedArrayName]] internal slot.

2. Set serialized to { [[Type]]: "ArrayBufferView", [[Constructor]]: value.[[TypedArrayName]],
[[ArrayBufferSerialized]]: bufferSerialized, [[ByteLength]]: value.[[ByteLength]], [[ByteOffset]]:
value.[[ByteOffset]], [[ArrayLength]]: value.[[ArrayLength]] }.

15. Otherwise, if value has [[MapData]] internal slot, then:

1. Set serialized to { [[Type]]: "Map", [[MapData]]: a new empty List }.

2. Set deep to true.

16. Otherwise, if value has [[SetData]] internal slot, then:

1. Set serialized to { [[Type]]: "Set", [[SetData]]: a new empty List }.

2. Set deep to true.

17. Otherwise, if value has an [[ErrorData]] internal slot and value is not a platform object, then:

1. Let name be ? Get(value, "name").

2. If name is not one of "Error", "EvalError", "RangeError", "ReferenceError", "SyntaxError", "TypeError", or "URIError",
then set name to "Error".

3. Let valueMessageDesc be ? value.[[GetOwnProperty]]("message").

4. Let message be undefined if IsDataDescriptor(valueMessageDesc) is false, and ?
ToString(valueMessageDesc.[[Value]]) otherwise.

5. Set serialized to { [[Type]]: "Error", [[Name]]: name, [[Message]]: message }.

6. User agents should attach a serialized representation of any interesting accompanying data which are not yet
specified, notably the stack property, to serialized.

18. Otherwise, if value is an Array exotic object, then:

1. Let valueLenDescriptor be ? OrdinaryGetOwnProperty(value, "length").

This can throw a RangeError exception upon allocation failure.
Note

See the Error Stacks proposal for in-progress work on specifying this data. [JSERRORSTACKS]p1479

Note

120

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://tc39.es/ecma262/#sec-copydatablockbytes
https://tc39.es/proposal-resizablearraybuffer/#sec-isarraybufferviewoutofbounds
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-isdatadescriptor
https://tc39.es/ecma262/#sec-tostring
https://tc39.es/ecma262/#sec-ordinarygetownproperty

2. Let valueLen be valueLenDescriptor.[[Value]].

3. Set serialized to { [[Type]]: "Array", [[Length]]: valueLen, [[Properties]]: a new empty List }.

4. Set deep to true.

19. Otherwise, if value is a platform object that is a serializable objectp117:

1. If value has a [[Detached]]p118 internal slot whose value is true, then throw a "DataCloneError" DOMException.

2. Let typeString be the identifier of the primary interface of value.

3. Set serialized to { [[Type]]: typeString }.

4. Set deep to true.

20. Otherwise, if value is a platform object, then throw a "DataCloneError" DOMException.

21. Otherwise, if IsCallable(value) is true, then throw a "DataCloneError" DOMException.

22. Otherwise, if value has any internal slot other than [[Prototype]], [[Extensible]], or [[PrivateElements]], then throw a
"DataCloneError" DOMException.

23. Otherwise, if value is an exotic object and value is not the %Object.prototype% intrinsic object associated with any realm,
then throw a "DataCloneError" DOMException.

24. Otherwise:

1. Set serialized to { [[Type]]: "Object", [[Properties]]: a new empty List }.

2. Set deep to true.

25. Set memory[value] to serialized.

26. If deep is true, then:

1. If value has a [[MapData]] internal slot, then:

1. Let copiedList be a new empty List.

2. For each Record { [[Key]], [[Value]] } entry of value.[[MapData]]:

1. Let copiedEntry be a new Record { [[Key]]: entry.[[Key]], [[Value]]: entry.[[Value]] }.

2. If copiedEntry.[[Key]] is not the special value empty, append copiedEntry to copiedList.

3. For each Record { [[Key]], [[Value]] } entry of copiedList:

1. Let serializedKey be ? StructuredSerializeInternalp118(entry.[[Key]], forStorage, memory).

2. Let serializedValue be ? StructuredSerializeInternalp118(entry.[[Value]], forStorage, memory).

3. Append { [[Key]]: serializedKey, [[Value]]: serializedValue } to serialized.[[MapData]].

2. Otherwise, if value has a [[SetData]] internal slot, then:

1. Let copiedList be a new empty List.

2. For each entry of value.[[SetData]]:

1. If entry is not the special value empty, append entry to copiedList.

For instance, a [[PromiseState]] or [[WeakMapData]] internal slot.
Example

For instance, a proxy object.
Example

%Object.prototype% will end up being handled via this step and subsequent steps. The end result is that its exoticness is
ignored, and after deserialization the result will be an empty object (not an immutable prototype exotic object).

Note

121

https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-iscallable
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.es/ecma262/#sec-code-realms
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.es/ecma262/#immutable-prototype-exotic-object
https://infra.spec.whatwg.org/#map-set
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append

3. For each entry of copiedList:

1. Let serializedEntry be ? StructuredSerializeInternalp118(entry, forStorage, memory).

2. Append serializedEntry to serialized.[[SetData]].

3. Otherwise, if value is a platform object that is a serializable objectp117, then perform the serialization stepsp117 for
value's primary interface, given value, serialized, and forStorage.

The serialization stepsp117 may need to perform a sub-serialization. This is an operation which takes as input a
value subValue, and returns StructuredSerializeInternalp118(subValue, forStorage, memory). (In other words, a sub-
serializationp122 is a specialization of StructuredSerializeInternalp118 to be consistent within this invocation.)

4. Otherwise, for each key in ! EnumerableOwnProperties(value, key):

1. If ! HasOwnProperty(value, key) is true, then:

1. Let inputValue be ? value.[[Get]](key, value).

2. Let outputValue be ? StructuredSerializeInternalp118(inputValue, forStorage, memory).

3. Append { [[Key]]: key, [[Value]]: outputValue } to serialized.[[Properties]].

27. Return serialized.

1. Return ? StructuredSerializeInternalp118(value, false).

1. Return ? StructuredSerializeInternalp118(value, true).

The StructuredDeserializep122 abstract operation takes as input a Record serialized, which was previously produced by
StructuredSerializep122 or StructuredSerializeForStoragep122, and deserializes it into a new JavaScript value, created in targetRealm.

This process can throw an exception, for example when trying to allocate memory for the new objects (especially ArrayBuffer

It's important to realize that the Records produced by StructuredSerializeInternalp118 might contain "pointers" to other records that
create circular references. For example, when we pass the following JavaScript object into StructuredSerializeInternalp118:

const o = {};
o.myself = o;

it produces the following result:

{
[[Type]]: "Object",
[[Properties]]: «

{
[[Key]]: "myself",
[[Value]]: <a pointer to this whole structure>

}
»

}

Example

2.7.4 StructuredSerialize (value) §p12

2

2.7.5 StructuredSerializeForStorage (value) §p12

2

2.7.6 StructuredDeserialize (serialized, targetRealm [, memory]) §p12

2

122

https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://tc39.es/ecma262/#sec-enumerableownproperties
https://tc39.es/ecma262/#sec-hasownproperty
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type

objects).

1. If memory was not supplied, let memory be an empty map.

2. If memory[serialized] exists, then return memory[serialized].

3. Let deep be false.

4. Let value be an uninitialized value.

5. If serialized.[[Type]] is "primitive", then set value to serialized.[[Value]].

6. Otherwise, if serialized.[[Type]] is "Boolean", then set value to a new Boolean object in targetRealm whose [[BooleanData]]
internal slot value is serialized.[[BooleanData]].

7. Otherwise, if serialized.[[Type]] is "Number", then set value to a new Number object in targetRealm whose [[NumberData]]
internal slot value is serialized.[[NumberData]].

8. Otherwise, if serialized.[[Type]] is "BigInt", then set value to a new BigInt object in targetRealm whose [[BigIntData]] internal
slot value is serialized.[[BigIntData]].

9. Otherwise, if serialized.[[Type]] is "String", then set value to a new String object in targetRealm whose [[StringData]] internal
slot value is serialized.[[StringData]].

10. Otherwise, if serialized.[[Type]] is "Date", then set value to a new Date object in targetRealm whose [[DateValue]] internal
slot value is serialized.[[DateValue]].

11. Otherwise, if serialized.[[Type]] is "RegExp", then set value to a new RegExp object in targetRealm whose [[RegExpMatcher]]
internal slot value is serialized.[[RegExpMatcher]], whose [[OriginalSource]] internal slot value is serialized.[[OriginalSource]],
and whose [[OriginalFlags]] internal slot value is serialized.[[OriginalFlags]].

12. Otherwise, if serialized.[[Type]] is "SharedArrayBuffer", then:

1. If targetRealm's corresponding agent cluster is not serialized.[[AgentCluster]], then throw a "DataCloneError"
DOMException.

2. Otherwise, set value to a new SharedArrayBuffer object in targetRealm whose [[ArrayBufferData]] internal slot
value is serialized.[[ArrayBufferData]] and whose [[ArrayBufferByteLength]] internal slot value is
serialized.[[ArrayBufferByteLength]].

13. Otherwise, if serialized.[[Type]] is "GrowableSharedArrayBuffer", then:

1. If targetRealm's corresponding agent cluster is not serialized.[[AgentCluster]], then throw a "DataCloneError"
DOMException.

2. Otherwise, set value to a new SharedArrayBuffer object in targetRealm whose [[ArrayBufferData]] internal slot
value is serialized.[[ArrayBufferData]], whose [[ArrayBufferByteLengthData]] internal slot value is
serialized.[[ArrayBufferByteLengthData]], and whose [[ArrayBufferMaxByteLength]] internal slot value is
serialized.[[ArrayBufferMaxByteLength]].

14. Otherwise, if serialized.[[Type]] is "ArrayBuffer", then set value to a new ArrayBuffer object in targetRealm whose
[[ArrayBufferData]] internal slot value is serialized.[[ArrayBufferData]], and whose [[ArrayBufferByteLength]] internal slot
value is serialized.[[ArrayBufferByteLength]].

If this throws an exception, catch it, and then throw a "DataCloneError" DOMException.

15. Otherwise, if serialized.[[Type]] is "ResizableArrayBuffer", then set value to a new ArrayBuffer object in targetRealm whose
[[ArrayBufferData]] internal slot value is serialized.[[ArrayBufferData]], whose [[ArrayBufferByteLength]] internal slot value is
serialized.[[ArrayBufferByteLength]], and whose [[ArrayBufferMaxByteLength]] internal slot value is
serialized.[[ArrayBufferMaxByteLength]].

The purpose of the memory map is to avoid deserializing objects twice. This ends up preserving cycles and the identity
of duplicate objects in graphs.

Note

This step might throw an exception if there is not enough memory available to create such an ArrayBuffer object.
Note

123

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists
https://tc39.es/ecma262/#sec-agent-clusters
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-agent-clusters
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException

If this throws an exception, catch it, and then throw a "DataCloneError" DOMException.

16. Otherwise, if serialized.[[Type]] is "ArrayBufferView", then:

1. Let deserializedArrayBuffer be ? StructuredDeserializep122(serialized.[[ArrayBufferSerialized]], targetRealm,
memory).

2. If serialized.[[Constructor]] is "DataView", then set value to a new DataView object in targetRealm whose
[[ViewedArrayBuffer]] internal slot value is deserializedArrayBuffer, whose [[ByteLength]] internal slot value is
serialized.[[ByteLength]], and whose [[ByteOffset]] internal slot value is serialized.[[ByteOffset]].

3. Otherwise, set value to a new typed array object in targetRealm, using the constructor given by
serialized.[[Constructor]], whose [[ViewedArrayBuffer]] internal slot value is deserializedArrayBuffer, whose
[[TypedArrayName]] internal slot value is serialized.[[Constructor]], whose [[ByteLength]] internal slot value is
serialized.[[ByteLength]], whose [[ByteOffset]] internal slot value is serialized.[[ByteOffset]], and whose
[[ArrayLength]] internal slot value is serialized.[[ArrayLength]].

17. Otherwise, if serialized.[[Type]] is "Map", then:

1. Set value to a new Map object in targetRealm whose [[MapData]] internal slot value is a new empty List.

2. Set deep to true.

18. Otherwise, if serialized.[[Type]] is "Set", then:

1. Set value to a new Set object in targetRealm whose [[SetData]] internal slot value is a new empty List.

2. Set deep to true.

19. Otherwise, if serialized.[[Type]] is "Array", then:

1. Let outputProto be targetRealm.[[Intrinsics]].[[%Array.prototype%]].

2. Set value to ! ArrayCreate(serialized.[[Length]], outputProto).

3. Set deep to true.

20. Otherwise, if serialized.[[Type]] is "Object", then:

1. Set value to a new Object in targetRealm.

2. Set deep to true.

21. Otherwise, if serialized.[[Type]] is "Error", then:

1. Let prototype be %Error.prototype%.

2. If serialized.[[Name]] is "EvalError", then set prototype to %EvalError.prototype%p57.

3. If serialized.[[Name]] is "RangeError", then set prototype to %RangeError.prototype%p57.

4. If serialized.[[Name]] is "ReferenceError", then set prototype to %ReferenceError.prototype%p57.

5. If serialized.[[Name]] is "SyntaxError", then set prototype to %SyntaxError.prototype%p57.

6. If serialized.[[Name]] is "TypeError", then set prototype to %TypeError.prototype%p57.

7. If serialized.[[Name]] is "URIError", then set prototype to %URIError.prototype%p57.

8. Let message be serialized.[[Message]].

9. Set value to OrdinaryObjectCreate(prototype, « [[ErrorData]] »).

10. Let messageDesc be PropertyDescriptor{ [[Value]]: message, [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true }.

11. If message is not undefined, then perform ! OrdinaryDefineOwnProperty(value, "message", messageDesc).

12. Any interesting accompanying data attached to serialized should be deserialized and attached to value.

This step might throw an exception if there is not enough memory available to create such an ArrayBuffer object.
Note

124

https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-properties-of-the-array-prototype-object
https://tc39.es/ecma262/#sec-arraycreate
https://tc39.es/ecma262/#sec-properties-of-the-error-prototype-object
https://tc39.es/ecma262/#sec-objectcreate
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-ordinarydefineownproperty

22. Otherwise:

1. Let interfaceName be serialized.[[Type]].

2. If the interface identified by interfaceName is not exposed in targetRealm, then throw a "DataCloneError"
DOMException.

3. Set value to a new instance of the interface identified by interfaceName, created in targetRealm.

4. Set deep to true.

23. Set memory[serialized] to value.

24. If deep is true, then:

1. If serialized.[[Type]] is "Map", then:

1. For each Record { [[Key]], [[Value]] } entry of serialized.[[MapData]]:

1. Let deserializedKey be ? StructuredDeserializep122(entry.[[Key]], targetRealm, memory).

2. Let deserializedValue be ? StructuredDeserializep122(entry.[[Value]], targetRealm, memory).

3. Append { [[Key]]: deserializedKey, [[Value]]: deserializedValue } to value.[[MapData]].

2. Otherwise, if serialized.[[Type]] is "Set", then:

1. For each entry of serialized.[[SetData]]:

1. Let deserializedEntry be ? StructuredDeserializep122(entry, targetRealm, memory).

2. Append deserializedEntry to value.[[SetData]].

3. Otherwise, if serialized.[[Type]] is "Array" or "Object", then:

1. For each Record { [[Key]], [[Value]] } entry of serialized.[[Properties]]:

1. Let deserializedValue be ? StructuredDeserializep122(entry.[[Value]], targetRealm, memory).

2. Let result be ! CreateDataProperty(value, entry.[[Key]], deserializedValue).

3. Assert: result is true.

4. Otherwise:

1. Perform the appropriate deserialization stepsp117 for the interface identified by serialized.[[Type]], given
serialized, value, and targetRealm.

The deserialization stepsp117 may need to perform a sub-deserialization. This is an operation which
takes as input a previously-serialized Record subSerialized, and returns
StructuredDeserializep122(subSerialized, targetRealm, memory). (In other words, a sub-deserializationp125

is a specialization of StructuredDeserializep122 to be consistent within this invocation.)

25. Return value.

1. Let memory be an empty map.

2. For each transferable of transferList:

1. If transferable has neither an [[ArrayBufferData]] internal slot nor a [[Detached]]p118 internal slot, then throw a
"DataCloneError" DOMException.

In addition to how it is used normally by StructuredSerializeInternalp118, in this algorithm memory is also used to ensure
that StructuredSerializeInternalp118 ignores items in transferList, and let us do our own handling instead.

Note

2.7.7 StructuredSerializeWithTransfer (value, transferList) §p12

5

125

https://webidl.spec.whatwg.org/#dfn-exposed
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-createdataproperty
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException

2. If transferable has an [[ArrayBufferData]] internal slot and IsSharedArrayBuffer(transferable) is true, then throw a
"DataCloneError" DOMException.

3. If memory[transferable] exists, then throw a "DataCloneError" DOMException.

4. Set memory[transferable] to { [[Type]]: an uninitialized value }.

3. Let serialized be ? StructuredSerializeInternalp118(value, false, memory).

4. Let transferDataHolders be a new empty List.

5. For each transferable of transferList:

1. If transferable has an [[ArrayBufferData]] internal slot and IsDetachedBuffer(transferable) is true, then throw a
"DataCloneError" DOMException.

2. If transferable has a [[Detached]]p118 internal slot and transferable.[[Detached]]p118 is true, then throw a
"DataCloneError" DOMException.

3. Let dataHolder be memory[transferable].

4. If transferable has an [[ArrayBufferData]] internal slot, then:

1. If transferable has an [[ArrayBufferMaxByteLength]] internal slot, then:

1. Set dataHolder.[[Type]] to "ResizableArrayBuffer".

2. Set dataHolder.[[ArrayBufferData]] to transferable.[[ArrayBufferData]].

3. Set dataHolder.[[ArrayBufferByteLength]] to transferable.[[ArrayBufferByteLength]].

4. Set dataHolder.[[ArrayBufferMaxByteLength]] to transferable.[[ArrayBufferMaxByteLength]].

2. Otherwise:

1. Set dataHolder.[[Type]] to "ArrayBuffer".

2. Set dataHolder.[[ArrayBufferData]] to transferable.[[ArrayBufferData]].

3. Set dataHolder.[[ArrayBufferByteLength]] to transferable.[[ArrayBufferByteLength]].

3. Perform ? DetachArrayBuffer(transferable).

5. Otherwise:

1. Assert: transferable is a platform object that is a transferable objectp118.

2. Let interfaceName be the identifier of the primary interface of transferable.

3. Set dataHolder.[[Type]] to interfaceName.

4. Perform the appropriate transfer stepsp118 for the interface identified by interfaceName, given
transferable and dataHolder.

5. Set transferable.[[Detached]]p118 to true.

6. Append dataHolder to transferDataHolders.

6. Return { [[Serialized]]: serialized, [[TransferDataHolders]]: transferDataHolders }.

transferable is not transferred yet as transferring has side effects and StructuredSerializeInternalp118 needs to
be able to throw first.

Note

Specifications can use the [[ArrayBufferDetachKey]] internal slot to prevent ArrayBuffers from
being detached. This is used in WebAssembly JavaScript Interface, for example. [WASMJS]p1483

Note

126

https://tc39.es/ecma262/#sec-issharedarraybuffer
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-detacharraybuffer
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-primary-interface
https://infra.spec.whatwg.org/#list-append

1. Let memory be an empty map.

2. Let transferredValues be a new empty List.

3. For each transferDataHolder of serializeWithTransferResult.[[TransferDataHolders]]:

1. Let value be an uninitialized value.

2. If transferDataHolder.[[Type]] is "ArrayBuffer", then set value to a new ArrayBuffer object in targetRealm whose
[[ArrayBufferData]] internal slot value is transferDataHolder.[[ArrayBufferData]], and whose
[[ArrayBufferByteLength]] internal slot value is transferDataHolder.[[ArrayBufferByteLength]].

3. Otherwise, if transferDataHolder.[[Type]] is "ResizableArrayBuffer", then set value to a new ArrayBuffer object in
targetRealm whose [[ArrayBufferData]] internal slot value is transferDataHolder.[[ArrayBufferData]], whose
[[ArrayBufferByteLength]] internal slot value is transferDataHolder.[[ArrayBufferByteLength]], and whose
[[ArrayBufferMaxByteLength]] internal slot value is transferDataHolder.[[ArrayBufferMaxByteLength]].

4. Otherwise:

1. Let interfaceName be transferDataHolder.[[Type]].

2. If the interface identified by interfaceName is not exposed in targetRealm, then throw a
"DataCloneError" DOMException.

3. Set value to a new instance of the interface identified by interfaceName, created in targetRealm.

4. Perform the appropriate transfer-receiving stepsp118 for the interface identified by interfaceName given
transferDataHolder and value.

5. Set memory[transferDataHolder] to value.

6. Append value to transferredValues.

4. Let deserialized be ? StructuredDeserializep122(serializeWithTransferResult.[[Serialized]], targetRealm, memory).

5. Return { [[Deserialized]]: deserialized, [[TransferredValues]]: transferredValues }.

Other specifications may use the abstract operations defined here. The following provides some guidance on when each abstract
operation is typically useful, with examples.

StructuredSerializeWithTransferp125

StructuredDeserializeWithTransferp127

Cloning a value to another realm, with a transfer list, but where the target realm is not known ahead of time. In this case the
serialization step can be performed immediately, with the deserialization step delayed until the target realm becomes known.

Analogous to StructuredSerializeWithTransferp125, in addition to how it is used normally by StructuredDeserializep122, in
this algorithm memory is also used to ensure that StructuredDeserializep122 ignores items in
serializeWithTransferResult.[[TransferDataHolders]], and let us do our own handling instead.

Note

In cases where the original memory occupied by [[ArrayBufferData]] is accessible during the deserialization,
this step is unlikely to throw an exception, as no new memory needs to be allocated: the memory occupied by
[[ArrayBufferData]] is instead just getting transferred into the new ArrayBuffer. This could be true, for example,
when both the source and target realms are in the same process.

Note

For the same reason as the previous step, this step is also unlikely to throw an exception.
Note

2.7.8 StructuredDeserializeWithTransfer (serializeWithTransferResult, targetRealm) §p12

7

2.7.9 Performing serialization and transferring from other specifications §p12

7

127

https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-code-realms

StructuredSerializep122

StructuredSerializeForStoragep122

StructuredDeserializep122

Creating a realm-independent snapshot of a given value which can be saved for an indefinite amount of time, and then reified back
into a JavaScript value later, possibly multiple times.

StructuredSerializeForStoragep122 can be used for situations where the serialization is anticipated to be stored in a persistent
manner, instead of passed between realms. It throws when attempting to serialize SharedArrayBuffer objects, since storing shared
memory does not make sense. Similarly, it can throw or possibly have different behavior when given a platform object with custom
serialization stepsp117 when the forStorage argument is true.

In general, call sites may pass in Web IDL values instead of JavaScript values; this is to be understood to perform an implicit conversion
to the JavaScript value before invoking these algorithms.

Call sites that are not invoked as a result of author code synchronously calling into a user agent method must take care to properly
prepare to run scriptp1097 and prepare to run a callbackp1080 before invoking StructuredSerializep122, StructuredSerializeForStoragep122,
or StructuredSerializeWithTransferp125 abstract operations, if they are being performed on arbitrary objects. This is necessary because
the serialization process can invoke author-defined accessors as part of its final deep-serialization steps, and these accessors could call
into operations that rely on the entryp1078 and incumbentp1078 concepts being properly set up.

messagePort.postMessage()p1208 uses this pair of abstract operations, as the destination realm is not known until the
MessagePortp1205 has been shippedp1206.

Example

history.pushState()p946 and history.replaceState()p946 use StructuredSerializeForStoragep122 on author-supplied state
objects, storing them as serialized statep1006 in the appropriate session history entryp1005. Then, StructuredDeserializep122 is used
so that the history.statep946 property can return a clone of the originally-supplied state object.

Example

broadcastChannel.postMessage()p1210 uses StructuredSerializep122 on its input, then uses StructuredDeserializep122 multiple
times on the result to produce a fresh clone for each destination being broadcast to. Note that transferring does not make sense
in multi-destination situations.

Example

Any API for persisting JavaScript values to the filesystem would also use StructuredSerializeForStoragep122 on its input and
StructuredDeserializep122 on its output.

Example

window.postMessage()p1201 performs StructuredSerializeWithTransferp125 on its arguments, but is careful to do so immediately,
inside the synchronous portion of its algorithm. Thus it is able to use the algorithms without needing to prepare to run scriptp1097

and prepare to run a callbackp1080.

Example

In contrast, a hypothetical API that used StructuredSerializep122 to serialize some author-supplied object periodically, directly from a
taskp1124 on the event loopp1123, would need to ensure it performs the appropriate preparations beforehand. As of this time, we
know of no such APIs on the platform; usually it is simpler to perform the serialization ahead of time, as a synchronous
consequence of author code.

Example

For web developers (non-normative)

2.7.10 Structured cloning API §p12

8

128

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#es-type-mapping

The structuredClone(value, options) method steps are:

1. Let serialized be ? StructuredSerializeWithTransferp125(value, options["transferp1205"]).

2. Let deserializeRecord be ? StructuredDeserializeWithTransferp127(serialized, this's relevant realmp1083).

3. Return deserializeRecord.[[Deserialized]].

result = self.structuredClonep129(value[, { transferp1205 }])
Takes the input value and returns a deep copy by performing the structured clone algorithm. Transferable objectsp118 listed in
the transferp1205 array are transferred, not just cloned, meaning that they are no longer usable in the input value.
Throws a "DataCloneError" DOMException if any part of the input value is not serializablep117.

✔ MDN

129

https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

Every XML and HTML document in an HTML UA is represented by a Documentp130 object. [DOM]p1478

The Documentp130 object's URL is defined in DOM. It is initially set when the Documentp130 object is created, but can change during the
lifetime of the Documentp130 object; for example, it changes when the user navigatesp1014 to a fragmentp1021 on the page and when the
pushState()p946 method is called with a new URL. [DOM]p1478

The Documentp130 object's origin is defined in DOM. It is initially set when the Documentp130 object is created, and can change during
the lifetime of the Documentp130 only upon setting document.domainp901. A Documentp130 's origin can differ from the origin of its URL; for
example when a child navigablep992 is createdp992, its active documentp989 's origin is inherited from its parentp989 's active
documentp989 's origin, even though its active documentp989 's URL is about:blankp53. [DOM]p1478

When a Documentp130 is created by a scriptp1084 using the createDocument() or createHTMLDocument() methods, the Documentp130 is
ready for post-load tasksp1359 immediately.

The document's referrer is a string (representing a URL) that can be set when the Documentp130 is created. If it is not explicitly set,
then its value is the empty string.

DOM defines a Document interface, which this specification extends significantly.

enum DocumentReadyState { "loading", "interactive", "complete" };
enum DocumentVisibilityState { "visible", "hidden" };
typedef (HTMLScriptElement or SVGScriptElement) HTMLOrSVGScriptElement;

[LegacyOverrideBuiltIns]
partial interface Document {

static Document parseHTMLUnsafe((TrustedHTML or DOMString) html);

// resource metadata management
[PutForwards=href, LegacyUnforgeable] readonly attribute Location? location;
attribute USVString domain;
readonly attribute USVString referrer;
attribute USVString cookie;
readonly attribute DOMString lastModified;
readonly attribute DocumentReadyState readyState;

// DOM tree accessors
getter object (DOMString name);
[CEReactions] attribute DOMString title;
[CEReactions] attribute DOMString dir;
[CEReactions] attribute HTMLElement? body;
readonly attribute HTMLHeadElement? head;
[SameObject] readonly attribute HTMLCollection images;
[SameObject] readonly attribute HTMLCollection embeds;
[SameObject] readonly attribute HTMLCollection plugins;
[SameObject] readonly attribute HTMLCollection links;
[SameObject] readonly attribute HTMLCollection forms;

3 Semantics, structure, and APIs of HTML documents §p13

0

3.1 Documents §p13

0

Interactive user agents typically expose the Documentp130 object's URL in their user interface. This is the primary
mechanism by which a user can tell if a site is attempting to impersonate another.

⚠Warning!

IDL

3.1.1 The Documentp130 object §p13

0

✔ MDN

130

https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://dom.spec.whatwg.org/#dom-domimplementation-createhtmldocument
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#interface-document
https://svgwg.org/svg2-draft/interact.html#InterfaceSVGScriptElement
https://webidl.spec.whatwg.org/#LegacyOverrideBuiltIns
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

[SameObject] readonly attribute HTMLCollection scripts;
NodeList getElementsByName(DOMString elementName);
readonly attribute HTMLOrSVGScriptElement? currentScript; // classic scripts in a document tree only

// dynamic markup insertion
[CEReactions] Document open(optional DOMString unused1, optional DOMString unused2); // both arguments

are ignored
WindowProxy? open(USVString url, DOMString name, DOMString features);
[CEReactions] undefined close();
[CEReactions] undefined write((TrustedHTML or DOMString)... text);
[CEReactions] undefined writeln((TrustedHTML or DOMString)... text);

// user interaction
readonly attribute WindowProxy? defaultView;
boolean hasFocus();
[CEReactions] attribute DOMString designMode;
[CEReactions] boolean execCommand(DOMString commandId, optional boolean showUI = false, optional

DOMString value = "");
boolean queryCommandEnabled(DOMString commandId);
boolean queryCommandIndeterm(DOMString commandId);
boolean queryCommandState(DOMString commandId);
boolean queryCommandSupported(DOMString commandId);
DOMString queryCommandValue(DOMString commandId);
readonly attribute boolean hidden;
readonly attribute DocumentVisibilityState visibilityState;

// special event handler IDL attributes that only apply to Document objects
[LegacyLenientThis] attribute EventHandler onreadystatechange;
attribute EventHandler onvisibilitychange;

// also has obsolete members
};
Document includes GlobalEventHandlers;

Each Documentp130 has a policy container (a policy containerp917), initially a new policy container, which contains policies which apply
to the Documentp130.

Each Documentp130 has a permissions policy, which is a permissions policy, which is initially empty.

Each Documentp130 has a module map, which is a module mapp1119, initially empty.

Each Documentp130 has an opener policy, which is an opener policyp904, initially a new opener policy.

Each Documentp130 has an is initial about:blank, which is a boolean, initially false.

Each Documentp130 has a during-loading navigation ID for WebDriver BiDi, which is a navigation IDp1014 or null, initially null.

Each Documentp130 has an about base URL, which is a URL or null, initially null.

Each Documentp130 has a bfcache blocking details, which is a set of not restored reason detailsp985, initially empty.

As the name indicates, this is used for interfacing with the WebDriver BiDi specification, which needs to be informed about certain
occurrences during the early parts of the Documentp130 's lifecycle, in a way that ties them to the original navigation IDp1014 used
when the navigation that created this Documentp130 was the ongoing navigationp1027. This eventually gets set back to null, after
WebDriver BiDi considers the loading process to be finished. [BIDI]p1475

Note

This is only populated for "about:"-schemed Documentp130s.
Note

131

https://dom.spec.whatwg.org/#interface-htmlcollection
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://w3c.github.io/editing/docs/execCommand/#execcommand%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandenabled%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandindeterm%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandstate%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandsupported%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandvalue%28%29
https://webidl.spec.whatwg.org/#LegacyLenientThis
https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ordered-set

DOM defines the DocumentOrShadowRoot mixin, which this specification extends.

partial interface mixin DocumentOrShadowRoot {
readonly attribute Element? activeElement;

};

The referrer attribute must return the document's referrerp130.

The cookie attribute represents the cookies of the resource identified by the document's URL.

A Documentp130 object that falls into one of the following conditions is a cookie-averse Document object:

• A Documentp130 object whose browsing contextp999 is null.

• A Documentp130 whose URL's scheme is not an HTTP(S) scheme.

On getting, if the document is a cookie-averse Document objectp132, then the user agent must return the empty string.
Otherwise, if the Documentp130 's origin is an opaque originp898, the user agent must throw a "SecurityError" DOMException.
Otherwise, the user agent must return the cookie-string for the document's URL for a "non-HTTP" API, decoded using UTF-8
decode without BOM. [COOKIES]p1476

On setting, if the document is a cookie-averse Document objectp132, then the user agent must do nothing. Otherwise, if the
Documentp130 's origin is an opaque originp898, the user agent must throw a "SecurityError" DOMException. Otherwise, the user agent
must act as it would when receiving a set-cookie-string for the document's URL via a "non-HTTP" API, consisting of the new value
encoded as UTF-8. [COOKIES]p1476 [ENCODING]p1478

document.referrerp132

Returns the URL of the Documentp130 from which the user navigated to this one, unless it was blocked or there was no such
document, in which case it returns the empty string.
The noreferrerp325 link type can be used to block the referrer.

For web developers (non-normative)

document.cookiep132 [= value]
Returns the HTTP cookies that apply to the Documentp130. If there are no cookies or cookies can't be applied to this resource, the
empty string will be returned.
Can be set, to add a new cookie to the element's set of HTTP cookies.
If the contents are sandboxed into an opaque originp915 (e.g., in an iframep390 with the sandboxp395 attribute), a
"SecurityError" DOMException will be thrown on getting and setting.

For web developers (non-normative)

Since the cookiep132 attribute is accessible across frames, the path restrictions on cookies are only a tool to help manage which
cookies are sent to which parts of the site, and are not in any way a security feature.

Note

The cookiep132 attribute's getter and setter synchronously access shared state. Since there is no locking mechanism,
other browsing contexts in a multiprocess user agent can modify cookies while scripts are running. A site could, for
instance, try to read a cookie, increment its value, then write it back out, using the new value of the cookie as a
unique identifier for the session; if the site does this twice in two different browser windows at the same time, it
might end up using the same "unique" identifier for both sessions, with potentially disastrous effects.

⚠Warning!

IDL

3.1.2 The DocumentOrShadowRootp132 interface §p13

2

3.1.3 Resource metadata management §p13

2

✔ MDN

132

https://dom.spec.whatwg.org/#documentorshadowroot
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://infra.spec.whatwg.org/#tracking-vector
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://httpwg.org/specs/rfc6265.html#sane-cookie-syntax
https://dom.spec.whatwg.org/#concept-document-url
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://httpwg.org/specs/rfc6265.html#storage-model
https://dom.spec.whatwg.org/#concept-document-url
https://encoding.spec.whatwg.org/#utf-8-encode

The lastModified attribute, on getting, must return the date and time of the Documentp130 's source file's last modification, in the
user's local time zone, in the following format:

1. The month component of the date.

2. A U+002F SOLIDUS character (/).

3. The day component of the date.

4. A U+002F SOLIDUS character (/).

5. The year component of the date.

6. A U+0020 SPACE character.

7. The hours component of the time.

8. A U+003A COLON character (:).

9. The minutes component of the time.

10. A U+003A COLON character (:).

11. The seconds component of the time.

All the numeric components above, other than the year, must be given as two ASCII digits representing the number in base ten, zero-
padded if necessary. The year must be given as the shortest possible string of four or more ASCII digits representing the number in
base ten, zero-padded if necessary.

The Documentp130 's source file's last modification date and time must be derived from relevant features of the networking protocols
used, e.g. from the value of the HTTP `Last-Modified` header of the document, or from metadata in the file system for local files. If
the last modification date and time are not known, the attribute must return the current date and time in the above format.

Each Documentp130 has a current document readiness, a string, initially "complete".

The readyState getter steps are to return this's current document readinessp133.

To update the current document readiness for Documentp130 document to readinessValue:

1. If document's current document readinessp133 equals readinessValue, then return.

document.lastModifiedp133

Returns the date of the last modification to the document, as reported by the server, in the form "MM/DD/YYYY hh:mm:ss", in the
user's local time zone.
If the last modification date is not known, the current time is returned instead.

For web developers (non-normative)

document.readyStatep133

Returns "loading" while the Documentp130 is loading, "interactive" once it is finished parsing but still loading subresources,
and "complete" once it has loaded.
The readystatechangep1472 event fires on the Documentp130 object when this value changes.
The DOMContentLoadedp1471 event fires after the transition to "interactive" but before the transition to "complete", at the
point where all subresources apart from asyncp654 scriptp652 elements have loaded.

For web developers (non-normative)

For Documentp130 objects created via the create and initialize a Document objectp1056 algorithm, this will be immediately reset to
"loading" before any script can observe the value of document.readyStatep133. This default applies to other cases such as initial
about:blankp131 Documentp130s or Documentp130s without a browsing contextp999.

Note

3.1.4 Reporting document loading status §p13

3

✔ MDN

133

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://httpwg.org/specs/rfc7232.html#header.last-modified
https://webidl.spec.whatwg.org/#this

2. Set document's current document readinessp133 to readinessValue.

3. If document is associated with an HTML parserp1271, then:

1. Let now be the current high resolution time given document's relevant global objectp1083.

2. If readinessValue is "complete", and document's load timing infop134 's DOM complete timep134 is 0, then set
document's load timing infop134 's DOM complete timep134 to now.

3. Otherwise, if readinessValue is "interactive", and document's load timing infop134 's DOM interactive timep134 is 0,
then set document's load timing infop134 's DOM interactive timep134 to now.

4. Fire an event named readystatechangep1472 at document.

A Documentp130 is said to have an active parser if it is associated with an HTML parserp1271 or an XML parserp1384 that has not yet been
stoppedp1358 or abortedp1359.

A Documentp130 has a document load timing infop134 load timing info.

A Documentp130 has a document unload timing infop134 previous document unload timing.

A Documentp130 has a boolean was created via cross-origin redirects, initially false.

The document load timing info struct has the following items:

navigation start time (default 0)
A number

DOM interactive time (default 0)
DOM content loaded event start time (default 0)
DOM content loaded event end time (default 0)
DOM complete time (default 0)
load event start time (default 0)
load event end time (default 0)

DOMHighResTimeStamp values

The document unload timing info struct has the following items:

unload event start time (default 0)
unload event end time (default 0)

DOMHighResTimeStamp values

Each Documentp130 has a render-blocking element set, a set of elements, initially the empty set.

A Documentp130 document allows adding render-blocking elements if document's content type is "text/htmlp1444" and the body
elementp136 of document is null.

A Documentp130 document is render-blocked if both of the following are true:

• document's render-blocking element setp134 is non-empty, or document allows adding render-blocking elementsp134.

• The current high resolution time given document's relevant global objectp1083 has not exceeded an implementation-defined
timeout value.

An element el is render-blocking if el's node document document is render-blockedp134, and el is in document's render-blocking
element setp134.

To block rendering on an element el:

3.1.5 Render-blocking mechanism §p13

4

134

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://infra.spec.whatwg.org/#ordered-set
https://dom.spec.whatwg.org/#concept-document-content-type
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-node-document

1. Let document be el's node document.

2. If document allows adding render-blocking elementsp134, then append el to document's render-blocking element setp134.

To unblock rendering on an element el:

1. Let document be el's node document.

2. Remove el from document's render-blocking element setp134.

Whenever a render-blockingp134 element el becomes browsing-context disconnectedp46, or el's blocking attributep103 's value is changed
so that el is no longer potentially render-blockingp103, then unblock renderingp135 on el.

The html element of a document is its document element, if it's an htmlp172 element, and null otherwise.

The head element of a document is the first headp173 element that is a child of the html elementp135, if there is one, or null otherwise.

The head attribute, on getting, must return the head elementp135 of the document (a headp173 element or null).

The title element of a document is the first titlep174 element in the document (in tree order), if there is one, or null otherwise.

The title attribute must, on getting, run the following algorithm:

1. If the document element is an SVG svg element, then let value be the child text content of the first SVG title element that
is a child of the document element.

2. Otherwise, let value be the child text content of the title elementp135, or the empty string if the title elementp135 is null.

3. Strip and collapse ASCII whitespace in value.

4. Return value.

On setting, the steps corresponding to the first matching condition in the following list must be run:

↪ If the document element is an SVG svg element

1. If there is an SVG title element that is a child of the document element, let element be the first such element.

2. Otherwise:

1. Let element be the result of creating an element given the document element's node document, title, and
the SVG namespace.

2. Insert element as the first child of the document element.

3. String replace all with the given value within element.

↪ If the document element is in the HTML namespace

1. If the title elementp135 is null and the head elementp135 is null, then return.

document.headp135

Returns the head elementp135.

For web developers (non-normative)

document.titlep135 [= value]
Returns the document's title, as given by the title elementp135 for HTML and as given by the SVG title element for SVG.
Can be set, to update the document's title. If there is no appropriate element to update, the new value is ignored.

For web developers (non-normative)

3.1.6 DOM tree accessors §p13

5

✔ MDN

135

https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#set-append
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://dom.spec.whatwg.org/#concept-child-text-content
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-child-text-content
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://infra.spec.whatwg.org/#svg-namespace
https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#html-namespace

2. If the title elementp135 is non-null, let element be the title elementp135.

3. Otherwise:

1. Let element be the result of creating an element given the document element's node document, titlep174,
and the HTML namespace.

2. Append element to the head elementp135.

4. String replace all with the given value within element.

↪ Otherwise
Do nothing.

The body element of a document is the first of the html elementp135 's children that is either a bodyp205 element or a framesetp1433

element, or null if there is no such element.

The body attribute, on getting, must return the body elementp136 of the document (either a bodyp205 element, a framesetp1433 element,
or null). On setting, the following algorithm must be run:

1. If the new value is not a bodyp205 or framesetp1433 element, then throw a "HierarchyRequestError" DOMException.

2. Otherwise, if the new value is the same as the body elementp136, return.

3. Otherwise, if the body elementp136 is not null, then replace the body elementp136 with the new value within the body
elementp136 's parent and return.

4. Otherwise, if there is no document element, throw a "HierarchyRequestError" DOMException.

5. Otherwise, the body elementp136 is null, but there's a document element. Append the new value to the document element.

document.bodyp136 [= value]
Returns the body elementp136.
Can be set, to replace the body elementp136.
If the new value is not a bodyp205 or framesetp1433 element, this will throw a "HierarchyRequestError" DOMException.

For web developers (non-normative)

The value returned by the bodyp136 getter is not always the one passed to the setter.
Note

In this example, the setter successfully inserts a bodyp205 element (though this is non-conforming since SVG does not allow a
bodyp205 as child of SVG svg). However the getter will return null because the document element is not htmlp172.

<svg xmlns="http://www.w3.org/2000/svg">
<script>
document.body = document.createElementNS("http://www.w3.org/1999/xhtml", "body");
console.assert(document.body === null);

</script>
</svg>

Example

document.imagesp137

Returns an HTMLCollection of the imgp346 elements in the Documentp130.

document.embedsp137

document.pluginsp137

Returns an HTMLCollection of the embedp399 elements in the Documentp130.

For web developers (non-normative)

136

https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#string-replace-all
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-replace
https://dom.spec.whatwg.org/#document-element
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#document-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

The images attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches only imgp346 elements.

The embeds attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches only embedp399 elements.

The plugins attribute must return the same object as that returned by the embedsp137 attribute.

The links attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches only ap257 elements with
hrefp303 attributes and areap471 elements with hrefp303 attributes.

The forms attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches only formp514 elements.

The scripts attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches only scriptp652

elements.

The getElementsByName(elementName) method steps are to return a livep47 NodeList containing all the HTML elementsp45 in that
document that have a name attribute whose value is identical to the elementName argument, in tree order. When the method is
invoked on a Documentp130 object again with the same argument, the user agent may return the same as the object returned by the
earlier call. In other cases, a new NodeList object must be returned.

The currentScript attribute, on getting, must return the value to which it was most recently set. When the Documentp130 is created,
the currentScriptp137 must be initialized to null.

The Documentp130 interface supports named properties. The supported property names of a Documentp130 object document at any
moment consist of the following, in tree order according to the element that contributed them, ignoring later duplicates, and with
values from idp154 attributes coming before values from name attributes when the same element contributes both:

• the value of the name content attribute for all exposedp138 embedp399, formp514, iframep390, imgp346, and exposedp138 objectp402

elements that have a non-empty name content attribute and are in a document tree with document as their root;

document.linksp137

Returns an HTMLCollection of the ap257 and areap471 elements in the Documentp130 that have hrefp303 attributes.

document.formsp137

Returns an HTMLCollection of the formp514 elements in the Documentp130.

document.scriptsp137

Returns an HTMLCollection of the scriptp652 elements in the Documentp130.

collection = document.getElementsByNamep137(name)
Returns a NodeList of elements in the Documentp130 that have a name attribute with the value name.

For web developers (non-normative)

document.currentScriptp137

Returns the scriptp652 element, or the SVG script element, that is currently executing, as long as the element represents a
classic scriptp1085. In the case of reentrant script execution, returns the one that most recently started executing amongst those
that have not yet finished executing.
Returns null if the Documentp130 is not currently executing a scriptp652 or SVG script element (e.g., because the running script
is an event handler, or a timeout), or if the currently executing scriptp652 or SVG script element represents a module
scriptp1085.

For web developers (non-normative)

This API has fallen out of favor in the implementer and standards community, as it globally exposes scriptp652 or SVG script
elements. As such, it is not available in newer contexts, such as when running module scriptsp1085 or when running scripts in a
shadow tree. We are looking into creating a new solution for identifying the running script in such contexts, which does not make it
globally available: see issue #1013.

Note

137

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-nodelist
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://dom.spec.whatwg.org/#concept-shadow-tree
https://github.com/whatwg/html/issues/1013
https://webidl.spec.whatwg.org/#dfn-support-named-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root

• the value of the idp154 content attribute for all exposedp138 objectp402 elements that have a non-empty idp154 content
attribute and are in a document tree with document as their root; and

• the value of the idp154 content attribute for all imgp346 elements that have both a non-empty idp154 content attribute and a
non-empty name content attribute, and are in a document tree with document as their root.

To determine the value of a named property name for a Documentp130, the user agent must return the value obtained using the
following steps:

1. Let elements be the list of named elementsp138 with the name name that are in a document tree with the Documentp130 as
their root.

2. If elements has only one element, and that element is an iframep390 element, and that iframep390 element's content
navigablep991 is not null, then return the active WindowProxyp989 of the element's content navigablep991.

3. Otherwise, if elements has only one element, return that element.

4. Otherwise, return an HTMLCollection rooted at the Documentp130 node, whose filter matches only named elementsp138 with
the name name.

Named elements with the name name, for the purposes of the above algorithm, are those that are either:

• Exposedp138 embedp399, formp514, iframep390, imgp346, or exposedp138 objectp402 elements that have a name content attribute
whose value is name, or

• Exposedp138 objectp402 elements that have an idp154 content attribute whose value is name, or

• imgp346 elements that have an idp154 content attribute whose value is name, and that have a non-empty name content
attribute present also.

An embedp399 or objectp402 element is said to be exposed if it has no exposedp138 objectp402 ancestor, and, for objectp402 elements, is
additionally either not showing its fallback contentp150 or has no objectp402 or embedp399 descendants.

Elements, attributes, and attribute values in HTML are defined (by this specification) to have certain meanings (semantics). For
example, the olp238 element represents an ordered list, and the langp158 attribute represents the language of the content.

These definitions allow HTML processors, such as web browsers or search engines, to present and use documents and applications in a
wide variety of contexts that the author might not have considered.

There will be at least one such element, since the algorithm would otherwise not have been invoked by Web IDL.
Note

The dirp163 attribute on the Documentp130 interface is defined along with the dirp160 content attribute.
Note

3.2 Elements §p13

8

As a simple example, consider a web page written by an author who only considered desktop computer web browsers:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>My Page</title>

</head>
<body>
<h1>Welcome to my page</h1>

Example

3.2.1 Semantics §p13

8

138

https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-a-named-property
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://webidl.spec.whatwg.org/#LegacyPlatformObjectGetOwnProperty
https://dom.spec.whatwg.org/#interface-htmlcollection

Authors must not use elements, attributes, or attribute values for purposes other than their appropriate intended semantic purpose, as
doing so prevents software from correctly processing the page.

<p>I like cars and lorries and have a big Jeep!</p>
<h2>Where I live</h2>
<p>I live in a small hut on a mountain!</p>

</body>
</html>

Because HTML conveys meaning, rather than presentation, the same page can also be used by a small browser on a mobile phone,
without any change to the page. Instead of headings being in large letters as on the desktop, for example, the browser on the
mobile phone might use the same size text for the whole page, but with the headings in bold.

But it goes further than just differences in screen size: the same page could equally be used by a blind user using a browser based
around speech synthesis, which instead of displaying the page on a screen, reads the page to the user, e.g. using headphones.
Instead of large text for the headings, the speech browser might use a different volume or a slower voice.

That's not all, either. Since the browsers know which parts of the page are the headings, they can create a document outline that
the user can use to quickly navigate around the document, using keys for "jump to next heading" or "jump to previous heading".
Such features are especially common with speech browsers, where users would otherwise find quickly navigating a page quite
difficult.

Even beyond browsers, software can make use of this information. Search engines can use the headings to more effectively index
a page, or to provide quick links to subsections of the page from their results. Tools can use the headings to create a table of
contents (that is in fact how this very specification's table of contents is generated).

This example has focused on headings, but the same principle applies to all of the semantics in HTML.

For example, the following snippet, intended to represent the heading of a corporate site, is non-conforming because the second
line is not intended to be a heading of a subsection, but merely a subheading or subtitle (a subordinate heading for the same
section).

<body>
<h1>ACME Corporation</h1>
<h2>The leaders in arbitrary fast delivery since 1920</h2>
...

The hgroupp218 element can be used for these kinds of situations:

<body>
<hgroup>
<h1>ACME Corporation</h1>
<p>The leaders in arbitrary fast delivery since 1920</p>

</hgroup>
...

Example

The document in this next example is similarly non-conforming, despite being syntactically correct, because the data placed in the
cells is clearly not tabular data, and the citep265 element mis-used:

<!DOCTYPE HTML>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<table>
<tr> <td> My favourite animal is the cat. </td> </tr>
<tr>

Example

139

Authors must not use elements, attributes, or attribute values that are not permitted by this specification or other applicable
specificationsp73, as doing so makes it significantly harder for the language to be extended in the future.

DOM nodes whose node document's browsing contextp999 is null are exempt from all document conformance requirements other than
the HTML syntaxp1259 requirements and XML syntaxp1384 requirements.

<td>
—<cite>Ernest</cite>,
in an essay from 1992

</td>
</tr>

</table>
</body>

</html>

This would make software that relies on these semantics fail: for example, a speech browser that allowed a blind user to navigate
tables in the document would report the quote above as a table, confusing the user; similarly, a tool that extracted titles of works
from pages would extract "Ernest" as the title of a work, even though it's actually a person's name, not a title.

A corrected version of this document might be:

<!DOCTYPE HTML>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<blockquote>
<p> My favourite animal is the cat. </p>

</blockquote>
<p>
—Ernest,
in an essay from 1992

</p>
</body>

</html>

In the next example, there is a non-conforming attribute value ("carpet") and a non-conforming attribute ("texture"), which is not
permitted by this specification:

<label>Carpet: <input type="carpet" name="c" texture="deep pile"></label>

Here would be an alternative and correct way to mark this up:

<label>Carpet: <input type="text" class="carpet" name="c" data-texture="deep pile"></label>

Example

In particular, the templatep671 element's template contentsp673 's node document's browsing contextp999 is null. For example, the
content modelp146 requirements and attribute value microsyntax requirements do not apply to a templatep671 element's template
contentsp673. In this example an imgp346 element has attribute values that are placeholders that would be invalid outside a
templatep671 element.

<template>
<article>

<h1></h1>

</article>
</template>

Example

140

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

Through scripting and using other mechanisms, the values of attributes, text, and indeed the entire structure of the document may
change dynamically while a user agent is processing it. The semantics of a document at an instant in time are those represented by
the state of the document at that instant in time, and the semantics of a document can therefore change over time. User agents must
update their presentation of the document as this occurs.

The nodes representing HTML elementsp45 in the DOM must implement, and expose to scripts, the interfaces listed for them in the
relevant sections of this specification. This includes HTML elementsp45 in XML documents, even when those documents are in another
context (e.g. inside an XSLT transform).

Elements in the DOM represent things; that is, they have intrinsic meaning, also known as semantics.

Elements can be referenced (referred to) in some way, either explicitly or implicitly. One way that an element in the DOM can be
explicitly referenced is by giving an idp154 attribute to the element, and then creating a hyperlinkp302 with that idp154 attribute's value
as the fragmentp1021 for the hyperlinkp302 's hrefp303 attribute value. Hyperlinks are not necessary for a reference, however; any manner
of referring to the element in question will suffice.

The basic interface, from which all the HTML elementsp45 ' interfaces inherit, and which must be used by elements that have no
additional requirements, is the HTMLElementp142 interface.

However, if the above markup were to omit the </h1> end tag, that would be a violation of the HTML syntaxp1259, and would thus
be flagged as an error by conformance checkers.

HTML has a progressp587 element that describes a progress bar. If its "value" attribute is dynamically updated by a script, the UA
would update the rendering to show the progress changing.

Example

For example, an olp238 element represents an ordered list.
Example

Consider the following figurep249 element, which is given an idp154 attribute:

<figure id="module-script-graph">
<img src="module-script-graph.svg"

alt="Module A depends on module B, which depends
on modules C and D.">

<figcaption>Figure 27: a simple module graph</figcaption>
</figure>

A hyperlinkp302-based referencep141 could be created using the ap257 element, like so:

As we can see in figure 27, ...

However, there are many other ways of referencingp141 the figurep249 element, such as:

• "As depicted in the figure of modules A, B, C, and D..."

• "In Figure 27..." (without a hyperlink)

• "From the contents of the 'simple module graph' figure..."

• "In the figure below..." (but this is discouragedp249)

Example

3.2.2 Elements in the DOM §p14

1

✔ MDN

141

https://dom.spec.whatwg.org/#xml-document

[Exposed=Window]
interface HTMLElement : Element {

[HTMLConstructor] constructor();

// metadata attributes
[CEReactions] attribute DOMString title;
[CEReactions] attribute DOMString lang;
[CEReactions] attribute boolean translate;
[CEReactions] attribute DOMString dir;

// user interaction
[CEReactions] attribute (boolean or unrestricted double or DOMString)? hidden;
[CEReactions] attribute boolean inert;
undefined click();
[CEReactions] attribute DOMString accessKey;
readonly attribute DOMString accessKeyLabel;
[CEReactions] attribute boolean draggable;
[CEReactions] attribute boolean spellcheck;
[CEReactions] attribute DOMString writingSuggestions;
[CEReactions] attribute DOMString autocapitalize;
[CEReactions] attribute boolean autocorrect;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString innerText;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString outerText;

ElementInternals attachInternals();

// The popover API
undefined showPopover(optional ShowPopoverOptions options = {});
undefined hidePopover();
boolean togglePopover(optional (TogglePopoverOptions or boolean) options = {});
[CEReactions] attribute DOMString? popover;

};

dictionary ShowPopoverOptions {
HTMLElement source;

};

dictionary TogglePopoverOptions : ShowPopoverOptions {
boolean force;

};

HTMLElement includes GlobalEventHandlers;
HTMLElement includes ElementContentEditable;
HTMLElement includes HTMLOrSVGElement;

[Exposed=Window]
interface HTMLUnknownElement : HTMLElement {

// Note: intentionally no [HTMLConstructor]
};

The HTMLElementp142 interface holds methods and attributes related to a number of disparate features, and the members of this
interface are therefore described in various different sections of this specification.

The element interface for an element with name name in the HTML namespace is determined as follows:

1. If name is appletp1426, bgsoundp1426, blinkp1427, isindexp1426, keygenp1426, multicolp1427, nextidp1426, or spacerp1427, then
return HTMLUnknownElementp142.

2. If name is acronymp1426, basefontp1427, bigp1427, centerp1427, nobrp1427, noembedp1426, noframesp1426, plaintextp1426, rbp1427,
rtcp1427, strikep1427, or ttp1427, then return HTMLElementp142.

IDL

142

https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://dom.spec.whatwg.org/#concept-element-interface
https://infra.spec.whatwg.org/#html-namespace

3. If name is listingp1426 or xmpp1427, then return HTMLPreElementp233.

4. Otherwise, if this specification defines an interface appropriate for the element typep45 corresponding to the local name
name, then return that interface.

5. If other applicable specificationsp73 define an appropriate interface for name, then return the interface they define.

6. If name is a valid custom element namep760, then return HTMLElementp142.

7. Return HTMLUnknownElementp142.

Features shared between HTML and SVG elements use the HTMLOrSVGElementp143 interface mixin: [SVG]p1482

interface mixin HTMLOrSVGElement {
[SameObject] readonly attribute DOMStringMap dataset;
attribute DOMString nonce; // intentionally no [CEReactions]

[CEReactions] attribute boolean autofocus;
[CEReactions] attribute long tabIndex;
undefined focus(optional FocusOptions options = {});
undefined blur();

};

To support the custom elementsp749 feature, all HTML elements have special constructor behavior. This is indicated via the
[HTMLConstructor] IDL extended attribute. It indicates that the interface object for the given interface will have a specific behavior
when called, as defined in detail below.

The [HTMLConstructor]p143 extended attribute must take no arguments, and must only appear on constructor operations. It must
appear only once on a constructor operation, and the interface must contain only the single, annotated constructor operation, and no
others. The annotated constructor operation must be declared to take no arguments.

Interfaces declared with constructor operations that are annotated with the [HTMLConstructor]p143 extended attribute have the
following overridden constructor steps:

1. Let registry be the current global objectp1083 's CustomElementRegistryp762 object.

2. If NewTarget is equal to the active function object, then throw a TypeError.

The use of HTMLElementp142 instead of HTMLUnknownElementp142 in the case of valid custom element namesp760 is done to ensure
that any potential future upgradesp765 only cause a linear transition of the element's prototype chain, from HTMLElementp142 to a
subclass, instead of a lateral one, from HTMLUnknownElementp142 to an unrelated subclass.

Note

An example of an element that is neither an HTML nor SVG element is one created as follows:

const el = document.createElementNS("some namespace", "example");
console.assert(el.constructor === Element);

Example

This can occur when a custom element is defined using an element interface as its constructor:

customElements.define("bad-1", HTMLButtonElement);
new HTMLButtonElement(); // (1)
document.createElement("bad-1"); // (2)

In this case, during the execution of HTMLButtonElementp566 (either explicitly, as in (1), or implicitly, as in (2)), both the

Example

IDL

3.2.3 HTML element constructors §p14

3

143

https://webidl.spec.whatwg.org/#dfn-extended-attribute
https://webidl.spec.whatwg.org/#idl-constructors
https://webidl.spec.whatwg.org/#overridden-constructor-steps
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://dom.spec.whatwg.org/#concept-element-interface

3. Let definition be the entry in registry with constructorp761 equal to NewTarget. If there is no such definition, then throw a
TypeError.

4. Let is value be null.

5. If definition's local namep761 is equal to definition's namep761 (i.e., definition is for an autonomous custom elementp759), then:

1. If the active function object is not HTMLElementp142, then throw a TypeError.

6. Otherwise (i.e., if definition is for a customized built-in elementp759):

1. Let valid local names be the list of local names for elements defined in this specification or in other applicable
specificationsp73 that use the active function object as their element interface.

2. If valid local names does not contain definition's local namep761, then throw a TypeError.

3. Set is value to definition's namep761.

7. If definition's construction stackp761 is empty, then:

1. Let element be the result of internally creating a new object implementing the interface to which the active
function object corresponds, given the current realm and NewTarget.

2. Set element's node document to the current global objectp1083 's associated Documentp923.

3. Set element's namespace to the HTML namespace.

4. Set element's namespace prefix to null.

5. Set element's local name to definition's local namep761.

6. Set element's custom element state to "custom".

7. Set element's custom element definition to definition.

8. Set element's is value to is value.

active function object and NewTarget are HTMLButtonElementp566. If this check was not present, it would be possible to
create an instance of HTMLButtonElementp566 whose local name was bad-1.

Since there can be no entry in registry with a constructorp761 of undefined, this step also prevents HTML element
constructors from being called as functions (since in that case NewTarget will be undefined).

Note

This can occur when a custom element is defined to not extend any local names, but inherits from a
non-HTMLElementp142 class:

customElements.define("bad-2", class Bad2 extends HTMLParagraphElement {});

In this case, during the (implicit) super() call that occurs when constructing an instance of Bad2, the active
function object is HTMLParagraphElementp229, not HTMLElementp142.

Example

This can occur when a custom element is defined to extend a given local name but inherits from the wrong
class:

customElements.define("bad-3", class Bad3 extends HTMLQuoteElement {}, { extends:
"p" });

In this case, during the (implicit) super() call that occurs when constructing an instance of Bad3, valid local
names is the list containing qp266 and blockquotep235, but definition's local namep761 is pp229, which is not in that
list.

Example

144

https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://dom.spec.whatwg.org/#concept-element-interface
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://webidl.spec.whatwg.org/#internally-create-a-new-object-implementing-the-interface
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-built-in-function-objects
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-namespace-prefix
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-is-value

9. Return element.

8. Let prototype be ? Get(NewTarget, "prototype").

9. If prototype is not an Object, then:

1. Let realm be ? GetFunctionRealm(NewTarget).

2. Set prototype to the interface prototype object of realm whose interface is the same as the interface of the active
function object.

10. Let element be the last entry in definition's construction stackp761.

11. If element is an already constructed markerp761, then throw a TypeError.

12. Perform ? element.[[SetPrototypeOf]](prototype).

13. Replace the last entry in definition's construction stackp761 with an already constructed markerp761.

14. Return element.

This occurs when author script constructs a new custom element directly, e.g. via new MyCustomElement().
Note

The realm of the active function object might not be realm, so we are using the more general concept of "the same
interface" across realms; we are not looking for equality of interface objects. This fallback behavior, including using the
realm of NewTarget and looking up the appropriate prototype there, is designed to match analogous behavior for the
JavaScript built-ins and Web IDL's internally create a new object implementing the interface algorithm.

Note

This can occur when the author code inside the custom element constructorp759 non-conformantlyp758 creates another
instance of the class being constructed, before calling super():

let doSillyThing = true;

class DontDoThis extends HTMLElement {
constructor() {

if (doSillyThing) {
doSillyThing = false;
new DontDoThis();
// Now the construction stack will contain an already constructed marker.

}

// This will then fail with a TypeError:
super();

}
}

Example

This can also occur when author code inside the custom element constructorp759 non-conformantlyp758 calls super()
twice, since per the JavaScript specification, this actually executes the superclass constructor (i.e. this algorithm) twice,
before throwing an error:

class DontDoThisEither extends HTMLElement {
constructor() {

super();

// This will throw, but not until it has already called into the HTMLElement
constructor

super();
}

}

Example

145

https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-built-in-function-objects
https://tc39.es/ecma262/#sec-object-type
https://tc39.es/ecma262/#sec-getfunctionrealm
https://tc39.es/ecma262/#sec-built-in-function-objects
https://webidl.spec.whatwg.org/#dfn-interface-prototype-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://tc39.es/ecma262/#active-function-object
https://webidl.spec.whatwg.org/#dfn-interface-object
https://tc39.es/ecma262/#sec-built-in-function-objects
https://webidl.spec.whatwg.org/#internally-create-a-new-object-implementing-the-interface
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

In addition to the constructor behavior implied by [HTMLConstructor]p143, some elements also have named constructors (which are
really factory functions with a modified prototype property).

Each element in this specification has a definition that includes the following information:

Categories
A list of categoriesp148 to which the element belongs. These are used when defining the content modelsp147 for each element.

Contexts in which this element can be used
A non-normative description of where the element can be used. This information is redundant with the content models of elements
that allow this one as a child, and is provided only as a convenience.

Content model
A normative description of what content must be included as children and descendants of the element.

Tag omission in text/html
A non-normative description of whether, in the text/htmlp1444 syntax, the startp1261 and endp1262 tags can be omitted. This
information is redundant with the normative requirements given in the optional tagsp1263 section, and is provided in the element
definitions only as a convenience.

Content attributes
A normative list of attributes that may be specified on the element (except where otherwise disallowed), along with non-normative
descriptions of those attributes. (The content to the left of the dash is normative, the content to the right of the dash is not.)

Accessibility considerations
For authors: Conformance requirements for use of ARIA rolep68 and aria-*p68 attributes are defined in ARIA in HTML. [ARIA]p1475

[ARIAHTML]p1475

For implementers: User agent requirements for implementing accessibility API semantics are defined in HTML Accessibility API

This step is normally reached when upgradingp765 a custom element; the existing element is returned, so that the
super() call inside the custom element constructorp759 assigns that existing element to this.

Note

Named constructors for HTML elements can also be used in an extends clause when defining a custom element constructorp759:

class AutoEmbiggenedImage extends Image {
constructor(width, height) {

super(width * 10, height * 10);
}

}

customElements.define("auto-embiggened", AutoEmbiggenedImage, { extends: "img" });

const image = new AutoEmbiggenedImage(15, 20);
console.assert(image.width === 150);
console.assert(image.height === 200);

Example

For simplicity, only the most specific expectations are listed.

For example, all phrasing contentp150 is flow contentp149. Thus, elements that are phrasing contentp150 will only be listed as
"where phrasing contentp150 is expected", since this is the more-specific expectation. Anywhere that expects flow contentp149

also expects phrasing contentp150, and thus also meets this expectation.

Note

3.2.4 Element definitions §p14

6

146

https://webidl.spec.whatwg.org/#dfn-named-constructor

Mappings. [HTMLAAM]p1478

DOM interface
A normative definition of a DOM interface that such elements must implement.

This is then followed by a description of what the element representsp141, along with any additional normative conformance criteria
that may apply to authors and implementations. Examples are sometimes also included.

An attribute value is a string. Except where otherwise specified, attribute values on HTML elementsp45 may be any string value,
including the empty string, and there is no restriction on what text can be specified in such attribute values.

Each element defined in this specification has a content model: a description of the element's expected contentsp147. An HTML
elementp45 must have contents that match the requirements described in the element's content model. The contents of an element
are its children in the DOM.

ASCII whitespace is always allowed between elements. User agents represent these characters between elements in the source
markup as Text nodes in the DOM. Empty Text nodes and Text nodes consisting of just sequences of those characters are considered
inter-element whitespace.

Inter-element whitespacep147, comment nodes, and processing instruction nodes must be ignored when establishing whether an
element's contents match the element's content model or not, and must be ignored when following algorithms that define document
and element semantics.

Authors must not use HTML elementsp45 anywhere except where they are explicitly allowed, as defined for each element, or as
explicitly required by other specifications. For XML compound documents, these contexts could be inside elements from other
namespaces, if those elements are defined as providing the relevant contexts.

In addition, HTML elementsp45 may be orphan nodes (i.e. without a parent node).

3.2.4.1 Attributes §p14

7

Thus, an element A is said to be preceded or followed by a second element B if A and B have the same parent node and there are
no other element nodes or Text nodes (other than inter-element whitespacep147) between them. Similarly, a node is the only child
of an element if that element contains no other nodes other than inter-element whitespacep147, comment nodes, and processing
instruction nodes.

Note

The Atom Syndication Format defines a content element. When its type attribute has the value xhtml, The Atom Syndication
Format requires that it contain a single HTML divp256 element. Thus, a divp256 element is allowed in that context, even though this
is not explicitly normatively stated by this specification. [ATOM]p1475

Example

For example, creating a tdp493 element and storing it in a global variable in a script is conforming, even though tdp493 elements are
otherwise only supposed to be used inside trp492 elements.

var data = {
name: "Banana",
cell: document.createElement('td'),

};

Example

3.2.5 Content models §p14

7

147

https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

When an element's content model is nothing, the element must contain no Text nodes (other than inter-element whitespacep147) and
no element nodes.

Each element in HTML falls into zero or more categories that group elements with similar characteristics together. The following broad
categories are used in this specification:

• Metadata contentp148

• Flow contentp149

• Sectioning contentp149

• Heading contentp149

• Phrasing contentp150

• Embedded contentp150

• Interactive contentp150

These categories are related as follows:

Sectioning content, heading content, phrasing content, embedded content, and interactive content are all types of flow content.
Metadata is sometimes flow content. Metadata and interactive content are sometimes phrasing content. Embedded content is also a
type of phrasing content, and sometimes is interactive content.

Other categories are also used for specific purposes, e.g. form controls are specified using a number of categories to define common
requirements. Some elements have unique requirements and do not fit into any particular category.

Metadata content is content that sets up the presentation or behavior of the rest of the content, or that sets up the relationship of
the document with other documents, or that conveys other "out of band" information.

⇒ basep175, linkp177, metap189, noscriptp669, scriptp652, stylep200, templatep671, titlep174

3.2.5.1 The "nothing" content model §p14

8

Most HTML elements whose content model is "nothing" are also, for convenience, void elementsp1260 (elements that have no end
tagp1262 in the HTML syntaxp1259). However, these are entirely separate concepts.

Note

3.2.5.2 Kinds of content §p14

8

Some elements also fall into other categories, which are defined in other parts of this specification.
Note

3.2.5.2.1 Metadata content §p14

8

148

https://dom.spec.whatwg.org/#interface-text

Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are also metadata contentp148.

Most elements that are used in the body of documents and applications are categorized as flow content.

⇒ ap257, abbrp269, addressp222, areap471 (if it is a descendant of a mapp470 element), articlep206, asidep214, audiop410, bp292,
bdip297, bdop298, blockquotep235, brp299, buttonp566, canvasp677, citep265, codep286, datap278, datalistp574, delp338,
detailsp637, dfnp268, dialogp646, divp256, dlp244, emp260, embedp399, fieldsetp594, figurep249, footerp220, formp514, h1p216, h2p216,
h3p216, h4p216, h5p216, h6p216, headerp218, hgroupp218, hrp231, ip291, iframep390, imgp346, inputp520, insp337, kbdp289, labelp518,
linkp177 (if it is allowed in the bodyp179), mainp253 (if it is a hierarchically correct main elementp253), mapp470, markp294, MathML
math, menup240, metap189 (if the itempropp795 attribute is present), meterp589, navp211, noscriptp669, objectp402, olp238,
outputp584, pp229, picturep342, prep233, progressp587, qp266, rubyp270, sp264, sampp288, scriptp652, searchp254, sectionp209,
selectp568, slotp675, smallp262, spanp298, strongp261, subp290, supp290, SVG svg, tablep478, templatep671, textareap579,
timep279, up294, ulp239, varp287, videop406, wbrp300, autonomous custom elementsp759, textp150

Sectioning content is content that defines the scope of headerp218 and footerp220 elements.

⇒ articlep206, asidep214, navp211, sectionp209

Heading content defines the heading of a section (whether explicitly marked up using sectioning contentp149 elements, or implied by
the heading content itself).

⇒ h1p216, h2p216, h3p216, h4p216, h5p216, h6p216, hgroupp218 (if it has a descendant h1p216 to h6p216 element)

Thus, in the XML serialization, one can use RDF, like this:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xml:lang="en">

<head>
<title>Hedral's Home Page</title>
<r:RDF>
<Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#"

r:about="https://hedral.example.com/#">
<fullName>Cat Hedral</fullName>
<mailbox r:resource="mailto:hedral@damowmow.com"/>
<personalTitle>Sir</personalTitle>

</Person>
</r:RDF>

</head>
<body>
<h1>My home page</h1>
<p>I like playing with string, I guess. Sister says squirrels are fun
too so sometimes I follow her to play with them.</p>

</body>
</html>

This isn't possible in the HTML serialization, however.

Example

3.2.5.2.2 Flow content §p14

9

3.2.5.2.3 Sectioning content §p14

9

3.2.5.2.4 Heading content §p14

9

149

https://w3c.github.io/mathml-core/#the-top-level-math-element
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement

Phrasing content is the text of the document, as well as elements that mark up that text at the intra-paragraph level. Runs of
phrasing contentp150 form paragraphsp152.

⇒ ap257, abbrp269, areap471 (if it is a descendant of a mapp470 element), audiop410, bp292, bdip297, bdop298, brp299, buttonp566,
canvasp677, citep265, codep286, datap278, datalistp574, delp338, dfnp268, emp260, embedp399, ip291, iframep390, imgp346, inputp520,
insp337, kbdp289, labelp518, linkp177 (if it is allowed in the bodyp179), mapp470, markp294, MathML math, metap189 (if the
itempropp795 attribute is present), meterp589, noscriptp669, objectp402, outputp584, picturep342, progressp587, qp266, rubyp270,
sp264, sampp288, scriptp652, selectp568, slotp675, smallp262, spanp298, strongp261, subp290, supp290, SVG svg, templatep671,
textareap579, timep279, up294, varp287, videop406, wbrp300, autonomous custom elementsp759, textp150

Text, in the context of content models, means either nothing, or Text nodes. Textp150 is sometimes used as a content model on its
own, but is also phrasing contentp150, and can be inter-element whitespacep147 (if the Text nodes are empty or contain just ASCII
whitespace).

Text nodes and attribute values must consist of scalar values, excluding noncharacters, and controls other than ASCII whitespace. This
specification includes extra constraints on the exact value of Text nodes and attribute values depending on their precise context.

Embedded content is content that imports another resource into the document, or content from another vocabulary that is inserted
into the document.

⇒ audiop410, canvasp677, embedp399, iframep390, imgp346, MathML math, objectp402, picturep342, SVG svg, videop406

Elements that are from namespaces other than the HTML namespace and that convey content but not metadata, are embedded
contentp150 for the purposes of the content models defined in this specification. (For example, MathML or SVG.)

Some embedded content elements can have fallback content: content that is to be used when the external resource cannot be used
(e.g. because it is of an unsupported format). The element definitions state what the fallback is, if any.

Interactive content is content that is specifically intended for user interaction.

⇒ ap257 (if the hrefp303 attribute is present), audiop410 (if the controlsp464 attribute is present), buttonp566, detailsp637,
embedp399, iframep390, imgp346 (if the usemapp473 attribute is present), inputp520 (if the typep523 attribute is not in the
Hiddenp527 state), labelp518, selectp568, textareap579, videop406 (if the controlsp464 attribute is present)

As a general rule, elements whose content model allows any flow contentp149 or phrasing contentp150 should have at least one node in
its contentsp147 that is palpable content and that does not have the hiddenp824 attribute specified.

This requirement is not a hard requirement, however, as there are many cases where an element can be empty legitimately, for
example when it is used as a placeholder which will later be filled in by a script, or when the element is part of a template and would
on most pages be filled in but on some pages is not relevant.

3.2.5.2.5 Phrasing content §p15

0

Most elements that are categorized as phrasing content can only contain elements that are themselves categorized as phrasing
content, not any flow content.

Note

3.2.5.2.6 Embedded content §p15

0

3.2.5.2.7 Interactive content §p15

0

3.2.5.2.8 Palpable content §p15

0

Palpable contentp150 makes an element non-empty by providing either some descendant non-empty textp150, or else something
users can hear (audiop410 elements) or view (videop406, imgp346, or canvasp677 elements) or otherwise interact with (for example,
interactive form controls).

Note

150

https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://infra.spec.whatwg.org/#html-namespace

Conformance checkers are encouraged to provide a mechanism for authors to find elements that fail to fulfill this requirement, as an
authoring aid.

The following elements are palpable content:

⇒ ap257, abbrp269, addressp222, articlep206, asidep214, audiop410 (if the controlsp464 attribute is present), bp292, bdip297,
bdop298, blockquotep235, buttonp566, canvasp677, citep265, codep286, datap278, delp338, detailsp637, dfnp268, divp256, dlp244 (if the
element's children include at least one name-value group), emp260, embedp399, fieldsetp594, figurep249, footerp220, formp514,
h1p216, h2p216, h3p216, h4p216, h5p216, h6p216, headerp218, hgroupp218, ip291, iframep390, imgp346, inputp520 (if the typep523 attribute
is not in the Hiddenp527 state), insp337, kbdp289, labelp518, mainp253, mapp470, markp294, MathML math, menup240 (if the element's
children include at least one lip241 element), meterp589, navp211, objectp402, olp238 (if the element's children include at least
one lip241 element), outputp584, pp229, picturep342, prep233, progressp587, qp266, rubyp270, sp264, sampp288, searchp254,
sectionp209, selectp568, smallp262, spanp298, strongp261, subp290, supp290, SVG svg, tablep478, textareap579, timep279, up294,
ulp239 (if the element's children include at least one lip241 element), varp287, videop406, autonomous custom elementsp759,
textp150 that is not inter-element whitespacep147

Script-supporting elements are those that do not representp141 anything themselves (i.e. they are not rendered), but are used to
support scripts, e.g. to provide functionality for the user.

The following elements are script-supporting elements:

⇒ scriptp652, templatep671

Some elements are described as transparent; they have "transparent" in the description of their content model. The content model of
a transparentp151 element is derived from the content model of its parent element: the elements required in the part of the content
model that is "transparent" are the same elements as required in the part of the content model of the parent of the transparent
element in which the transparent element finds itself.

When a transparent element has no parent, then the part of its content model that is "transparent" must instead be treated as
accepting any flow contentp149.

3.2.5.2.9 Script-supporting elements §p15

1

3.2.5.3 Transparent content models §p15

1

For instance, an insp337 element inside a rubyp270 element cannot contain an rtp277 element, because the part of the rubyp270

element's content model that allows insp337 elements is the part that allows phrasing contentp150, and the rtp277 element is not
phrasing contentp150.

Example

In some cases, where transparent elements are nested in each other, the process has to be applied iteratively.
Note

Consider the following markup fragment:

<p><object><param><ins><map>Apples</map></ins></object></p>

To check whether "Apples" is allowed inside the ap257 element, the content models are examined. The ap257 element's content
model is transparent, as is the mapp470 element's, as is the insp337 element's, as is the part of the objectp402 element's in which the
insp337 element is found. The objectp402 element is found in the pp229 element, whose content model is phrasing contentp150. Thus,
"Apples" is allowed, as text is phrasing content.

Example

151

https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement

A paragraph is typically a run of phrasing contentp150 that forms a block of text with one or more sentences that discuss a particular
topic, as in typography, but can also be used for more general thematic grouping. For instance, an address is also a paragraph, as is a
part of a form, a byline, or a stanza in a poem.

Paragraphs in flow contentp149 are defined relative to what the document looks like without the ap257, insp337, delp338, and mapp470

elements complicating matters, since those elements, with their hybrid content models, can straddle paragraph boundaries, as shown
in the first two examples below.

Let view be a view of the DOM that replaces all ap257, insp337, delp338, and mapp470 elements in the document with their contentsp147.
Then, in view, for each run of sibling phrasing contentp150 nodes uninterrupted by other types of content, in an element that accepts
content other than phrasing contentp150 as well as phrasing contentp150, let first be the first node of the run, and let last be the last
node of the run. For each such run that consists of at least one node that is neither embedded contentp150 nor inter-element
whitespacep147, a paragraph exists in the original DOM from immediately before first to immediately after last. (Paragraphs can thus
span across ap257, insp337, delp338, and mapp470 elements.)

Conformance checkers may warn authors of cases where they have paragraphs that overlap each other (this can happen with
objectp402, videop406, audiop410, and canvasp677 elements, and indirectly through elements in other namespaces that allow HTML to be
further embedded therein, like SVG svg or MathML math).

A paragraphp152 is also formed explicitly by pp229 elements.

3.2.5.4 Paragraphs §p15

2

The term paragraphp152 as defined in this section is used for more than just the definition of the pp229 element. The paragraphp152

concept defined here is used to describe how to interpret documents. The pp229 element is merely one of several ways of marking
up a paragraphp152.

Note

In the following example, there are two paragraphs in a section. There is also a heading, which contains phrasing content that is
not a paragraph. Note how the comments and inter-element whitespacep147 do not form paragraphs.

<section>
<h2>Example of paragraphs</h2>
This is the first paragraph in this example.
<p>This is the second.</p>
<!-- This is not a paragraph. -->

</section>

Example

Generally, having elements straddle paragraph boundaries is best avoided. Maintaining such markup can be difficult.
Note

The following example takes the markup from the earlier example and puts insp337 and delp338 elements around some of the
markup to show that the text was changed (though in this case, the changes admittedly don't make much sense). Notice how this
example has exactly the same paragraphs as the previous one, despite the insp337 and delp338 elements — the insp337 element
straddles the heading and the first paragraph, and the delp338 element straddles the boundary between the two paragraphs.

<section>
<ins><h2>Example of paragraphs</h2>
This is the first paragraph in</ins> this example.
<p>This is the second.</p>
<!-- This is not a paragraph. -->

</section>

Example

The pp229 element can be used to wrap individual paragraphs when there would otherwise not be any content other than phrasing
content to separate the paragraphs from each other.

Note

152

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://w3c.github.io/mathml-core/#the-top-level-math-element

In the following example, the link spans half of the first paragraph, all of the heading separating the two paragraphs, and half of
the second paragraph. It straddles the paragraphs and the heading.

<header>
Welcome!

This is home of...
<h1>The Falcons!</h1>
The Lockheed Martin multirole jet fighter aircraft!

This page discusses the F-16 Fighting Falcon's innermost secrets.

</header>

Here is another way of marking this up, this time showing the paragraphs explicitly, and splitting the one link element into three:

<header>
<p>Welcome! This is home of...</p>
<h1>The Falcons!</h1>
<p>The Lockheed Martin multirole jet
fighter aircraft! This page discusses the F-16 Fighting
Falcon's innermost secrets.</p>

</header>

Example

It is possible for paragraphs to overlap when using certain elements that define fallback content. For example, in the following
section:

<section>
<h2>My Cats</h2>
You can play with my cat simulator.
<object data="cats.sim">
To see the cat simulator, use one of the following links:

Download simulator file
Use online simulator

Alternatively, upgrade to the Mellblom Browser.

</object>
I'm quite proud of it.

</section>

There are five paragraphs:

1. The paragraph that says "You can play with my cat simulator. object I'm quite proud of it.", where object is the objectp402

element.
2. The paragraph that says "To see the cat simulator, use one of the following links:".
3. The paragraph that says "Download simulator file".
4. The paragraph that says "Use online simulator".
5. The paragraph that says "Alternatively, upgrade to the Mellblom Browser.".

The first paragraph is overlapped by the other four. A user agent that supports the "cats.sim" resource will only show the first one,
but a user agent that shows the fallback will confusingly show the first sentence of the first paragraph as if it was in the same
paragraph as the second one, and will show the last paragraph as if it was at the start of the second sentence of the first
paragraph.

To avoid this confusion, explicit pp229 elements can be used. For example:

<section>
<h2>My Cats</h2>
<p>You can play with my cat simulator.</p>
<object data="cats.sim">

Example

153

The following attributes are common to and may be specified on all HTML elementsp45 (even those not defined in this specification):

• accesskeyp851

• autocapitalizep859

• autocorrectp860

• autofocusp848

• contenteditablep853

• dirp160

• draggablep885

• enterkeyhintp861

• hiddenp824

• inertp828

• inputmodep861

• isp759

• itemidp794

• itempropp795

• itemrefp794

• itemscopep793

• itemtypep793

• langp158

• noncep100

• popoverp886

• spellcheckp855

• stylep163

• tabindexp838

• titlep157

• translatep159

• writingsuggestionsp857

These attributes are only defined by this specification as attributes for HTML elementsp45. When this specification refers to elements
having these attributes, elements from namespaces that are not defined as having these attributes must not be considered as being
elements with these attributes.

DOM defines the user agent requirements for the class, id, and slot attributes for any element in any namespace. [DOM]p1478

The classp154, idp154, and slotp154 attributes may be specified on all HTML elementsp45.

<p>To see the cat simulator, use one of the following links:</p>

Download simulator file
Use online simulator

<p>Alternatively, upgrade to the Mellblom Browser.</p>

</object>
<p>I'm quite proud of it.</p>

</section>

For example, in the following XML fragment, the "bogus" element does not have a dirp160 attribute as defined in this specification,
despite having an attribute with the literal name "dir". Thus, the directionalityp160 of the inner-most spanp298 element is 'rtlp160 ',
inherited from the divp256 element indirectly through the "bogus" element.

<div xmlns="http://www.w3.org/1999/xhtml" dir="rtl">
<bogus xmlns="https://example.net/ns" dir="ltr">

</bogus>
</div>

Example

3.2.6 Global attributes §p15

4

MDN

✔ MDN

154

When specified on HTML elementsp45, the classp154 attribute must have a value that is a set of space-separated tokensp94 representing
the various classes that the element belongs to.

When specified on HTML elementsp45, the idp154 attribute value must be unique amongst all the IDs in the element's tree and must
contain at least one character. The value must not contain any ASCII whitespace.

Identifiers are opaque strings. Particular meanings should not be derived from the value of the idp154 attribute.

There are no conformance requirements for the slotp154 attribute specific to HTML elementsp45.

To enable assistive technology products to expose a more fine-grained interface than is otherwise possible with HTML elements and
attributes, a set of annotations for assistive technology productsp170 can be specified (the ARIA rolep68 and aria-*p68 attributes).
[ARIA]p1475

The following event handler content attributesp1138 may be specified on any HTML elementp45:

• onauxclickp1143

• onbeforeinputp1143

• onbeforematchp1143

• onbeforetogglep1143

• onblurp1145*
• oncancelp1143

• oncanplayp1143

• oncanplaythroughp1143

• onchangep1144

• onclickp1144

• onclosep1144

• oncontextlostp1144

• oncontextmenup1144

• oncontextrestoredp1144

• oncopyp1144

• oncuechangep1144

• oncutp1144

• ondblclickp1144

• ondragp1144

• ondragendp1144

• ondragenterp1144

• ondragleavep1144

• ondragoverp1144

• ondragstartp1144

• ondropp1144

• ondurationchangep1144

Assigning classes to an element affects class matching in selectors in CSS, the getElementsByClassName() method in the DOM,
and other such features.

There are no additional restrictions on the tokens authors can use in the classp154 attribute, but authors are encouraged to use
values that describe the nature of the content, rather than values that describe the desired presentation of the content.

Note

The idp154 attribute specifies its element's unique identifier (ID).

There are no other restrictions on what form an ID can take; in particular, IDs can consist of just digits, start with a digit, start with
an underscore, consist of just punctuation, etc.

An element's unique identifier can be used for a variety of purposes, most notably as a way to link to specific parts of a document
using fragments, as a way to target an element when scripting, and as a way to style a specific element from CSS.

Note

The slotp154 attribute is used to assign a slot to an element: an element with a slotp154 attribute is assigned to the slot created by
the slotp675 element whose namep676 attribute's value matches that slotp154 attribute's value — but only if that slotp675 element
finds itself in the shadow tree whose root's host has the corresponding slotp154 attribute value.

Note

155

https://dom.spec.whatwg.org/#dom-document-getelementsbyclassname
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-documentfragment-host

• onemptiedp1144

• onendedp1144

• onerrorp1145*
• onfocusp1145*
• onformdatap1144

• oninputp1144

• oninvalidp1144

• onkeydownp1144

• onkeypressp1144

• onkeyupp1144

• onloadp1145*
• onloadeddatap1144

• onloadedmetadatap1144

• onloadstartp1144

• onmousedownp1144

• onmouseenterp1144

• onmouseleavep1144

• onmousemovep1144

• onmouseoutp1144

• onmouseoverp1144

• onmouseupp1144

• onpastep1144

• onpausep1144

• onplayp1144

• onplayingp1144

• onprogressp1144

• onratechangep1144

• onresetp1144

• onresizep1145*
• onscrollp1145*
• onscrollendp1144*
• onsecuritypolicyviolationp1144

• onseekedp1144

• onseekingp1144

• onselectp1144

• onslotchangep1144

• onstalledp1144

• onsubmitp1144

• onsuspendp1144

• ontimeupdatep1144

• ontogglep1144

• onvolumechangep1144

• onwaitingp1145

• onwheelp1145

Custom data attributesp164 (e.g. data-foldername or data-msgid) can be specified on any HTML elementp45, to store custom data,
state, annotations, and similar, specific to the page.

In HTML documents, elements in the HTML namespace may have an xmlns attribute specified, if, and only if, it has the exact value
"http://www.w3.org/1999/xhtml". This does not apply to XML documents.

The attributes marked with an asterisk have a different meaning when specified on bodyp205 elements as those elements expose
event handlersp1136 of the Windowp922 object with the same names.

Note

While these attributes apply to all elements, they are not useful on all elements. For example, only media elementsp414 will ever
receive a volumechangep468 event fired by the user agent.

Note

In HTML, the xmlns attribute has absolutely no effect. It is basically a talisman. It is allowed merely to make migration to and from
XML mildly easier. When parsed by an HTML parserp1271, the attribute ends up in no namespace, not the "http://www.w3.org/
2000/xmlns/" namespace like namespace declaration attributes in XML do.

Note

156

https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#xml-document

XML also allows the use of the xml:space attribute in the XML namespace on any element in an XML document. This attribute has no
effect on HTML elementsp45, as the default behavior in HTML is to preserve whitespace. [XML]p1484

The title attribute representsp141 advisory information for the element, such as would be appropriate for a tooltip. On a link, this could
be the title or a description of the target resource; on an image, it could be the image credit or a description of the image; on a
paragraph, it could be a footnote or commentary on the text; on a citation, it could be further information about the source; on
interactive contentp150, it could be a label for, or instructions for, use of the element; and so forth. The value is text.

If this attribute is omitted from an element, then it implies that the titlep157 attribute of the nearest ancestor HTML elementp45 with a
titlep157 attribute set is also relevant to this element. Setting the attribute overrides this, explicitly stating that the advisory
information of any ancestors is not relevant to this element. Setting the attribute to the empty string indicates that the element has no
advisory information.

If the titlep157 attribute's value contains U+000A LINE FEED (LF) characters, the content is split into multiple lines. Each U+000A LINE
FEED (LF) character represents a line break.

Some elements, such as linkp177, abbrp269, and inputp520, define additional semantics for the titlep157 attribute beyond the semantics
described above.

The advisory information of an element is the value that the following algorithm returns, with the algorithm being aborted once a
value is returned. When the algorithm returns the empty string, then there is no advisory information.

1. If the element has a titlep157 attribute, then return the result of running normalize newlines on its value.

2. If the element has a parent element, then return the parent element's advisory informationp157.

3. Return the empty string.

User agents should inform the user when elements have advisory informationp157, otherwise the information would not be discoverable.

The title IDL attribute must reflectp104 the titlep157 content attribute.

In XML, an xmlns attribute is part of the namespace declaration mechanism, and an element cannot actually have an xmlns
attribute in no namespace specified.

Note

There is no way to serialize the xml:space attribute on HTML elementsp45 in the text/htmlp1444 syntax.
Note

3.2.6.1 The titlep157 attribute §p15

7

Relying on the titlep157 attribute is currently discouraged as many user agents do not expose the attribute in an accessible
manner as required by this specification (e.g., requiring a pointing device such as a mouse to cause a tooltip to appear, which
excludes keyboard-only users and touch-only users, such as anyone with a modern phone or tablet).

Note

Caution is advised with respect to the use of newlines in titlep157 attributes.

For instance, the following snippet actually defines an abbreviation's expansion with a line break in it:

<p>My logs show that there was some interest in <abbr title="Hypertext
Transport Protocol">HTTP</abbr> today.</p>

Example

✔ MDN

✔ MDN

157

https://www.w3.org/TR/xml/#sec-white-space
https://infra.spec.whatwg.org/#xml-namespace
https://dom.spec.whatwg.org/#xml-document
https://www.w3.org/TR/xml/#sec-white-space
https://infra.spec.whatwg.org/#normalize-newlines

The lang attribute (in no namespace) specifies the primary language for the element's contents and for any of the element's attributes
that contain text. Its value must be a valid BCP 47 language tag, or the empty string. Setting the attribute to the empty string indicates
that the primary language is unknown. [BCP47]p1475

The lang attribute in the XML namespace is defined in XML. [XML]p1484

If these attributes are omitted from an element, then the language of this element is the same as the language of its parent element, if
any (except for slotp675 elements in a shadow tree).

The langp158 attribute in no namespace may be used on any HTML elementp45.

The lang attribute in the XML namespace may be used on HTML elementsp45 in XML documents, as well as elements in other
namespaces if the relevant specifications allow it (in particular, MathML and SVG allow lang attributes in the XML namespace to be
specified on their elements). If both the langp158 attribute in no namespace and the lang attribute in the XML namespace are specified
on the same element, they must have exactly the same value when compared in an ASCII case-insensitive manner.

Authors must not use the lang attribute in the XML namespace on HTML elementsp45 in HTML documents. To ease migration to and
from XML, authors may specify an attribute in no namespace with no prefix and with the literal localname "xml:lang" on HTML
elementsp45 in HTML documents, but such attributes must only be specified if a langp158 attribute in no namespace is also specified,
and both attributes must have the same value when compared in an ASCII case-insensitive manner.

To determine the language of a node, user agents must use the first appropriate step in the following list:

↪ If the node is an element that has a lang attribute in the XML namespace set
Use the value of that attribute.

↪ If the node is an HTML elementp45 or an element in the SVG namespace, and it has a langp158 in no namespace
attribute set

Use the value of that attribute.

↪ If the node's parent is a shadow root
Use the languagep158 of that shadow root's host.

↪ If the node's parent element is not null
Use the languagep158 of that parent element.

↪ Otherwise
If there is a pragma-set default languagep196 set, then that is the language of the node. If there is no pragma-set default
languagep196 set, then language information from a higher-level protocol (such as HTTP), if any, must be used as the final
fallback language instead. In the absence of any such language information, and in cases where the higher-level protocol
reports multiple languages, the language of the node is unknown, and the corresponding language tag is the empty string.

If the resulting value is not a recognized language tag, then it must be treated as an unknown language having the given language
tag, distinct from all other languages. For the purposes of round-tripping or communicating with other services that expect language
tags, user agents should pass unknown language tags through unmodified, and tagged as being BCP 47 language tags, so that
subsequent services do not interpret the data as another type of language description. [BCP47]p1475

3.2.6.2 The langp158 and xml:lang attributes §p15

8

The attribute in no namespace with no prefix and with the literal localname "xml:lang" has no effect on language processing.
Note

Thus, for instance, an element with lang="xyzzy" would be matched by the selector :lang(xyzzy) (e.g. in CSS), but it would not
be matched by :lang(abcde), even though both are equally invalid. Similarly, if a web browser and screen reader working in
unison communicated about the language of the element, the browser would tell the screen reader that the language was "xyzzy",
even if it knew it was invalid, just in case the screen reader actually supported a language with that tag after all. Even if the screen
reader supported both BCP 47 and another syntax for encoding language names, and in that other syntax the string "xyzzy" was a
way to denote the Belarusian language, it would be incorrect for the screen reader to then start treating text as Belarusian,
because "xyzzy" is not how Belarusian is described in BCP 47 codes (BCP 47 uses the code "be" for Belarusian).

Example

✔ MDN

158

https://www.w3.org/TR/xml/#sec-lang-tag
https://www.w3.org/TR/xml/#sec-lang-tag
https://infra.spec.whatwg.org/#xml-namespace
https://dom.spec.whatwg.org/#concept-shadow-tree
https://www.w3.org/TR/xml/#sec-lang-tag
https://dom.spec.whatwg.org/#xml-document
https://www.w3.org/TR/xml/#sec-lang-tag
https://www.w3.org/TR/xml/#sec-lang-tag
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://www.w3.org/TR/xml/#sec-lang-tag
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://www.w3.org/TR/xml/#sec-lang-tag
https://infra.spec.whatwg.org/#svg-namespace
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#parent-element
https://dom.spec.whatwg.org/#parent-element

If the resulting value is the empty string, then it must be interpreted as meaning that the language of the node is explicitly unknown.

User agents may use the element's language to determine proper processing or rendering (e.g. in the selection of appropriate fonts or
pronunciations, for dictionary selection, or for the user interfaces of form controls such as date pickers).

The lang IDL attribute must reflectp104 the langp158 content attribute in no namespace.

The translate attribute is used to specify whether an element's attribute values and the values of its Text node children are to be
translated when the page is localized, or whether to leave them unchanged. It is an attribute is an enumerated attributep76 with the
following keywords and states:

Keyword State Brief description

yes yes Sets translation modep159 to translate-enabledp159.
(the empty string)
no no Sets translation modep159 to no-translatep159.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the inherit state.

Each element (even non-HTML elements) has a translation mode, which is in either the translate-enabledp159 state or the no-
translatep159 state. If an HTML elementp45 's translatep159 attribute is in the yesp159 state, then the element's translation modep159 is in
the translate-enabledp159 state; otherwise, if the element's translatep159 attribute is in the nop159 state, then the element's translation
modep159 is in the no-translatep159 state. Otherwise, either the element's translatep159 attribute is in the inheritp159 state, or the
element is not an HTML elementp45 and thus does not have a translatep159 attribute; in either case, the element's translation
modep159 is in the same state as its parent element's, if any, or in the translate-enabledp159 state, if the element's parent element is
null.

When an element is in the translate-enabled state, the element's translatable attributesp159 and the values of its Text node children
are to be translated when the page is localized.

When an element is in the no-translate state, the element's attribute values and the values of its Text node children are to be left as-
is when the page is localized, e.g. because the element contains a person's name or a name of a computer program.

The following attributes are translatable attributes:

• abbrp495 on thp495 elements
• alt on areap472, imgp347, and inputp548 elements
• contentp190 on metap189 elements, if the namep190 attribute specifies a metadata name whose value is known to be

translatable
• downloadp303 on ap257 and areap471 elements
• label on optgroupp576, optionp578, and trackp413 elements
• langp158 on HTML elementsp45; must be "translated" to match the language used in the translation
• placeholder on inputp559 and textareap583 elements
• srcdocp391 on iframep390 elements; must be parsed and recursively processed
• stylep163 on HTML elementsp45; must be parsed and recursively processed (e.g. for the values of 'content' properties)
• titlep157 on all HTML elementsp45

• valuep525 on inputp520 elements with a typep523 attribute in the Buttonp550 state or the Reset Buttonp549 state

Other specifications may define other attributes that are also translatable attributesp159. For example, ARIA would define the aria-
label attribute as translatable.

The translate IDL attribute must, on getting, return true if the element's translation modep159 is translate-enabledp159, and false
otherwise. On setting, it must set the content attribute's value to "yes" if the new value is true, and set the content attribute's value to
"no" otherwise.

3.2.6.3 The translatep159 attribute §p15

9

In this example, everything in the document is to be translated when the page is localized, except the sample keyboard input and
Example

✔ MDN

✔ MDN

159

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#parent-element
https://dom.spec.whatwg.org/#parent-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://drafts.csswg.org/css2/#content%E2%91%A0
https://w3c.github.io/aria/#aria-label
https://w3c.github.io/aria/#aria-label

The dir attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

ltr ltr The contents of the element are explicitly directionally isolated left-to-right text.
rtl rtl The contents of the element are explicitly directionally isolated right-to-left text.
auto auto The contents of the element are explicitly directionally isolated text, but the direction is to be determined programmatically using the contents

of the element (as described below).

The attribute's missing value defaultp76 and invalid value defaultp76 are both the undefined state.

The directionality of an element (any element, not just an HTML elementp45) is either 'ltr' or 'rtl'. To compute the directionalityp160

given an element element, switch on element's dirp160 attribute state:

↪ ltrp160

Return 'ltrp160 '.

↪ rtlp160

Return 'rtlp160 '.

↪ autop160

1. Let result be the auto directionalityp161 of element.

2. If result is null, then return 'ltrp160 '.

3. Return result.

↪ undefinedp160

↪ If element is a bdip297 element

1. Let result be the auto directionalityp161 of element.

2. If result is null, then return 'ltrp160 '.

3. Return result.

sample program output:

<!DOCTYPE HTML>
<html lang=en> <!-- default on the document element is translate=yes -->
<head>
<title>The Bee Game</title> <!-- implied translate=yes inherited from ancestors -->

</head>
<body>
<p>The Bee Game is a text adventure game in English.</p>
<p>When the game launches, the first thing you should do is type
<kbd translate=no>eat honey</kbd>. The game will respond with:</p>
<pre><samp translate=no>Yum yum! That was some good honey!</samp></pre>

</body>
</html>

3.2.6.4 The dirp160 attribute §p16

0

The heuristic used by the autop160 state is very crude (it just looks at the first character with a strong directionality, in a manner
analogous to the Paragraph Level determination in the bidirectional algorithm). Authors are urged to only use this value as a last
resort when the direction of the text is truly unknown and no better server-side heuristic can be applied. [BIDI]p1475

For textareap579 and prep233 elements, the heuristic is applied on a per-paragraph level.

Note

✔ MDN

160

↪ If element is an inputp520 element whose typep523 attribute is in the Telephonep528 state
Return 'ltrp160 '.

↪ Otherwise
Return the parent directionalityp162 of element.

The auto-directionality form-associated elements are:

• inputp520 elements whose typep523 attribute is in the Hiddenp527, Textp527, Searchp527, Telephonep528, URLp529, Emailp530,
Passwordp531, Submit Buttonp546, Reset Buttonp549, or Buttonp550 state, and

• textareap579 elements.

To compute the auto directionality given an element element:

1. If element is an auto-directionality form-associated elementp161:

1. If element's valuep597 contains a character of bidirectional character type AL or R, and there is no character of
bidirectional character type L anywhere before it in the element's valuep597, then return 'rtlp160 '. [BIDI]p1475

2. If element's valuep597 is not the empty string, then return 'ltrp160 '.

3. Return null.

2. If element is a slotp675 element whose root is a shadow root and element's assigned nodes are not empty:

1. For each node child of element's assigned nodes:

1. Let childDirection be null.

2. If child is a Text node, then set childDirection to the text node directionalityp162 of child.

3. Otherwise:

1. Assert: child is an Element node.

2. Set childDirection to the contained text auto directionalityp161 of child with canExcludeRootp161

set to true.

4. If childDirection is not null, then return childDirection.

2. Return null.

3. Return the contained text auto directionalityp161 of element with canExcludeRootp161 set to false.

To compute the contained text auto directionality of an element element with a boolean canExcludeRoot:

1. For each node descendant of element's descendants, in tree order:

1. If any of

▪ descendant
▪ any ancestor element of descendant that is a descendant of element
▪ if canExcludeRoot is true, element

is one of

▪ a bdip297 element
▪ a scriptp652 element
▪ a stylep200 element
▪ a textareap579 element
▪ an element whose dirp160 attribute is not in the undefinedp160 state

then continue.

2. If descendant is a slotp675 element whose root is a shadow root, then return the directionalityp160 of that shadow

Since the dirp160 attribute is only defined for HTML elementsp45, it cannot be present on elements from other namespaces. Thus,
elements from other namespaces always end up using the parent directionalityp162.

Note

161

https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-shadow-root

root's host.

3. If descendant is not a Text node, then continue.

4. Let result be the text node directionalityp162 of descendant.

5. If result is not null, then return result.

2. Return null.

To compute the text node directionality given a Text node text:

1. If text's data does not contain a code point whose bidirectional character type is L, AL, or R, then return null. [BIDI]p1475

2. Let codePoint be the first code point in text's data whose bidirectional character type is L, AL, or R.

3. If codePoint is of bidirectional character type AL or R, then return 'rtlp160 '.

4. If codePoint is of bidirectional character type L, then return 'ltrp160 '.

To compute the parent directionality given an element element:

1. Let parentNode be element's parent node.

2. If parentNode is a shadow root, then return the directionalityp160 of parentNode's host.

3. If parentNode is an element, then return the directionalityp160 of parentNode.

4. Return 'ltrp160 '.

The directionality of an attribute of an HTML elementp45, which is used when the text of that attribute is to be included in the
rendering in some manner, is determined as per the first appropriate set of steps from the following list:

↪ If the attribute is a directionality-capable attributep162 and the element's dirp160 attribute is in the autop160 state
Find the first character (in logical order) of the attribute's value that is of bidirectional character type L, AL, or R. [BIDI]p1475

If such a character is found and it is of bidirectional character type AL or R, the directionality of the attributep162 is 'rtlp160 '.

Otherwise, the directionality of the attributep162 is 'ltrp160 '.

↪ Otherwise
The directionality of the attributep162 is the same as the element's directionalityp160.

The following attributes are directionality-capable attributes:

• abbrp495 on thp495 elements
• alt on areap472, imgp347, and inputp548 elements
• contentp190 on metap189 elements, if the namep190 attribute specifies a metadata name whose value is primarily intended to be

human-readable rather than machine-readable
• label on optgroupp576, optionp578, and trackp413 elements
• placeholder on inputp559 and textareap583 elements
• titlep157 on all HTML elementsp45

The dir IDL attribute on an element must reflectp104 the dirp160 content attribute of that element, limited to only known valuesp105.

This attribute has rendering requirements involving the bidirectional algorithmp170.
Note

document.dirp162 [= value]
Returns the html elementp135 's dirp160 attribute's value, if any.
Can be set, to either "ltr", "rtl", or "auto" to replace the html elementp135 's dirp160 attribute's value.
If there is no html elementp135, returns the empty string and ignores new values.

For web developers (non-normative)

✔ MDN
✔ MDN

162

https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-documentfragment-host

The dir IDL attribute on Documentp130 objects must reflectp104 the dirp160 content attribute of the html elementp135, if any, limited to
only known valuesp105. If there is no such element, then the attribute must return the empty string and do nothing on setting.

All HTML elementsp45 may have the style content attribute set. This is a style attribute as defined by CSS Style Attributes.
[CSSATTR]p1476

In user agents that support CSS, the attribute's value must be parsed when the attribute is added or has its value changed, according
to the rules given for style attributes. [CSSATTR]p1476

However, if the Should element's inline behavior be blocked by Content Security Policy? algorithm returns "Blocked" when executed
upon the attribute's element, "style attribute", and the attribute's value, then the style rules defined in the attribute's value must
not be applied to the element. [CSP]p1476

Documents that use stylep163 attributes on any of their elements must still be comprehensible and usable if those attributes were
removed.

Authors are strongly encouraged to use the dirp160 attribute to indicate text direction rather than using CSS, since that way their
documents will continue to render correctly even in the absence of CSS (e.g. as interpreted by search engines).

Note

This markup fragment is of an IM conversation.

<p dir=auto class="u1"><bdi>Student</bdi>: How do you write "What's your name?" in
Arabic?</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: <p/>ما اسمك؟
<p dir=auto class="u1"><bdi>Student</bdi>: Thanks.</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: That's written " رًاشك ".</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: Do you know how to write "Please"?</p>
<p dir=auto class="u1"><bdi>Student</bdi>: <right?</p ,"من فضلك"

Given a suitable style sheet and the default alignment styles for the pp229 element, namely to align the text to the start edge of the
paragraph, the resulting rendering could be as follows:

As noted earlier, the autop160 value is not a panacea. The final paragraph in this example is misinterpreted as being right-to-left
text, since it begins with an Arabic character, which causes the "right?" to be to the left of the Arabic text.

Example

3.2.6.5 The stylep163 attribute §p16

3

In particular, using the stylep163 attribute to hide and show content, or to convey meaning that is otherwise not included in the
document, is non-conforming. (To hide and show content, use the hiddenp824 attribute.)

Note

element.style
Returns a CSSStyleDeclaration object for the element's stylep163 attribute.

For web developers (non-normative)

✔ MDN

163

https://drafts.csswg.org/css-style-attr/#style-attribute
https://drafts.csswg.org/css-style-attr/#style-attribute
https://w3c.github.io/webappsec-csp/#should-block-inline
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://drafts.csswg.org/cssom/#dom-elementcssinlinestyle-style
https://drafts.csswg.org/cssom/#the-cssstyledeclaration-interface

The style IDL attribute is defined in CSS Object Model. [CSSOM]p1477

A custom data attribute is an attribute in no namespace whose name starts with the string "data-", has at least one character after
the hyphen, is XML-compatiblep45, and contains no ASCII upper alphas.

Custom data attributesp164 are intended to store custom data, state, annotations, and similar, private to the page or application, for
which there are no more appropriate attributes or elements.

These attributes are not intended for use by software that is not known to the administrators of the site that uses the attributes. For
generic extensions that are to be used by multiple independent tools, either this specification should be extended to provide the
feature explicitly, or a technology like microdatap788 should be used (with a standardized vocabulary).

In the following example, the words that refer to colors are marked up using the spanp298 element and the stylep163 attribute to
make those words show up in the relevant colors in visual media.

<p>My sweat suit is <span style="color: green; background:
transparent">green and my eyes are <span style="color: blue;
background: transparent">blue.</p>

Example

3.2.6.6 Embedding custom non-visible data with the data-*p164 attributes §p16

4

All attribute names on HTML elementsp45 in HTML documents get ASCII-lowercased automatically, so the restriction on ASCII
uppercase letters doesn't affect such documents.

Note

For instance, a site about music could annotate list items representing tracks in an album with custom data attributes containing
the length of each track. This information could then be used by the site itself to allow the user to sort the list by track length, or to
filter the list for tracks of certain lengths.

<li data-length="2m11s">Beyond The Sea
...

It would be inappropriate, however, for the user to use generic software not associated with that music site to search for tracks of a
certain length by looking at this data.

This is because these attributes are intended for use by the site's own scripts, and are not a generic extension mechanism for
publicly-usable metadata.

Example

Similarly, a page author could write markup that provides information for a translation tool that they are intending to use:

<p>The third claim covers the case of HTML markup.</p>

In this example, the "data-mytrans-de" attribute gives specific text for the MyTrans product to use when translating the phrase
"claim" to German. However, the standard translatep159 attribute is used to tell it that in all languages, "HTML" is to remain
unchanged. When a standard attribute is available, there is no need for a custom data attributep164 to be used.

Example

In this example, custom data attributes are used to store the result of a feature detection for PaymentRequest, which could be
used in CSS to style a checkout page differently.

Example

✔ MDN

164

https://drafts.csswg.org/cssom/#dom-elementcssinlinestyle-style
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#html-document
https://w3c.github.io/payment-request/#dom-paymentrequest

Every HTML elementp45 may have any number of custom data attributesp164 specified, with any value.

Authors should carefully design such extensions so that when the attributes are ignored and any associated CSS dropped, the page is
still usable.

User agents must not derive any implementation behavior from these attributes or values. Specifications intended for user agents
must not define these attributes to have any meaningful values.

JavaScript libraries may use the custom data attributesp164, as they are considered to be part of the page on which they are used.
Authors of libraries that are reused by many authors are encouraged to include their name in the attribute names, to reduce the risk of
clashes. Where it makes sense, library authors are also encouraged to make the exact name used in the attribute names customizable,
so that libraries whose authors unknowingly picked the same name can be used on the same page, and so that multiple versions of a
particular library can be used on the same page even when those versions are not mutually compatible.

The dataset IDL attribute provides convenient accessors for all the data-*p164 attributes on an element. On getting, the datasetp165

IDL attribute must return a DOMStringMapp165 whose associated element is this element.

The DOMStringMapp165 interface is used for the datasetp165 attribute. Each DOMStringMapp165 has an associated element.

[Exposed=Window,
LegacyOverrideBuiltIns]

interface DOMStringMap {
getter DOMString (DOMString name);
[CEReactions] setter undefined (DOMString name, DOMString value);
[CEReactions] deleter undefined (DOMString name);

};

To get a DOMStringMap's name-value pairs, run the following algorithm:

1. Let list be an empty list of name-value pairs.

2. For each content attribute on the DOMStringMapp165 's associated elementp165 whose first five characters are the string
"data-" and whose remaining characters (if any) do not include any ASCII upper alphas, in the order that those attributes are
listed in the element's attribute list, add a name-value pair to list whose name is the attribute's name with the first five
characters removed and whose value is the attribute's value.

3. For each name in list, for each U+002D HYPHEN-MINUS character (-) in the name that is followed by an ASCII lower alpha,
remove the U+002D HYPHEN-MINUS character (-) and replace the character that followed it by the same character converted

<script>
if ('PaymentRequest' in window) {

document.documentElement.dataset.hasPaymentRequest = '';
}

</script>

Here, the data-has-payment-request attribute is effectively being used as a boolean attributep75; it is enough to check the
presence of the attribute. However, if the author so wishes, it could later be populated with some value, maybe to indicate limited
functionality of the feature.

For example, a library called "DoQuery" could use attribute names like data-doquery-range, and a library called "jJo" could use
attributes names like data-jjo-range. The jJo library could also provide an API to set which prefix to use (e.g.
J.setDataPrefix('j2'), making the attributes have names like data-j2-range).

Example

element.datasetp165

Returns a DOMStringMapp165 object for the element's data-*p164 attributes.
Hyphenated names become camel-cased. For example, data-foo-bar="" becomes element.dataset.fooBar.

For web developers (non-normative)

IDL

165

https://webidl.spec.whatwg.org/#LegacyOverrideBuiltIns
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#concept-element-attribute
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-uppercase

to ASCII uppercase.

4. Return list.

The supported property names on a DOMStringMapp165 object at any instant are the names of each pair returned from getting the
DOMStringMap's name-value pairsp165 at that instant, in the order returned.

To determine the value of a named property name for a DOMStringMapp165, return the value component of the name-value pair whose
name component is name in the list returned from getting the DOMStringMap's name-value pairsp165.

To set the value of a new named property or set the value of an existing named property for a DOMStringMapp165, given a property
name name and a new value value, run the following steps:

1. If name contains a U+002D HYPHEN-MINUS character (-) followed by an ASCII lower alpha, then throw a "SyntaxError"
DOMException.

2. For each ASCII upper alpha in name, insert a U+002D HYPHEN-MINUS character (-) before the character and replace the
character with the same character converted to ASCII lowercase.

3. Insert the string data- at the front of name.

4. If name does not match the XML Name production, throw an "InvalidCharacterError" DOMException.

5. Set an attribute value for the DOMStringMapp165 's associated elementp165 using name and value.

To delete an existing named property name for a DOMStringMapp165, run the following steps:

1. For each ASCII upper alpha in name, insert a U+002D HYPHEN-MINUS character (-) before the character and replace the
character with the same character converted to ASCII lowercase.

2. Insert the string data- at the front of name.

3. Remove an attribute by name given name and the DOMStringMapp165 's associated elementp165.

This algorithm will only get invoked by Web IDL for names that are given by the earlier algorithm for getting the DOMStringMap's
name-value pairsp165. [WEBIDL]p1483

Note

If a web page wanted an element to represent a space ship, e.g. as part of a game, it would have to use the classp154 attribute
along with data-*p164 attributes:

<div class="spaceship" data-ship-id="92432"
data-weapons="laser 2" data-shields="50%"
data-x="30" data-y="10" data-z="90">

<button class="fire"
onclick="spaceships[this.parentNode.dataset.shipId].fire()">

Fire
</button>

</div>

Notice how the hyphenated attribute name becomes camel-cased in the API.

Example

Given the following fragment and elements with similar constructions:

<img class="tower" id="tower5" data-x="12" data-y="5"
data-ai="robotarget" data-hp="46" data-ability="flames"
src="towers/rocket.png" alt="Rocket Tower">

...one could imagine a function splashDamage() that takes some arguments, the first of which is the element to process:

Example

166

https://infra.spec.whatwg.org/#ascii-uppercase
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-a-named-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-a-new-named-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-an-existing-named-property
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lowercase
https://www.w3.org/TR/xml/#NT-Name
https://webidl.spec.whatwg.org/#invalidcharactererror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://webidl.spec.whatwg.org/#dfn-delete-an-existing-named-property
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lowercase
https://dom.spec.whatwg.org/#concept-element-attributes-remove

The get the text steps, given an HTMLElementp142 element, are:

1. If element is not being renderedp1388 or if the user agent is a non-CSS user agent, then return element's descendant text
content.

2. Let results be a new empty list.

3. For each child node node of element:

1. Let current be the list resulting in running the rendered text collection stepsp168 with node. Each item in results will
either be a string or a positive integer (a required line break count).

2. For each item item in current, append item to results.

4. Remove any items from results that are the empty string.

5. Remove any runs of consecutive required line break count items at the start or end of results.

6. Replace each remaining run of consecutive required line break count items with a string consisting of as many U+000A LF
code points as the maximum of the values in the required line break count items.

7. Return the concatenation of the string items in results.

function splashDamage(node, x, y, damage) {
if (node.classList.contains('tower') && // checking the 'class' attribute

node.dataset.x == x && // reading the 'data-x' attribute
node.dataset.y == y) { // reading the 'data-y' attribute

var hp = parseInt(node.dataset.hp); // reading the 'data-hp' attribute
hp = hp - damage;
if (hp < 0) {

hp = 0;
node.dataset.ai = 'dead'; // setting the 'data-ai' attribute
delete node.dataset.ability; // removing the 'data-ability' attribute

}
node.dataset.hp = hp; // setting the 'data-hp' attribute

}
}

element.innerTextp168 [= value]
Returns the element's text content "as rendered".
Can be set, to replace the element's children with the given value, but with line breaks converted to brp299 elements.

element.outerTextp168 [= value]
Returns the element's text content "as rendered".
Can be set, to replace the element with the given value, but with line breaks converted to brp299 elements.

For web developers (non-normative)

This step can produce surprising results, as when the innerTextp168 getter is invoked on an element not being
renderedp1388, its text contents are returned, but when accessed on an element that is being renderedp1388, all of its
children that are not being renderedp1388 have their text contents ignored.

Note

Intuitively, a required line break count item means that a certain number of line breaks appear at that point,
but they can be collapsed with the line breaks induced by adjacent required line break count items,
reminiscent to CSS margin-collapsing.

Note

3.2.7 The innerTextp168 and outerTextp168 properties §p16

7

✔ MDN

✔ MDN
167

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-replace

The innerText and outerText getter steps are to return the result of running get the text stepsp167 with this.

The rendered text collection steps, given a node node, are as follows:

1. Let items be the result of running the rendered text collection stepsp168 with each child node of node in tree order, and then
concatenating the results to a single list.

2. If node's computed value of 'visibility' is not 'visible', then return items.

3. If node is not being renderedp1388, then return items. For the purpose of this step, the following elements must act as
described if the computed value of the 'display' property is not 'none':

◦ selectp568 elements have an associated non-replaced inline CSS box whose child boxes include only those of
optgroupp576 and optionp577 element child nodes;

◦ optgroupp576 elements have an associated non-replaced block-level CSS box whose child boxes include only those
of optionp577 element child nodes; and

◦ optionp577 element have an associated non-replaced block-level CSS box whose child boxes are as normal for non-
replaced block-level CSS boxes.

4. If node is a Text node, then for each CSS text box produced by node, in content order, compute the text of the box after
application of the CSS 'white-space' processing rules and 'text-transform' rules, set items to the list of the resulting strings,
and return items. The CSS 'white-space' processing rules are slightly modified: collapsible spaces at the end of lines are
always collapsed, but they are only removed if the line is the last line of the block, or it ends with a brp299 element. Soft
hyphens should be preserved. [CSSTEXT]p1477

5. If node is a brp299 element, then append a string containing a single U+000A LF code point to items.

6. If node's computed value of 'display' is 'table-cell', and node's CSS box is not the last 'table-cell' box of its enclosing 'table-
row' box, then append a string containing a single U+0009 TAB code point to items.

7. If node's computed value of 'display' is 'table-row', and node's CSS box is not the last 'table-row' box of the nearest ancestor
'table' box, then append a string containing a single U+000A LF code point to items.

8. If node is a pp229 element, then append 2 (a required line break count) at the beginning and end of items.

9. If node's used value of 'display' is block-level or 'table-caption', then append 1 (a required line break count) at the beginning
and end of items. [CSSDISPLAY]p1476

10. Return items.

This algorithm is amenable to being generalized to work on ranges. Then we can use it as the basis for Selection's stringifier and
maybe expose it directly on ranges. See Bugzilla bug 10583.

The set the inner text steps, given an HTMLElementp142 element, and a string value are:

1. Let fragment be the rendered text fragmentp169 for value given element's node document.

2. Replace all with fragment within element.

The innerTextp168 setter steps are to run set the inner text stepsp168.

The outerTextp168 setter steps are:

items can be non-empty due to 'display:contents'.
Note

Floats and absolutely-positioned elements fall into this category.
Note

Note that descendant nodes of most replaced elements (e.g., textareap579, inputp520, and videop406 — but not buttonp566) are not
rendered by CSS, strictly speaking, and therefore have no CSS boxes for the purposes of this algorithm.

Note

168

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#list
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#propdef-visibility
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#interface-text
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#text-transform-property
https://infra.spec.whatwg.org/#list
https://drafts.csswg.org/css-text/#white-space-property
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-tables/#table-cell
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-tables/#table-cell
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-tables/#table-row
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-tables/#table-row
https://drafts.csswg.org/css-tables/#table
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#block-level
https://drafts.csswg.org/css-tables/#table-caption
https://infra.spec.whatwg.org/#list-append
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#concept-range
https://w3c.github.io/selection-api/#selection-interface
https://dom.spec.whatwg.org/#concept-range
https://www.w3.org/Bugs/Public/show_bug.cgi?id=10583
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-replace-all

1. If this's parent is null, then throw a "NoModificationAllowedError" DOMException.

2. Let next be this's next sibling.

3. Let previous be this's previous sibling.

4. Let fragment be the rendered text fragmentp169 for the given value given this's node document.

5. If fragment has no children, then append a new Text node whose data is the empty string and node document is this's node
document to fragment.

6. Replace this with fragment within this's parent.

7. If next is non-null and next's previous sibling is a Text node, then merge with the next text nodep169 given next's previous
sibling.

8. If previous is a Text node, then merge with the next text nodep169 given previous.

The rendered text fragment for a string input given a Documentp130 document is the result of running the following steps:

1. Let fragment be a new DocumentFragment whose node document is document.

2. Let position be a position variable for input, initially pointing at the start of input.

3. Let text be the empty string.

4. While position is not past the end of input:

1. Collect a sequence of code points that are not U+000A LF or U+000D CR from input given position, and set text to
the result.

2. If text is not the empty string, then append a new Text node whose data is text and node document is document
to fragment.

3. While position is not past the end of input, and the code point at position is either U+000A LF or U+000D CR:

1. If the code point at position is U+000D CR and the next code point is U+000A LF, then advance position
to the next code point in input.

2. Advance position to the next code point in input.

3. Append the result of creating an element given document, brp299, and the HTML namespace to fragment.

5. Return fragment.

To merge with the next text node given a Text node node:

1. Let next be node's next sibling.

2. If next is not a Text node, then return.

3. Replace data with node, node's data's length, 0, and next's data.

4. Remove next.

Text contentp150 in HTML elementsp45 with Text nodes in their contentsp147, and text in attributes of HTML elementsp45 that allow free-
form text, may contain characters in the ranges U+202A to U+202E and U+2066 to U+2069 (the bidirectional-algorithm formatting
characters). [BIDI]p1475

3.2.8.1 Authoring conformance criteria for bidirectional-algorithm formatting characters §p16

9

Authors are encouraged to use the dirp160 attribute, the bdop298 element, and the bdip297 element, rather than maintaining the
bidirectional-algorithm formatting characters manually. The bidirectional-algorithm formatting characters interact poorly with CSS.

Note

3.2.8 Requirements relating to the bidirectional algorithm §p16

9

169

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#nomodificationallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-previous-sibling
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-replace
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-previous-sibling
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-tree-previous-sibling
https://dom.spec.whatwg.org/#concept-tree-previous-sibling
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#string-position-variable
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-replace
https://dom.spec.whatwg.org/#concept-cd-data
https://infra.spec.whatwg.org/#string-length
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#interface-text

User agents must implement the Unicode bidirectional algorithm to determine the proper ordering of characters when rendering
documents and parts of documents. [BIDI]p1475

The mapping of HTML to the Unicode bidirectional algorithm must be done in one of three ways. Either the user agent must implement
CSS, including in particular the CSS 'unicode-bidi', 'direction', and 'content' properties, and must have, in its user agent style sheet, the
rules using those properties given in this specification's renderingp1388 section, or, alternatively, the user agent must act as if it
implemented just the aforementioned properties and had a user agent style sheet that included all the aforementioned rules, but
without letting style sheets specified in documents override them, or, alternatively, the user agent must implement another styling
language with equivalent semantics. [CSSGC]p1476

The following elements and attributes have requirements defined by the renderingp1388 section that, due to the requirements in this
section, are requirements on all user agents (not just those that support the suggested default renderingp48):

• dirp160 attribute
• bdip297 element
• bdop298 element
• brp299 element
• prep233 element
• textareap579 element
• wbrp300 element

User agent requirements for implementing Accessibility API semantics on HTML elementsp45 are defined in HTML Accessibility API
Mappings. In addition to the rules there, for a custom elementp759 element, the default ARIA role semantics are determined as follows:
[HTMLAAM]p1478

1. Let map be element's internal content attribute mapp774.

2. If map["role"] exists, then return it.

3. Return no role.

Similarly, for a custom elementp759 element, the default ARIA state and property semantics, for a state or property named
stateOrProperty, are determined as follows:

1. If element's attached internalsp770 is non-null:

1. If element's attached internalsp770 's get the stateOrProperty-associated elementp108 exists, then return the result of
running it.

2. If element's attached internalsp770 's get the stateOrProperty-associated elementsp109 exists, then return the result
of running it.

2. If element's internal content attribute mapp774[stateOrProperty] exists, then return it.

3. Return the default value for stateOrProperty.

For an example of this in action, see the custom elements sectionp751.

Conformance checker requirements for checking use of ARIA rolep68 and aria-*p68 attributes on HTML elementsp45 are defined in ARIA

3.2.8.2 User agent conformance criteria §p17

0

The "default semantics" referred to here are sometimes also called "native", "implicit", or "host language" semantics in ARIA.
[ARIA]p1475

Note

One implication of these definitions is that the default semantics can change over time. This allows custom elements the same
expressivity as built-in elements; e.g., compare to how the default ARIA role semantics of an ap257 element change as the hrefp303

attribute is added or removed.

Note

3.2.9 Requirements related to ARIA and to platform accessibility APIs §p17

0

170

https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css2/#content%E2%91%A0
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists

in HTML. [ARIAHTML]p1475

171

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As document's document element.
Wherever a subdocument fragment is allowed in a compound document.

Content modelp146:
A headp173 element followed by a bodyp205 element.

Tag omission in text/htmlp146:
An htmlp172 element's start tagp1261 can be omitted if the first thing inside the htmlp172 element is not a commentp1270.
An htmlp172 element's end tagp1262 can be omitted if the htmlp172 element is not immediately followed by a commentp1270.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLHtmlElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The htmlp172 element representsp141 the root of an HTML document.

Authors are encouraged to specify a langp158 attribute on the root htmlp172 element, giving the document's language. This aids speech
synthesis tools to determine what pronunciations to use, translation tools to determine what rules to use, and so forth.

4 The elements of HTML §p17

2

4.1 The document element §p17

2

The htmlp172 element in the following example declares that the document's language is English.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Swapping Songs</title>
</head>
<body>
<h1>Swapping Songs</h1>
<p>Tonight I swapped some of the songs I wrote with some friends, who
gave me some of the songs they wrote. I love sharing my music.</p>
</body>
</html>

Example

IDL

4.1.1 The html element §p17

2

✔ MDN

✔ MDN

172

https://dom.spec.whatwg.org/#document-element
https://w3c.github.io/html-aria/#el-html
https://w3c.github.io/html-aam/#el-html

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As the first element in an htmlp172 element.

Content modelp146:
If the document is an iframe srcdoc documentp391 or if title information is available from a higher-level protocol: Zero or more
elements of metadata contentp148, of which no more than one is a titlep174 element and no more than one is a basep175

element.
Otherwise: One or more elements of metadata contentp148, of which exactly one is a titlep174 element and no more than one is
a basep175 element.

Tag omission in text/htmlp146:
A headp173 element's start tagp1261 can be omitted if the element is empty, or if the first thing inside the headp173 element is an
element.
A headp173 element's end tagp1262 can be omitted if the headp173 element is not immediately followed by ASCII whitespace or a
commentp1270.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLHeadElement : HTMLElement {

[HTMLConstructor] constructor();
};

The headp173 element representsp141 a collection of metadata for the Documentp130.

4.2 Document metadata §p17

3

The collection of metadata in a headp173 element can be large or small. Here is an example of a very short one:

<!doctype html>
<html lang=en>
<head>
<title>A document with a short head</title>

</head>
<body>
...

Here is an example of a longer one:

<!DOCTYPE HTML>
<HTML LANG="EN">
<HEAD>
<META CHARSET="UTF-8">
<BASE HREF="https://www.example.com/">
<TITLE>An application with a long head</TITLE>
<LINK REL="STYLESHEET" HREF="default.css">
<LINK REL="STYLESHEET ALTERNATE" HREF="big.css" TITLE="Big Text">
<SCRIPT SRC="support.js"></SCRIPT>
<META NAME="APPLICATION-NAME" CONTENT="Long headed application">

</HEAD>

Example

IDL

4.2.1 The head element §p17

3

✔ MDN

✔ MDN

173

https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-head
https://w3c.github.io/html-aam/#el-head

Categoriesp146:
Metadata contentp148.

Contexts in which this element can be usedp146:
In a headp173 element containing no other titlep174 elements.

Content modelp146:
Textp150 that is not inter-element whitespacep147.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTitleElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString text;
};

The titlep174 element representsp141 the document's title or name. Authors should use titles that identify their documents even when
they are used out of context, for example in a user's history or bookmarks, or in search results. The document's title is often different
from its first heading, since the first heading does not have to stand alone when taken out of context.

There must be no more than one titlep174 element per document.

The text attribute's getter must return this titlep174 element's child text content.

The textp174 attribute's setter must string replace all with the given value within this titlep174 element.

<BODY>
...

The titlep174 element is a required child in most situations, but when a higher-level protocol provides title information, e.g., in the
subject line of an email when HTML is used as an email authoring format, the titlep174 element can be omitted.

Note

If it's reasonable for the Documentp130 to have no title, then the titlep174 element is probably not required. See the headp173

element's content model for a description of when the element is required.

Note

title.textp174 [= value]
Returns the child text content of the element.
Can be set, to replace the element's children with the given value.

For web developers (non-normative)

IDL

4.2.2 The title element §p17

4

✔ MDN

✔ MDN

174

https://w3c.github.io/html-aria/#el-title
https://w3c.github.io/html-aam/#el-title
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#string-replace-all

The string to use as the document's title is given by the document.titlep135 IDL attribute.

User agents should use the document's title when referring to the document in their user interface. When the contents of a titlep174

element are used in this way, the directionalityp160 of that titlep174 element should be used to set the directionality of the document's
title in the user interface.

Categoriesp146:
Metadata contentp148.

Contexts in which this element can be usedp146:
In a headp173 element containing no other basep175 elements.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

hrefp176 — Document base URLp96

targetp176 — Default navigablep989 for hyperlinkp302 navigationp1014 and form submissionp628

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLBaseElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString href;
[CEReactions] attribute DOMString target;

};

The basep175 element allows authors to specify the document base URLp96 for the purposes of parsing URLs, and the name of the
default navigablep989 for the purposes of following hyperlinksp309. The element does not representp141 any content beyond this
information.

There must be no more than one basep175 element per document.

Here are some examples of appropriate titles, contrasted with the top-level headings that might be used on those same pages.

<title>Introduction to The Mating Rituals of Bees</title>
...

<h1>Introduction</h1>
<p>This companion guide to the highly successful
<cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the subject matter unambiguously, while the first
heading assumes the reader knows what the context is and therefore won't wonder if the dances are Salsa or Waltz:

<title>Dances used during bee mating rituals</title>
...

<h1>The Dances</h1>

Example

IDL

4.2.3 The base element §p17

5

✔ MDN

✔ MDN

175

https://w3c.github.io/html-aria/#el-base
https://w3c.github.io/html-aam/#el-base
https://url.spec.whatwg.org/#concept-url

A basep175 element must have either an hrefp176 attribute, a targetp176 attribute, or both.

The href content attribute, if specified, must contain a valid URL potentially surrounded by spacesp96.

A basep175 element, if it has an hrefp176 attribute, must come before any other elements in the tree that have attributes defined as
taking URLs, except the htmlp172 element (its manifestp1428 attribute isn't affected by basep175 elements).

The target attribute, if specified, must contain a valid navigable target name or keywordp996, which specifies which navigablep989 is to
be used as the default when hyperlinksp302 and formsp514 in the Documentp130 cause navigationp1014.

A basep175 element, if it has a targetp176 attribute, must come before any elements in the tree that represent hyperlinksp302.

To get an element's target, given an ap257, areap471, or formp514 element element, and an optional string-or-null target (default null),
run these steps:

1. If target is null, then:

1. If element has a target attribute, then set target to that attribute's value.

2. Otherwise, if element's node document contains a basep175 element with a targetp176 attribute, set target to the
value of the targetp176 attribute of the first such basep175 element.

2. If target is not null, and contains an ASCII tab or newline and a U+003C (<), then set target to "_blank".

3. Return target.

A basep175 element that is the first basep175 element with an hrefp176 content attribute in a document tree has a frozen base URL. The
frozen base URLp176 must be immediatelyp43 setp176 for an element whenever any of the following situations occur:

• The basep175 element becomes the first basep175 element in tree order with an hrefp176 content attribute in its Documentp130.

• The basep175 element is the first basep175 element in tree order with an hrefp176 content attribute in its Documentp130, and its
hrefp176 content attribute is changed.

To set the frozen base URL for an element element:

1. Let document be element's node document.

2. Let urlRecord be the result of parsing the value of element's hrefp176 content attribute with document's fallback base URLp96,
and document's character encoding. (Thus, the basep175 element isn't affected by itself.)

3. If any of the following are true:

◦ urlRecord is failure;

◦ urlRecord's scheme is "data" or "javascript"; or

◦ running Is base allowed for Document? on urlRecord and document returns "Blocked",

then set element's frozen base URLp176 to document's fallback base URLp96 and return.

4. Set element's frozen base URLp176 to urlRecord.

The href IDL attribute, on getting, must return the result of running the following algorithm:

1. Let document be element's node document.

2. Let url be the value of the hrefp176 attribute of this element, if it has one, and the empty string otherwise.

If there are multiple basep175 elements with hrefp176 attributes, all but the first are ignored.
Note

If there are multiple basep175 elements with targetp176 attributes, all but the first are ignored.
Note

176

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#ascii-tab-or-newline
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-parser
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#concept-url-scheme
https://w3c.github.io/webappsec-csp/#allow-base-for-document
https://dom.spec.whatwg.org/#concept-node-document

3. Let urlRecord be the result of parsing url with document's fallback base URLp96, and document's character encoding. (Thus,
the basep175 element isn't affected by other basep175 elements or itself.)

4. If urlRecord is failure, return url.

5. Return the serialization of urlRecord.

The hrefp176 IDL attribute, on setting, must set the hrefp176 content attribute to the given new value.

The target IDL attribute must reflectp104 the content attribute of the same name.

Categoriesp146:
Metadata contentp148.
If the element is allowed in the bodyp179: flow contentp149.
If the element is allowed in the bodyp179: phrasing contentp150.

Contexts in which this element can be usedp146:
Where metadata contentp148 is expected.
In a noscriptp669 element that is a child of a headp173 element.
If the element is allowed in the bodyp179: where phrasing contentp150 is expected.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

hrefp178 — Address of the hyperlinkp302

crossoriginp179 — How the element handles crossorigin requests
relp178 — Relationship between the document containing the hyperlinkp302 and the destination resource
mediap179 — Applicable media
integrityp179 — Integrity metadata used in Subresource Integrity checks [SRI]p1482

hreflangp179 — Language of the linked resource
typep179 — Hint for the type of the referenced resource
referrerpolicyp179 — Referrer policy for fetches initiated by the element
sizesp180 — Sizes of the icons (for relp178="iconp320")
imagesrcsetp180 — Images to use in different situations, e.g., high-resolution displays, small monitors, etc. (for
relp178="preloadp328")
imagesizesp180 — Image sizes for different page layouts (for relp178="preloadp328")
asp181 — Potential destination for a preload request (for relp178="preloadp328" and relp178="modulepreloadp323")
blockingp181 — Whether the element is potentially render-blockingp103

In this example, a basep175 element is used to set the document base URLp96:

<!DOCTYPE html>
<html lang="en">

<head>
<title>This is an example for the <base> element</title>
<base href="https://www.example.com/news/index.html">

</head>
<body>

<p>Visit the archives.</p>
</body>

</html>

The link in the above example would be a link to "https://www.example.com/news/archives.html".

Example

4.2.4 The link element §p17

7

✔ MDN

✔ MDN

177

https://url.spec.whatwg.org/#concept-url-parser
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#concept-url-serializer
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-potential-destination

colorp181 — Color to use when customizing a site's icon (for relp178="mask-icon")
disabledp181 — Whether the link is disabled
fetchpriorityp181 — Sets the priority for fetches initiated by the element
Also, the titlep179 attribute has special semanticsp179 on this element: Title of the link; CSS style sheet set name

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLLinkElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString href;
[CEReactions] attribute DOMString? crossOrigin;
[CEReactions] attribute DOMString rel;
[CEReactions] attribute DOMString as;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;
[CEReactions] attribute DOMString media;
[CEReactions] attribute DOMString integrity;
[CEReactions] attribute DOMString hreflang;
[CEReactions] attribute DOMString type;
[SameObject, PutForwards=value] readonly attribute DOMTokenList sizes;
[CEReactions] attribute USVString imageSrcset;
[CEReactions] attribute DOMString imageSizes;
[CEReactions] attribute DOMString referrerPolicy;
[SameObject, PutForwards=value] readonly attribute DOMTokenList blocking;
[CEReactions] attribute boolean disabled;
[CEReactions] attribute DOMString fetchPriority;

// also has obsolete members
};
HTMLLinkElement includes LinkStyle;

The linkp177 element allows authors to link their document to other resources.

The address of the link(s) is given by the href attribute. If the hrefp178 attribute is present, then its value must be a valid non-empty
URL potentially surrounded by spacesp96. One or both of the hrefp178 or imagesrcsetp180 attributes must be present.

If both the hrefp178 and imagesrcsetp180 attributes are absent, then the element does not define a link.

The types of link indicated (the relationships) are given by the value of the rel attribute, which, if present, must have a value that is a
unordered set of unique space-separated tokensp95. The allowed keywords and their meaningsp314 are defined in a later section. If the
relp178 attribute is absent, has no keywords, or if none of the keywords used are allowed according to the definitions in this
specification, then the element does not create any links.

relp178 's supported tokens are the keywords defined in HTML link typesp314 which are allowed on linkp177 elements, impact the
processing model, and are supported by the user agent. The possible supported tokens are alternatep315, dns-prefetchp317,
expectp318, iconp320, manifestp322, modulepreloadp323, nextp335, pingbackp326, preconnectp326, prefetchp327, preloadp328, searchp331,
and stylesheetp331. relp178 's supported tokens must only include the tokens from this list that the user agent implements the
processing model for.

A linkp177 element must have either a relp178 attribute or an itempropp795 attribute, but not both.

If a linkp177 element has an itempropp795 attribute, or has a relp178 attribute that contains only keywords that are body-okp314, then the

Theoretically a user agent could support the processing model for the canonicalp317 keyword — if it were a search engine that
executed JavaScript. But in practice that's quite unlikely. So in most cases, canonicalp317 ought not be included in relp178 's
supported tokens.

Note

IDL

178

https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://w3c.github.io/html-aria/#el-link
https://w3c.github.io/html-aam/#el-link
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens

element is said to be allowed in the body. This means that the element can be used where phrasing contentp150 is expected.

Two categories of links can be created using the linkp177 element: links to external resourcesp302 and hyperlinksp302. The link types
sectionp314 defines whether a particular link type is an external resource or a hyperlink. One linkp177 element can create multiple links
(of which some might be external resource linksp302 and some might be hyperlinksp302); exactly which and how many links are created
depends on the keywords given in the relp178 attribute. User agents must process the links on a per-link basis, not a per-element basis.

Hyperlinksp302 created with the linkp177 element and its relp178 attribute apply to the whole document. This contrasts with the relp303

attribute of ap257 and areap471 elements, which indicates the type of a link whose context is given by the link's location within the
document.

Unlike those created by ap257 and areap471 elements, hyperlinksp302 created by linkp177 elements are not displayed as part of the
document by default, in user agents that support the suggested default renderingp48. And even if they are force-displayed using CSS,
they have no activation behavior. Instead, they primarily provide semantic information which might be used by the page or by other
software that consumes the page's contents. Additionally, the user agent can provide its own UI for following such hyperlinksp189.

The exact behavior for links to external resourcesp302 depends on the exact relationship, as defined for the relevant link typep314.

The crossorigin attribute is a CORS settings attributep99. It is intended for use with external resource linksp302.

The media attribute says which media the resource applies to. The value must be a valid media query listp95.

The integrity attribute represents the integrity metadata for requests which this element is responsible for. The value is text. The
attribute must only be specified on linkp177 elements that have a relp178 attribute that contains the stylesheetp331, preloadp328, or
modulepreloadp323 keyword. [SRI]p1482

The hreflang attribute on the linkp177 element has the same semantics as the hreflang attribute on the a elementp303.

The type attribute gives the MIME type of the linked resource. It is purely advisory. The value must be a valid MIME type string.

For external resource linksp302, the typep179 attribute is used as a hint to user agents so that they can avoid fetching resources they do
not support.

The referrerpolicy attribute is a referrer policy attributep100. It is intended for use with external resource linksp302, where it helps set
the referrer policy used when fetching and processing the linked resourcep183. [REFERRERPOLICY]p1481

The title attribute gives the title of the link. With one exception, it is purely advisory. The value is text. The exception is for style
sheet links that are in a document tree, for which the titlep179 attribute defines CSS style sheet sets.

If the relp178 attribute is used, the element can only sometimes be used in the bodyp205 of the page. When used with the
itempropp795 attribute, the element can be used both in the headp173 element and in the bodyp205 of the page, subject to the
constraints of the microdata model.

Note

Each link created for a linkp177 element is handled separately. For instance, if there are two linkp177 elements with
rel="stylesheet", they each count as a separate external resource, and each is affected by its own attributes independently.
Similarly, if a single linkp177 element has a relp178 attribute with the value next stylesheet, it creates both a hyperlinkp302 (for
the nextp335 keyword) and an external resource linkp302 (for the stylesheetp331 keyword), and they are affected by other attributes
(such as mediap179 or titlep179) differently.

Note

For example, the following linkp177 element creates two hyperlinksp302 (to the same page):

<link rel="author license" href="/about">

The two links created by this element are one whose semantic is that the target page has information about the current page's
author, and one whose semantic is that the target page has information regarding the license under which the current page is
provided.

Example

✔ MDN

179

https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#in-a-document-tree
https://drafts.csswg.org/cssom/#css-style-sheet-set

The imagesrcset attribute may be present, and is a srcset attributep362.

The imagesrcsetp180 and hrefp178 attributes (if width descriptorsp362 are not used) together contribute the image sourcesp364 to the
source setp364.

If the imagesrcsetp180 attribute is present and has any image candidate stringsp362 using a width descriptorp362, the imagesizes
attribute must also be present, and is a sizes attributep363. The imagesizesp180 attribute contributes the source sizep364 to the source
setp364.

The imagesrcsetp180 and imagesizesp180 attributes must only be specified on linkp177 elements that have both a relp178 attribute that
specifies the preloadp328 keyword, as well as an asp181 attribute in the "image" state.

The sizes attribute gives the sizes of icons for visual media. Its value, if present, is merely advisory. User agents may use the value to
decide which icon(s) to use if multiple icons are available. If specified, the attribute must have a value that is an unordered set of
unique space-separated tokensp95 which are ASCII case-insensitive. Each value must be either an ASCII case-insensitive match for the
string "anyp320", or a value that consists of two valid non-negative integersp77 that do not have a leading U+0030 DIGIT ZERO (0)
character and that are separated by a single U+0078 LATIN SMALL LETTER X or U+0058 LATIN CAPITAL LETTER X character. The
attribute must only be specified on linkp177 elements that have a relp178 attribute that specifies the iconp320 keyword or the apple-
touch-icon keyword.

The titlep179 attribute on linkp177 elements differs from the global titlep157 attribute of most other elements in that a link
without a title does not inherit the title of the parent element: it merely has no title.

Note

These attributes allow preloading the appropriate resource that is later used by an imgp346 element that has the corresponding
values for its srcsetp347 and sizesp347 attributes:

<link rel="preload" as="image"
imagesrcset="wolf_400px.jpg 400w, wolf_800px.jpg 800w, wolf_1600px.jpg 1600w"
imagesizes="50vw">

<!-- ... later, or perhaps inserted dynamically ... -->
<img src="wolf.jpg" alt="A rad wolf"

srcset="wolf_400px.jpg 400w, wolf_800px.jpg 800w, wolf_1600px.jpg 1600w"
sizes="50vw">

Note how we omit the hrefp178 attribute, as it would only be relevant for browsers that do not support imagesrcsetp180, and in
those cases it would likely cause the incorrect image to be preloaded.

Example

The imagesrcsetp180 attribute can be combined with the mediap179 attribute to preload the appropriate resource selected from a
picturep342 element's sources, for art directionp357:

<link rel="preload" as="image"
imagesrcset="dog-cropped-1x.jpg, dog-cropped-2x.jpg 2x"
media="(max-width: 800px)">

<link rel="preload" as="image"
imagesrcset="dog-wide-1x.jpg, dog-wide-2x.jpg 2x"
media="(min-width: 801px)">

<!-- ... later, or perhaps inserted dynamically ... -->
<picture>

<source srcset="dog-cropped-1x.jpg, dog-cropped-2x.jpg 2x"
media="(max-width: 800px)">

<img src="dog-wide-1x.jpg" srcset="dog-wide-2x.jpg 2x"
alt="An awesome dog">

</picture>

Example

180

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

The as attribute specifies the potential destination for a preload request for the resource given by the hrefp178 attribute. It is an
enumerated attributep76. Each potential destination is a keyword for this attribute, mapping to a state of the same name. The attribute
must be specified on linkp177 elements that have a relp178 attribute that contains the preloadp328 keyword. It may be specified on
linkp177 elements that have a relp178 attribute that contains the modulepreloadp323 keyword; in such cases it must have a value which
is a script-like destination. For other linkp177 elements, it must not be specified.

The processing model for how the asp181 attribute is used is given in an individual link type's fetch and process the linked resourcep183

algorithm.

The blocking attribute is a blocking attributep103. It is used by link types stylesheetp331 and expectp318, and it must only be specified
on link elements that have a relp178 attribute containing those keywords.

The color attribute is used with the mask-icon link type. The attribute must only be specified on linkp177 elements that have a relp178

attribute that contains the mask-icon keyword. The value must be a string that matches the CSS <color> production, defining a
suggested color that user agents can use to customize the display of the icon that the user sees when they pin your site.

linkp177 elements have an associated explicitly enabled boolean. It is initially false.

The disabled attribute is a boolean attributep75 that is used with the stylesheetp331 link type. The attribute must only be specified on
linkp177 elements that have a relp178 attribute that contains the stylesheetp331 keyword.

Whenever the disabledp181 attribute is removed, set the linkp177 element's explicitly enabledp181 attribute to true.

The fetchpriority attribute is a fetch priority attributep103 that is intended for use with external resource linksp302, where it is used to
set the priority used when fetching and processing the linked resourcep183.

The IDL attributes href, hreflang, integrity, media, rel, sizes, type, blocking, and disabled each must reflectp104 the respective
content attributes of the same name.

The apple-touch-icon keyword is a registered extension to the predefined set of link typesp335, but user agents are not required
to support it in any way.

Note

The attribute does not have a missing value defaultp76 or invalid value defaultp76, meaning that invalid or missing values for the
attribute map to no state. This is accounted for in the processing model. For preloadp328 links, both conditions are an error; for
modulepreloadp323 links, a missing value will be treated as "script".

Note

This specification does not have any user agent requirements for the colorp181 attribute.
Note

The mask-icon keyword is a registered extension to the predefined set of link typesp335, but user agents are not required to
support it in any way.

Note

Removing the disabledp181 attribute dynamically, e.g., using document.querySelector("link").removeAttribute("disabled"),
will fetch and apply the style sheet:

<link disabled rel="alternate stylesheet" href="css/pooh">

Example

There is no reflecting IDL attribute for the colorp181 attribute, but this might be added later.
Note

MDN

✔ MDN

✔ MDN

181

https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://drafts.csswg.org/css-color/#typedef-color
https://fetch.spec.whatwg.org/#request-priority

The as IDL attribute must reflectp104 the asp181 content attribute, limited to only known valuesp105.

The crossOrigin IDL attribute must reflectp104 the crossoriginp179 content attribute, limited to only known valuesp105.

The referrerPolicy IDL attribute must reflectp104 the referrerpolicyp179 content attribute, limited to only known valuesp105.

The fetchPriority IDL attribute must reflectp104 the fetchpriorityp181 content attribute, limited to only known valuesp105.

The imageSrcset IDL attribute must reflectp104 the imagesrcsetp180 content attribute.

The imageSizes IDL attribute must reflectp104 the imagesizesp180 content attribute.

The relList IDL attribute must reflectp104 the relp178 content attribute.

If the link is a hyperlinkp302 then the mediap179 attribute is purely advisory, and describes for which media the document in question
was designed.

However, if the link is an external resource linkp302, then the mediap179 attribute is prescriptive. The user agent must apply the external
resource when the mediap179 attribute's value matches the environmentp95 and the other relevant conditions apply, and must not apply
it otherwise.

The default, if the mediap179 attribute is omitted, is "all", meaning that by default links apply to all media.

If the typep179 attribute is present, then the user agent must assume that the resource is of the given type (even if that is not a valid
MIME type string, e.g. the empty string). If the attribute is omitted, but the external resource linkp302 type has a default type defined,
then the user agent must assume that the resource is of that type. If the UA does not support the given MIME type for the given link
relationship, then the UA should not fetch and process the linked resourcep183; if the UA does support the given MIME type for the given
link relationship, then the UA should fetch and process the linked resourcep183 at the appropriate time as specified for the external
resource linkp302 's particular type. If the attribute is omitted, and the external resource linkp302 type does not have a default type
defined, but the user agent would fetch and process the linked resourcep183 if the type was known and supported, then the user agent
should fetch and process the linked resourcep183 under the assumption that it will be supported.

User agents must not consider the typep179 attribute authoritative — upon fetching the resource, user agents must not use the typep179

attribute to determine its actual type. Only the actual type (as defined in the next paragraph) is used to determine whether to apply
the resource, not the aforementioned assumed type.

If the external resource linkp302 type defines rules for processing the resource's Content-Type metadatap98, then those rules apply.
Otherwise, if the resource is expected to be an image, user agents may apply the image sniffing rules, with the official type being the
type determined from the resource's Content-Type metadatap98, and use the resulting computed type of the resource as if it was the
actual type. Otherwise, if neither of these conditions apply or if the user agent opts not to apply the image sniffing rules, then the user
agent must use the resource's Content-Type metadatap98 to determine the type of the resource. If there is no type metadata, but the
external resource linkp302 type has a default type defined, then the user agent must assume that the resource is of that type.

The relListp182 attribute can be used for feature detection, by calling its supports() method to check which types of linksp314 are
supported.

Note

4.2.4.1 Processing the mediap179 attribute §p18

2

The external resource might have further restrictions defined within that limit its applicability. For example, a CSS style sheet
might have some @media blocks. This specification does not override such further restrictions or requirements.

Note

4.2.4.2 Processing the typep179 attribute §p18

2

The stylesheetp331 link type defines rules for processing the resource's Content-Type metadatap98.
Note

✔ MDN

✔ MDN

182

https://dom.spec.whatwg.org/#dom-domtokenlist-supports
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://mimesniff.spec.whatwg.org/#computed-mime-type

Once the user agent has established the type of the resource, the user agent must apply the resource if it is of a supported type and
the other relevant conditions apply, and must ignore the resource otherwise.

All external resource linksp302 have a fetch and process the linked resource algorithm, which takes a linkp177 element el. They also
have linked resource fetch setup steps which take a linkp177 element el and request request. Individual link types may provide
their own fetch and process the linked resourcep183 algorithm, but unless explicitly stated, they use the default fetch and process the
linked resourcep183 algorithm. Similarly, individual link types may provide their own linked resource fetch setup stepsp183, but unless
explicitly stated, these steps just return true.

The default fetch and process the linked resource, given a linkp177 element el, is as follows:

1. Let options be the result of creating link optionsp185 from el.

2. Let request be the result of creating a link requestp184 given options.

3. If request is null, then return.

4. Set request's synchronous flag.

5. Run the linked resource fetch setup stepsp183, given el and request. If the result is false, then return.

6. Set request's initiator type to "css" if el's relp178 attribute contains the keyword stylesheetp331; "link" otherwise.

7. Fetch request with processResponseConsumeBody set to the following steps given response response and null, failure, or a
byte sequence bodyBytes:

1. Let success be true.

2. If any of the following are true:

▪ bodyBytes is null or failure; or

▪ response's status is not an ok status,

then set success to false.

3. Otherwise, wait for the link resourcep302 's critical subresourcesp45 to finish loading.

The specification that defines a link type's critical subresourcesp45 (e.g., CSS) is expected to describe how
these subresources are fetched and processed. However, since this is not currently explicit, this specification
describes waiting for a link resourcep302 's critical subresourcesp45 to be fetched and processed, with the

If a document contains style sheet links labeled as follows:

<link rel="stylesheet" href="A" type="text/plain">
<link rel="stylesheet" href="B" type="text/css">
<link rel="stylesheet" href="C">

...then a compliant UA that supported only CSS style sheets would fetch the B and C files, and skip the A file (since text/plain is
not the MIME type for CSS style sheets).

For files B and C, it would then check the actual types returned by the server. For those that are sent as text/cssp1474, it would
apply the styles, but for those labeled as text/plain, or any other type, it would not.

If one of the two files was returned without a Content-Typep98 metadata, or with a syntactically incorrect type like Content-
Type: "null", then the default type for stylesheetp331 links would kick in. Since that default type is text/cssp1474, the style sheet
would nonetheless be applied.

Example

4.2.4.3 Fetching and processing a resource from a linkp177 element §p18

3

Note that content-specific errors, e.g., CSS parse errors or PNG decoding errors, do not affect success.
Note

183

https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#mime-type
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status

expectation that this will be done correctly.

4. Process the linked resourcep184 given el, success, response, and bodyBytes.

To create a link request given a link processing optionsp184 options:

1. Assert: options's hrefp185 is not the empty string.

2. If options's destinationp185 is null, then return null.

3. Let url be the result of encoding-parsing a URLp97 given options's hrefp185, relative to options's base URLp185.

Passing the base URL instead of a document or environment is tracked by issue #9715.

4. If url is failure, then return null.

5. Let request be the result of creating a potential-CORS requestp98 given url, options's destinationp185, and options's
crossoriginp185.

6. Set request's policy container to options's policy containerp185.

7. Set request's integrity metadata to options's integrityp185.

8. Set request's cryptographic nonce metadata to options's cryptographic nonce metadatap185.

9. Set request's referrer policy to options's referrer policyp185.

10. Set request's client to options's environmentp185.

11. Set request's priority to options's fetch priorityp185.

12. Return request.

User agents may opt to only try to fetch and processp183 such resources when they are needed, instead of pro-actively fetching all the
external resourcesp302 that are not applied.

Similar to the fetch and process the linked resourcep183 algorithm, all external resource linksp302 have a process the linked resource
algorithm which takes a linkp177 element el, boolean success, a response response, and a byte sequence bodyBytes. Individual link
types may provide their own process the linked resourcep184 algorithm, but unless explicitly stated, that algorithm does nothing.

Unless otherwise specified for a given relp178 keyword, the element must delay the load eventp1359 of the element's node document
until all the attempts to fetch and process the linked resourcep183 and its critical subresourcesp45 are complete. (Resources that the
user agent has not yet attempted to fetch and process, e.g., because it is waiting for the resource to be needed, do not delay the load
eventp1359.)

All link types that can be external resource linksp302 define a process a link header algorithm, which takes a link processing
optionsp184. This algorithm defines whether and how they react to appearing in an HTTP `Link` response header.

A link processing options is a struct. It has the following items:

4.2.4.4 Processing `Link` headers §p18

4

For most link types, this algorithm does nothing. The summary tablep314 is a good reference to quickly know whether a link type
has defined process a link headerp184 steps.

Note

184

https://infra.spec.whatwg.org/#assert
https://github.com/whatwg/html/issues/9715
https://fetch.spec.whatwg.org/#concept-request-policy-container
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://dom.spec.whatwg.org/#concept-node-document
https://httpwg.org/specs/rfc8288.html#header
https://httpwg.org/specs/rfc8288.html#header
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item

href (default the empty string)
destination (default the empty string)
initiator (default "link")
integrity (default the empty string)
type (default the empty string)
cryptographic nonce metadata (default the empty string)

A string

crossorigin (default No CORSp99)
A CORS settings attributep99 state

referrer policy (default the empty string)
A referrer policy

source set (default null)
Null or a source setp364

base URL
A URL

origin
An originp898

environment
An environmentp1075

policy container
A policy containerp917

document (default null)
Null or a Documentp130

on document ready (default null)
Null or an algorithm accepting a Documentp130

fetch priority (default autop103)
A fetch priority attributep103 state

To create link options from element given a linkp177 element el:

1. Let document be el's node document.

2. Let options be a new link processing optionsp184 with
destinationp185

the result of translatingp330 the state of el's asp181 attribute.
crossoriginp185

the state of el's crossoriginp179 content attribute
referrer policyp185

the state of el's referrerpolicyp179 content attribute
source setp185

el's source setp364

base URLp185

document's document base URLp96

originp185

document's origin
environmentp185

document's relevant settings objectp1083

policy containerp185

document's policy containerp131

A link processing optionsp184 has a base URLp185 and an hrefp185 rather than a parsed URL because the URL could be a result of the
options's source setp185.

Note

185

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin

documentp185

document
cryptographic nonce metadatap185

The current value of el's [[CryptographicNonce]]p100 internal slot
fetch priorityp185

the state of el's fetchpriorityp181 content attribute

3. If el has an hrefp178 attribute, then set options's hrefp185 to the value of el's hrefp178 attribute.

4. If el has an integrityp179 attribute, then set options's integrityp185 to the value of el's integrityp179 content attribute.

5. If el has a typep179 attribute, then set options's typep185 to the value of el's typep179 attribute.

6. Assert: options's hrefp185 is not the empty string, or options's source setp185 is not null.

A linkp177 element with neither an hrefp178 or an imagesrcsetp180 does not represent a link.

7. Return options.

To extract links from headers given a header list headers:

1. Let links be a new list.

2. Let rawLinkHeaders be the result of getting, decoding, and splitting `Linkp177` from response's header list.

3. For each linkHeader of rawLinkHeaders:

1. Let linkObject be the result of parsing linkHeader. [WEBLINK]p1484

2. If linkObject["target_uri"] does not exist, then continue.

3. Append linkObject to links.

4. Return links.

To process link headers given a Documentp130 doc, a response response, and a "pre-media" or "media" phase:

1. Let links be the result of extracting linksp186 from response's header list.

2. For each linkObject in links:

1. Let rel be linkObject["relation_type"].

2. Let attribs be linkObject["target_attributes"].

3. Let expectedPhase be "media" if either "srcsetp347", "imagesrcsetp180", or "mediap179" exist in attribs; otherwise
"pre-media".

4. If expectedPhase is not phase, then continue.

5. If attribs["mediap179"] exists and attribs["mediap179"] does not match the environmentp95, then continue.

6. Let options be a new link processing optionsp184 with
hrefp185

linkObject["target_uri"]
base URLp185

doc's document base URLp96

originp185

doc's origin
environmentp185

doc's relevant settings objectp1083

policy containerp185

doc's policy containerp131

documentp185

doc

7. Apply link options from parsed header attributesp187 to options given attribs.

8. If attribs["imagesrcsetp180"] exists and attribs["imagesizesp180"] exists, then set options's source setp185 to the
186

https://infra.spec.whatwg.org/#assert
https://fetch.spec.whatwg.org/#concept-header-list
https://infra.spec.whatwg.org/#list
https://fetch.spec.whatwg.org/#concept-header-list-get-decode-split
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#list-iterate
https://httpwg.org/specs/rfc8288.html#parse-fv
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists

result of creating a source setp372 given linkObject["target_uri"], attribs["imagesrcsetp180"],
attribs["imagesizesp180"], and null.

9. Run the process a link headerp184 steps for rel given options.

To apply link options from parsed header attributes to a link processing optionsp184 options given attribs:

1. If attribs["asp181"] exists, then set options's destinationp185 to the result of translatingp330 attribs["asp181"].

2. If attribs["crossoriginp179"] exists and is an ASCII case-insensitive match for one of the CORS settings attributep99

keywordsp76, then set options's crossoriginp185 to the CORS settings attributep99 state corresponding to that keyword.

3. If attribs["integrityp179"] exists, then set options's integrityp185 to attribs["integrityp179"].

4. If attribs["referrerpolicyp179"] exists and is an ASCII case-insensitive match for some referrer policy, then set options's
referrer policyp185 to that referrer policy.

5. If attribs["noncep100"] exists, then set options's noncep185 to attribs["noncep100"].

6. If attribs["typep179"] exists, then set options's typep185 to attribs["typep179"].

7. If attribs["fetchpriorityp181"] exists and is an ASCII case-insensitive match for a fetch priority attributep103 keyword, then
set options's fetch priorityp185 to that fetch priority attributep103 keyword.

Early hints allow user-agents to perform some operations, such as to speculatively load resources that are likely to be used by the
document, before the navigation request is fully handled by the server and a response code is served. Servers can indicate early hints
by serving a response with a 103 status code before serving the final response.[RFC8297]p1482

In addition to the `Link` headers, it is possible that the 103 response contains a Content Security Policy header, which is enforced
when processing the early hint.

4.2.4.5 Early hints §p18

7

For compatibility reasons early hints are typically delivered over HTTP/2 or above, but for readability we use HTTP/1.1-style
notation below.

Note

For example, given the following sequence of responses:

103 Early Hint
Link: </image.png>; rel=preload; as=image

200 OK
Content-Type: text/html

<!DOCTYPE html>
...

the image will start loading before the HTML content arrives.

Example

Only the first early hint response served during the navigation is handled, and it is discarded if it is succeeded by a cross-origin
redirect.

Note

For example, given the following sequence of responses:

103 Early Hint
Content-Security-Policy: style-src: self;

Example

MDN

187

https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://httpwg.org/specs/rfc8297.html#security-considerations
https://httpwg.org/specs/rfc8288.html#header
https://w3c.github.io/webappsec-csp/#content-security-policy-object

To process early hint headers given a response response and an environmentp1075 reservedEnvironment:

1. Let earlyPolicyContainer be the result of creating a policy container from a fetch responsep918 given response and
reservedEnvironment.

2. Let links be the result of extracting linksp186 from response's header list.

3. Let earlyHints be an empty list.

4. For each linkObject in links:

1. Let rel be linkObject["relation_type"].

2. Let options be a new link processing optionsp184 with
hrefp185

linkObject["target_uri"]
initiatorp185

"early-hint"
base URLp185

response's URL
originp185

response's URL's origin
environmentp185

reservedEnvironment
policy containerp185

earlyPolicyContainer

3. Let attribs be linkObject["target_attributes"].

Link: </style.css>; rel=preload; as=style

103 Early Hint
Link: </image.png>; rel=preload; as=image

302 Redirect
Location: /alternate.html

200 OK
Content-Security-Policy: style-src: none;
Link: </font.ttf>; rel=preload; as=font

The font and style would be loaded, and the image will be discarded, as only the first early hint response in the final redirect chain
is respected. The late Content Security Policy header comes after the request to fetch the style has already been performed, but
the style will not be accessible to the document.

Early-hint `Link` headers are always processed before `Link` headers from the final response, followed by linkp177 elements. This
is equivalent to prepending the contents of the early and final `Link` headers to the Documentp130 's headp173 element, in respective
order.

Note

This allows the early hint response to include a Content Security Policy which would be enforced when fetching the early
hint request.

Note

The moment we receive the early hint link header, we begin fetching earlyRequest. If it comes back before the
Documentp130 is created, we set earlyResponse to the response of that fetch and once the Documentp130 is created we
commit it (by making it available in the map of preloaded resourcesp328 as if it was a linkp177 element). If the
Documentp130 is created first, the response is committed as soon as it becomes available.

Note

Only the asp181, crossoriginp179, integrityp179, and typep179 attributes are handled as part of early hint
Note

188

https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://fetch.spec.whatwg.org/#concept-response
https://httpwg.org/specs/rfc8288.html#header
https://httpwg.org/specs/rfc8288.html#header
https://fetch.spec.whatwg.org/#concept-response
https://httpwg.org/specs/rfc8288.html#header
https://fetch.spec.whatwg.org/#concept-response
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#enforced
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-origin

4. Apply link options from parsed header attributesp187 to options given attribs.

5. Run the process a link headerp184 steps for rel given options.

6. Append options to earlyHints.

5. Return the following substeps given Documentp130 doc: for each options in earlyHints:

1. If options's on document readyp185 is null, then set options's documentp185 to doc.

2. Otherwise, call options's on document readyp185 with doc.

Interactive user agents may provide users with a means to follow the hyperlinksp309 created using the linkp177 element, somewhere
within their user interface. Such invocations of the follow the hyperlinkp309 algorithm must set the userInvolvementp309 argument to
"browser UIp1014". The exact interface is not defined by this specification, but it could include the following information (obtained from
the element's attributes, again as defined below), in some form or another (possibly simplified), for each hyperlinkp302 created with
each linkp177 element in the document:

• The relationship between this document and the resource (given by the relp178 attribute)

• The title of the resource (given by the titlep179 attribute).

• The address of the resource (given by the hrefp178 attribute).

• The language of the resource (given by the hreflangp179 attribute).

• The optimum media for the resource (given by the mediap179 attribute).

User agents could also include other information, such as the type of the resource (as given by the typep179 attribute).

Categoriesp146:
Metadata contentp148.
If the itempropp795 attribute is present: flow contentp149.
If the itempropp795 attribute is present: phrasing contentp150.

Contexts in which this element can be usedp146:
If the charsetp190 attribute is present, or if the element's http-equivp195 attribute is in the Encoding declaration statep196: in a
headp173 element.
If the http-equivp195 attribute is present but not in the Encoding declaration statep196: in a headp173 element.
If the http-equivp195 attribute is present but not in the Encoding declaration statep196: in a noscriptp669 element that is a child
of a headp173 element.
If the namep190 attribute is present: where metadata contentp148 is expected.
If the itempropp795 attribute is present: where metadata contentp148 is expected.
If the itempropp795 attribute is present: where phrasing contentp150 is expected.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

namep190 — Metadata name

processing. The other ones, in particular blockingp181, imagesrcsetp180, imagesizesp180, and mediap179 are only
applicable once a Documentp130 is created.

4.2.4.6 Providing users with a means to follow hyperlinks created using the linkp177 element §p18

9

4.2.5 The meta element §p18

9

✔ MDN

✔ MDN

189

https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate

http-equivp195 — Pragma directive
contentp190 — Value of the element
charsetp190 — Character encoding declarationp199

mediap190 — Applicable media

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLMetaElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString httpEquiv;
[CEReactions] attribute DOMString content;
[CEReactions] attribute DOMString media;

// also has obsolete members
};

The metap189 element representsp141 various kinds of metadata that cannot be expressed using the titlep174, basep175, linkp177,
stylep200, and scriptp652 elements.

The metap189 element can represent document-level metadata with the namep190 attribute, pragma directives with the http-equivp195

attribute, and the file's character encoding declarationp199 when an HTML document is serialized to string form (e.g. for transmission
over the network or for disk storage) with the charsetp190 attribute.

Exactly one of the namep190, http-equivp195, charsetp190, and itempropp795 attributes must be specified.

If either namep190, http-equivp195, or itempropp795 is specified, then the contentp190 attribute must also be specified. Otherwise, it must
be omitted.

The charset attribute specifies the character encoding used by the document. This is a character encoding declarationp199. If the
attribute is present, its value must be an ASCII case-insensitive match for the string "utf-8".

There must not be more than one metap189 element with a charsetp190 attribute per document.

The content attribute gives the value of the document metadata or pragma directive when the element is used for those purposes.
The allowed values depend on the exact context, as described in subsequent sections of this specification.

If a metap189 element has a name attribute, it sets document metadata. Document metadata is expressed in terms of name-value pairs,
the namep190 attribute on the metap189 element giving the name, and the contentp190 attribute on the same element giving the value.
The name specifies what aspect of metadata is being set; valid names and the meaning of their values are described in the following
sections. If a metap189 element has no contentp190 attribute, then the value part of the metadata name-value pair is the empty string.

The media attribute says which media the metadata applies to. The value must be a valid media query listp95. Unless the namep190 is
theme-colorp193, the mediap190 attribute has no effect on the processing model and must not be used by authors.

The name, content, and media IDL attributes must reflectp104 the respective content attributes of the same name. The IDL attribute
httpEquiv must reflectp104 the content attribute http-equivp195.

This specification defines a few names for the namep190 attribute of the metap189 element.

The charsetp190 attribute on the metap189 element has no effect in XML documents, but is allowed in XML documents in order to
facilitate migration to and from XML.

Note

4.2.5.1 Standard metadata names §p19

0

IDL

✔ MDN

190

https://w3c.github.io/html-aria/#el-meta
https://w3c.github.io/html-aam/#el-meta
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#ascii-case-insensitive

Names are case-insensitive, and must be compared in an ASCII case-insensitive manner.

application-name
The value must be a short free-form string giving the name of the web application that the page represents. If the page is not a web
application, the application-namep191 metadata name must not be used. Translations of the web application's name may be given,
using the langp158 attribute to specify the language of each name.

There must not be more than one metap189 element with a given languagep158 and where the namep190 attribute value is an ASCII
case-insensitive match for application-namep191 per document.

User agents may use the application name in UI in preference to the page's titlep174, since the title might include status messages
and the like relevant to the status of the page at a particular moment in time instead of just being the name of the application.

To find the application name to use given an ordered list of languages (e.g. British English, American English, and English), user
agents must run the following steps:

1. Let languages be the list of languages.

2. Let default language be the languagep158 of the Documentp130 's document element, if any, and if that language is not
unknown.

3. If there is a default language, and if it is not the same language as any of the languages in languages, append it to
languages.

4. Let winning language be the first language in languages for which there is a metap189 element in the Documentp130 where
the namep190 attribute value is an ASCII case-insensitive match for application-namep191 and whose languagep158 is the
language in question.

If none of the languages have such a metap189 element, then return; there's no given application name.

5. Return the value of the contentp190 attribute of the first metap189 element in the Documentp130 in tree order where the
namep190 attribute value is an ASCII case-insensitive match for application-namep191 and whose languagep158 is winning
language.

author
The value must be a free-form string giving the name of one of the page's authors.

description
The value must be a free-form string that describes the page. The value must be appropriate for use in a directory of pages, e.g. in
a search engine. There must not be more than one metap189 element where the namep190 attribute value is an ASCII case-insensitive
match for descriptionp191 per document.

generator
The value must be a free-form string that identifies one of the software packages used to generate the document. This value must
not be used on pages whose markup is not generated by software, e.g. pages whose markup was written by a user in a text editor.

keywords
The value must be a set of comma-separated tokensp95, each of which is a keyword relevant to the page.

This algorithm would be used by a browser when it needs a name for the page, for instance, to label a bookmark. The
languages it would provide to the algorithm would be the user's preferred languages.

Note

Here is what a tool called "Frontweaver" could include in its output, in the page's headp173 element, to identify itself as the tool
used to generate the page:

<meta name=generator content="Frontweaver 8.2">

Example

Example

191

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

To obtain the list of keywords that the author has specified as applicable to the page, the user agent must run the following steps:

1. Let keywords be an empty list.

2. For each metap189 element with a namep190 attribute and a contentp190 attribute and where the namep190 attribute value is
an ASCII case-insensitive match for keywordsp191:

1. Split the value of the element's content attribute on commas.

2. Add the resulting tokens, if any, to keywords.

3. Remove any duplicates from keywords.

4. Return keywords. This is the list of keywords that the author has specified as applicable to the page.

User agents should not use this information when there is insufficient confidence in the reliability of the value.

referrer
The value must be a referrer policy, which defines the default referrer policy for the Documentp130. [REFERRERPOLICY]p1481

If any metap189 element element is inserted into the documentp46, or has its namep190 or contentp190 attributes changed, user agents
must run the following algorithm:

1. If element is not in a document tree, then return.

2. If element does not have a namep190 attribute whose value is an ASCII case-insensitive match for "referrerp192", then
return.

3. If element does not have a contentp190 attribute, or that attribute's value is the empty string, then return.

4. Let value be the value of element's contentp190 attribute, converted to ASCII lowercase.

5. If value is one of the values given in the first column of the following table, then set value to the value given in the second
column:

Legacy value Referrer policy

never no-referrer

default the default referrer policy
always unsafe-url

origin-when-crossorigin origin-when-cross-origin

This page about typefaces on British motorways uses a metap189 element to specify some keywords that users might use to look
for the page:

<!DOCTYPE HTML>
<html lang="en-GB">
<head>
<title>Typefaces on UK motorways</title>
<meta name="keywords" content="british,type face,font,fonts,highway,highways">

</head>
<body>
...

Many search engines do not consider such keywords, because this feature has historically been used unreliably and even
misleadingly as a way to spam search engine results in a way that is not helpful for users.

Note

For instance, it would be reasonable for a content management system to use the keyword information of pages within the
system to populate the index of a site-specific search engine, but a large-scale content aggregator that used this information
would likely find that certain users would try to game its ranking mechanism through the use of inappropriate keywords.

Example

192

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#split-on-commas
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-no-referrer
https://w3c.github.io/webappsec-referrer-policy/#default-referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-unsafe-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-origin-when-cross-origin

6. If value is a referrer policy, then set element's node document's policy containerp131 's referrer policyp917 to policy.

theme-color
The value must be a string that matches the CSS <color> production, defining a suggested color that user agents should use to
customize the display of the page or of the surrounding user interface. For example, a browser might color the page's title bar with
the specified value, or use it as a color highlight in a tab bar or task switcher.

Within an HTML document, the mediap190 attribute value must be unique amongst all the metap189 elements with their namep190

attribute value set to an ASCII case-insensitive match for theme-colorp193.

The mediap190 attribute may be used to describe the context in which the provided color should be used.

To obtain a page's theme color, user agents must run the following steps:

1. Let candidate elements be the list of all metap189 elements that meet the following criteria, in tree order:

◦ the element is in a document tree;

◦ the element has a namep190 attribute, whose value is an ASCII case-insensitive match for theme-colorp193; and

◦ the element has a contentp190 attribute.

2. For each element in candidate elements:

1. If element has a mediap179 attribute and the value of element's mediap190 attribute does not match the
environmentp95, then continue.

2. Let value be the result of stripping leading and trailing ASCII whitespace from the value of element's contentp190

attribute.

3. Let color be the result of parsing value.

4. If color is not failure, then return color.

3. Return nothing (the page has no theme color).

If any metap189 elements are inserted into the documentp46 or removed from the documentp46, or existing metap189 elements have
their namep190, contentp190, or mediap179 attributes changed, or if the environment changes such that any metap189 element's
mediap179 attribute's value may now or may no longer match the environmentp95, user agents must re-run the above algorithm and
apply the result to any affected UI.

For historical reasons, unlike other standard metadata names, the processing model for referrerp192 is not responsive to
element removals, and does not use tree order. Only the most-recently-inserted or most-recently-modified metap189 element in
this state has an effect.

Note

This standard itself uses "WHATWG green" as its theme color:

<!DOCTYPE HTML>
<title>HTML Standard</title>
<meta name="theme-color" content="#3c790a">
...

Example

If we only wanted to use "WHATWG green" as this standard's theme color in dark mode, we could use the prefers-color-
scheme media feature:

<!DOCTYPE HTML>
<title>HTML Standard</title>
<meta name="theme-color" content="#3c790a" media="(prefers-color-scheme: dark)">
...

Example

MDN

193

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-tree-order
https://drafts.csswg.org/css-color/#typedef-color
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://drafts.csswg.org/css-color/#parse-a-css-color-value

When using the theme color in UI, user agents may adjust it in implementation-specific ways to make it more suitable for the UI in
question. For example, if a user agent intends to use the theme color as a background and display white text over it, it might use a
darker variant of the theme color in that part of the UI, to ensure adequate contrast.

color-scheme
To aid user agents in rendering the page background with the desired color scheme immediately (rather than waiting for all CSS in
the page to load), a 'color-scheme' value can be provided in a metap189 element.

The value must be a string that matches the syntax for the CSS 'color-scheme' property value. It determines the page's supported
color-schemes.

There must not be more than one metap189 element with its namep190 attribute value set to an ASCII case-insensitive match for
color-schemep194 per document.

To obtain a page's supported color-schemes, user agents must run the following steps:

1. Let candidate elements be the list of all metap189 elements that meet the following criteria, in tree order:

◦ the element is in a document tree;

◦ the element has a namep190 attribute, whose value is an ASCII case-insensitive match for color-schemep194; and

◦ the element has a contentp190 attribute.

2. For each element in candidate elements:

1. Let parsed be the result of parsing a list of component values given the value of element's contentp190 attribute.

2. If parsed is a valid CSS 'color-scheme' property value, then return parsed.

3. Return null.

If any metap189 elements are inserted into the documentp46 or removed from the documentp46, or existing metap189 elements have
their namep190 or contentp190 attributes changed, user agents must re-run the above algorithm.

Anyone can create and use their own extensions to the predefined set of metadata names. There is no requirement to register
such extensions.

However, a new metadata name should not be created in any of the following cases:

• If either the name is a URL, or the value of its accompanying contentp190 attribute is a URL; in those cases, registering it as
an extension to the predefined set of link typesp335 is encouraged (rather than creating a new metadata name).

• If the name is for something expected to have processing requirements in user agents; in that case it ought to be
standardized.

Also, before creating and using a new metadata name, consulting the WHATWG Wiki MetaExtensions page is encouraged — to avoid
choosing a metadata name that's already in use, and to avoid duplicating the purpose of any metadata names that are already in use,
and to avoid new standardized names clashing with your chosen name. [WHATWGWIKI]p1484

The following declaration indicates that the page is aware of and can handle a color scheme with dark background colors and
light foreground colors:

<meta name="color-scheme" content="dark">

Example

Because these rules check successive elements until they find a match, an author can provide multiple such values to handle
fallback for legacy user agents. Opposite to how CSS fallback works for properties, the multiple meta elements needs to be
arranged with the legacy values after the newer values.

Note

4.2.5.2 Other metadata names §p19

4

194

https://drafts.csswg.org/css-color-adjust/#color-scheme-prop
https://drafts.csswg.org/css-color-adjust/#color-scheme-prop
https://drafts.csswg.org/css-color-adjust/#pages-supported-color-schemes
https://drafts.csswg.org/css-color-adjust/#pages-supported-color-schemes
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-color-adjust/#pages-supported-color-schemes
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-syntax/#parse-a-list-of-component-values
https://drafts.csswg.org/css-color-adjust/#color-scheme-prop
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://wiki.whatwg.org/wiki/MetaExtensions

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a metadata name. New metadata names can be
specified with the following information:

Keyword
The actual name being defined. The name should not be confusingly similar to any other defined name (e.g. differing only in case).

Brief description
A short non-normative description of what the metadata name's meaning is, including the format the value is required to be in.

Specification
A link to a more detailed description of the metadata name's semantics and requirements. It could be another page on the wiki, or a
link to an external page.

Synonyms
A list of other names that have exactly the same processing requirements. Authors should not use the names defined to be
synonyms (they are only intended to allow user agents to support legacy content). Anyone may remove synonyms that are not used
in practice; only names that need to be processed as synonyms for compatibility with legacy content are to be registered in this
way.

Status
One of the following:

Proposed
The name has not received wide peer review and approval. Someone has proposed it and is, or soon will be, using it.

Ratified
The name has received wide peer review and approval. It has a specification that unambiguously defines how to handle pages
that use the name, including when they use it in incorrect ways.

Discontinued
The metadata name has received wide peer review and it has been found wanting. Existing pages are using this metadata name,
but new pages should avoid it. The "brief description" and "specification" entries will give details of what authors should use
instead, if anything.

If a metadata name is found to be redundant with existing values, it should be removed and listed as a synonym for the existing
value.

If a metadata name is added in the "proposed" state for a period of a month or more without being used or specified, then it may be
removed from the WHATWG Wiki MetaExtensions page.

If a metadata name is added with the "proposed" status and found to be redundant with existing values, it should be removed and
listed as a synonym for the existing value. If a metadata name is added with the "proposed" status and found to be harmful, then it
should be changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

When the http-equiv attribute is specified on a metap189 element, the element is a pragma directive.

The http-equivp195 attribute is an enumerated attributep76 with the following keywords and states:

Keyword Conforming State Brief description

content-language No Content languagep196 Sets the pragma-set default languagep196.
content-type Encoding declarationp196 An alternative form of setting the charsetp190.
default-style Default stylep196 Sets the name of the default CSS style sheet set.
refresh Refreshp196 Acts as a timed redirect.
set-cookie No Set-Cookiep198 Has no effect.
x-ua-compatible X-UA-Compatiblep198 In practice, encourages Internet Explorer to more closely follow the specifications.
content-security-policy Content security policyp199 Enforces a Content Security Policy on a Documentp130.

When a metap189 element is inserted into the documentp46, if its http-equivp195 attribute is present and represents one of the above
states, then the user agent must run the algorithm appropriate for that state, as described in the following list:

4.2.5.3 Pragma directives §p19

5

195

https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#content-security-policy-object

Content language state (http-equiv="content-languagep195")

This pragma sets the pragma-set default language. Until such a pragma is successfully processed, there is no pragma-set
default languagep196.

1. If the metap189 element has no contentp190 attribute, then return.

2. If the element's contentp190 attribute contains a U+002C COMMA character (,) then return.

3. Let input be the value of the element's contentp190 attribute.

4. Let position point at the first character of input.

5. Skip ASCII whitespace within input given position.

6. Collect a sequence of code points that are not ASCII whitespace from input given position.

7. Let candidate be the string that resulted from the previous step.

8. If candidate is the empty string, return.

9. Set the pragma-set default languagep196 to candidate.

Encoding declaration state (http-equiv="content-typep195")
The Encoding declaration statep196 is just an alternative form of setting the charsetp190 attribute: it is a character encoding
declarationp199. This state's user agent requirements are all handled by the parsing section of the specification.

For metap189 elements with an http-equivp195 attribute in the Encoding declaration statep196, the contentp190 attribute must have a
value that is an ASCII case-insensitive match for a string that consists of: "text/html;", optionally followed by any number of ASCII
whitespace, followed by "charset=utf-8".

A document must not contain both a metap189 element with an http-equivp195 attribute in the Encoding declaration statep196 and a
metap189 element with the charsetp190 attribute present.

The Encoding declaration statep196 may be used in HTML documents, but elements with an http-equivp195 attribute in that state
must not be used in XML documents.

Default style state (http-equiv="default-stylep195")
This pragma sets the name of the default CSS style sheet set.

1. If the metap189 element has no contentp190 attribute, or if that attribute's value is the empty string, then return.

2. Change the preferred CSS style sheet set name with the name being the value of the element's contentp190 attribute.
[CSSOM]p1477

Refresh state (http-equiv="refreshp195")
This pragma acts as a timed redirect.

A Documentp130 object has an associated will declaratively refresh (a boolean). It is initially false.

1. If the metap189 element has no contentp190 attribute, or if that attribute's value is the empty string, then return.

2. Let input be the value of the element's contentp190 attribute.

3. Run the shared declarative refresh stepsp197 with the metap189 element's node document, input, and the metap189 element.

This feature is non-conforming. Authors are encouraged to use the langp158 attribute instead.
Note

If the value consists of multiple space-separated tokens, tokens after the first are ignored.
Note

This pragma is almost, but not quite, entirely unlike the HTTP `Content-Language` header of the same name. [HTTP]p1478

Note

⚠ MDN

196

https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://httpwg.org/specs/rfc7231.html#header.content-language
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#xml-document
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://drafts.csswg.org/cssom/#change-the-preferred-css-style-sheet-set-name
https://dom.spec.whatwg.org/#concept-node-document

The shared declarative refresh steps, given a Documentp130 object document, string input, and optionally a metap189 element
meta, are as follows:

1. If document's will declaratively refreshp196 is true, then return.

2. Let position point at the first code point of input.

3. Skip ASCII whitespace within input given position.

4. Let time be 0.

5. Collect a sequence of code points that are ASCII digits from input given position, and let the result be timeString.

6. If timeString is the empty string, then:

1. If the code point in input pointed to by position is not U+002E (.), then return.

7. Otherwise, set time to the result of parsing timeString using the rules for parsing non-negative integersp77.

8. Collect a sequence of code points that are ASCII digits and U+002E FULL STOP characters (.) from input given position.
Ignore any collected characters.

9. Let urlRecord be document's URL.

10. If position is not past the end of input, then:

1. If the code point in input pointed to by position is not U+003B (;), U+002C (,), or ASCII whitespace, then return.

2. Skip ASCII whitespace within input given position.

3. If the code point in input pointed to by position is U+003B (;) or U+002C (,), then advance position to the next
code point.

4. Skip ASCII whitespace within input given position.

11. If position is not past the end of input, then:

1. Let urlString be the substring of input from the code point at position to the end of the string.

2. If the code point in input pointed to by position is U+0055 (U) or U+0075 (u), then advance position to the next
code point. Otherwise, jump to the step labeled skip quotes.

3. If the code point in input pointed to by position is U+0052 (R) or U+0072 (r), then advance position to the next
code point. Otherwise, jump to the step labeled parse.

4. If the code point in input pointed to by position is U+004C (L) or U+006C (l), then advance position to the next
code point. Otherwise, jump to the step labeled parse.

5. Skip ASCII whitespace within input given position.

6. If the code point in input pointed to by position is U+003D (=), then advance position to the next code point.
Otherwise, jump to the step labeled parse.

7. Skip ASCII whitespace within input given position.

8. Skip quotes: If the code point in input pointed to by position is U+0027 (') or U+0022 ("), then let quote be that
code point, and advance position to the next code point. Otherwise, let quote be the empty string.

9. Set urlString to the substring of input from the code point at position to the end of the string.

10. If quote is not the empty string, and there is a code point in urlString equal to quote, then truncate urlString at
that code point, so that it and all subsequent code points are removed.

11. Parse: Set urlRecord to the result of encoding-parsing a URLp97 given urlString, relative to document.

12. If urlRecord is failure, then return.

12. Set document's will declaratively refreshp196 to true.

13. Perform one or more of the following steps:

◦ After the refresh has come due (as defined below), if the user has not canceled the redirect and, if meta is
197

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point

given, document's active sandboxing flag setp917 does not have the sandboxed automatic features browsing
context flagp915 set, then navigatep1014 document's node navigablep989 to urlRecord using document, with
historyHandlingp1014 set to "replacep1014".

For the purposes of the previous paragraph, a refresh is said to have come due as soon as the later of the
following two conditions occurs:

▪ At least time seconds have elapsed since document's completely loaded timep1063, adjusted to take
into account user or user agent preferences.

▪ If meta is given, at least time seconds have elapsed since meta was inserted into the documentp46

document, adjusted to take into account user or user agent preferences.

◦ Provide the user with an interface that, when selected, navigatesp1014 document's node navigablep989 to
urlRecord using document.

◦ Do nothing.

In addition, the user agent may, as with anything, inform the user of any and all aspects of its operation, including the
state of any timers, the destinations of any timed redirects, and so forth.

For metap189 elements with an http-equivp195 attribute in the Refresh statep196, the contentp190 attribute must have a value
consisting either of:

• just a valid non-negative integerp77, or

• a valid non-negative integerp77, followed by a U+003B SEMICOLON character (;), followed by one or more ASCII
whitespace, followed by a substring that is an ASCII case-insensitive match for the string "URL", followed by a U+003D
EQUALS SIGN character (=), followed by a valid URL string that does not start with a literal U+0027 APOSTROPHE (') or
U+0022 QUOTATION MARK (") character.

In the former case, the integer represents a number of seconds before the page is to be reloaded; in the latter case the integer
represents a number of seconds before the page is to be replaced by the page at the given URL.

Set-Cookie state (http-equiv="set-cookiep195")
This pragma is non-conforming and has no effect.

User agents are required to ignore this pragma.

X-UA-Compatible state (http-equiv="x-ua-compatiblep195")
In practice, this pragma encourages Internet Explorer to more closely follow the specifications.

For metap189 elements with an http-equivp195 attribute in the X-UA-Compatible statep198, the contentp190 attribute must have a
value that is an ASCII case-insensitive match for the string "IE=edge".

User agents are required to ignore this pragma.

It is important to use document here, and not meta's node document, as that might have changed between
the initial set of steps and the refresh coming due and meta is not always given (in case of the HTTP
`Refreshp1069` header).

Note

A news organization's front page could include the following markup in the page's headp173 element, to ensure that the page
automatically reloads from the server every five minutes:

<meta http-equiv="Refresh" content="300">

Example

A sequence of pages could be used as an automated slide show by making each page refresh to the next page in the sequence,
using markup such as the following:

<meta http-equiv="Refresh" content="20; URL=page4.html">

Example

198

https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ascii-case-insensitive

Content security policy state (http-equiv="content-security-policyp195")
This pragma enforces a Content Security Policy on a Documentp130. [CSP]p1476

1. If the metap189 element is not a child of a headp173 element, return.

2. If the metap189 element has no contentp190 attribute, or if that attribute's value is the empty string, then return.

3. Let policy be the result of executing Content Security Policy's parse a serialized Content Security Policy algorithm on the
metap189 element's contentp190 attribute's value, with a source of "meta", and a disposition of "enforce".

4. Remove all occurrences of the report-uri, frame-ancestors, and sandbox directives from policy.

5. Enforce the policy policy.

For metap189 elements with an http-equivp195 attribute in the Content security policy statep199, the contentp190 attribute must have
a value consisting of a valid Content Security Policy, but must not contain any report-uri, frame-ancestors, or sandbox
directives. The Content Security Policy given in the contentp190 attribute will be enforced upon the current document. [CSP]p1476

There must not be more than one metap189 element with any particular state in the document at a time.

A character encoding declaration is a mechanism by which the character encoding used to store or transmit a document is
specified.

The Encoding standard requires use of the UTF-8 character encoding and requires use of the "utf-8" encoding label to identify it.
Those requirements necessitate that the document's character encoding declarationp199, if it exists, specifies an encoding label using
an ASCII case-insensitive match for "utf-8". Regardless of whether a character encoding declarationp199 is present or not, the actual
character encoding used to encode the document must be UTF-8. [ENCODING]p1478

To enforce the above rules, authoring tools must default to using UTF-8 for newly-created documents.

The following restrictions also apply:

• The character encoding declaration must be serialized without the use of character referencesp1269 or character escapes of
any kind.

• The element containing the character encoding declaration must be serialized completely within the first 1024 bytes of the
document.

In addition, due to a number of restrictions on metap189 elements, there can only be one metap189-based character encoding declaration
per document.

If an HTML document does not start with a BOM, and its encoding is not explicitly given by Content-Type metadatap98, and the
document is not an iframe srcdoc documentp391, then the encoding must be specified using a metap189 element with a charsetp190

attribute or a metap189 element with an http-equivp195 attribute in the Encoding declaration statep196.

At the time of inserting the metap189 element to the document, it is possible that some resources have already been fetched. For
example, images might be stored in the list of available imagesp366 prior to dynamically inserting a metap189 element with an
http-equivp195 attribute in the Content security policy statep199. Resources that have already been fetched are not guaranteed
to be blocked by a Content Security Policy that's enforced late.

Note

A page might choose to mitigate the risk of cross-site scripting attacks by preventing the execution of inline JavaScript, as well
as blocking all plugin content, using a policy such as the following:

<meta http-equiv="Content-Security-Policy" content="script-src 'self'; object-src 'none'">

Example

4.2.5.4 Specifying the document's character encoding §p19

9

Note

199

https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#parse-serialized-policy
https://w3c.github.io/webappsec-csp/#report-uri
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#sandbox
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#grammardef-serialized-policy
https://w3c.github.io/webappsec-csp/#report-uri
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#sandbox
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#enforced
https://w3c.github.io/webappsec-csp/#content-security-policy-object
https://w3c.github.io/webappsec-csp/#enforced
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#label
https://encoding.spec.whatwg.org/#label
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#utf-8
https://dom.spec.whatwg.org/#html-document
https://encoding.spec.whatwg.org/#encoding

If the document is an iframe srcdoc documentp391, the document must not have a character encoding declarationp199. (In this case,
the source is already decoded, since it is part of the document that contained the iframep390.)

In XML, the XML declaration should be used for inline character encoding information, if necessary.

Categoriesp146:
Metadata contentp148.

Contexts in which this element can be usedp146:
Where metadata contentp148 is expected.
In a noscriptp669 element that is a child of a headp173 element.

Content modelp146:
Textp150 that gives a conformant style sheet.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

mediap201 — Applicable media
blockingp201 — Whether the element is potentially render-blockingp103

Also, the titlep201 attribute has special semanticsp201 on this element: CSS style sheet set name

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLStyleElement : HTMLElement {

[HTMLConstructor] constructor();

attribute boolean disabled;
[CEReactions] attribute DOMString media;
[SameObject, PutForwards=value] readonly attribute DOMTokenList blocking;

// also has obsolete members
};

A character encoding declaration is required (either in the Content-Type metadatap98 or explicitly in the file) even when all
characters are in the ASCII range, because a character encoding is needed to process non-ASCII characters entered by the user in
forms, in URLs generated by scripts, and so forth.

Using non-UTF-8 encodings can have unexpected results on form submission and URL encodings, which use the document's
character encoding by default.

In HTML, to declare that the character encoding is UTF-8, the author could include the following markup near the top of the
document (in the headp173 element):

<meta charset="utf-8">

In XML, the XML declaration would be used instead, at the very top of the markup:

<?xml version="1.0" encoding="utf-8"?>

Example

IDL

4.2.6 The style element §p20

0

✔ MDN

✔ MDN

200

https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://drafts.csswg.org/css-syntax/#conform-classes
https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://w3c.github.io/html-aria/#el-style
https://w3c.github.io/html-aam/#el-style
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist

HTMLStyleElement includes LinkStyle;

The stylep200 element allows authors to embed CSS style sheets in their documents. The stylep200 element is one of several inputs to
the styling processing model. The element does not representp141 content for the user.

The disabled getter steps are:

1. If this does not have an associated CSS style sheet, return false.

2. If this's associated CSS style sheet's disabled flag is set, return true.

3. Return false.

The disabledp201 setter steps are:

1. If this does not have an associated CSS style sheet, return.

2. If the given value is true, set this's associated CSS style sheet's disabled flag. Otherwise, unset this's associated CSS style
sheet's disabled flag.

The media attribute says which media the styles apply to. The value must be a valid media query listp95. The user agent must apply the
styles when the mediap201 attribute's value matches the environmentp95 and the other relevant conditions apply, and must not apply
them otherwise.

The default, if the mediap201 attribute is omitted, is "all", meaning that by default styles apply to all media.

The blocking attribute is a blocking attributep103.

The title attribute on stylep200 elements defines CSS style sheet sets. If the stylep200 element has no titlep201 attribute, then it has
no title; the titlep157 attribute of ancestors does not apply to the stylep200 element. If the stylep200 element is not in a document
tree, then the titlep201 attribute is ignored. [CSSOM]p1477

The child text content of a stylep200 element must be that of a conformant style sheet.

A stylep200 element is implicitly potentially render-blockingp103 if the element was created by its node document's parser.

The user agent must run the update a style blockp202 algorithm whenever any of the following conditions occur:

• The element is popped off the stack of open elementsp1286 of an HTML parserp1271 or XML parserp1384.

• The element is not on the stack of open elementsp1286 of an HTML parserp1271 or XML parserp1384, and it becomes
connectedp46 or disconnectedp46.

Importantly, disabledp201 attribute assignments only take effect when the stylep200 element has an associated CSS style sheet:

const style = document.createElement('style');
style.disabled = true;
style.textContent = 'body { background-color: red; }';
document.body.append(style);
console.log(style.disabled); // false

Example

The styles might be further limited in scope, e.g. in CSS with the use of @media blocks. This specification does not override such
further restrictions or requirements.

Note

The titlep201 attribute on stylep200 elements, like the titlep179 attribute on linkp177 elements, differs from the global titlep157

attribute in that a stylep200 block without a title does not inherit the title of the parent element: it merely has no title.

Note

✔ MDN

⚠ MDN

201

https://drafts.csswg.org/cssom/#the-linkstyle-interface
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#css-style-sheet-set
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-child-text-content
https://drafts.csswg.org/css-syntax/#conform-classes
https://dom.spec.whatwg.org/#concept-node-document

• The element's children changed steps run.

The update a style block algorithm is as follows:

1. Let element be the stylep200 element.

2. If element has an associated CSS style sheet, remove the CSS style sheet in question.

3. If element is not connected, then return.

4. If element's typep1429 attribute is present and its value is neither the empty string nor an ASCII case-insensitive match for
"text/cssp1474", then return.

5. If the Should element's inline behavior be blocked by Content Security Policy? algorithm returns "Blocked" when executed
upon the stylep200 element, "style", and the stylep200 element's child text content, then return. [CSP]p1476

6. Create a CSS style sheet with the following properties:

type
text/cssp1474

owner node
element

media
The mediap201 attribute of element.

title
The titlep201 attribute of element, if element is in a document tree, or the empty string otherwise.

alternate flag
Unset.

origin-clean flag
Set.

location
parent CSS style sheet
owner CSS rule

null

disabled flag
Left at its default value.

CSS rules
Left uninitialized.

This doesn't seem right. Presumably we should be using the element's child text content? Tracked as issue #2997.

7. If element contributes a script-blocking style sheetp204, append element to its node document's script-blocking style sheet

In particular, a typep1429 value with parameters, such as "text/css; charset=utf-8", will cause this algorithm to return
early.

Note

This is a reference to the (possibly absent at this time) attribute, rather than a copy of the attribute's current value.
CSSOM defines what happens when the attribute is dynamically set, changed, or removed.

Note

Again, this is a reference to the attribute.
Note

202

https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#remove-a-css-style-sheet
https://dom.spec.whatwg.org/#connected
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/webappsec-csp/#should-block-inline
https://dom.spec.whatwg.org/#concept-child-text-content
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-type
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-node
https://drafts.csswg.org/cssom/#concept-css-style-sheet-media
https://drafts.csswg.org/cssom/#concept-css-style-sheet-title
https://dom.spec.whatwg.org/#in-a-document-tree
https://drafts.csswg.org/cssom/#concept-css-style-sheet-alternate-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-origin-clean-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-location
https://drafts.csswg.org/cssom/#concept-css-style-sheet-parent-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-css-rule
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-css-rules
https://dom.spec.whatwg.org/#concept-child-text-content
https://github.com/whatwg/html/issues/2997
https://infra.spec.whatwg.org/#set-append
https://dom.spec.whatwg.org/#concept-node-document

setp204.

8. If element's mediap201 attribute's value matches the environmentp95 and element is potentially render-blockingp103, then block
renderingp134 on element.

Once the attempts to obtain the style sheet's critical subresourcesp45, if any, are complete, or, if the style sheet has no critical
subresourcesp45, once the style sheet has been parsed and processed, the user agent must run these steps:

Fetching the critical subresourcesp45 is not well-defined; probably issue #968 is the best resolution for that. In the meantime, any
critical subresourcep45 request should have its render-blocking set to whether or not the stylep200 element is currently render-
blockingp134.

1. Let element be the stylep200 element associated with the style sheet in question.

2. Let success be true.

3. If the attempts to obtain any of the style sheet's critical subresourcesp45 failed for any reason (e.g., DNS error, HTTP 404
response, a connection being prematurely closed, unsupported Content-Type), set success to false.

4. Queue an element taskp1125 on the networking task sourcep1134 given element and the following steps:

1. If success is true, fire an event named loadp1471 at element.

2. Otherwise, fire an event named errorp1471 at element.

3. If element contributes a script-blocking style sheetp204:

1. Assert: element's node document's script-blocking style sheet setp204 contains element.

2. Remove element from its node document's script-blocking style sheet setp204.

4. Unblock renderingp135 on element.

The element must delay the load eventp1359 of the element's node document until all the attempts to obtain the style sheet's critical
subresourcesp45, if any, are complete.

The media and blocking IDL attributes must each reflectp104 the respective content attributes of the same name.

The LinkStyle interface is also implemented by this element. [CSSOM]p1477

Note that content-specific errors, e.g., CSS parse errors or PNG decoding errors, do not affect success.
Note

This specification does not specify a style system, but CSS is expected to be supported by most web browsers. [CSS]p1476

Note

The following document has its stress emphasis styled as bright red text rather than italics text, while leaving titles of works and
Latin words in their default italics. It shows how using appropriate elements enables easier restyling of documents.

<!DOCTYPE html>
<html lang="en-US">
<head>
<title>My favorite book</title>
<style>
body { color: black; background: white; }
em { font-style: normal; color: red; }

</style>
</head>
<body>
<p>My favorite book of all time has got to be
<cite>A Cat's Life</cite>. It is a book by P. Rahmel that talks

Example

✔ MDN

203

https://github.com/whatwg/html/issues/968
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#request-render-blocking
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/cssom/#the-linkstyle-interface

If the style sheet referenced no other resources (e.g., it was an internal style sheet given by a stylep200 element with no @import
rules), then the style rules must be immediatelyp43 made available to script; otherwise, the style rules must only be made available to
script once the event loopp1123 reaches its update the renderingp1128 step.

An element el in the context of a Documentp130 of an HTML parserp1271 or XML parserp1384 contributes a script-blocking style sheet
if all of the following are true:

• el was created by that Documentp130 's parser.

• el is either a stylep200 element or a linkp177 element that was an external resource link that contributes to the styling
processing modelp331 when the el was created by the parser.

• el's media attribute's value matches the environmentp95.

• el's style sheet was enabled when the element was created by the parser.

• The last time the event loopp1123 reached step 1p1126, el's root was that Documentp130.

• The user agent hasn't given up on loading that particular style sheet yet. A user agent may give up on loading a style sheet
at any time.

It is expected that counterparts to the above rules also apply to <?xml-stylesheet?> PIs. However, this has not yet been
thoroughly investigated.

A Documentp130 has a script-blocking style sheet set, which is an ordered set, initially empty.

A Documentp130 document has a style sheet that is blocking scripts if the following steps return true:

1. If document's script-blocking style sheet setp204 is not empty, then return true.

2. If document's node navigablep989 is null, then return false.

3. Let containerDocument be document's node navigablep989 's container documentp991.

4. If containerDocument is non-null and containerDocument's script-blocking style sheet setp204 is not empty, then return true.

5. Return false.

A Documentp130 has no style sheet that is blocking scripts if it does not have a style sheet that is blocking scriptsp204.

about the <i lang="la">Felis catus</i> in modern human society.</p>
</body>

</html>

Giving up on a style sheet before the style sheet loads, if the style sheet eventually does still load, means that the script
might end up operating with incorrect information. For example, if a style sheet sets the color of an element to green,
but a script that inspects the resulting style is executed before the sheet is loaded, the script will find that the element is
black (or whatever the default color is), and might thus make poor choices (e.g., deciding to use black as the color
elsewhere on the page, instead of green). Implementers have to balance the likelihood of a script using incorrect
information with the performance impact of doing nothing while waiting for a slow network request to finish.

Note

4.2.7 Interactions of styling and scripting §p20

4

204

https://dom.spec.whatwg.org/#concept-tree-root
https://www.w3.org/TR/xml-stylesheet/#the-xml-stylesheet-processing-instruction
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-is-empty

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As the second element in an htmlp172 element.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
A bodyp205 element's start tagp1261 can be omitted if the element is empty, or if the first thing inside the bodyp205 element is not
ASCII whitespace or a commentp1270, except if the first thing inside the bodyp205 element is a metap189, noscriptp669, linkp177,
scriptp652, stylep200, or templatep671 element.
A bodyp205 element's end tagp1262 can be omitted if the bodyp205 element is not immediately followed by a commentp1270.

Content attributesp146:
Global attributesp154

onafterprintp1145

onbeforeprintp1145

onbeforeunloadp1145

onhashchangep1145

onlanguagechangep1145

onmessagep1145

onmessageerrorp1145

onofflinep1145

ononlinep1145

onpageswapp1145

onpagehidep1145

onpagerevealp1145

onpageshowp1145

onpopstatep1145

onrejectionhandledp1145

onstoragep1145

onunhandledrejectionp1145

onunloadp1145

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLBodyElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

HTMLBodyElement includes WindowEventHandlers;

The bodyp205 element representsp141 the contents of the document.

In conforming documents, there is only one bodyp205 element. The document.bodyp136 IDL attribute provides scripts with easy access to
a document's bodyp205 element.

4.3 Sections §p20

5

IDL

4.3.1 The body element §p20

5

✔ MDN

✔ MDN

✔ MDN

205

https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-body
https://w3c.github.io/html-aam/#el-body

The bodyp205 element exposes as event handler content attributesp1138 a number of the event handlersp1136 of the Windowp922 object. It
also mirrors their event handler IDL attributesp1137.

The event handlersp1136 of the Windowp922 object named by the Window-reflecting body element event handler setp1145, exposed on the
bodyp205 element, replace the generic event handlersp1136 with the same names normally supported by HTML elementsp45.

Categoriesp146:
Flow contentp149.
Sectioning contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where sectioning contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Some DOM operations (for example, parts of the drag and dropp869 model) are defined in terms of "the body elementp136". This
refers to a particular element in the DOM, as per the definition of the term, and not any arbitrary bodyp205 element.

Note

Thus, for example, a bubbling errorp1471 event dispatched on a child of the body elementp136 of a Documentp130 would first trigger
the onerrorp1145 event handler content attributesp1138 of that element, then that of the root htmlp172 element, and only then would
it trigger the onerrorp1145 event handler content attributep1138 on the bodyp205 element. This is because the event would bubble
from the target, to the bodyp205, to the htmlp172, to the Documentp130, to the Windowp922, and the event handlerp1136 on the bodyp205 is
watching the Windowp922 not the bodyp205. A regular event listener attached to the bodyp205 using addEventListener(), however,
would be run when the event bubbled through the bodyp205 and not when it reaches the Windowp922 object.

Example

This page updates an indicator to show whether or not the user is online:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Online or offline?</title>
<script>
function update(online) {

document.getElementById('status').textContent =
online ? 'Online' : 'Offline';

}
</script>

</head>
<body ononline="update(true)"

onoffline="update(false)"
onload="update(navigator.onLine)">

<p>You are: (Unknown)</p>
</body>

</html>

Example

4.3.2 The article element §p20

6

✔ MDN

206

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The articlep206 element representsp141 a complete, or self-contained, composition in a document, page, application, or site and that is,
in principle, independently distributable or reusable, e.g. in syndication. This could be a forum post, a magazine or newspaper article, a
blog entry, a user-submitted comment, an interactive widget or gadget, or any other independent item of content.

When articlep206 elements are nested, the inner articlep206 elements represent articles that are in principle related to the contents
of the outer article. For instance, a blog entry on a site that accepts user-submitted comments could represent the comments as
articlep206 elements nested within the articlep206 element for the blog entry.

Author information associated with an articlep206 element (q.v. the addressp222 element) does not apply to nested articlep206

elements.

When the main content of the page (i.e. excluding footers, headers, navigation blocks, and sidebars) is all one single self-contained
composition, that content may be marked with an articlep206, but it is technically redundant in that case (since it's self-evident that
the page is a single composition, as it is a single document).

When used specifically with content to be redistributed in syndication, the articlep206 element is similar in purpose to the entry
element in Atom. [ATOM]p1475

Note

The schema.org microdata vocabulary can be used to provide the publication date for an articlep206 element, using one of the
CreativeWork subtypes.

Note

This example shows a blog post using the articlep206 element, with some schema.org annotations:

<article itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h2 itemprop="headline">The Very First Rule of Life</h2>
<p><time itemprop="datePublished" datetime="2009-10-09">3 days ago</time></p>
<link itemprop="url" href="?comments=0">

</header>
<p>If there's a microphone anywhere near you, assume it's hot and
sending whatever you're saying to the world. Seriously.</p>
<p>...</p>
<footer>
Show comments...

</footer>
</article>

Here is that same blog post, but showing some of the comments:

<article itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h2 itemprop="headline">The Very First Rule of Life</h2>
<p><time itemprop="datePublished" datetime="2009-10-09">3 days ago</time></p>
<link itemprop="url" href="?comments=0">

</header>
<p>If there's a microphone anywhere near you, assume it's hot and
sending whatever you're saying to the world. Seriously.</p>
<p>...</p>
<section>

Example

207

https://w3c.github.io/html-aria/#el-article
https://w3c.github.io/html-aam/#el-article

<h1>Comments</h1>
<article itemprop="comment" itemscope itemtype="http://schema.org/Comment" id="c1">
<link itemprop="url" href="#c1">
<footer>
<p>Posted by:
George Washington

</p>
<p><time itemprop="dateCreated" datetime="2009-10-10">15 minutes ago</time></p>

</footer>
<p>Yeah! Especially when talking about your lobbyist friends!</p>

</article>
<article itemprop="comment" itemscope itemtype="http://schema.org/Comment" id="c2">
<link itemprop="url" href="#c2">
<footer>
<p>Posted by:
George Hammond

</p>
<p><time itemprop="dateCreated" datetime="2009-10-10">5 minutes ago</time></p>

</footer>
<p>Hey, you have the same first name as me.</p>

</article>
</section>

</article>

Notice the use of footerp220 to give the information for each comment (such as who wrote it and when): the footerp220 element
can appear at the start of its section when appropriate, such as in this case. (Using headerp218 in this case wouldn't be wrong
either; it's mostly a matter of authoring preference.)

In this example, articlep206 elements are used to host widgets on a portal page. The widgets are implemented as customized
built-in elementsp759 in order to get specific styling and scripted behavior.

<!DOCTYPE HTML>
<html lang=en>
<title>eHome Portal</title>
<script src="/scripts/widgets.js"></script>
<link rel=stylesheet href="/styles/main.css">
<article is="stock-widget">
<h2>Stocks</h2>
<table>
<thead> <tr> <th> Stock <th> Value <th> Delta
<tbody> <template> <tr> <td> <td> <td> </template>

</table>
<p> <input type=button value="Refresh" onclick="this.parentElement.refresh()">

</article>
<article is="news-widget">
<h2>News</h2>

<template>

<p>
<p>

</template>

<p> <input type=button value="Refresh" onclick="this.parentElement.refresh()">

</article>

Example

208

Categoriesp146:
Flow contentp149.
Sectioning contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where sectioning contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The sectionp209 element representsp141 a generic section of a document or application. A section, in this context, is a thematic
grouping of content, typically with a heading.

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or the numbered sections of a thesis. A
web site's home page could be split into sections for an introduction, news items, and contact information.

Example

Authors are encouraged to use the articlep206 element instead of the sectionp209 element when it would make sense to syndicate
the contents of the element.

Note

The sectionp209 element is not a generic container element. When an element is needed only for styling purposes or as a
convenience for scripting, authors are encouraged to use the divp256 element instead. A general rule is that the sectionp209

element is appropriate only if the element's contents would be listed explicitly in the document's outlinep224.

Note

In the following example, we see an article (part of a larger web page) about apples, containing two short sections.

<article>
<hgroup>
<h2>Apples</h2>
<p>Tasty, delicious fruit!</p>

</hgroup>
<p>The apple is the pomaceous fruit of the apple tree.</p>
<section>
<h3>Red Delicious</h3>
<p>These bright red apples are the most common found in many
supermarkets.</p>

</section>
<section>
<h3>Granny Smith</h3>
<p>These juicy, green apples make a great filling for
apple pies.</p>

</section>

Example

4.3.3 The section element §p20

9

✔ MDN

209

https://w3c.github.io/html-aria/#el-section
https://w3c.github.io/html-aam/#el-section

</article>

Here is a graduation programme with two sections, one for the list of people graduating, and one for the description of the
ceremony. (The markup in this example features an uncommon style sometimes used to minimize the amount of inter-element
whitespacep147.)

<!DOCTYPE Html>
<Html Lang=En
><Head

><Title
>Graduation Ceremony Summer 2022</Title

></Head
><Body

><H1
>Graduation</H1

><Section
><H2

>Ceremony</H2
><P

>Opening Procession</P
><P

>Speech by Valedictorian</P
><P

>Speech by Class President</P
><P

>Presentation of Diplomas</P
><P

>Closing Speech by Headmaster</P
></Section
><Section

><H2
>Graduates</H2

>Molly CarpenterAnastasia LuccioEbenezar McCoyKarrin MurphyThomas RaithSusan Rodriguez</Section
></Body

></Html>

Example

In this example, a book author has marked up some sections as chapters and some as appendices, and uses CSS to style the
headers in these two classes of section differently.

<style>
section { border: double medium; margin: 2em; }
section.chapter h2 { font: 2em Roboto, Helvetica Neue, sans-serif; }

Example

210

Categoriesp146:
Flow contentp149.
Sectioning contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where sectioning contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

section.appendix h2 { font: small-caps 2em Roboto, Helvetica Neue, sans-serif; }
</style>
<header>
<hgroup>
<h1>My Book</h1>
<p>A sample with not much content</p>

</hgroup>
<p><small>Published by Dummy Publicorp Ltd.</small></p>

</header>
<section class="chapter">
<h2>My First Chapter</h2>
<p>This is the first of my chapters. It doesn't say much.</p>
<p>But it has two paragraphs!</p>

</section>
<section class="chapter">
<h2>It Continues: The Second Chapter</h2>
<p>Bla dee bla, dee bla dee bla. Boom.</p>

</section>
<section class="chapter">
<h2>Chapter Three: A Further Example</h2>
<p>It's not like a battle between brightness and earthtones would go
unnoticed.</p>
<p>But it might ruin my story.</p>

</section>
<section class="appendix">
<h2>Appendix A: Overview of Examples</h2>
<p>These are demonstrations.</p>

</section>
<section class="appendix">
<h2>Appendix B: Some Closing Remarks</h2>
<p>Hopefully this long example shows that you can style
sections, so long as they are used to indicate actual sections.</p>

</section>

4.3.4 The nav element §p21

1

✔ MDN

211

https://w3c.github.io/html-aria/#el-nav
https://w3c.github.io/html-aam/#el-nav

The navp211 element representsp141 a section of a page that links to other pages or to parts within the page: a section with navigation
links.

Not all groups of links on a page need to be in a navp211 element — the element is primarily intended for sections that consist of
major navigation blocks. In particular, it is common for footers to have a short list of links to various pages of a site, such as the
terms of service, the home page, and a copyright page. The footerp220 element alone is sufficient for such cases; while a navp211

element can be used in such cases, it is usually unnecessary.

Note

User agents (such as screen readers) that are targeted at users who can benefit from navigation information being omitted in the
initial rendering, or who can benefit from navigation information being immediately available, can use this element as a way to
determine what content on the page to initially skip or provide on request (or both).

Note

In the following example, there are two navp211 elements, one for primary navigation around the site, and one for secondary
navigation around the page itself.

<body>
<h1>The Wiki Center Of Exampland</h1>
<nav>

Home
Current Events
...more...

</nav>
<article>
<header>
<h2>Demos in Exampland</h2>
<p>Written by A. N. Other.</p>

</header>
<nav>

Public demonstrations
Demolitions
...more...

</nav>
<div>
<section id="public">
<h2>Public demonstrations</h2>
<p>...more...</p>

</section>
<section id="destroy">
<h2>Demolitions</h2>
<p>...more...</p>

</section>
...more...

</div>
<footer>
<p>Edit | Delete | Rename</p>

</footer>
</article>
<footer>
<p><small>© copyright 1998 Exampland Emperor</small></p>

</footer>
</body>

Example

212

In the following example, the page has several places where links are present, but only one of those places is considered a
navigation section.

<body itemscope itemtype="http://schema.org/Blog">
<header>
<h1>Wake up sheeple!</h1>
<p>News -

Blog -
Forums</p>

<p>Last Modified: 2009-04-01</p>
<nav>
<h2>Navigation</h2>

Index of all articles
Things sheeple need to wake up for today
Sheeple we have managed to wake

</nav>

</header>
<main>
<article itemprop="blogPosts" itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h2 itemprop="headline">My Day at the Beach</h2>

</header>
<div itemprop="articleBody">
<p>Today I went to the beach and had a lot of fun.</p>
...more content...

</div>
<footer>
<p>Posted <time itemprop="datePublished" datetime="2009-10-10">Thursday</time>.</p>

</footer>
</article>
...more blog posts...

</main>
<footer>
<p>Copyright ©
2010
The Example Company

</p>
<p>About -

Privacy Policy -
Contact Us</p>

</footer>
</body>

You can also see microdata annotations in the above example that use the schema.org vocabulary to provide the publication date
and other metadata about the blog post.

Example

A navp211 element doesn't have to contain a list, it can contain other kinds of content as well. In this navigation block, links are
provided in prose:

<nav>
<h1>Navigation</h1>
<p>You are on my home page. To the north lies my
blog, from whence the sounds of battle can be heard. To the east
you can see a large mountain, upon which many school papers are littered. Far up thus mountain
you can spy a little figure who appears to be me, desperately
scribbling a thesis.</p>

Example

213

Categoriesp146:
Flow contentp149.
Sectioning contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where sectioning contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The asidep214 element representsp141 a section of a page that consists of content that is tangentially related to the content around the
asidep214 element, and which could be considered separate from that content. Such sections are often represented as sidebars in
printed typography.

The element can be used for typographical effects like pull quotes or sidebars, for advertising, for groups of navp211 elements, and for
other content that is considered separate from the main content of the page.

<p>To the west are several exits. One fun-looking exit is labeled "games". Another more
boring-looking exit is labeled ISP™.</p>
<p>To the south lies a dark and dank contacts
page. Cobwebs cover its disused entrance, and at one point you
see a rat run quickly out of the page.</p>

</nav>

In this example, navp211 is used in an email application, to let the user switch folders:

<p><input type=button value="Compose" onclick="compose()"></p>
<nav>
<h1>Folders</h1>

 Inbox
 Sent
 Drafts
 Trash
 Customers

</nav>

Example

4.3.5 The aside element §p21

4

✔ MDN

214

https://w3c.github.io/html-aria/#el-aside
https://w3c.github.io/html-aam/#el-aside

It's not appropriate to use the asidep214 element just for parentheticals, since those are part of the main flow of the document.
Note

The following example shows how an aside is used to mark up background material on Switzerland in a much longer news story on
Europe.

<aside>
<h2>Switzerland</h2>
<p>Switzerland, a land-locked country in the middle of geographic
Europe, has not joined the geopolitical European Union, though it is
a signatory to a number of European treaties.</p>

</aside>

Example

The following example shows how an aside is used to mark up a pull quote in a longer article.

...

<p>He later joined a large company, continuing on the same work.
<q>I love my job. People ask me what I do for fun when I'm not at
work. But I'm paid to do my hobby, so I never know what to
answer. Some people wonder what they would do if they didn't have to
work... but I know what I would do, because I was unemployed for a
year, and I filled that time doing exactly what I do now.</q></p>

<aside>
<q>People ask me what I do for fun when I'm not at work. But I'm
paid to do my hobby, so I never know what to answer.</q>

</aside>

<p>Of course his work — or should that be hobby? —
isn't his only passion. He also enjoys other pleasures.</p>

...

Example

The following extract shows how asidep214 can be used for blogrolls and other side content on a blog:

<body>
<header>
<h1>My wonderful blog</h1>
<p>My tagline</p>

</header>
<aside>
<!-- this aside contains two sections that are tangentially related
to the page, namely, links to other blogs, and links to blog posts
from this blog -->
<nav>
<h2>My blogroll</h2>

Example Blog

</nav>
<nav>
<h2>Archives</h2>
<ol reversed>
My last post
My first post

Example

215

Categoriesp146:
Flow contentp149.
Heading contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
As a child of an hgroupp218 element.
Where heading contentp149 is expected.

</nav>

</aside>
<aside>
<!-- this aside is tangentially related to the page also, it
contains twitter messages from the blog author -->
<h1>Twitter Feed</h1>
<blockquote cite="https://twitter.example.net/t31351234">
I'm on vacation, writing my blog.

</blockquote>
<blockquote cite="https://twitter.example.net/t31219752">
I'm going to go on vacation soon.

</blockquote>
</aside>
<article>
<!-- this is a blog post -->
<h2>My last post</h2>
<p>This is my last post.</p>
<footer>
<p>Permalink

</footer>
</article>
<article>
<!-- this is also a blog post -->
<h2>My first post</h2>
<p>This is my first post.</p>
<aside>
<!-- this aside is about the blog post, since it's inside the
<article> element; it would be wrong, for instance, to put the
blogroll here, since the blogroll isn't really related to this post
specifically, only to the page as a whole -->
<h2>Posting</h2>
<p>While I'm thinking about it, I wanted to say something about
posting. Posting is fun!</p>

</aside>
<footer>
<p>Permalink

</footer>
</article>
<footer>
<p>Archives -
About me -
Copyright</p>

</footer>
</body>

4.3.6 The h1, h2, h3, h4, h5, and h6 elements §p21

6

✔ MDN

✔ MDN

216

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLHeadingElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

These elements representp141 headings for their sections.

The semantics and meaning of these elements are defined in the section on headings and outlinesp223.

These elements have a heading levelp223 given by the number in their name. The heading levelp223 corresponds to the levels of nested
sections. The h1p216 element is for a top-level section, h2p216 for a subsection, h3p216 for a sub-subsection, and so on.

As far as their respective document outlines (their heading and section structures) are concerned, these two snippets are
semantically equivalent:

<body>
<h1>Let's call it a draw(ing surface)</h1>
<h2>Diving in</h2>
<h2>Simple shapes</h2>
<h2>Canvas coordinates</h2>
<h3>Canvas coordinates diagram</h3>
<h2>Paths</h2>
</body>

<body>
<h1>Let's call it a draw(ing surface)</h1>
<section>
<h2>Diving in</h2>

</section>
<section>
<h2>Simple shapes</h2>

</section>
<section>
<h2>Canvas coordinates</h2>
<section>
<h3>Canvas coordinates diagram</h3>

</section>
</section>
<section>
<h2>Paths</h2>

</section>
</body>

Authors might prefer the former style for its terseness, or the latter style for its additional styling hooks. Which is best is purely an

Example

IDL

217

https://w3c.github.io/html-aria/#el-h1-h6
https://w3c.github.io/html-aam/#el-h1-h6

Categoriesp146:
Flow contentp149.
Heading contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where heading contentp149 is expected.

Content modelp146:
Zero or more pp229 elements, followed by one h1p216, h2p216, h3p216, h4p216, h5p216, or h6p216 element, followed by zero or more pp229

elements, optionally intermixed with script-supporting elementsp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The hgroupp218 element representsp141 a heading and related content. The element may be used to group an h1p216–h6p216 element with
one or more pp229 elements containing content representing a subheading, alternative title, or tagline.

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149, but with no headerp218 or footerp220 element descendants.

issue of preferred authoring style.

Here are some examples of valid headings contained within an hgroupp218 element.

<hgroup>
<h1>The reality dysfunction</h1>
<p>Space is not the only void</p>

</hgroup>

<hgroup>
<h1>Dr. Strangelove</h1>
<p>Or: How I Learned to Stop Worrying and Love the Bomb</p>

</hgroup>

Example

4.3.7 The hgroup element §p21

8

4.3.8 The header element §p21

8

✔ MDN

✔ MDN

218

https://w3c.github.io/html-aria/#el-hgroup
https://w3c.github.io/html-aam/#el-hgroup

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
If there is an ancestor sectioning contentp149 element: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:
Uses HTMLElementp142.

The headerp218 element representsp141 a group of introductory or navigational aids.

A headerp218 element is intended to usually contain a heading (an h1p216–h6p216 element or an hgroupp218 element), but this is not
required. The headerp218 element can also be used to wrap a section's table of contents, a search form, or any relevant logos.

Note

Here are some sample headers. This first one is for a game:

<header>
<p>Welcome to...</p>
<h1>Voidwars!</h1>

</header>

The following snippet shows how the element can be used to mark up a specification's header:

<header>
<hgroup>
<h1>Fullscreen API</h1>
<p>Living Standard — Last Updated 19 October 2015<p>

</hgroup>
<dl>
<dt>Participate:</dt>
<dd>GitHub whatwg/fullscreen</dd>
<dt>Commits:</dt>
<dd>GitHub whatwg/fullscreen/

commits</dd>
</dl>

</header>

Example

The headerp218 element is not sectioning contentp149; it doesn't introduce a new section.
Note

In this example, the page has a page heading given by the h1p216 element, and two subsections whose headings are given by h2p216

elements. The content after the headerp218 element is still part of the last subsection started in the headerp218 element, because
the headerp218 element doesn't take part in the outlinep224 algorithm.

<body>
<header>
<h1>Little Green Guys With Guns</h1>
<nav>

Games
Forum
Download

Example

219

https://w3c.github.io/html-aria/#el-header
https://w3c.github.io/html-aam/#el-header
https://w3c.github.io/html-aria/#el-header
https://w3c.github.io/html-aam/#el-header-ancestorbody

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149, but with no headerp218 or footerp220 element descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
If there is an ancestor sectioning contentp149 element: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:
Uses HTMLElementp142.

The footerp220 element representsp141 a footer for its nearest ancestor sectioning contentp149 element, or for the body elementp136 if
there is no such ancestor. A footer typically contains information about its section such as who wrote it, links to related documents,
copyright data, and the like.

When the footerp220 element contains entire sections, they representp141 appendices, indices, long colophons, verbose license
agreements, and other such content.

Footers don't necessarily have to appear at the end of a section, though they usually do.

When there is no ancestor sectioning contentp149 element, then it applies to the whole page.

</nav>
<h2>Important News</h2> <!-- this starts a second subsection -->
<!-- this is part of the subsection entitled "Important News" -->
<p>To play today's games you will need to update your client.</p>
<h2>Games</h2> <!-- this starts a third subsection -->

</header>
<p>You have three active games:</p>
<!-- this is still part of the subsection entitled "Games" -->
...

Contact information for the author or editor of a section belongs in an addressp222 element, possibly itself inside a footerp220.
Bylines and other information that could be suitable for both a headerp218 or a footerp220 can be placed in either (or neither). The
primary purpose of these elements is merely to help the author write self-explanatory markup that is easy to maintain and style;
they are not intended to impose specific structures on authors.

Note

The footerp220 element is not itself sectioning contentp149; it doesn't introduce a new section.
Note

Example

4.3.9 The footer element §p22

0

✔ MDN

220

https://w3c.github.io/html-aria/#el-footer
https://w3c.github.io/html-aam/#el-footer
https://w3c.github.io/html-aria/#el-footer
https://w3c.github.io/html-aam/#el-footer-ancestorbody

Here is a page with two footers, one at the top and one at the bottom, with the same content:

<body>
<footer>Back to index...</footer>
<hgroup>
<h1>Lorem ipsum</h1>
<p>The ipsum of all lorems</p>

</hgroup>
<p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<footer>Back to index...</footer>

</body>

Here is an example which shows the footerp220 element being used both for a site-wide footer and for a section footer.

<!DOCTYPE HTML>
<HTML LANG="en"><HEAD>
<TITLE>The Ramblings of a Scientist</TITLE>
<BODY>
<H1>The Ramblings of a Scientist</H1>
<ARTICLE>
<H1>Episode 15</H1>
<VIDEO SRC="/fm/015.ogv" CONTROLS PRELOAD>
<P>Download video.</P>

</VIDEO>
<FOOTER> <!-- footer for article -->
<P>Published <TIME DATETIME="2009-10-21T18:26-07:00">on 2009/10/21 at 6:26pm</TIME></P>

</FOOTER>
</ARTICLE>
<ARTICLE>
<H1>My Favorite Trains</H1>
<P>I love my trains. My favorite train of all time is a Köf.</P>
<P>It is fun to see them pull some coal cars because they look so
dwarfed in comparison.</P>
<FOOTER> <!-- footer for article -->
<P>Published <TIME DATETIME="2009-09-15T14:54-07:00">on 2009/09/15 at 2:54pm</TIME></P>

</FOOTER>
</ARTICLE>
<FOOTER> <!-- site wide footer -->
<NAV>
<P>Credits —

Terms of Service —
Blog Index</P>

</NAV>
<P>Copyright © 2009 Gordon Freeman</P>

</FOOTER>
</BODY>
</HTML>

Example

Some site designs have what is sometimes referred to as "fat footers" — footers that contain a lot of material, including images,
links to other articles, links to pages for sending feedback, special offers... in some ways, a whole "front page" in the footer.

Example

221

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149, but with no heading contentp149 descendants, no sectioning contentp149 descendants, and no headerp218,
footerp220, or addressp222 element descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The addressp222 element representsp141 the contact information for its nearest articlep206 or bodyp205 element ancestor. If that is the
body elementp136, then the contact information applies to the document as a whole.

This fragment shows the bottom of a page on a site with a "fat footer":

...
<footer>
<nav>
<section>
<h1>Articles</h1>
<p> Go to the gym with
our somersaults class! Our teacher Jim takes you through the paces
in this two-part article. Part
1 · Part 2</p>
<p> Tired of walking on the edge of
a clif<!-- sic -->? Our guest writer Lara shows you how to bumble
your way through the bars. Read
more...</p>
<p> The chips are down, now all
that's left is a potato. What can you do with it? Read more...</p>

</section>

 About us...
 Send feedback!
 Sitemap

</nav>
<p><small>Copyright © 2015 The Snacker —
Terms of Service</small></p>

</footer>
</body>

4.3.10 The address element §p22

2

✔ MDN

222

https://w3c.github.io/html-aria/#el-address
https://w3c.github.io/html-aam/#el-address

The addressp222 element must not be used to represent arbitrary addresses (e.g. postal addresses), unless those addresses are in fact
the relevant contact information. (The pp229 element is the appropriate element for marking up postal addresses in general.)

The addressp222 element must not contain information other than contact information.

Typically, the addressp222 element would be included along with other information in a footerp220 element.

The contact information for a node node is a collection of addressp222 elements defined by the first applicable entry from the following
list:

↪ If node is an articlep206 element
↪ If node is a bodyp205 element

The contact information consists of all the addressp222 elements that have node as an ancestor and do not have another
bodyp205 or articlep206 element ancestor that is a descendant of node.

↪ If node has an ancestor element that is an articlep206 element
↪ If node has an ancestor element that is a bodyp205 element

The contact information of node is the same as the contact information of the nearest articlep206 or bodyp205 element ancestor,
whichever is nearest.

↪ If node's node document has a body elementp136

The contact information of node is the same as the contact information of the body elementp136 of the Documentp130.

↪ Otherwise
There is no contact information for node.

User agents may expose the contact information of a node to the user, or use it for other purposes, such as indexing sections based on
the sections' contact information.

h1p216–h6p216 elements have a heading level, which is given by the number in the element's name.

For example, a page at the W3C web site related to HTML might include the following contact information:

<ADDRESS>
Dave Raggett,
Arnaud Le Hors,
contact persons for the W3C HTML Activity

</ADDRESS>

Example

For example, the following is non-conforming use of the addressp222 element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Example

In this example the footer contains contact information and a copyright notice.

<footer>
<address>
For more details, contact
John Smith.

</address>
<p><small>© copyright 2038 Example Corp.</small></p>

</footer>

Example

4.3.11 Headings and outlines §p22

3

223

https://dom.spec.whatwg.org/#concept-node-document

These elements representp141 headings. The lower a headingp224 's heading levelp223 is, the fewer ancestor sections the headingp224

has.

The outline is all headingsp224 in a document, in tree order.

The outlinep224 should be used for generating document outlines, for example when generating tables of contents. When creating an
interactive table of contents, entries should jump the user to the relevant headingp224.

If a document has one or more headingsp224, at least a single headingp224 within the outlinep224 should have a heading levelp223 of 1.

Each headingp224 following another headingp224 lead in the outlinep224 must have a heading levelp223 that is less than, equal to, or 1
greater than lead's heading levelp223.

The following example is non-conforming:

<body>
<h1>Apples</h1>
<p>Apples are fruit.</p>
<section>
<h3>Taste</h3>
<p>They taste lovely.</p>

</section>
</body>

It could be written as follows and then it would be conforming:

<body>
<h1>Apples</h1>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>

</section>
</body>

Example

4.3.11.1 Sample outlines §p22

4

The following markup fragment:

<body>
<hgroup id="document-title">

<h1>HTML: Living Standard</h1>
<p>Last Updated 12 August 2016</p>

</hgroup>
<p>Some intro to the document.</p>
<h2>Table of contents</h2>
<ol id=toc>...
<h2>First section</h2>
<p>Some intro to the first section.</p>

</body>

...results in 3 document headings:

1. <h1>HTML: Living Standard</h1>
2. <h2>Table of contents</h2>.
3. <h2>First section</h2>.

Example

224

https://dom.spec.whatwg.org/#concept-tree-order

A rendered view of the outlinep224 might look like:

HTML: Living StandardHTML: Living Standard

Table of contentsTable of contents

First sectionFirst section

First, here is a document, which is a book with very short chapters and subsections:

<!DOCTYPE HTML>
<html lang=en>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<h2>Earning money</h2>
<p>Earning money is good.</p>
<h3>Getting a job</h3>
<p>To earn money you typically need a job.</p>
<h2>Spending money</h2>
<p>Spending is what money is mainly used for.</p>
<h3>Cheap things</h3>
<p>Buying cheap things often not cost-effective.</p>
<h3>Expensive things</h3>
<p>The most expensive thing is often not the most cost-effective either.</p>
<h2>Investing money</h2>
<p>You can lend your money to other people.</p>
<h2>Losing money</h2>
<p>If you spend money or invest money, sooner or later you will lose money.
<h3>Poor judgement</h3>
<p>Usually if you lose money it's because you made a mistake.</p>

Its outlinep224 could be presented as follows:

1. The Tax Book
1. Earning money

1. Getting a job
2. Spending money

1. Cheap things
2. Expensive things

3. Investing money
4. Losing money

1. Poor judgement

Notice that the titlep174 element is not a headingp224.

Example

A document can contain multiple top-level headings:

<!DOCTYPE HTML>
<html lang=en>
<title>Alphabetic Fruit</title>
<h1>Apples</h1>
<p>Pomaceous.</p>
<h1>Bananas</h1>
<p>Edible.</p>
<h1>Carambola</h1>

Example

225

<p>Star.</p>

The document's outlinep224 could be presented as follows:

1. Apples
2. Bananas
3. Carambola

headerp218 elements do not influence the outlinep224 of a document:

<!DOCTYPE HTML>
<html lang="en">
<title>We're adopting a child! — Ray's blog</title>
<h1>Ray's blog</h1>
<article>
<header>
<nav>
Yesterday;
Last week;
Last month

</nav>
<h2>We're adopting a child!</h2>

</header>
<p>As of today, Janine and I have signed the papers to become
the proud parents of baby Diane! We've been looking forward to
this day for weeks.</p>

</article>
</html>

The document's outlinep224 could be presented as follows:

1. Ray's blog
1. We're adopting a child!

Example

The following example is conforming, but not encouraged as it has no headingp224 whose heading levelp223 is 1:

<!DOCTYPE HTML>
<html lang=en>
<title>Alphabetic Fruit</title>
<section>
<h2>Apples</h2>
<p>Pomaceous.</p>

</section>
<section>
<h2>Bananas</h2>
<p>Edible.</p>

</section>
<section>
<h2>Carambola</h2>
<p>Star.</p>

</section>

The document's outlinep224 could be presented as follows:

1. 1. Apples
2. Bananas
3. Carambola

Example

226

User agents are encouraged to expose page outlinesp224 to users to aid in navigation. This is especially true for non-visual media, e.g.
screen readers.

This section is non-normative.

Element Purpose
Example

bodyp205 The contents of the document.

articlep206 A complete, or self-contained, composition in a document, page, application, or site and that is, in principle, independently distributable or
reusable, e.g. in syndication. This could be a forum post, a magazine or newspaper article, a blog entry, a user-submitted comment, an interactive
widget or gadget, or any other independent item of content.

The following example is conforming, but not encouraged as the first headingp224 's heading levelp223 is not 1:

<!DOCTYPE HTML>
<html lang=en>
<title>Feathers on The Site of Encyclopedic Knowledge</title>
<h2>A plea from our caretakers</h2>
<p>Please, we beg of you, send help! We're stuck in the server room!</p>

<h1>Feathers</h1>
<p>Epidermal growths.</p>

The document's outlinep224 could be presented as follows:

1. 1. A plea from our caretakers
2. Feathers

Example

4.3.11.2 Exposing outlines to users §p22

7

For instance, a user agent could map the arrow keys as follows:

Shift + ← Left
Go to previous heading

Shift + → Right
Go to next heading

Shift + ↑ Up
Go to next heading whose levelp223 is one less than the current heading's level

Shift + ↓ Down
Go to next heading whose levelp223 is the same as the current heading's level

Example

<!DOCTYPE HTML>
<html lang="en">
<head> <title>Steve Hill's Home Page</title> </head>
<body> <p>Hard Trance is My Life.</p> </body>

</html>

<article>

<p>My fave Masif tee so far!</p>
<footer>Posted 2 days ago</footer>

</article>
<article>

<p>Happy 2nd birthday Masif Saturdays!!!</p>

4.3.12 Usage summary §p22

7

227

Element Purpose
Example

sectionp209 A generic section of a document or application. A section, in this context, is a thematic grouping of content, typically with a heading.

navp211 A section of a page that links to other pages or to parts within the page: a section with navigation links.

asidep214 A section of a page that consists of content that is tangentially related to the content around the asidep214 element, and which could be considered
separate from that content. Such sections are often represented as sidebars in printed typography.

h1p216–h6p216 A heading

hgroupp218 A heading and related content. The element may be used to group an h1p216–h6p216 element with one or more pp229 elements containing content
representing a subheading, alternative title, or tagline.

headerp218 A group of introductory or navigational aids.

footerp220 A footer for its nearest ancestor sectioning contentp149 element, or for the body elementp136 if there is no such ancestor. A footer typically contains
information about its section such as who wrote it, links to related documents, copyright data, and the like.

<footer>Posted 3 weeks ago</footer>
</article>

<h1>Biography</h1>
<section>
<h1>The facts</h1>
<p>1500+ shows, 14+ countries</p>

</section>
<section>
<h1>2010/2011 figures per year</h1>
<p>100+ shows, 8+ countries</p>

</section>

<nav>
<p>Home
<p>Bio
<p>Discog

</nav>

<h1>Music</h1>
<p>As any burner can tell you, the event has a lot of trance.</p>
<aside>You can buy the music we played at our playlist page.</aside>
<p>This year we played a kind of trance that originated in Belgium, Germany, and the Netherlands in the mid-90s.</p>

<h1>The Guide To Music On The Playa</h1>
<h2>The Main Stage</h2>
<p>If you want to play on a stage, you should bring one.</p>
<h2>Amplified Music</h2>
<p>Amplifiers up to 300W or 90dB are welcome.</p>

<hgroup>
<h1>Burning Music</h1>
<p>The Guide To Music On The Playa</p>

</hgroup>
<section>
<hgroup>
<h1>Main Stage</h1>
<p>The Fiction Of A Music Festival</p>

</hgroup>
<p>If you want to play on a stage, you should bring one.</p>

</section>
<section>
<hgroup>
<h1>Loudness!</h1>
<p>Questions About Amplified Music</p>

</hgroup>
<p>Amplifiers up to 300W or 90dB are welcome.</p>

</section>

<article>
<header>
<h1>Hard Trance is My Life</h1>
<p>By DJ Steve Hill and Technikal</p>

</header>
<p>The album with the amusing punctuation has red artwork.</p>

</article>

<article>
<h1>Hard Trance is My Life</h1>
<p>The album with the amusing punctuation has red artwork.</p>

228

Element Purpose
Example

This section is non-normative.

A sectionp209 forms part of something else. An articlep206 is its own thing. But how does one know which is which? Mostly the real
answer is "it depends on author intent".

For example, one could imagine a book with a "Granny Smith" chapter that just said "These juicy, green apples make a great filling for
apple pies."; that would be a sectionp209 because there'd be lots of other chapters on (maybe) other kinds of apples.

On the other hand, one could imagine a tweet or reddit comment or tumblr post or newspaper classified ad that just said "Granny
Smith. These juicy, green apples make a great filling for apple pies."; it would then be articlep206s because that was the whole thing.

A comment on an article is not part of the articlep206 on which it is commenting, therefore it is its own articlep206.

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
A pp229 element's end tagp1262 can be omitted if the pp229 element is immediately followed by an addressp222, articlep206,
asidep214, blockquotep235, detailsp637, dialogp646, divp256, dlp244, fieldsetp594, figcaptionp252, figurep249, footerp220,
formp514, h1p216, h2p216, h3p216, h4p216, h5p216, h6p216, headerp218, hgroupp218, hrp231, mainp253, menup240, navp211, olp238, pp229, prep233,
searchp254, sectionp209, tablep478, or ulp239 element, or if there is no more content in the parent element and the parent
element is an HTML elementp45 that is not an ap257, audiop410, delp338, insp337, mapp470, noscriptp669, or videop406 element, or an
autonomous custom elementp759.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLParagraphElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

<footer>
<p>Artists: DJ Steve Hill and Technikal</p>

</footer>
</article>

4.3.12.1 Article or section? §p22

9

4.4 Grouping content §p22

9

IDL

4.4.1 The p element §p22

9

✔ MDN

✔ MDN

229

https://w3c.github.io/html-aria/#el-p
https://w3c.github.io/html-aam/#el-p

The pp229 element representsp141 a paragraphp152.

The pp229 element should not be used when a more specific element is more appropriate.

While paragraphs are usually represented in visual media by blocks of text that are physically separated from adjacent blocks
through blank lines, a style sheet or user agent would be equally justified in presenting paragraph breaks in a different manner, for
instance using inline pilcrows (¶).

Note

The following examples are conforming HTML fragments:

<p>The little kitten gently seated herself on a piece of
carpet. Later in her life, this would be referred to as the time the
cat sat on the mat.</p>

<fieldset>
<legend>Personal information</legend>
<p>

<label>Name: <input name="n"></label>
<label><input name="anon" type="checkbox"> Hide from other users</label>

</p>
<p><label>Address: <textarea name="a"></textarea></label></p>

</fieldset>

<p>There was once an example from Femley,

Whose markup was of dubious quality.

The validator complained,

So the author was pained,

To move the error from the markup to the rhyming.</p>

Example

The following example is technically correct:

<section>
<!-- ... -->
<p>Last modified: 2001-04-23</p>
<p>Author: fred@example.com</p>

</section>

However, it would be better marked-up as:

<section>
<!-- ... -->
<footer>Last modified: 2001-04-23</footer>
<address>Author: fred@example.com</address>

</section>

Or:

<section>
<!-- ... -->
<footer>
<p>Last modified: 2001-04-23</p>
<address>Author: fred@example.com</address>

</footer>
</section>

Example

230

Categoriesp146:
Flow contentp149.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.
As a child of a selectp568 element.

Content modelp146:
Nothingp148.

List elements (in particular, olp238 and ulp239 elements) cannot be children of pp229 elements. When a sentence contains a bulleted
list, therefore, one might wonder how it should be marked up.

The solution is to realize that a paragraphp152, in HTML terms, is not a logical concept, but a structural one. In the fantastic
example above, there are actually five paragraphsp152 as defined by this specification: one before the list, one for each bullet, and
one after the list.

Authors wishing to conveniently style such "logical" paragraphs consisting of multiple "structural" paragraphs can use the divp256

element instead of the pp229 element.

For instance, this fantastic sentence has bullets relating to

• wizards,

• faster-than-light travel, and

• telepathy,

and is further discussed below.

Example

The markup for the above example could therefore be:

<p>For instance, this fantastic sentence has bullets relating to</p>

wizards,
faster-than-light travel, and
telepathy,

<p>and is further discussed below.</p>

Example

Thus for instance the above example could become the following:

<div>For instance, this fantastic sentence has bullets relating to

wizards,
faster-than-light travel, and
telepathy,

and is further discussed below.</div>

This example still has five structural paragraphs, but now the author can style just the divp256 instead of having to consider
each part of the example separately.

Example

Note

4.4.2 The hr element §p23

1

✔ MDN

✔ MDN

231

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLHRElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The hrp231 element representsp141 a paragraphp152-level thematic break, e.g., a scene change in a story, or a transition to another topic
within a section of a reference book; alternatively, it represents a separator between a set of options of a selectp568 element.

The following fictional extract from a project manual shows two sections that use the hrp231 element to separate topics within the
section.

<section>
<h1>Communication</h1>
<p>There are various methods of communication. This section
covers a few of the important ones used by the project.</p>
<hr>
<p>Communication stones seem to come in pairs and have mysterious
properties:</p>

They can transfer thoughts in two directions once activated
if used alone.
If used with another device, they can transfer one's
consciousness to another body.
If both stones are used with another device, the
consciousnesses switch bodies.

<hr>
<p>Radios use the electromagnetic spectrum in the meter range and
longer.</p>
<hr>
<p>Signal flares use the electromagnetic spectrum in the
nanometer range.</p>

</section>
<section>
<h1>Food</h1>
<p>All food at the project is rationed:</p>
<dl>
<dt>Potatoes</dt>
<dd>Two per day</dd>
<dt>Soup</dt>
<dd>One bowl per day</dd>

</dl>
<hr>
<p>Cooking is done by the chefs on a set rotation.</p>

</section>

There is no need for an hrp231 element between the sections themselves, since the sectionp209 elements and the h1p216 elements

Example

IDL

232

https://w3c.github.io/html-aria/#el-hr
https://w3c.github.io/html-aam/#el-hr

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLPreElement : HTMLElement {

[HTMLConstructor] constructor();

imply thematic changes themselves.

The following extract from Pandora's Star by Peter F. Hamilton shows two paragraphs that precede a scene change and the
paragraph that follows it. The scene change, represented in the printed book by a gap containing a solitary centered star between
the second and third paragraphs, is here represented using the hrp231 element.

<p>Dudley was ninety-two, in his second life, and fast approaching
time for another rejuvenation. Despite his body having the physical
age of a standard fifty-year-old, the prospect of a long degrading
campaign within academia was one he regarded with dread. For a
supposedly advanced civilization, the Intersolar Commonwealth could be
appallingly backward at times, not to mention cruel.</p>
<p><i>Maybe it won't be that bad</i>, he told himself. The lie was
comforting enough to get him through the rest of the night's
shift.</p>
<hr>
<p>The Carlton AllLander drove Dudley home just after dawn. Like the
astronomer, the vehicle was old and worn, but perfectly capable of
doing its job. It had a cheap diesel engine, common enough on a
semi-frontier world like Gralmond, although its drive array was a
thoroughly modern photoneural processor. With its high suspension and
deep-tread tyres it could plough along the dirt track to the
observatory in all weather and seasons, including the metre-deep snow
of Gralmond's winters.</p>

Example

The hrp231 element does not affect the document's outlinep224.
Note

IDL

4.4.3 The pre element §p23

3

✔ MDN

✔ MDN

233

https://w3c.github.io/html-aria/#el-pre
https://w3c.github.io/html-aam/#el-pre

// also has obsolete members
};

The prep233 element representsp141 a block of preformatted text, in which structure is represented by typographic conventions rather
than by elements.

Some examples of cases where the prep233 element could be used:

• Including an email, with paragraphs indicated by blank lines, lists indicated by lines prefixed with a bullet, and so on.

• Including fragments of computer code, with structure indicated according to the conventions of that language.

• Displaying ASCII art.

To represent a block of computer code, the prep233 element can be used with a codep286 element; to represent a block of computer
output the prep233 element can be used with a sampp288 element. Similarly, the kbdp289 element can be used within a prep233 element to
indicate text that the user is to enter.

In the HTML syntaxp1259, a leading newline character immediately following the prep233 element start tag is stripped.
Note

Authors are encouraged to consider how preformatted text will be experienced when the formatting is lost, as will be the case for
users of speech synthesizers, braille displays, and the like. For cases like ASCII art, it is likely that an alternative presentation, such
as a textual description, would be more universally accessible to the readers of the document.

Note

This element has rendering requirements involving the bidirectional algorithmp170.
Note

In the following snippet, a sample of computer code is presented.

<p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {

this.element = element;
this.canClose = canClose;
this.closeHandler = function () { if (closeHandler) closeHandler() };

}</code></pre>

Example

In the following snippet, sampp288 and kbdp289 elements are mixed in the contents of a prep233 element to show a session of Zork I.

<pre><samp>You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

Example

The following shows a contemporary poem that uses the prep233 element to preserve its unusual formatting, which forms an
intrinsic part of the poem itself.

Example

234

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

citep235 — Link to the source of the quotation or more information about the edit

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLQuoteElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString cite;
};

The blockquotep235 element representsp141 a section that is quoted from another source.

Content inside a blockquotep235 must be quoted from another source, whose address, if it has one, may be cited in the cite attribute.

If the citep235 attribute is present, it must be a valid URL potentially surrounded by spacesp96. To obtain the corresponding citation link,
the value of the attribute must be parsedp97 relative to the element's node document. User agents may allow users to follow such
citation links, but they are primarily intended for private use (e.g., by server-side scripts collecting statistics about a site's use of
quotations), not for readers.

<pre> maxling

it is with a heart
heavy

that i admit loss of a feline
so loved

a friend lost to the
unknown

(night)

~cdr 11dec07</pre>

The HTMLQuoteElementp235 interface is also used by the qp266 element.
Note

IDL

4.4.4 The blockquote element §p23

5

✔ MDN

✔ MDN

235

https://w3c.github.io/html-aria/#el-blockquote
https://w3c.github.io/html-aam/#el-blockquote
https://dom.spec.whatwg.org/#concept-node-document

The content of a blockquotep235 may be abbreviated or may have context added in the conventional manner for the text's language.

Attribution for the quotation, if any, must be placed outside the blockquotep235 element.

The cite IDL attribute must reflectp104 the element's cite content attribute.

For example, in English this is traditionally done using square brackets. Consider a page with the sentence "Jane ate the cracker.
She then said she liked apples and fish."; it could be quoted as follows:

<blockquote>
<p>[Jane] then said she liked [...] fish.</p>

</blockquote>

Example

For example, here the attribution is given in a paragraph after the quote:

<blockquote>
<p>I contend that we are both atheists. I just believe in one fewer
god than you do. When you understand why you dismiss all the other
possible gods, you will understand why I dismiss yours.</p>

</blockquote>
<p>— Stephen Roberts</p>

The other examples below show other ways of showing attribution.

Example

Here a blockquotep235 element is used in conjunction with a figurep249 element and its figcaptionp252 to clearly relate a quote to
its attribution (which is not part of the quote and therefore doesn't belong inside the blockquotep235 itself):

<figure>
<blockquote>
<p>The truth may be puzzling. It may take some work to grapple with.
It may be counterintuitive. It may contradict deeply held
prejudices. It may not be consonant with what we desperately want to
be true. But our preferences do not determine what's true. We have a
method, and that method helps us to reach not absolute truth, only
asymptotic approaches to the truth — never there, just closer
and closer, always finding vast new oceans of undiscovered
possibilities. Cleverly designed experiments are the key.</p>

</blockquote>
<figcaption>Carl Sagan, in "<cite>Wonder and Skepticism</cite>", from
the <cite>Skeptical Inquirer</cite> Volume 19, Issue 1 (January-February
1995)</figcaption>

</figure>

Example

This next example shows the use of citep265 alongside blockquotep235:

<p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p>
<blockquote cite="https://quotes.example.org/s/sonnet130.html">

<p>My mistress' eyes are nothing like the sun,

Coral is far more red, than her lips red,

...

Example

Example

236

This example shows how a forum post could use blockquotep235 to show what post a user is replying to. The articlep206 element
is used for each post, to mark up the threading.

<article>
<h1>Bacon on a crowbar</h1>
<article>
<header>t3yw 12 points 1 hour ago</header>
<p>I bet a narwhal would love that.</p>
<footer>permalink</footer>
<article>
<header>greg 8 points 1 hour ago</header>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>Dude narwhals don't eat bacon.</p>
<footer>permalink</footer>
<article>
<header>t3yw 15 points 1 hour ago</header>
<blockquote>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>Dude narwhals don't eat bacon.</p>

</blockquote>
<p>Next thing you'll be saying they don't get capes and wizard
hats either!</p>
<footer>permalink</footer>
<article>
<article>
<header>boing -5 points 1 hour ago</header>
<p>narwhals are worse than ceiling cat</p>
<footer>permalink</footer>

</article>
</article>

</article>
</article>
<article>
<header>fred 1 points 23 minutes ago</header>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>I bet they'd love to peel a banana too.</p>
<footer>permalink</footer>

</article>
</article>

</article>

This example shows the use of a blockquotep235 for short snippets, demonstrating that one does not have to use pp229 elements
inside blockquotep235 elements:

<p>He began his list of "lessons" with the following:</p>
<blockquote>One should never assume that his side of
the issue will be recognized, let alone that it will
be conceded to have merits.</blockquote>
<p>He continued with a number of similar points, ending with:</p>
<blockquote>Finally, one should be prepared for the threat
of breakdown in negotiations at any given moment and not
be cowed by the possibility.</blockquote>
<p>We shall now discuss these points...

Example

Examples of how to represent a conversationp776 are shown in a later section; it is not appropriate to use the citep265 and
blockquotep235 elements for this purpose.

Note

237

Categoriesp146:
Flow contentp149.
If the element's children include at least one lip241 element: Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Zero or more lip241 and script-supportingp151 elements.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

reversedp238 — Number the list backwards
startp238 — Starting valuep238 of the list
typep238 — Kind of list marker

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLOListElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean reversed;
[CEReactions] attribute long start;
[CEReactions] attribute DOMString type;

// also has obsolete members
};

The olp238 element representsp141 a list of items, where the items have been intentionally ordered, such that changing the order would
change the meaning of the document.

The items of the list are the lip241 element child nodes of the olp238 element, in tree order.

The reversed attribute is a boolean attributep75. If present, it indicates that the list is a descending list (..., 3, 2, 1). If the attribute is
omitted, the list is an ascending list (1, 2, 3, ...).

The start attribute, if present, must be a valid integerp76. It is used to determine the starting valuep238 of the list.

An olp238 element has a starting value, which is an integer determined as follows:

1. If the olp238 element has a startp238 attribute, then:

1. Let parsed be the result of parsing the value of the attribute as an integerp76.

2. If parsed is not an error, then return parsed.

2. If the olp238 element has a reversedp238 attribute, then return the number of owned li elementsp242.

3. Return 1.

The type attribute can be used to specify the kind of marker to use in the list, in the cases where that matters (e.g. because items are
to be referencedp141 by their number/letter). The attribute, if specified, must have a value that is identical to one of the characters
given in the first cell of one of the rows of the following table. The typep238 attribute represents the state given in the cell in the second
column of the row whose first cell matches the attribute's value; if none of the cells match, or if the attribute is omitted, then the
attribute represents the decimalp239 state.

IDL

4.4.5 The ol element §p23

8

✔ MDN

✔ MDN

✔ MDN

238

https://w3c.github.io/html-aria/#el-ol
https://w3c.github.io/html-aam/#el-ol
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#string-is

Keyword State Description Examples for values 1-3 and 3999-4001

1 (U+0031) decimal Decimal numbers 1. 2. 3. ... 3999. 4000. 4001. ...
a (U+0061) lower-alpha Lowercase latin alphabet a. b. c. ... ewu. ewv. eww. ...
A (U+0041) upper-alpha Uppercase latin alphabet A. B. C. ... EWU. EWV. EWW. ...
i (U+0069) lower-roman Lowercase roman numerals i. ii. iii. ... mmmcmxcix. i̅v̅. i̅v̅i. ...
I (U+0049) upper-roman Uppercase roman numerals I. II. III. ... MMMCMXCIX. I̅V̅. I̅V̅I. ...

User agents should render the items of the list in a manner consistent with the state of the typep238 attribute of the olp238 element.
Numbers less than or equal to zero should always use the decimal system regardless of the typep238 attribute.

The reversed and type IDL attributes must reflectp104 the respective content attributes of the same name.

The start IDL attribute must reflectp104 the content attribute of the same name, with a default valuep106 of 1.

Categoriesp146:
Flow contentp149.
If the element's children include at least one lip241 element: Palpable contentp150.

For CSS user agents, a mapping for this attribute to the 'list-style-type' CSS property is given in the Rendering sectionp1396 (the
mapping is straightforward: the states above have the same names as their corresponding CSS values).

Note

It is possible to redefine the default CSS list styles used to implement this attribute in CSS user agents; doing so will affect how list
items are rendered.

Note

This means that the startp239 IDL attribute does not necessarily match the list's starting valuep238, in cases where the startp238

content attribute is omitted and the reversedp238 content attribute is specified.

Note

The following markup shows a list where the order matters, and where the olp238 element is therefore appropriate. Compare this
list to the equivalent list in the ulp239 section to see an example of the same items using the ulp239 element.

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

Switzerland
United Kingdom
United States
Norway

Note how changing the order of the list changes the meaning of the document. In the following example, changing the relative
order of the first two items has changed the birthplace of the author:

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

United Kingdom
Switzerland
United States
Norway

Example

4.4.6 The ul element §p23

9

✔ MDN

✔ MDN

239

https://drafts.csswg.org/css-lists/#propdef-list-style-type

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Zero or more lip241 and script-supportingp151 elements.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLUListElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The ulp239 element representsp141 a list of items, where the order of the items is not important — that is, where changing the order
would not materially change the meaning of the document.

The items of the list are the lip241 element child nodes of the ulp239 element.

Categoriesp146:
Flow contentp149.
If the element's children include at least one lip241 element: Palpable contentp150.

The following markup shows a list where the order does not matter, and where the ulp239 element is therefore appropriate.
Compare this list to the equivalent list in the olp238 section to see an example of the same items using the olp238 element.

<p>I have lived in the following countries:</p>

Norway
Switzerland
United Kingdom
United States

Note that changing the order of the list does not change the meaning of the document. The items in the snippet above are given in
alphabetical order, but in the snippet below they are given in order of the size of their current account balance in 2007, without
changing the meaning of the document whatsoever:

<p>I have lived in the following countries:</p>

Switzerland
Norway
United Kingdom
United States

Example

IDL

4.4.7 The menu element §p24

0

✔ MDN

✔ MDN

240

https://w3c.github.io/html-aria/#el-ul
https://w3c.github.io/html-aam/#el-ul

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Zero or more lip241 and script-supportingp151 elements.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLMenuElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The menup240 element representsp141 a toolbar consisting of its contents, in the form of an unordered list of items (represented by lip241

elements), each of which represents a command that the user can perform or activate.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
Inside olp238 elements.
Inside ulp239 elements.
Inside menup240 elements.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
An lip241 element's end tagp1262 can be omitted if the lip241 element is immediately followed by another lip241 element or if
there is no more content in the parent element.

The menup240 element is simply a semantic alternative to ulp239 to express an unordered list of commands (a "toolbar").
Note

In this example, a text-editing application uses a menup240 element to provide a series of editing commands:

<menu>
<button onclick="copy()"></button>
<button onclick="cut()"></button>
<button onclick="paste()"></button>

</menu>

Note that the styling to make this look like a conventional toolbar menu is up to the application.

Example

IDL

4.4.8 The li element §p24

1

✔ MDN

✔ MDN

241

https://w3c.github.io/html-aria/#el-menu
https://w3c.github.io/html-aam/#el-menu

Content attributesp146:
Global attributesp154

If the element is not a child of an ulp239 or menup240 element: valuep242 — Ordinal valuep242 of the list item

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLLIElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute long value;

// also has obsolete members
};

The lip241 element representsp141 a list item. If its parent element is an olp238, ulp239, or menup240 element, then the element is an item
of the parent element's list, as defined for those elements. Otherwise, the list item has no defined list-related relationship to any other
lip241 element.

The value attribute, if present, must be a valid integerp76. It is used to determine the ordinal valuep242 of the list item, when the lip241 's
list ownerp242 is an olp238 element.

Any element whose computed value of 'display' is 'list-item' has a list owner, which is determined as follows:

1. If the element is not being renderedp1388, return null; the element has no list ownerp242.

2. Let ancestor be the element's parent.

3. If the element has an olp238, ulp239, or menup240 ancestor, set ancestor to the closest such ancestor element.

4. Return the closest inclusive ancestor of ancestor that produces a CSS box.

To determine the ordinal value of each element owned by a given list ownerp242 owner, perform the following steps:

1. Let i be 1.

2. If owner is an olp238 element, let numbering be owner's starting valuep238. Otherwise, let numbering be 1.

3. Loop: If i is greater than the number of list items that owner ownsp242, then return; all of owner's owned list itemsp242 have
been assigned ordinal valuesp242.

4. Let item be the ith of owner's owned list itemsp242, in tree order.

5. If item is an lip241 element that has a valuep242 attribute, then:

1. Let parsed be the result of parsing the value of the attribute as an integerp76.

2. If parsed is not an error, then set numbering to parsed.

6. The ordinal valuep242 of item is numbering.

7. If owner is an olp238 element, and owner has a reversedp238 attribute, decrement numbering by 1; otherwise, increment
numbering by 1.

8. Increment i by 1.

9. Go to the step labeled loop.

Such an element will always exist, as at the very least the document element will always produce a CSS box.
Note

IDL

242

https://w3c.github.io/html-aria/#el-li
https://w3c.github.io/html-aam/#el-li
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css-display/#css-box
https://dom.spec.whatwg.org/#concept-tree-order

The value IDL attribute must reflectp104 the value of the valuep242 content attribute.

The element's valuep243 IDL attribute does not directly correspond to its ordinal valuep242; it simply reflectsp104 the content
attribute. For example, given this list:

Item 1
<li value="3">Item 3
Item 4

The ordinal valuesp242 are 1, 3, and 4, whereas the valuep243 IDL attributes return 0, 3, 0 on getting.

Example

The following example, the top ten movies are listed (in reverse order). Note the way the list is given a title by using a figurep249

element and its figcaptionp252 element.

<figure>
<figcaption>The top 10 movies of all time</figcaption>

<li value="10"><cite>Josie and the Pussycats</cite>, 2001
<li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998
<li value="8"><cite>A Bug's Life</cite>, 1998
<li value="7"><cite>Toy Story</cite>, 1995
<li value="6"><cite>Monsters, Inc</cite>, 2001
<li value="5"><cite>Cars</cite>, 2006
<li value="4"><cite>Toy Story 2</cite>, 1999
<li value="3"><cite>Finding Nemo</cite>, 2003
<li value="2"><cite>The Incredibles</cite>, 2004
<li value="1"><cite>Ratatouille</cite>, 2007

</figure>

The markup could also be written as follows, using the reversedp238 attribute on the olp238 element:

<figure>
<figcaption>The top 10 movies of all time</figcaption>
<ol reversed>
<cite>Josie and the Pussycats</cite>, 2001
<cite lang="sh">Црна мачка, бели мачор</cite>, 1998
<cite>A Bug's Life</cite>, 1998
<cite>Toy Story</cite>, 1995
<cite>Monsters, Inc</cite>, 2001
<cite>Cars</cite>, 2006
<cite>Toy Story 2</cite>, 1999
<cite>Finding Nemo</cite>, 2003
<cite>The Incredibles</cite>, 2004
<cite>Ratatouille</cite>, 2007

</figure>

Example

While it is conforming to include heading elements (e.g. h1p216) inside lip241 elements, it likely does not convey the semantics that
the author intended. A heading starts a new section, so a heading in a list implicitly splits the list into spanning multiple sections.

Note

243

Categoriesp146:
Flow contentp149.
If the element's children include at least one name-value group: Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Either: Zero or more groups each consisting of one or more dtp247 elements followed by one or more ddp248 elements, optionally
intermixed with script-supporting elementsp151.
Or: One or more divp256 elements, optionally intermixed with script-supporting elementsp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLDListElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The dlp244 element representsp141 an association list consisting of zero or more name-value groups (a description list). A name-value
group consists of one or more names (dtp247 elements, possibly as children of a divp256 element child) followed by one or more values
(ddp248 elements, possibly as children of a divp256 element child), ignoring any nodes other than dtp247 and ddp248 element children, and
dtp247 and ddp248 elements that are children of divp256 element children. Within a single dlp244 element, there should not be more than
one dtp247 element for each name.

Name-value groups may be terms and definitions, metadata topics and values, questions and answers, or any other groups of name-
value data.

The values within a group are alternatives; multiple paragraphs forming part of the same value must all be given within the same
ddp248 element.

The order of the list of groups, and of the names and values within each group, may be significant.

In order to annotate groups with microdatap788 attributes, or other global attributesp154 that apply to whole groups, or just for styling
purposes, each group in a dlp244 element can be wrapped in a divp256 element. This does not change the semantics of the dlp244

element.

The name-value groups of a dlp244 element dl are determined using the following algorithm. A name-value group has a name (a list of
dtp247 elements, initially empty) and a value (a list of ddp248 elements, initially empty).

1. Let groups be an empty list of name-value groups.

2. Let current be a new name-value group.

3. Let seenDd be false.

4. Let child be dl's first child.

5. Let grandchild be null.

6. While child is not null:

1. If child is a divp256 element, then:

IDL

4.4.9 The dl element §p24

4

✔ MDN

✔ MDN

244

https://w3c.github.io/html-aria/#el-dl
https://w3c.github.io/html-aam/#el-dl
https://dom.spec.whatwg.org/#concept-tree-first-child

1. Let grandchild be child's first child.

2. While grandchild is not null:

1. Process dt or ddp245 for grandchild.

2. Set grandchild to grandchild's next sibling.

2. Otherwise, process dt or ddp245 for child.

3. Set child to child's next sibling.

7. If current is not empty, then append current to groups.

8. Return groups.

To process dt or dd for a node node means to follow these steps:

1. Let groups, current, and seenDd be the same variables as those of the same name in the algorithm that invoked these steps.

2. If node is a dtp247 element, then:

1. If seenDd is true, then append current to groups, set current to a new name-value group, and set seenDd to false.

2. Append node to current's name.

3. Otherwise, if node is a ddp248 element, then append node to current's value and set seenDd to true.

When a name-value group has an empty list as name or value, it is often due to accidentally using ddp248 elements in the place of
dtp247 elements and vice versa. Conformance checkers can spot such mistakes and might be able to advise authors how to
correctly use the markup.

Note

In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").

<dl>
<dt> Authors
<dd> John
<dd> Luke
<dt> Editor
<dd> Frank

</dl>

Example

In the following example, one definition is linked to two terms.

<dl>
<dt lang="en-US"> <dfn>color</dfn> </dt>
<dt lang="en-GB"> <dfn>colour</dfn> </dt>
<dd> A sensation which (in humans) derives from the ability of
the fine structure of the eye to distinguish three differently
filtered analyses of a view. </dd>

</dl>

Example

The following example illustrates the use of the dlp244 element to mark up metadata of sorts. At the end of the example, one group
has two metadata labels ("Authors" and "Editors") and two values ("Robert Rothman" and "Daniel Jackson"). This example also
uses the divp256 element around the groups of dtp247 and ddp248 element, to aid with styling.

<dl>
<div>

Example

245

https://dom.spec.whatwg.org/#concept-tree-first-child
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://dom.spec.whatwg.org/#concept-tree-next-sibling

<dt> Last modified time </dt>
<dd> 2004-12-23T23:33Z </dd>

</div>
<div>
<dt> Recommended update interval </dt>
<dd> 60s </dd>

</div>
<div>
<dt> Authors </dt>
<dt> Editors </dt>
<dd> Robert Rothman </dd>
<dd> Daniel Jackson </dd>

</div>
</dl>

The following example shows the dlp244 element used to give a set of instructions. The order of the instructions here is important
(in the other examples, the order of the blocks was not important).

<p>Determine the victory points as follows (use the
first matching case):</p>
<dl>
<dt> If you have exactly five gold coins </dt>
<dd> You get five victory points </dd>
<dt> If you have one or more gold coins, and you have one or more silver coins </dt>
<dd> You get two victory points </dd>
<dt> If you have one or more silver coins </dt>
<dd> You get one victory point </dd>
<dt> Otherwise </dt>
<dd> You get no victory points </dd>

</dl>

Example

The following snippet shows a dlp244 element being used as a glossary. Note the use of dfnp268 to indicate the word being defined.

<dl>
<dt><dfn>Apartment</dfn>, n.</dt>
<dd>An execution context grouping one or more threads with one or
more COM objects.</dd>
<dt><dfn>Flat</dfn>, n.</dt>
<dd>A deflated tire.</dd>
<dt><dfn>Home</dfn>, n.</dt>
<dd>The user's login directory.</dd>

</dl>

Example

This example uses microdatap788 attributes in a dlp244 element, together with the divp256 element, to annotate the ice cream
desserts at a French restaurant.

<dl>
<div itemscope itemtype="http://schema.org/Product">
<dt itemprop="name">Café ou Chocolat Liégeois
<dd itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd itemprop="description">

Example

246

Categoriesp146:
None.

Contexts in which this element can be usedp146:
Before ddp248 or dtp247 elements inside dlp244 elements.
Before ddp248 or dtp247 elements inside divp256 elements that are children of a dlp244 element.

Content modelp146:
Flow contentp149, but with no headerp218, footerp220, sectioning contentp149, or heading contentp149 descendants.

Tag omission in text/htmlp146:
A dtp247 element's end tagp1262 can be omitted if the dtp247 element is immediately followed by another dtp247 element or a ddp248

element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.

2 boules Café ou Chocolat, 1 boule Vanille, sauce café ou chocolat, chantilly
</div>

<div itemscope itemtype="http://schema.org/Product">
<dt itemprop="name">Américaine
<dd itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd itemprop="description">
1 boule Crème brûlée, 1 boule Vanille, 1 boule Caramel, chantilly

</div>
</dl>

Without the divp256 element the markup would need to use the itemrefp794 attribute to link the data in the ddp248 elements with the
item, as follows.

<dl>
<dt itemscope itemtype="http://schema.org/Product" itemref="1-offer 1-description">
Café ou Chocolat Liégeois

<dd id="1-offer" itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd id="1-description" itemprop="description">
2 boules Café ou Chocolat, 1 boule Vanille, sauce café ou chocolat, chantilly

<dt itemscope itemtype="http://schema.org/Product" itemref="2-offer 2-description">
Américaine

<dd id="2-offer" itemprop="offers" itemscope itemtype="http://schema.org/Offer">
3.50
<data itemprop="priceCurrency" value="EUR">€</data>

<dd id="2-description" itemprop="description">
1 boule Crème brûlée, 1 boule Vanille, 1 boule Caramel, chantilly

</dl>

The dlp244 element is inappropriate for marking up dialogue. See some examples of how to mark up dialoguep776.
Note

4.4.10 The dt element §p24

7

✔ MDN

247

https://w3c.github.io/html-aria/#el-dt

For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The dtp247 element representsp141 the term, or name, part of a term-description group in a description list (dlp244 element).

Categoriesp146:
None.

Contexts in which this element can be usedp146:
After dtp247 or ddp248 elements inside dlp244 elements.
After dtp247 or ddp248 elements inside divp256 elements that are children of a dlp244 element.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
A ddp248 element's end tagp1262 can be omitted if the ddp248 element is immediately followed by another ddp248 element or a dtp247

element, or if there is no more content in the parent element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The ddp248 element representsp141 the description, definition, or value, part of a term-description group in a description list (dlp244

element).

The dtp247 element itself, when used in a dlp244 element, does not indicate that its contents are a term being defined, but this can
be indicated using the dfnp268 element.

Note

This example shows a list of frequently asked questions (a FAQ) marked up using the dtp247 element for questions and the ddp248

element for answers.

<article>
<h1>FAQ</h1>
<dl>
<dt>What do we want?</dt>
<dd>Our data.</dd>
<dt>When do we want it?</dt>
<dd>Now.</dd>
<dt>Where is it?</dt>
<dd>We are not sure.</dd>

</dl>
</article>

Example

A dlp244 can be used to define a vocabulary list, like in a dictionary. In the following example, each entry, given by a dtp247 with a
dfnp268, has several ddp248s, showing the various parts of the definition.

Example

4.4.11 The dd element §p24

8

✔ MDN

248

https://w3c.github.io/html-aam/#el-dt
https://w3c.github.io/html-aria/#el-dd
https://w3c.github.io/html-aam/#el-dd

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Either: one figcaptionp252 element followed by flow contentp149.
Or: flow contentp149 followed by one figcaptionp252 element.
Or: flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The figurep249 element representsp141 some flow contentp149, optionally with a caption, that is self-contained (like a complete
sentence) and is typically referencedp141 as a single unit from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams, photos, code listings, etc.

<dl>
<dt><dfn>happiness</dfn></dt>
<dd class="pronunciation">/ˈhæpinəs/</dd>
<dd class="part-of-speech"><i><abbr>n.</abbr></i></dd>
<dd>The state of being happy.</dd>
<dd>Good fortune; success. <q>Oh happiness! It worked!</q></dd>
<dt><dfn>rejoice</dfn></dt>
<dd class="pronunciation">/rɪˈdʒɔɪs/</dd>
<dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted oneself.</dd>
<dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be delighted.</dd>

</dl>

"Self-contained" in this context does not necessarily mean independent. For example, each sentence in a paragraph is self-
contained; an image that is part of a sentence would be inappropriate for figurep249, but an entire sentence made of images would
be fitting.

Note

When a figurep249 is referred to from the main content of the document by identifying it by its caption (e.g., by figure number), it
enables such content to be easily moved away from that primary content, e.g., to the side of the page, to dedicated pages, or to
an appendix, without affecting the flow of the document.

If a figurep249 element is referencedp141 by its relative position, e.g., "in the photograph above" or "as the next figure shows", then
moving the figure would disrupt the page's meaning. Authors are encouraged to consider using labels to refer to figures, rather
than using such relative references, so that the page can easily be restyled without affecting the page's meaning.

Note

4.4.12 The figure element §p24

9

✔ MDN

249

https://w3c.github.io/html-aria/#el-figure
https://w3c.github.io/html-aam/#el-figure

The first figcaptionp252 element child of the element, if any, represents the caption of the figurep249 element's contents. If there is no
child figcaptionp252 element, then there is no caption.

A figurep249 element's contents are part of the surrounding flow. If the purpose of the page is to display the figure, for example a
photograph on an image sharing site, the figurep249 and figcaptionp252 elements can be used to explicitly provide a caption for that
figure. For content that is only tangentially related, or that serves a separate purpose than the surrounding flow, the asidep214 element
should be used (and can itself wrap a figurep249). For example, a pull quote that repeats content from an articlep206 would be more
appropriate in an asidep214 than in a figurep249, because it isn't part of the content, it's a repetition of the content for the purposes of
enticing readers or highlighting key topics.

This example shows the figurep249 element to mark up a code listing.

<p>In listing 4 we see the primary core interface
API declaration.</p>
<figure id="l4">
<figcaption>Listing 4. The primary core interface API declaration.</figcaption>
<pre><code>interface PrimaryCore {
boolean verifyDataLine();
undefined sendData(sequence<byte> data);
undefined initSelfDestruct();

}</code></pre>
</figure>
<p>The API is designed to use UTF-8.</p>

Example

Here we see a figurep249 element to mark up a photo that is the main content of the page (as in a gallery).

<!DOCTYPE HTML>
<html lang="en">
<title>Bubbles at work — My Gallery™</title>
<figure>
<img src="bubbles-work.jpeg"

alt="Bubbles, sitting in his office chair, works on his
latest project intently.">

<figcaption>Bubbles at work</figcaption>
</figure>
<nav>Prev — Next</nav>

Example

In this example, we see an image that is not a figure, as well as an image and a video that are. The first image is literally part of
the example's second sentence, so it's not a self-contained unit, and thus figurep249 would be inappropriate.

<h2>Malinko's comics</h2>

<p>This case centered on some sort of "intellectual property"
infringement related to a comic (see Exhibit A). The suit started
after a trailer ending with these words:

<blockquote>

</blockquote>

<p>...was aired. A lawyer, armed with a Bigger Notebook, launched a
preemptive strike using snowballs. A complete copy of the trailer is
included with Exhibit B.

<figure>

Example

250

<figcaption>Exhibit A. The alleged <cite>rough copy</cite> comic.</figcaption>
</figure>

<figure>
<video src="ex-b.mov"></video>
<figcaption>Exhibit B. The <cite>Rough Copy</cite> trailer.</figcaption>

</figure>

<p>The case was resolved out of court.

Here, a part of a poem is marked up using figurep249.

<figure>
<p>'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.</p>
<figcaption><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-98</figcaption>

</figure>

Example

In this example, which could be part of a much larger work discussing a castle, nested figurep249 elements are used to provide
both a group caption and individual captions for each figure in the group:

<figure>
<figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>
<figure>
<figcaption>Etching. Anonymous, ca. 1423.</figcaption>

</figure>
<figure>
<figcaption>Oil-based paint on canvas. Maria Towle, 1858.</figcaption>

</figure>
<figure>
<figcaption>Film photograph. Peter Jankle, 1999.</figcaption>
<img src="castle1999.jpeg" alt="The castle lies in ruins, the original tower all that remains in

one piece.">
</figure>

</figure>

Example

The previous example could also be more succinctly written as follows (using titlep157 attributes in place of the nested
figurep249/figcaptionp252 pairs):

<figure>
<img src="castle1423.jpeg" title="Etching. Anonymous, ca. 1423."

alt="The castle has one tower, and a tall wall around it.">
<img src="castle1858.jpeg" title="Oil-based paint on canvas. Maria Towle, 1858."

alt="The castle now has two towers and two walls.">
<img src="castle1999.jpeg" title="Film photograph. Peter Jankle, 1999."

alt="The castle lies in ruins, the original tower all that remains in one piece.">
<figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>

</figure>

Example

251

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As the first or last child of a figurep249 element.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The figcaptionp252 element representsp141 a caption or legend for the rest of the contents of the figcaptionp252 element's parent
figurep249 element, if any.

The figure is sometimes referencedp141 only implicitly from the content:

<article>
<h1>Fiscal negotiations stumble in Congress as deadline nears</h1>
<figure>

<figcaption>Barack Obama and Harry Reid. White House press photograph.</figcaption>

</figure>
<p>Negotiations in Congress to end the fiscal impasse sputtered on Tuesday, leaving both chambers
grasping for a way to reopen the government and raise the country's borrowing authority with a
Thursday deadline drawing near.</p>
...

</article>

Example

The element can contain additional information about the source:

<figcaption>
<p>A duck.</p>
<p><small>Photograph courtesy of 🌟 News.</small></p>

</figcaption>

<figcaption>
<p>Average rent for 3-room apartments, excluding non-profit apartments</p>
<p>Zürich’s Statistics Office — <time datetime=2017-11-14>14 November 2017</time></p>

</figcaption>

Example

4.4.13 The figcaption element §p25

2

✔ MDN

252

https://w3c.github.io/html-aria/#el-figcaption
https://w3c.github.io/html-aam/#el-figcaption

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected, but only if it is a hierarchically correct main elementp253.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The mainp253 element representsp141 the dominant contents of the document.

A document must not have more than one mainp253 element that does not have the hiddenp824 attribute specified.

A hierarchically correct main element is one whose ancestor elements are limited to htmlp172, bodyp205, divp256, formp514 without an
accessible name, and autonomous custom elementsp759. Each mainp253 element must be a hierarchically correct main elementp253.

In this example, the author has used a presentation where each component of the page is rendered in a box. To wrap the main
content of the page (as opposed to the header, the footer, the navigation bar, and a sidebar), the mainp253 element is used.

<!DOCTYPE html>
<html lang="en">
<title>RPG System 17</title>
<style>
header, nav, aside, main, footer {

margin: 0.5em; border: thin solid; padding: 0.5em;
background: #EFF; color: black; box-shadow: 0 0 0.25em #033;

}
h1, h2, p { margin: 0; }
nav, main { float: left; }
aside { float: right; }
footer { clear: both; }

</style>
<header>
<h1>System Eighteen</h1>

</header>
<nav>
← System 17
RPXIX →

</nav>
<aside>
<p>This system has no HP mechanic, so there's no healing.

</aside>
<main>
<h2>Character creation</h2>
<p>Attributes (magic, strength, agility) are purchased at the cost of one point per level.</p>
<h2>Rolls</h2>

Example

4.4.14 The main element §p25

3

✔ MDN

253

https://w3c.github.io/html-aria/#el-main
https://w3c.github.io/html-aam/#el-main
https://w3c.github.io/aria/#dfn-accessible-name

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

<p>Each encounter, roll the dice for all your skills. If you roll more than the opponent, you
win.</p>
</main>
<footer>
<p>Copyright © 2013

</footer>
</html>

In the following example, multiple mainp253 elements are used and script is used to make navigation work without a server
roundtrip and to set the hiddenp824 attribute on those that are not current:

<!doctype html>
<html lang=en-CA>
<meta charset=utf-8>
<title> … </title>
<link rel=stylesheet href=spa.css>
<script src=spa.js async></script>
<nav>
Home
About
Contact

</nav>
<main>
<h1>Home</h1>
…

</main>
<main hidden>
<h1>About</h1>
…

</main>
<main hidden>
<h1>Contact</h1>
…

</main>
<footer>Made with ❤ by Example 👻.</footer>

4.4.15 The search element §p25

4

⚠ MDN

254

https://w3c.github.io/html-aria/#el-search
https://w3c.github.io/html-aam/#el-search

DOM interfacep147:
Uses HTMLElementp142.

The searchp254 element representsp141 a part of a document or application that contains a set of form controls or other content related
to performing a search or filtering operation. This could be a search of the web site or application; a way of searching or filtering search
results on the current web page; or a global or Internet-wide search function.

It's not appropriate to use the searchp254 element just for presenting search results, though suggestions and links as part of "quick
search" results can be included as part of a search feature. Rather, a returned web page of search results would instead be
expected to be presented as part of the main content of that web page.

Note

In the following example, the author is including a search form within the headerp218 of the web page:

<header>
<h1>My fancy blog</h1>
...
<search>

<form action="search.php">
<label for="query">Find an article</label>
<input id="query" name="q" type="search">
<button type="submit">Go!</button>

</form>
</search>

</header>

Example

In this example, the author has implemented their web application's search functionality entirely with JavaScript. There is no use of
the formp514 element to perform server-side submission, but the containing searchp254 element semantically identifies the purpose
of the descendant content as representing search capabilities.

<search>
<label>

Find and filter your query
<input type="search" id="query">

</label>
<label>

<input type="checkbox" id="exact-only">
Exact matches only

</label>

<section>
<h3>Results found:</h3>
<ul id="results">

<p>Consulting services</p>
<p>

Find out how can we help you improve your business with our integrated consultants, Bob
and Bob.

</p>

...

<!--

when a query returns or filters out all results
render the no results message here

-->
<output id="no-results"></output>

Example

255

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.
As a child of a dlp244 element.

Content modelp146:
If the element is a child of a dlp244 element: one or more dtp247 elements followed by one or more ddp248 elements, optionally
intermixed with script-supporting elementsp151.
If the element is not a child of a dlp244 element: flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLDivElement : HTMLElement {

[HTMLConstructor] constructor();

</section>
</search>

In the following example, the page has two search features. The first is located in the web page's headerp218 and serves as a global
mechanism to search the web site's content. Its purpose is indicated by its specified titlep174 attribute. The second is included as
part of the main content of the page, as it represents a mechanism to search and filter the content of the current page. It contains
a heading to indicate its purpose.

<body>
<header>

...
<search title="Website">

...
</search>

</header>
<main>

<h1>Hotels near your location</h1>
<search>

<h2>Filter results</h2>
...

</search>
<article>
<!-- search result content -->

</article>
</main>

</body>

Example

IDL

4.4.16 The div element §p25

6

✔ MDN

✔ MDN

256

https://w3c.github.io/html-aria/#el-div
https://w3c.github.io/html-aam/#el-div

// also has obsolete members
};

The divp256 element has no special meaning at all. It representsp141 its children. It can be used with the classp154, langp158, and
titlep157 attributes to mark up semantics common to a group of consecutive elements. It can also be used in a dlp244 element,
wrapping groups of dtp247 and ddp248 elements.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
If the element has an hrefp303 attribute: Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Transparentp151, but there must be no interactive contentp150 descendant, ap257 element descendant, or descendant with the
tabindexp838 attribute specified.

Tag omission in text/htmlp146:
Neither tag is omissible.

Authors are strongly encouraged to view the divp256 element as an element of last resort, for when no other element is suitable.
Use of more appropriate elements instead of the divp256 element leads to better accessibility for readers and easier maintainability
for authors.

Note

For example, a blog post would be marked up using articlep206, a chapter using sectionp209, a page's navigation aids using
navp211, and a group of form controls using fieldsetp594.

On the other hand, divp256 elements can be useful for stylistic purposes or to wrap multiple paragraphs within a section that are all
to be annotated in a similar way. In the following example, we see divp256 elements used as a way to set the language of two
paragraphs at once, instead of setting the language on the two paragraph elements separately:

<article lang="en-US">
<h1>My use of language and my cats</h1>
<p>My cat's behavior hasn't changed much since her absence, except
that she plays her new physique to the neighbors regularly, in an
attempt to get pets.</p>
<div lang="en-GB">
<p>My other cat, coloured black and white, is a sweetie. He followed
us to the pool today, walking down the pavement with us. Yesterday
he apparently visited our neighbours. I wonder if he recognises that
their flat is a mirror image of ours.</p>
<p>Hm, I just noticed that in the last paragraph I used British
English. But I'm supposed to write in American English. So I
shouldn't say "pavement" or "flat" or "colour"...</p>

</div>
<p>I should say "sidewalk" and "apartment" and "color"!</p>

</article>

Example

4.5 Text-level semantics §p25

7

4.5.1 The a element §p25

7

✔ MDN

✔ MDN

257

Content attributesp146:
Global attributesp154

hrefp303 — Address of the hyperlinkp302

targetp303 — Navigablep989 for hyperlinkp302 navigationp1014

downloadp303 — Whether to download the resource instead of navigating to it, and its filename if so
pingp303 — URLs to ping
relp303 — Relationship between the location in the document containing the hyperlinkp302 and the destination resource
hreflangp303 — Language of the linked resource
typep303 — Hint for the type of the referenced resource
referrerpolicyp303 — Referrer policy for fetches initiated by the element

Accessibility considerationsp146:
If the element has an hrefp303 attribute: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLAnchorElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString target;
[CEReactions] attribute DOMString download;
[CEReactions] attribute USVString ping;
[CEReactions] attribute DOMString rel;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;
[CEReactions] attribute DOMString hreflang;
[CEReactions] attribute DOMString type;

[CEReactions] attribute DOMString text;

[CEReactions] attribute DOMString referrerPolicy;

// also has obsolete members
};
HTMLAnchorElement includes HTMLHyperlinkElementUtils;

If the ap257 element has an hrefp303 attribute, then it representsp141 a hyperlinkp302 (a hypertext anchor) labeled by its contents.

If the ap257 element has no hrefp303 attribute, then the element representsp141 a placeholder for where a link might otherwise have
been placed, if it had been relevant, consisting of just the element's contents.

The targetp303, downloadp303, pingp303, relp303, hreflangp303, typep303, and referrerpolicyp303 attributes must be omitted if the
hrefp303 attribute is not present.

If the itempropp795 attribute is specified on an ap257 element, then the hrefp303 attribute must also be specified.

The hrefp303, targetp303, downloadp303, pingp303, and referrerpolicyp303 attributes affect what happens when users follow

If a site uses a consistent navigation toolbar on every page, then the link that would normally link to the page itself could be
marked up using an ap257 element:

<nav>

 Home
 News
 <a>Examples
 Legal

</nav>

Example

IDL

258

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-a
https://w3c.github.io/html-aam/#el-a
https://w3c.github.io/html-aria/#el-a-no-href
https://w3c.github.io/html-aam/#el-a-no-href
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist

hyperlinksp309 or download hyperlinksp310 created using the ap257 element. The relp303, hreflangp303, and typep303 attributes may be
used to indicate to the user the likely nature of the target resource before the user follows the link.

The IDL attributes download, ping, target, rel, hreflang, and type, must reflectp104 the respective content attributes of the same
name.

The IDL attribute relList must reflectp104 the relp303 content attribute.

The IDL attribute referrerPolicy must reflectp104 the referrerpolicyp303 content attribute, limited to only known valuesp105.

The text attribute's getter must return this element's descendant text content.

The textp259 attribute's setter must string replace all with the given value within this element.

a.textp259

Same as textContent.

For web developers (non-normative)

The ap257 element can be wrapped around entire paragraphs, lists, tables, and so forth, even entire sections, so long as there is no
interactive content within (e.g., buttons or other links). This example shows how this can be used to make an entire advertising
block into a link:

<aside class="advertising">
<h1>Advertising</h1>

<section>
<h1>Mellblomatic 9000!</h1>
<p>Turn all your widgets into mellbloms!</p>
<p>Only $9.99 plus shipping and handling.</p>

</section>

<section>
<h1>The Mellblom Browser</h1>
<p>Web browsing at the speed of light.</p>
<p>No other browser goes faster!</p>

</section>

</aside>

Example

The following example shows how a bit of script can be used to effectively make an entire row in a job listing table a hyperlink:

<table>
<tr>
<th>Position
<th>Team
<th>Location

<tr>
<td>Manager
<td>Remotees
<td>Remote

<tr>
<td>Director
<td>Remotees
<td>Remote

<tr>
<td>Astronaut
<td>Architecture

Example

✔ MDN✔ MDN

✔ MDN

259

https://dom.spec.whatwg.org/#dom-node-textcontent
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#string-replace-all

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The emp260 element representsp141 stress emphasis of its contents.

The level of stress that a particular piece of content has is given by its number of ancestor emp260 elements.

The placement of stress emphasis changes the meaning of the sentence. The element thus forms an integral part of the content. The
precise way in which stress is used in this way depends on the language.

<td>Remote
</table>
<script>
document.querySelector("table").onclick = ({ target }) => {

if (target.parentElement.localName === "tr") {
const link = target.parentElement.querySelector("a");
if (link) {

link.click();
}

}
}
</script>

These examples show how changing the stress emphasis changes the meaning. First, a general statement of fact, with no stress:

<p>Cats are cute animals.</p>

By emphasizing the first word, the statement implies that the kind of animal under discussion is in question (maybe someone is
asserting that dogs are cute):

<p>Cats are cute animals.</p>

Moving the stress to the verb, one highlights that the truth of the entire sentence is in question (maybe someone is saying cats are
not cute):

Example

4.5.2 The em element §p26

0

✔ MDN

260

https://w3c.github.io/html-aria/#el-em
https://w3c.github.io/html-aam/#el-em

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The strongp261 element representsp141 strong importance, seriousness, or urgency for its contents.

Importance: the strongp261 element can be used in a heading, caption, or paragraph to distinguish the part that really matters from
other parts that might be more detailed, more jovial, or merely boilerplate. (This is distinct from marking up subheadings, for which the
hgroupp218 element is appropriate.)

<p>Cats are cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone suggested cats were mean animals):

<p>Cats are cute animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this might emphasize the last word:

<p>Cats are cute animals.</p>

By emphasizing the entire sentence, it becomes clear that the speaker is fighting hard to get the point across. This kind of stress
emphasis also typically affects the punctuation, hence the exclamation mark here.

<p>Cats are cute animals!</p>

Anger mixed with emphasizing the cuteness could lead to markup such as:

<p>Cats are cute animals!</p>

The emp260 element isn't a generic "italics" element. Sometimes, text is intended to stand out from the rest of the paragraph, as if it
was in a different mood or voice. For this, the ip291 element is more appropriate.

The emp260 element also isn't intended to convey importance; for that purpose, the strongp261 element is more appropriate.

Note

4.5.3 The strong element §p26

1

✔ MDN

261

https://w3c.github.io/html-aria/#el-strong
https://w3c.github.io/html-aam/#el-strong

Seriousness: the strongp261 element can be used to mark up a warning or caution notice.

Urgency: the strongp261 element can be used to denote contents that the user needs to see sooner than other parts of the document.

The relative level of importance of a piece of content is given by its number of ancestor strongp261 elements; each strongp261 element
increases the importance of its contents.

Changing the importance of a piece of text with the strongp261 element does not change the meaning of the sentence.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.

For example, the first word of the previous paragraph is marked up with strongp261 to distinguish it from the more detailed text in
the rest of the paragraph.

Example

Here, the word "chapter" and the actual chapter number are mere boilerplate, and the actual name of the chapter is marked up
with strongp261:

<h1>Chapter 1: The Praxis</h1>

In the following example, the name of the diagram in the caption is marked up with strongp261, to distinguish it from boilerplate
text (before) and the description (after):

<figcaption>Figure 1. Ant colony dynamics. The ants in this colony are
affected by the heat source (upper left) and the food source (lower right).</figcaption>

In this example, the heading is really "Flowers, Bees, and Honey", but the author has added a light-hearted addition to the
heading. The strongp261 element is thus used to mark up the first part to distinguish it from the latter part.

<h1>Flowers, Bees, and Honey and other things I don't understand</h1>

Example

Here is an example of a warning notice in a game, with the various parts marked up according to how important they are:

<p>Warning. This dungeon is dangerous.
Avoid the ducks. Take any gold you find.
Do not take any of the diamonds,
they are explosive and will destroy anything within
ten meters. You have been warned.</p>

Example

In this example, the strongp261 element is used to denote the part of the text that the user is intended to read first.

<p>Welcome to Remy, the reminder system.</p>
<p>Your tasks for today:</p>

<p>Turn off the oven.</p>
<p>Put out the trash.</p>
<p>Do the laundry.</p>

Example

4.5.4 The small element §p26

2

✔ MDN

262

Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The smallp262 element representsp141 side comments such as small print.

The smallp262 element should not be used for extended spans of text, such as multiple paragraphs, lists, or sections of text. It is only
intended for short runs of text. The text of a page listing terms of use, for instance, would not be a suitable candidate for the smallp262

element: in such a case, the text is not a side comment, it is the main content of the page.

The smallp262 element must not be used for subheadings; for that purpose, use the hgroupp218 element.

Small print typically features disclaimers, caveats, legal restrictions, or copyrights. Small print is also sometimes used for
attribution, or for satisfying licensing requirements.

Note

The smallp262 element does not "de-emphasize" or lower the importance of text emphasized by the emp260 element or marked as
important with the strongp261 element. To mark text as not emphasized or important, simply do not mark it up with the emp260 or
strongp261 elements respectively.

Note

In this example, the smallp262 element is used to indicate that value-added tax is not included in a price of a hotel room:

<dl>
<dt>Single room
<dd>199 € <small>breakfast included, VAT not included</small>
<dt>Double room
<dd>239 € <small>breakfast included, VAT not included</small>

</dl>

Example

Example

In this second example, the smallp262 element is used for a side comment in an article.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

This is distinct from a sidebar, which might be multiple paragraphs long and is removed from the main flow of text. In the following
example, we see a sidebar from the same article. This sidebar also has small print, indicating the source of the information in the

Example

263

https://w3c.github.io/html-aria/#el-small
https://w3c.github.io/html-aam/#el-small

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The sp264 element representsp141 contents that are no longer accurate or no longer relevant.

sidebar.

<aside>
<h1>Example Corp</h1>
<p>This company mostly creates small software and Web
sites.</p>
<p>The Example Corp company mission is "To provide entertainment
and news on a sample basis".</p>
<p><small>Information obtained from example.com home
page.</small></p>

</aside>

In this last example, the smallp262 element is marked as being important small print.

<p><small>Continued use of this service will result in a kiss.</small></p>

Example

The sp264 element is not appropriate when indicating document edits; to mark a span of text as having been removed from a
document, use the delp338 element.

Note

In this example a recommended retail price has been marked as no longer relevant as the product in question has a new sale
price.

<p>Buy our Iced Tea and Lemonade!</p>
<p><s>Recommended retail price: $3.99 per bottle</s></p>

Example

4.5.5 The s element §p26

4

✔ MDN

264

https://w3c.github.io/html-aria/#el-s
https://w3c.github.io/html-aam/#el-s

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The citep265 element representsp141 the title of a work (e.g. a book, a paper, an essay, a poem, a score, a song, a script, a film, a TV
show, a game, a sculpture, a painting, a theatre production, a play, an opera, a musical, an exhibition, a legal case report, a computer
program, etc.). This can be a work that is being quoted or referencedp141 in detail (i.e., a citation), or it can just be a work that is
mentioned in passing.

A person's name is not the title of a work — even if people call that person a piece of work — and the element must therefore not be
used to mark up people's names. (In some cases, the bp292 element might be appropriate for names; e.g. in a gossip article where the
names of famous people are keywords rendered with a different style to draw attention to them. In other cases, if an element is really
needed, the spanp298 element can be used.)

<p>Now selling for just $2.99 a bottle!</p>

This next example shows a typical use of the citep265 element:

<p>My favorite book is <cite>The Reality Dysfunction</cite> by
Peter F. Hamilton. My favorite comic is <cite>Pearls Before
Swine</cite> by Stephan Pastis. My favorite track is <cite>Jive
Samba</cite> by the Cannonball Adderley Sextet.</p>

Example

This is correct usage:

<p>According to the Wikipedia article <cite>HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The following, however, is incorrect usage, as the citep265 element here is containing far more than the title of the work:

<!-- do not copy this example, it is an example of bad usage! -->
<p>According to <cite>the Wikipedia article on HTML</cite>, as it

Example

4.5.6 The cite element §p26

5

✔ MDN

265

https://w3c.github.io/html-aria/#el-cite
https://w3c.github.io/html-aam/#el-cite

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

citep267 — Link to the source of the quotation or more information about the edit

Accessibility considerationsp146:
For authors.
For implementers.

stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The citep265 element is a key part of any citation in a bibliography, but it is only used to mark the title:

<p><cite>Universal Declaration of Human Rights</cite>, United Nations,
December 1948. Adopted by General Assembly resolution 217 A (III).</p>

Example

A citation is not a quote (for which the qp266 element is appropriate).
Note

This is incorrect usage, because citep265 is not for quotes:

<p><cite>This is wrong!</cite>, said Ian.</p>

This is also incorrect usage, because a person is not a work:

<p><q>This is still wrong!</q>, said <cite>Ian</cite>.</p>

The correct usage does not use a citep265 element:

<p><q>This is correct</q>, said Ian.</p>

As mentioned above, the bp292 element might be relevant for marking names as being keywords in certain kinds of documents:

<p>And then Ian said <q>this might be right, in a
gossip column, maybe!</q>.</p>

Example

4.5.7 The q element §p26

6

✔ MDN

266

https://w3c.github.io/html-aria/#el-q
https://w3c.github.io/html-aam/#el-q

DOM interfacep147:
Uses HTMLQuoteElementp235.

The qp266 element representsp141 some phrasing contentp150 quoted from another source.

Quotation punctuation (such as quotation marks) that is quoting the contents of the element must not appear immediately before,
after, or inside qp266 elements; they will be inserted into the rendering by the user agent.

Content inside a qp266 element must be quoted from another source, whose address, if it has one, may be cited in the cite attribute.
The source may be fictional, as when quoting characters in a novel or screenplay.

If the citep267 attribute is present, it must be a valid URL potentially surrounded by spacesp96. To obtain the corresponding citation link,
the value of the attribute must be parsedp97 relative to the element's node document. User agents may allow users to follow such
citation links, but they are primarily intended for private use (e.g., by server-side scripts collecting statistics about a site's use of
quotations), not for readers.

The qp266 element must not be used in place of quotation marks that do not represent quotes; for example, it is inappropriate to use
the qp266 element for marking up sarcastic statements.

The use of qp266 elements to mark up quotations is entirely optional; using explicit quotation punctuation without qp266 elements is just
as correct.

Here is a simple example of the use of the qp266 element:

<p>The man said <q>Things that are impossible just take
longer</q>. I disagreed with him.</p>

Example

Here is an example with both an explicit citation link in the qp266 element, and an explicit citation outside:

<p>The W3C page <cite>About W3C</cite> says the W3C's
mission is <q cite="https://www.w3.org/Consortium/">To lead the
World Wide Web to its full potential by developing protocols and
guidelines that ensure long-term growth for the Web</q>. I
disagree with this mission.</p>

Example

In the following example, the quotation itself contains a quotation:

<p>In <cite>Example One</cite>, he writes <q>The man
said <q>Things that are impossible just take longer</q>. I
disagreed with him</q>. Well, I disagree even more!</p>

Example

In the following example, quotation marks are used instead of the qp266 element:

<p>His best argument was ❝I disagree❞, which
I thought was laughable.</p>

Example

In the following example, there is no quote — the quotation marks are used to name a word. Use of the qp266 element in this case
would be inappropriate.

<p>The word "ineffable" could have been used to describe the disaster
resulting from the campaign's mismanagement.</p>

Example

267

https://dom.spec.whatwg.org/#concept-node-document

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150, but there must be no dfnp268 element descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Also, the titlep268 attribute has special semanticsp268 on this element: Full term or expansion of abbreviation

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The dfnp268 element representsp141 the defining instance of a term. The paragraphp152, description list groupp244, or sectionp149 that is
the nearest ancestor of the dfnp268 element must also contain the definition(s) for the termp268 given by the dfnp268 element.

Defining term: if the dfnp268 element has a title attribute, then the exact value of that attribute is the term being defined.
Otherwise, if it contains exactly one element child node and no child Text nodes, and that child element is an abbrp269 element with a
titlep269 attribute, then the exact value of that attribute is the term being defined. Otherwise, it is the descendant text content of the
dfnp268 element that gives the term being defined.

If the titlep268 attribute of the dfnp268 element is present, then it must contain only the term being defined.

An ap257 element that links to a dfnp268 element represents an instance of the term defined by the dfnp268 element.

The titlep157 attribute of ancestor elements does not affect dfnp268 elements.
Note

In the following fragment, the term "Garage Door Opener" is first defined in the first paragraph, then used in the second. In both
cases, its abbreviation is what is actually displayed.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

With the addition of an ap257 element, the referencep141 can be made explicit:

<p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

Example

4.5.8 The dfn element §p26

8

✔ MDN

268

https://w3c.github.io/html-aria/#el-dfn
https://w3c.github.io/html-aam/#el-dfn
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-descendant-text-content

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Also, the titlep269 attribute has special semanticsp269 on this element: Full term or expansion of abbreviation

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The abbrp269 element representsp141 an abbreviation or acronym, optionally with its expansion. The title attribute may be used to
provide an expansion of the abbreviation. The attribute, if specified, must contain an expansion of the abbreviation, and nothing else.

The paragraph below contains an abbreviation marked up with the abbrp269 element. This paragraph defines the termp268 "Web
Hypertext Application Technology Working Group".

<p>The <dfn id=whatwg><abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr></dfn>
is a loose unofficial collaboration of web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

An alternative way to write this would be:

<p>The <dfn id=whatwg>Web Hypertext Application Technology
Working Group</dfn> (<abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>)
is a loose unofficial collaboration of web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

Example

This paragraph has two abbreviations. Notice how only one is defined; the other, with no expansion associated with it, does not use
the abbrp269 element.

<p>The
<abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
started working on HTML5 in 2004.</p>

Example

Example

4.5.9 The abbr element §p26

9

✔ MDN

269

https://w3c.github.io/html-aria/#el-abbr
https://w3c.github.io/html-aam/#el-abbr

If an abbreviation is pluralized, the expansion's grammatical number (plural vs singular) must match the grammatical number of the
contents of the element.

Abbreviations do not have to be marked up using this element. It is expected to be useful in the following cases:

• Abbreviations for which the author wants to give expansions, where using the abbrp269 element with a titlep157 attribute is
an alternative to including the expansion inline (e.g. in parentheses).

• Abbreviations that are likely to be unfamiliar to the document's readers, for which authors are encouraged to either mark up
the abbreviation using an abbrp269 element with a titlep157 attribute or include the expansion inline in the text the first time
the abbreviation is used.

• Abbreviations whose presence needs to be semantically annotated, e.g. so that they can be identified from a style sheet and
given specific styles, for which the abbrp269 element can be used without a titlep157 attribute.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

This paragraph links an abbreviation to its definition.

<p>The <abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
community does not have much representation from Asia.</p>

This paragraph marks up an abbreviation without giving an expansion, possibly as a hook to apply styles for abbreviations (e.g.
smallcaps).

<p>Philip` and Dashiva both denied that they were going to
get the issue counts from past revisions of the specification to
backfill the <abbr>WHATWG</abbr> issue graph.</p>

Example

Here the plural is outside the element, so the expansion is in the singular:

<p>Two <abbr title="Working Group">WG</abbr>s worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Here the plural is inside the element, so the expansion is in the plural:

<p>Two <abbr title="Working Groups">WGs</abbr> worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Example

Providing an expansion in a titlep157 attribute once will not necessarily cause other abbrp269 elements in the same document with
the same contents but without a titlep157 attribute to behave as if they had the same expansion. Every abbrp269 element is
independent.

Note

4.5.10 The ruby element §p27

0

✔ MDN

270

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
See prose.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The rubyp270 element allows one or more spans of phrasing content to be marked with ruby annotations. Ruby annotations are short
runs of text presented alongside base text, primarily used in East Asian typography as a guide for pronunciation or to include other
annotations. In Japanese, this form of typography is also known as furigana.

The content model of rubyp270 elements consists of one or more of the following sequences:

1. One or the other of the following:

◦ Phrasing contentp150, but with no rubyp270 elements and with no rubyp270 element descendants

◦ A single rubyp270 element that itself has no rubyp270 element descendants

2. One or the other of the following:

◦ One or more rtp277 elements

◦ An rpp277 element followed by one or more rtp277 elements, each of which is itself followed by an rpp277 element

The rubyp270 and rtp277 elements can be used for a variety of kinds of annotations, including in particular (though by no means limited
to) those described below. For more details on Japanese Ruby in particular, and how to render Ruby for Japanese, see Requirements for
Japanese Text Layout. [JLREQ]p1479

Mono-ruby for individual base characters in Japanese
One or more hiragana or katakana characters (the ruby annotation) are placed with each ideographic character (the base text). This
is used to provide readings of kanji characters.

At the time of writing, CSS does not yet provide a way to fully control the rendering of the HTML rubyp270 element. It is hoped that
CSS will be extended to support the styles described below in due course.

Note

<ruby>B<rt>annotation</ruby>

Example

In this example, notice how each annotation corresponds to a single base character.

<ruby>君<rt>くん</ruby><ruby>子<rt>し</ruby>は<ruby>和<rt>わ</ruby>して<ruby>同<rt>どう</ruby>ぜず。

君くん子しは和わして同どうぜず。

This example can also be written as follows, using one rubyp270 element with two segments of base text and two annotations
(one for each) rather than two back-to-back rubyp270 elements each with one base text segment and annotation (as in the
markup above):

Example

271

https://w3c.github.io/html-aria/#el-ruby
https://w3c.github.io/html-aam/#el-ruby

Mono-ruby for compound words (jukugo)
This is similar to the previous case: each ideographic character in the compound word (the base text) has its reading given in
hiragana or katakana characters (the ruby annotation). The difference is that the base text segments form a compound word rather
than being separate from each other.

Jukugo-ruby
This is semantically identical to the previous case (each individual ideographic character in the base compound word has its reading
given in an annotation in hiragana or katakana characters), but the rendering is the more complicated Jukugo Ruby rendering.

Group ruby for describing meanings
The annotation describes the meaning of the base text, rather than (or in addition to) the pronunciation. As such, both the base text
and the annotation can be multiple characters long.

<ruby>君<rt>くん</rt>子<rt>し</ruby>は<ruby>和<rt>わ</ruby>して<ruby>同<rt>どう</ruby>ぜず。

<ruby>B<rt>annotation</rt>B<rt>annotation</ruby>

Example

In this example, notice again how each annotation corresponds to a single base character. In this example, each compound
word (jukugo) corresponds to a single rubyp270 element.

The rendering here is expected to be that each annotation be placed over (or next to, in vertical text) the corresponding base
character, with the annotations not overhanging any of the adjacent characters.

<ruby>鬼<rt>き</rt>門<rt>もん</rt></ruby>の<ruby>方<rt>ほう</rt>角<rt>がく</rt></ruby>を<ruby>凝<rt>ぎ
ょう</rt>視<rt>し</rt></ruby>する

鬼き門もんの方ほう角がくを凝ぎょう視しする

Example

This is the same example as above for mono-ruby for compound words. The different rendering is expected to be achieved
using different styling (e.g. in CSS), and is not shown here.

<ruby>鬼<rt>き</rt>門<rt>もん</rt></ruby>の<ruby>方<rt>ほう</rt>角<rt>がく</rt></ruby>を<ruby>凝<rt>ぎ
ょう</rt>視<rt>し</rt></ruby>する

Example

For more details on Jukugo Ruby rendering, see Appendix F in the Requirements for Japanese Text Layout. [JLREQ]p1479

Note

<ruby>BASE<rt>annotation</ruby>

Example

Here a compound ideographic word has its corresponding katakana given as an annotation.

<ruby>境界面<rt>インターフェース</ruby>

境界面インターフェース

Example

Here a compound ideographic word has its translation in English provided as an annotation.
Example

272

https://www.w3.org/TR/jlreq/#positioning_of_jukugoruby

Group ruby for Jukuji readings
A phonetic reading that corresponds to multiple base characters, because a one-to-one mapping would be difficult. (In English, the
words "Colonel" and "Lieutenant" are examples of words where a direct mapping of pronunciation to individual letters is, in some
dialects, rather unclear.)

Text with both phonetic and semantic annotations (double-sided ruby)
Sometimes, ruby styles described above are combined.

If this results in two annotations covering the same single base segment, then the annotations can just be placed back to back.

In more complicated situations such as the following examples, a nested rubyp270 element is used to give the inner annotations, and
then that whole rubyp270 is then given an annotation at the "outer" level.

<ruby lang="ja">編集者<rt lang="en">editor</ruby>

編集者editor

In this example, the name of a species of flowers has a phonetic reading provided using group ruby:

<ruby>紫陽花<rt>あじさい</ruby>

紫陽花あじさい

Example

<ruby>BASE<rt>annotation 1<rt>annotation 2</ruby>

Example

<ruby>B<rt>a<rt>a</ruby><ruby>A<rt>a<rt>a</ruby><ruby>S<rt>a<rt>a</ruby><ruby>E<rt>a<rt>a</ruby>

Example

In this contrived example, some symbols are given names in English and French.

<ruby>
♥ <rt> Heart <rt lang=fr> Cœur </rt>
☘ <rt> Shamrock <rt lang=fr> Trèfle </rt>
✶ <rt> Star <rt lang=fr> Étoile </rt>

</ruby>

Example

<ruby><ruby>B<rt>a</rt>A<rt>n</rt>S<rt>t</rt>E<rt>n</rt></ruby><rt>annotation</ruby>

Example

Here both a phonetic reading and the meaning are given in ruby annotations. The annotation on the nested rubyp270 element
gives a mono-ruby phonetic annotation for each base character, while the annotation in the rtp277 element that is a child of the
outer rubyp270 element gives the meaning using hiragana.

<ruby><ruby>東<rt>とう</rt>南<rt>なん</rt></ruby><rt>たつみ</rt></ruby>の方角

東とう南なんたつみの方角

Example

Example

273

Within a rubyp270 element that does not have a rubyp270 element ancestor, content is segmented and segments are placed into three
categories: base text segments, annotation segments, and ignored segments. Ignored segments do not form part of the document's
semantics (they consist of some inter-element whitespacep147 and rpp277 elements, the latter of which are used for legacy user agents
that do not support ruby at all). Base text segments can overlap (with a limit of two segments overlapping any one position in the
DOM, and with any segment having an earlier start point than an overlapping segment also having an equal or later end point, and any
segment have a later end point than an overlapping segment also having an equal or earlier start point). Annotation segments
correspond to rtp277 elements. Each annotation segment can be associated with a base text segment, and each base text segment can
have annotation segments associated with it. (In a conforming document, each base text segment is associated with at least one
annotation segment, and each annotation segment is associated with one base text segment.) A rubyp270 element representsp141 the
union of the segments of base text it contains, along with the mapping from those base text segments to annotation segments.
Segments are described in terms of DOM ranges; annotation segment ranges always consist of exactly one element. [DOM]p1478

At any particular time, the segmentation and categorization of content of a rubyp270 element is the result that would be obtained from
running the following algorithm:

1. Let base text segments be an empty list of base text segments, each potentially with a list of base text subsegments.

2. Let annotation segments be an empty list of annotation segments, each potentially being associated with a base text
segment or subsegment.

3. Let root be the rubyp270 element for which the algorithm is being run.

4. If root has a rubyp270 element ancestor, then jump to the step labeled end.

5. Let current parent be root.

6. Let index be 0.

7. Let start index be null.

8. Let parent start index be null.

9. Let current base text be null.

10. Start mode: If index is greater than or equal to the number of child nodes in current parent, then jump to the step labeled
end mode.

11. If the indexth node in current parent is an rtp277 or rpp277 element, jump to the step labeled annotation mode.

12. Set start index to the value of index.

13. Base mode: If the indexth node in current parent is a rubyp270 element, and if current parent is the same element as root,
then push a ruby levelp275 and then jump to the step labeled start mode.

14. If the indexth node in current parent is an rtp277 or rpp277 element, then set the current base textp275 and then jump to the
step labeled annotation mode.

15. Increment index by one.

16. Base mode post-increment: If index is greater than or equal to the number of child nodes in current parent, then jump to the
step labeled end mode.

17. Jump back to the step labeled base mode.

18. Annotation mode: If the indexth node in current parent is an rtp277 element, then push a ruby annotationp275 and jump to the
step labeled annotation mode increment.

19. If the indexth node in current parent is an rpp277 element, jump to the step labeled annotation mode increment.

20. If the indexth node in current parent is not a Text node, or is a Text node that is not inter-element whitespacep147, then jump

This is the same example, but the meaning is given in English instead of Japanese:

<ruby><ruby>東<rt>とう</rt>南<rt>なん</rt></ruby><rt lang=en>Southeast</rt></ruby>の方角

東とう南なんSoutheastの方角

274

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

to the step labeled base mode.

21. Annotation mode increment: Let lookahead index be index plus one.

22. Annotation mode white-space skipper: If lookahead index is equal to the number of child nodes in current parent then jump
to the step labeled end mode.

23. If the lookahead indexth node in current parent is an rtp277 element or an rpp277 element, then set index to lookahead index
and jump to the step labeled annotation mode.

24. If the lookahead indexth node in current parent is not a Text node, or is a Text node that is not inter-element whitespacep147,
then jump to the step labeled base mode (without further incrementing index, so the inter-element whitespacep147 seen so
far becomes part of the next base text segment).

25. Increment lookahead index by one.

26. Jump to the step labeled annotation mode white-space skipper.

27. End mode: If current parent is not the same element as root, then pop a ruby levelp275 and jump to the step labeled base
mode post-increment.

28. End: Return base text segments and annotation segments. Any content of the rubyp270 element not described by segments in
either of those lists is implicitly in an ignored segment.

When the steps above say to set the current base text, it means to run the following steps at that point in the algorithm:

1. Let text range be a DOM range whose start is the boundary point (current parent, start index) and whose end is the
boundary point (current parent, index).

2. Let new text segment be a base text segment described by the range annotation range.

3. Add new text segment to base text segments.

4. Let current base text be new text segment.

5. Let start index be null.

When the steps above say to push a ruby level, it means to run the following steps at that point in the algorithm:

1. Let current parent be the indexth node in current parent.

2. Let index be 0.

3. Set saved start index to the value of start index.

4. Let start index be null.

When the steps above say to pop a ruby level, it means to run the following steps at that point in the algorithm:

1. Let index be the position of current parent in root.

2. Let current parent be root.

3. Increment index by one.

4. Set start index to the value of saved start index.

5. Let saved start index be null.

When the steps above say to push a ruby annotation, it means to run the following steps at that point in the algorithm:

1. Let rt be the rtp277 element that is the indexth node of current parent.

2. Let annotation range be a DOM range whose start is the boundary point (current parent, index) and whose end is the
boundary point (current parent, index plus one) (i.e. that contains only rt).

3. Let new annotation segment be an annotation segment described by the range annotation range.

4. If current base text is not null, associate new annotation segment with current base text.

5. Add new annotation segment to annotation segments.
275

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-range-start
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-range-end
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-range-start
https://dom.spec.whatwg.org/#concept-range-bp
https://dom.spec.whatwg.org/#concept-range-end
https://dom.spec.whatwg.org/#concept-range-bp

In this example, each ideograph in the Japanese text 漢字 is annotated with its reading in hiragana.

...
<ruby>漢<rt>かん</rt>字<rt>じ</rt></ruby>
...

This might be rendered as:

Example

In this example, each ideograph in the traditional Chinese text 漢字 is annotated with its bopomofo reading.

<ruby>漢<rt>ㄏㄢˋ</rt>字<rt>ㄗˋ</rt></ruby>

This might be rendered as:

Example

In this example, each ideograph in the simplified Chinese text 汉字 is annotated with its pinyin reading.

...<ruby>汉<rt>hàn</rt>字<rt>zì</rt></ruby>...

This might be rendered as:

Example

In this more contrived example, the acronym "HTML" has four annotations: one for the whole acronym, briefly describing what it is,
one for the letters "HT" expanding them to "Hypertext", one for the letter "M" expanding it to "Markup", and one for the letter "L"
expanding it to "Language".

<ruby>
<ruby>HT<rt>Hypertext</rt>M<rt>Markup</rt>L<rt>Language</rt></ruby>
<rt>An abstract language for describing documents and applications

</ruby>

Example

276

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a rubyp270 element.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
An rtp277 element's end tagp1262 can be omitted if the rtp277 element is immediately followed by an rtp277 or rpp277 element, or if
there is no more content in the parent element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The rtp277 element marks the ruby text component of a ruby annotation. When it is the child of a rubyp270 element, it doesn't
representp141 anything itself, but the rubyp270 element uses it as part of determining what it representsp141.

An rtp277 element that is not a child of a rubyp270 element representsp141 the same thing as its children.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a rubyp270 element, either immediately before or immediately after an rtp277 element.

Content modelp146:
Textp150.

Tag omission in text/htmlp146:
An rpp277 element's end tagp1262 can be omitted if the rpp277 element is immediately followed by an rtp277 or rpp277 element, or if
there is no more content in the parent element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The rpp277 element can be used to provide parentheses or other content around a ruby text component of a ruby annotation, to be
shown by user agents that don't support ruby annotations.

An rpp277 element that is a child of a rubyp270 element representsp141 nothing. An rpp277 element whose parent element is not a rubyp270

element representsp141 its children.

Example

4.5.11 The rt element §p27

7

4.5.12 The rp element §p27

7

✔ MDN

✔ MDN

277

https://w3c.github.io/html-aria/#el-rt
https://w3c.github.io/html-aam/#el-rt
https://w3c.github.io/html-aria/#el-rp
https://w3c.github.io/html-aam/#el-rp

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

valuep279 — Machine-readable value

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLDataElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString value;
};

The example above, in which each ideograph in the text 漢字 is annotated with its phonetic reading, could be expanded to use
rpp277 so that in legacy user agents the readings are in parentheses:

...
<ruby>漢<rp>（</rp><rt>かん</rt><rp>）</rp>字<rp>（</rp><rt>じ</rt><rp>）</rp></ruby>
...

In conforming user agents the rendering would be as above, but in user agents that do not support ruby, the rendering would be:

... 漢（かん）字（じ）...

When there are multiple annotations for a segment, rpp277 elements can also be placed between the annotations. Here is another
copy of an earlier contrived example showing some symbols with names given in English and French, but this time with rpp277

elements as well:

<ruby>
♥<rp>: </rp><rt>Heart</rt><rp>, </rp><rt lang=fr>Cœur</rt><rp>.</rp>
☘<rp>: </rp><rt>Shamrock</rt><rp>, </rp><rt lang=fr>Trèfle</rt><rp>.</rp>
✶<rp>: </rp><rt>Star</rt><rp>, </rp><rt lang=fr>Étoile</rt><rp>.</rp>
</ruby>

This would make the example render as follows in non-ruby-capable user agents:

♥: Heart, Cœur. ☘: Shamrock, Trèfle. ✶: Star, Étoile.

Example

IDL

4.5.13 The data element §p27

8

✔ MDN

✔ MDN

278

https://w3c.github.io/html-aria/#el-data
https://w3c.github.io/html-aam/#el-data

The datap278 element representsp141 its contents, along with a machine-readable form of those contents in the valuep279 attribute.

The value attribute must be present. Its value must be a representation of the element's contents in a machine-readable format.

The element can be used for several purposes.

When combined with microformats or the microdata attributesp788 defined in this specification, the element serves to provide both a
machine-readable value for the purposes of data processors, and a human-readable value for the purposes of rendering in a web
browser. In this case, the format to be used in the valuep279 attribute is determined by the microformats or microdata vocabulary in
use.

The element can also, however, be used in conjunction with scripts in the page, for when a script has a literal value to store alongside
a human-readable value. In such cases, the format to be used depends only on the needs of the script. (The data-*p164 attributes can
also be useful in such situations.)

The value IDL attribute must reflectp104 the content attribute of the same name.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
If the element has a datetimep280 attribute: Phrasing contentp150.
Otherwise: Textp150, but must match requirements described in prose below.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

datetimep280 — Machine-readable value

Accessibility considerationsp146:
For authors.

When the value is date- or time-related, the more specific timep279 element can be used instead.
Note

Here, a short table has its numeric values encoded using the datap278 element so that the table sorting JavaScript library can
provide a sorting mechanism on each column despite the numbers being presented in textual form in one column and in a
decomposed form in another.

<script src="sortable.js"></script>
<table class="sortable">
<thead> <tr> <th> Game <th> Corporations <th> Map Size
<tbody>
<tr> <td> 1830 <td> <data value="8">Eight</data> <td> <data value="93">19+74 hexes (93

total)</data>
<tr> <td> 1856 <td> <data value="11">Eleven</data> <td> <data value="99">12+87 hexes (99

total)</data>
<tr> <td> 1870 <td> <data value="10">Ten</data> <td> <data value="149">4+145 hexes (149

total)</data>
</table>

Example

4.5.14 The time element §p27

9

✔ MDN

✔ MDN

✔ MDN

279

https://w3c.github.io/html-aria/#el-time

For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTimeElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString dateTime;
};

The timep279 element representsp141 its contents, along with a machine-readable form of those contents in the datetimep280 attribute.
The kind of content is limited to various kinds of dates, times, time-zone offsets, and durations, as described below.

The datetime attribute may be present. If present, its value must be a representation of the element's contents in a machine-readable
format.

A timep279 element that does not have a datetimep280 content attribute must not have any element descendants.

The datetime value of a timep279 element is the value of the element's datetimep280 content attribute, if it has one, otherwise the
child text content of the timep279 element.

The datetime valuep280 of a timep279 element must match one of the following syntaxes.

A valid month stringp82

A valid date stringp83

A valid yearless date stringp83

A valid time stringp84

A valid local date and time stringp85

<time>2011-11</time>

Example

<time>2011-11-18</time>

Example

<time>11-18</time>

Example

<time>14:54</time>

Example

<time>14:54:39</time>

Example

<time>14:54:39.929</time>

Example

Example

IDL

280

https://w3c.github.io/html-aam/#el-time
https://dom.spec.whatwg.org/#concept-child-text-content

A valid time-zone offset stringp86

<time>2011-11-18T14:54</time>

<time>2011-11-18T14:54:39</time>

Example

<time>2011-11-18T14:54:39.929</time>

Example

<time>2011-11-18 14:54</time>

Example

<time>2011-11-18 14:54:39</time>

Example

<time>2011-11-18 14:54:39.929</time>

Example

Times with dates but without a time zone offset are useful for specifying events that are observed at the same specific time in
each time zone, throughout a day. For example, the 2020 new year is celebrated at 2020-01-01 00:00 in each time zone, not at
the same precise moment across all time zones. For events that occur at the same time across all time zones, for example a
videoconference meeting, a valid global date and time stringp87 is likely more useful.

Note

<time>Z</time>

Example

<time>+0000</time>

Example

<time>+00:00</time>

Example

<time>-0800</time>

Example

<time>-08:00</time>

Example

For times without dates (or times referring to events that recur on multiple dates), specifying the geographic location that
controls the time is usually more useful than specifying a time zone offset, because geographic locations change time zone
offsets with daylight saving time. In some cases, geographic locations even change time zone, e.g. when the boundaries of
those time zones are redrawn, as happened with Samoa at the end of 2011. There exists a time zone database that describes

Note

281

A valid global date and time stringp87

the boundaries of time zones and what rules apply within each such zone, known as the time zone database. [TZDATABASE]p1482

<time>2011-11-18T14:54Z</time>

Example

<time>2011-11-18T14:54:39Z</time>

Example

<time>2011-11-18T14:54:39.929Z</time>

Example

<time>2011-11-18T14:54+0000</time>

Example

<time>2011-11-18T14:54:39+0000</time>

Example

<time>2011-11-18T14:54:39.929+0000</time>

Example

<time>2011-11-18T14:54+00:00</time>

Example

<time>2011-11-18T14:54:39+00:00</time>

Example

<time>2011-11-18T14:54:39.929+00:00</time>

Example

<time>2011-11-18T06:54-0800</time>

Example

<time>2011-11-18T06:54:39-0800</time>

Example

<time>2011-11-18T06:54:39.929-0800</time>

Example

<time>2011-11-18T06:54-08:00</time>

Example

282

<time>2011-11-18T06:54:39-08:00</time>

Example

<time>2011-11-18T06:54:39.929-08:00</time>

Example

<time>2011-11-18 14:54Z</time>

Example

<time>2011-11-18 14:54:39Z</time>

Example

<time>2011-11-18 14:54:39.929Z</time>

Example

<time>2011-11-18 14:54+0000</time>

Example

<time>2011-11-18 14:54:39+0000</time>

Example

<time>2011-11-18 14:54:39.929+0000</time>

Example

<time>2011-11-18 14:54+00:00</time>

Example

<time>2011-11-18 14:54:39+00:00</time>

Example

<time>2011-11-18 14:54:39.929+00:00</time>

Example

<time>2011-11-18 06:54-0800</time>

Example

<time>2011-11-18 06:54:39-0800</time>

Example

<time>2011-11-18 06:54:39.929-0800</time>

Example

283

A valid week stringp89

Four or more ASCII digits, at least one of which is not U+0030 DIGIT ZERO (0)

A valid duration stringp90

The machine-readable equivalent of the element's contents must be obtained from the element's datetime valuep280 by using
the following algorithm:

1. If parsing a month stringp82 from the element's datetime valuep280 returns a monthp82, that is the machine-readable
equivalent; return.

2. If parsing a date stringp83 from the element's datetime valuep280 returns a datep83, that is the machine-readable equivalent;
return.

3. If parsing a yearless date stringp84 from the element's datetime valuep280 returns a yearless datep83, that is the machine-
readable equivalent; return.

4. If parsing a time stringp85 from the element's datetime valuep280 returns a timep84, that is the machine-readable equivalent;
return.

<time>2011-11-18 06:54-08:00</time>

Example

<time>2011-11-18 06:54:39-08:00</time>

Example

<time>2011-11-18 06:54:39.929-08:00</time>

Example

Times with dates and a time zone offset are useful for specifying specific events, or recurring virtual events where the time is
not anchored to a specific geographic location. For example, the precise time of an asteroid impact, or a particular meeting in a
series of meetings held at 1400 UTC every day, regardless of whether any particular part of the world is observing daylight
saving time or not. For events where the precise time varies by the local time zone offset of a specific geographic location, a
valid local date and time stringp85 combined with that geographic location is likely more useful.

Note

<time>2011-W47</time>

Example

<time>2011</time>

Example

<time>0001</time>

Example

<time>PT4H18M3S</time>

Example

<time>4h 18m 3s</time>

Example

284

https://infra.spec.whatwg.org/#ascii-digit

5. If parsing a local date and time stringp86 from the element's datetime valuep280 returns a local date and timep85, that is the
machine-readable equivalent; return.

6. If parsing a time-zone offset stringp86 from the element's datetime valuep280 returns a time-zone offsetp86, that is the
machine-readable equivalent; return.

7. If parsing a global date and time stringp88 from the element's datetime valuep280 returns a global date and timep87, that is the
machine-readable equivalent; return.

8. If parsing a week stringp89 from the element's datetime valuep280 returns a weekp89, that is the machine-readable equivalent;
return.

9. If the element's datetime valuep280 consists of only ASCII digits, at least one of which is not U+0030 DIGIT ZERO (0), then the
machine-readable equivalent is the base-ten interpretation of those digits, representing a year; return.

10. If parsing a duration stringp91 from the element's datetime valuep280 returns a durationp90, that is the machine-readable
equivalent; return.

11. There is no machine-readable equivalent.

The dateTime IDL attribute must reflectp104 the element's datetimep280 content attribute.

The algorithms referenced above are intended to be designed such that for any arbitrary string s, only one of the algorithms
returns a value. A more efficient approach might be to create a single algorithm that parses all these data types in one pass;
developing such an algorithm is left as an exercise to the reader.

Note

The timep279 element can be used to encode dates, for example in microformats. The following shows a hypothetical way of
encoding an event using a variant on hCalendar that uses the timep279 element:

<div class="vevent">
http://www.web2con.com/
Web 2.0 Conference:
<time class="dtstart" datetime="2005-10-05">October 5</time> -
<time class="dtend" datetime="2005-10-07">7</time>,
at the Argent Hotel, San Francisco, CA

</div>

Example

Here, a fictional microdata vocabulary based on the Atom vocabulary is used with the timep279 element to mark up a blog post's
publication date.

<article itemscope itemtype="https://n.example.org/rfc4287">
<h1 itemprop="title">Big tasks</h1>
<footer>Published <time itemprop="published" datetime="2009-08-29">two days ago</time>.</footer>
<p itemprop="content">Today, I went out and bought a bike for my kid.</p>

</article>

Example

In this example, another article's publication date is marked up using timep279, this time using the schema.org microdata
vocabulary:

<article itemscope itemtype="http://schema.org/BlogPosting">
<h1 itemprop="headline">Small tasks</h1>
<footer>Published <time itemprop="datePublished" datetime="2009-08-30">yesterday</time>.</footer>
<p itemprop="articleBody">I put a bike bell on her bike.</p>

</article>

Example

✔ MDN

285

https://infra.spec.whatwg.org/#ascii-digit

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The codep286 element representsp141 a fragment of computer code. This could be an XML element name, a filename, a computer
program, or any other string that a computer would recognize.

There is no formal way to indicate the language of computer code being marked up. Authors who wish to mark codep286 elements with
the language used, e.g. so that syntax highlighting scripts can use the right rules, can use the classp154 attribute, e.g. by adding a
class prefixed with "language-" to the element.

In the following snippet, the timep279 element is used to encode a date in the ISO8601 format, for later processing by a script:

<p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>

In this second snippet, the value includes a time:

<p>We stopped talking at <time datetime="2006-09-24T05:00-07:00">5am the next morning</time>.</p>

A script loaded by the page (and thus privy to the page's internal convention of marking up dates and times using the timep279

element) could scan through the page and look at all the timep279 elements therein to create an index of dates and times.

Example

For example, this element conveys the string "Friday" with the additional semantic that the 18th of November 2011 is the meaning
that corresponds to "Friday":

Today is <time datetime="2011-11-18">Friday</time>.

Example

In this example, a specific time in the Pacific Standard Time timezone is specified:

Your next meeting is at <time datetime="2011-11-18T15:00-08:00">3pm</time>.

Example

Example

4.5.15 The code element §p28

6

✔ MDN

286

https://w3c.github.io/html-aria/#el-code
https://w3c.github.io/html-aam/#el-code

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The varp287 element representsp141 a variable. This could be an actual variable in a mathematical expression or programming context,
an identifier representing a constant, a symbol identifying a physical quantity, a function parameter, or just be a term used as a
placeholder in prose.

The following example shows how the element can be used in a paragraph to mark up element names and computer code,
including punctuation.

<p>The <code>code</code> element represents a fragment of computer
code.</p>

<p>When you call the <code>activate()</code> method on the
<code>robotSnowman</code> object, the eyes glow.</p>

<p>The example below uses the <code>begin</code> keyword to indicate
the start of a statement block. It is paired with an <code>end</code>
keyword, which is followed by the <code>.</code> punctuation character
(full stop) to indicate the end of the program.</p>

The following example shows how a block of code could be marked up using the prep233 and codep286 elements.

<pre><code class="language-pascal">var i: Integer;
begin

i := 1;
end.</code></pre>

A class is used in that example to indicate the language used.

Example

See the prep233 element for more details.
Note

4.5.16 The var element §p28

7

✔ MDN

287

https://w3c.github.io/html-aria/#el-var
https://w3c.github.io/html-aam/#el-var

For mathematics, in particular for anything beyond the simplest of expressions, MathML is more appropriate. However, the varp287

element can still be used to refer to specific variables that are then mentioned in MathML expressions.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at least <var>n</var>
flavors of ice cream to be available for purchase!</p>

Example

In this example, an equation is shown, with a legend that references the variables in the equation. The expression itself is marked
up with MathML, but the variables are mentioned in the figure's legend using varp287.

<figure>
<math>
<mi>a</mi>
<mo>=</mo>
<msqrt>
<msup><mi>b</mi><mn>2</mn></msup>
<mi>+</mi>
<msup><mi>c</mi><mn>2</mn></msup>

</msqrt>
</math>
<figcaption>
Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of
a triangle with sides <var>b</var> and <var>c</var>

</figcaption>
</figure>

Example

Here, the equation describing mass-energy equivalence is used in a sentence, and the varp287 element is used to mark the
variables and constants in that equation:

<p>Then she turned to the blackboard and picked up the chalk. After a few moment's
thought, she wrote <var>E</var> = <var>m</var> <var>c</var>². The teacher
looked pleased.</p>

Example

4.5.17 The samp element §p28

8

✔ MDN

288

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The sampp288 element representsp141 sample or quoted output from another program or computing system.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

See the prep233 and kbdp289 elements for more details.
Note

This element can be contrasted with the outputp584 element, which can be used to provide immediate output in a web application.
Note

This example shows the sampp288 element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

Example

This second example shows a block of sample output from a console program. Nested sampp288 and kbdp289 elements allow for the
styling of specific elements of the sample output using a style sheet. There's also a few parts of the sampp288 that are annotated
with even more detailed markup, to enable very precise styling. To achieve this, spanp298 elements are used.

<pre><samp>jdoe@mowmow:~$ <kbd>ssh demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189 #1 SMP Tue Feb 1
11:22:36 PST 2005 i686 unknown

jdoe@demo:~$ _</samp></pre>

Example

This third example shows a block of input and its respective output. The example uses both codep286 and sampp288 elements.

<pre>
<code class="language-javascript">console.log(2.3 + 2.4)</code>
<samp>4.699999999999999</samp>
</pre>

Example

4.5.18 The kbd element §p28

9

✔ MDN

289

https://w3c.github.io/html-aria/#el-samp
https://w3c.github.io/html-aam/#el-samp

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The kbdp289 element representsp141 user input (typically keyboard input, although it may also be used to represent other input, such as
voice commands).

When the kbdp289 element is nested inside a sampp288 element, it represents the input as it was echoed by the system.

When the kbdp289 element contains a sampp288 element, it represents input based on system output, for example invoking a menu item.

When the kbdp289 element is nested inside another kbdp289 element, it represents an actual key or other single unit of input as
appropriate for the input mechanism.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
The subp290 element: for authors; for implementers.
The supp290 element: for authors; for implementers.

Here the kbdp289 element is used to indicate keys to press:

<p>To make George eat an apple, press <kbd><kbd>Shift</kbd> + <kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer kbdp289 element marks up a block of input, with
the inner kbdp289 elements representing each individual step of the input, and the sampp288 elements inside them indicating that the
steps are input based on something being displayed by the system, in this case menu labels:

<p>To make George eat an apple, select
<kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...</samp></kbd></kbd>

</p>

Such precision isn't necessary; the following is equally fine:

<p>To make George eat an apple, select <kbd>File | Eat Apple...</kbd></p>

Example

4.5.19 The sub and sup elements §p29

0

✔ MDN

290

https://w3c.github.io/html-aria/#el-kbd
https://w3c.github.io/html-aam/#el-kbd
https://w3c.github.io/html-aria/#el-sub
https://w3c.github.io/html-aam/#el-sub
https://w3c.github.io/html-aria/#el-sup
https://w3c.github.io/html-aam/#el-sup

DOM interfacep147:
Use HTMLElementp142.

The supp290 element representsp141 a superscript and the subp290 element representsp141 a subscript.

These elements must be used only to mark up typographical conventions with specific meanings, not for typographical presentation
for presentation's sake. For example, it would be inappropriate for the subp290 and supp290 elements to be used in the name of the
LaTeX document preparation system. In general, authors should use these elements only if the absence of those elements would
change the meaning of the content.

In certain languages, superscripts are part of the typographical conventions for some abbreviations.

The subp290 element can be used inside a varp287 element, for variables that have subscripts.

Mathematical expressions often use subscripts and superscripts. Authors are encouraged to use MathML for marking up mathematics,
but authors may opt to use subp290 and supp290 if detailed mathematical markup is not desired. [MATHML]p1479

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

<p>Their names are
<abbr>M^{lle}</abbr> Gwendoline and
<abbr>M^{me}</abbr> Denise.</p>

Example

Here, the subp290 element is used to represent the subscript that identifies the variable in a family of variables:

<p>The coordinate of the <var>i</var>th point is
(<var>x_{<var>i</var>}</var>, <var>y_{<var>i</var>}</var>).
For example, the 10th point has coordinate
(<var>x₁₀</var>, <var>y₁₀</var>).</p>

Example

<var>E</var>=<var>m</var><var>c</var>²

f(<var>x</var>, <var>n</var>) = log₄<var>x</var>^{<var>n</var>}

Example

4.5.20 The i element §p29

1

✔ MDN

291

https://w3c.github.io/html-aria/#el-i
https://w3c.github.io/html-aam/#el-i

DOM interfacep147:
Uses HTMLElementp142.

The ip291 element representsp141 a span of text in an alternate voice or mood, or otherwise offset from the normal prose in a manner
indicating a different quality of text, such as a taxonomic designation, a technical term, an idiomatic phrase from another language,
transliteration, a thought, or a ship name in Western texts.

Terms in languages different from the main text should be annotated with langp158 attributes (or, in XML, lang attributes in the XML
namespace).

Authors can use the classp154 attribute on the ip291 element to identify why the element is being used, so that if the style of a
particular use (e.g. dream sequences as opposed to taxonomic terms) is to be changed at a later date, the author doesn't have to go
through the entire document (or series of related documents) annotating each use.

Authors are encouraged to consider whether other elements might be more applicable than the ip291 element, for instance the emp260

element for marking up stress emphasis, or the dfnp268 element to mark up the defining instance of a term.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

The examples below show uses of the ip291 element:

<p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

In the following example, a dream sequence is marked up using ip291 elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

Example

Style sheets can be used to format ip291 elements, just like any other element can be restyled. Thus, it is not the case that content
in ip291 elements will necessarily be italicized.

Note

4.5.21 The b element §p29

2

✔ MDN

292

https://www.w3.org/TR/xml/#sec-lang-tag
https://www.w3.org/TR/xml/#sec-lang-tag

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The bp292 element representsp141 a span of text to which attention is being drawn for utilitarian purposes without conveying any extra
importance and with no implication of an alternate voice or mood, such as key words in a document abstract, product names in a
review, actionable words in interactive text-driven software, or an article lede.

As with the ip291 element, authors can use the classp154 attribute on the bp292 element to identify why the element is being used, so
that if the style of a particular use is to be changed at a later date, the author doesn't have to go through annotating each use.

The bp292 element should be used as a last resort when no other element is more appropriate. In particular, headings should use the
h1p216 to h6p216 elements, stress emphasis should use the emp260 element, importance should be denoted with the strongp261 element,
and text marked or highlighted should use the markp294 element.

The following example shows a use of the bp292 element to highlight key words without marking them up as important:

<p>The frobonitor and barbinator components are fried.</p>

Example

In the following example, objects in a text adventure are highlighted as being special by use of the bp292 element.

<p>You enter a small room. Your sword glows
brighter. A rat scurries past the corner wall.</p>

Example

Another case where the bp292 element is appropriate is in marking up the lede (or lead) sentence or paragraph. The following
example shows how a BBC article about kittens adopting a rabbit as their own could be marked up:

<article>
<h2>Kittens 'adopted' by pet rabbit</h2>
<p><b class="lede">Six abandoned kittens have found an
unexpected new mother figure — a pet rabbit.</p>
<p>Veterinary nurse Melanie Humble took the three-week-old
kittens to her Aberdeen home.</p>

[...]

Example

The following would be incorrect usage:

<p>WARNING! Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strongp261, not bp292.

Example

Style sheets can be used to format bp292 elements, just like any other element can be restyled. Thus, it is not the case that content
in bp292 elements will necessarily be boldened.

Note

293

https://w3c.github.io/html-aria/#el-b
https://w3c.github.io/html-aam/#el-b
http://news.bbc.co.uk/2/hi/uk_news/scotland/north_east/7101506.stm

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The up294 element representsp141 a span of text with an unarticulated, though explicitly rendered, non-textual annotation, such as
labeling the text as being a proper name in Chinese text (a Chinese proper name mark), or labeling the text as being misspelt.

In most cases, another element is likely to be more appropriate: for marking stress emphasis, the emp260 element should be used; for
marking key words or phrases either the bp292 element or the markp294 element should be used, depending on the context; for marking
book titles, the citep265 element should be used; for labeling text with explicit textual annotations, the rubyp270 element should be
used; for technical terms, taxonomic designation, transliteration, a thought, or for labeling ship names in Western texts, the ip291

element should be used.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

The default rendering of the up294 element in visual presentations clashes with the conventional rendering of hyperlinks
(underlining). Authors are encouraged to avoid using the up294 element where it could be confused for a hyperlink.

Note

In this example, a up294 element is used to mark a word as misspelt:

<p>The <u>see</u> is full of fish.</p>

Example

4.5.22 The u element §p29

4

4.5.23 The mark element §p29

4

✔ MDN

✔ MDN

294

https://w3c.github.io/html-aria/#el-u
https://w3c.github.io/html-aam/#el-u

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The markp294 element representsp141 a run of text in one document marked or highlighted for referencep141 purposes, due to its
relevance in another context. When used in a quotation or other block of text referred to from the prose, it indicates a highlight that
was not originally present but which has been added to bring the reader's attention to a part of the text that might not have been
considered important by the original author when the block was originally written, but which is now under previously unexpected
scrutiny. When used in the main prose of a document, it indicates a part of the document that has been highlighted due to its likely
relevance to the user's current activity.

This example shows how the markp294 element can be used to bring attention to a particular part of a quotation:

<p lang="en-US">Consider the following quote:</p>
<blockquote lang="en-GB">
<p>Look around and you will find, no-one's really
<mark>colour</mark> blind.</p>

</blockquote>
<p lang="en-US">As we can tell from the spelling of the word,
the person writing this quote is clearly not American.</p>

(If the goal was to mark the element as misspelt, however, the up294 element, possibly with a class, would be more appropriate.)

Example

Another example of the markp294 element is highlighting parts of a document that are matching some search string. If someone
looked at a document, and the server knew that the user was searching for the word "kitten", then the server might return the
document with one paragraph modified as follows:

<p>I also have some <mark>kitten</mark>s who are visiting me
these days. They're really cute. I think they like my garden! Maybe I
should adopt a <mark>kitten</mark>.</p>

Example

In the following snippet, a paragraph of text refers to a specific part of a code fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin

i := <mark>1.1</mark>;
end.</code></pre>

This is separate from syntax highlighting, for which spanp298 is more appropriate. Combining both, one would get:

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin

i := <mark>1.1</mark>;
end.</code></pre>

Example

Example

295

https://w3c.github.io/html-aria/#el-mark
https://w3c.github.io/html-aam/#el-mark

This is another example showing the use of markp294 to highlight a part of quoted text that was originally not emphasized. In this
example, common typographic conventions have led the author to explicitly style markp294 elements in quotes to render in italics.

<style>
blockquote mark, q mark {

font: inherit; font-style: italic;
text-decoration: none;
background: transparent; color: inherit;

}
.bubble em {

font: inherit; font-size: larger;
text-decoration: underline;

}
</style>
<article>
<h1>She knew</h1>
<p>Did you notice the subtle joke in the joke on panel 4?</p>
<blockquote>
<p class="bubble">I didn't want to believe. <mark>Of course
on some level I realized it was a known-plaintext attack.</mark> But I
couldn't admit it until I saw for myself.</p>

</blockquote>
<p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it
explains everything neatly.</p>

</article>

Note, incidentally, the distinction between the emp260 element in this example, which is part of the original text being quoted, and
the markp294 element, which is highlighting a part for comment.

The following example shows the difference between denoting the importance of a span of text (strongp261) as opposed to
denoting the relevance of a span of text (markp294). It is an extract from a textbook, where the extract has had the parts relevant to
the exam highlighted. The safety warnings, important though they may be, are apparently not relevant to the exam.

<h3>Wormhole Physics Introduction</h3>

<p><mark>A wormhole in normal conditions can be held open for a
maximum of just under 39 minutes.</mark> Conditions that can increase
the time include a powerful energy source coupled to one or both of
the gates connecting the wormhole, and a large gravity well (such as a
black hole).</p>

<p><mark>Momentum is preserved across the wormhole. Electromagnetic
radiation can travel in both directions through a wormhole,
but matter cannot.</mark></p>

<p>When a wormhole is created, a vortex normally forms.
Warning: The vortex caused by the wormhole opening will
annihilate anything in its path. Vortexes can be avoided when
using sufficiently advanced dialing technology.</p>

<p><mark>An obstruction in a gate will prevent it from accepting a
wormhole connection.</mark></p>

Example

296

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Also, the dirp160 global attribute has special semantics on this element.

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The bdip297 element representsp141 a span of text that is to be isolated from its surroundings for the purposes of bidirectional text
formatting. [BIDI]p1475

The dirp160 global attribute defaults to autop160 on this element (it never inherits from the parent element like with other
elements).

Note

This element has rendering requirements involving the bidirectional algorithmp170.
Note

This element is especially useful when embedding user-generated content with an unknown directionality.

In this example, usernames are shown along with the number of posts that the user has submitted. If the bdip297 element were not
used, the username of the Arabic user would end up confusing the text (the bidirectional algorithm would put the colon and the
number "3" next to the word "User" rather than next to the word "posts").

User <bdi>jcranmer</bdi>: 12 posts.
User <bdi>hober</bdi>: 5 posts.
User <bdi>إيان</bdi>: 3 posts.

When using the bdip297 element, the username acts as expected.

If the bdip297 element were to be replaced by a bp292 element, the username would confuse the bidirectional algorithm and the third

Example

4.5.24 The bdi element §p29

7

✔ MDN

297

https://w3c.github.io/html-aria/#el-bdi
https://w3c.github.io/html-aam/#el-bdi

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Also, the dirp160 global attribute has special semantics on this element.

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The bdop298 element representsp141 explicit text directionality formatting control for its children. It allows authors to override the
Unicode bidirectional algorithm by explicitly specifying a direction override. [BIDI]p1475

Authors must specify the dirp160 attribute on this element, with the value ltrp160 to specify a left-to-right override and with the value
rtlp160 to specify a right-to-left override. The autop160 value must not be specified.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.

bullet would end up saying "User 3 :", followed by the Arabic name (right-to-left), followed by "posts" and a period.

This element has rendering requirements involving the bidirectional algorithmp170.
Note

4.5.25 The bdo element §p29

8

4.5.26 The span element §p29

8

✔ MDN

✔ MDN

✔ MDN

298

https://w3c.github.io/html-aria/#el-bdo
https://w3c.github.io/html-aam/#el-bdo
https://w3c.github.io/html-aria/#el-span

For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLSpanElement : HTMLElement {

[HTMLConstructor] constructor();
};

The spanp298 element doesn't mean anything on its own, but can be useful when used together with the global attributesp154, e.g.
classp154, langp158, or dirp160. It representsp141 its children.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLBRElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The brp299 element representsp141 a line break.

In this example, a code fragment is marked up using spanp298 elements and classp154 attributes so that its keywords and identifiers
can be color-coded from CSS:

<pre><code class="lang-c">for (j = 0;
j < 256; j++) {

i_t3 = (i_t3 & 0x1ffff) | (j << 17);

i_t6 = (((((((i_t3 >> 3) ^ i_t3) >> 1) ^ i_t3) >> 8) ^ i_t3) >> 5) & 0xff;

if (i_t6 == i_t1)

break;
}</code></pre>

Example

IDL

IDL

4.5.27 The br element §p29

9

✔ MDN

✔ MDN

299

https://w3c.github.io/html-aam/#el-span
https://w3c.github.io/html-aria/#el-br
https://w3c.github.io/html-aam/#el-br

brp299 elements must be used only for line breaks that are actually part of the content, as in poems or addresses.

brp299 elements must not be used for separating thematic groups in a paragraph.

If a paragraphp152 consists of nothing but a single brp299 element, it represents a placeholder blank line (e.g. as in a template). Such
blank lines must not be used for presentation purposes.

Any content inside brp299 elements must not be considered part of the surrounding text.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

While line breaks are usually represented in visual media by physically moving subsequent text to a new line, a style sheet or user
agent would be equally justified in causing line breaks to be rendered in a different manner, for instance as green dots, or as extra
spacing.

Note

The following example is correct usage of the brp299 element:

<p>P. Sherman

42 Wallaby Way

Sydney</p>

Example

The following examples are non-conforming, as they abuse the brp299 element:

<p><a ...>34 comments.

<a ...>Add a comment.</p>

<p><label>Name: <input name="name"></label>

<label>Address: <input name="address"></label></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</p>
<p><a ...>Add a comment.</p>

<p><label>Name: <input name="name"></label></p>
<p><label>Address: <input name="address"></label></p>

Example

This element has rendering requirements involving the bidirectional algorithmp170.
Note

4.5.28 The wbr element §p30

0

✔ MDN

300

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The wbrp300 element representsp141 a line break opportunity.

Any content inside wbrp300 elements must not be considered part of the surrounding text.

This section is non-normative.

Element Purpose Example

ap257 Hyperlinks

emp260 Stress emphasis

strongp261 Importance

smallp262 Side comments

sp264 Inaccurate text

citep265 Titles of works

qp266 Quotations

dfnp268 Defining instance

abbrp269 Abbreviations

rubyp270,
rtp277, rpp277

Ruby annotations

datap278 Machine-readable equivalent

timep279 Machine-readable equivalent of date-
or time-related data

In the following example, someone is quoted as saying something which, for effect, is written as one long word. However, to
ensure that the text can be wrapped in a readable fashion, the individual words in the quote are separated using a wbrp300 element.

<p>So then she pointed at the tiger and screamed
"there<wbr>is<wbr>no<wbr>way<wbr>you<wbr>are<wbr>ever<wbr>going<wbr>to<wbr>catch<wbr>me"!</p>

Example

var wbr = document.createElement("wbr");
wbr.textContent = "This is wrong";
document.body.appendChild(wbr);

Example

This element has rendering requirements involving the bidirectional algorithmp170.
Note

Visit my drinks page.

I must say I adore lemonade.

This tea is very hot.

These grapes are made into wine. <small>Alcohol is addictive.</small>

Price: <s>£4.50</s> £2.00!

The case <cite>Hugo v. Danielle</cite> is relevant here.

The judge said <q>You can drink water from the fish tank</q> but advised against it.

The term <dfn>organic food</dfn> refers to food produced without synthetic chemicals.

Organic food in Ireland is certified by the <abbr title="Irish Organic Farmers and
Growers Association">IOFGA</abbr>.

<ruby> OJ <rp>(<rt>Orange Juice<rp>)</ruby>

Available starting today! <data value="UPC:022014640201">North Coast Organic Apple
Cider</data>

Available starting on <time datetime="2011-11-18">November 18th</time>!

4.5.29 Usage summary §p30

1

301

https://w3c.github.io/html-aria/#el-wbr
https://w3c.github.io/html-aam/#el-wbr

Element Purpose Example

codep286 Computer code

varp287 Variables

sampp288 Computer output

kbdp289 User input

subp290 Subscripts

supp290 Superscripts

ip291 Alternative voice

bp292 Keywords

up294 Annotations

markp294 Highlight

bdip297 Text directionality isolation

bdop298 Text directionality formatting

spanp298 Other

brp299 Line break

wbrp300 Line breaking opportunity

Links are a conceptual construct, created by ap257, areap471, formp514, and linkp177 elements, that representp141 a connection between
two resources, one of which is the current Documentp130. There are three kinds of links in HTML:

Links to external resources
These are links to resources that are to be used to augment the current document, generally automatically processed by the user
agent. All external resource linksp302 have a fetch and process the linked resourcep183 algorithm which describes how the resource is
obtained.

Hyperlinks
These are links to other resources that are generally exposed to the user by the user agent so that the user can cause the user
agent to navigatep1014 to those resources, e.g. to visit them in a browser or download them.

Internal resource links
These are links to resources within the current document, used to give those resources special meaning or behavior.

For linkp177 elements with an hrefp178 attribute and a relp178 attribute, links must be created for the keywords of the relp178 attribute,
as defined for those keywords in the link typesp314 section.

Similarly, for ap257 and areap471 elements with an hrefp303 attribute and a relp303 attribute, links must be created for the keywords of
the relp303 attribute as defined for those keywords in the link typesp314 section. Unlike linkp177 elements, however, ap257 and areap471

elements with an hrefp303 attribute that either do not have a relp303 attribute, or whose relp303 attribute has no keywords that are
defined as specifying hyperlinksp302, must also create a hyperlinkp302. This implied hyperlink has no special meaning (it has no link
typep314) beyond linking the element's node document to the resource given by the element's hrefp303 attribute.

Similarly, for formp514 elements with a relp515 attribute, links must be created for the keywords of the relp515 attribute as defined for
those keywords in the link typesp314 section. formp514 elements that do not have a relp515 attribute, or whose relp515 attribute has no

The <code>fruitdb</code> program can be used for tracking fruit production.

If there are <var>n</var> fruit in the bowl, at least <var>n</var>÷2 will be ripe.

The computer said <samp>Unknown error -3</samp>.

Hit <kbd>F1</kbd> to continue.

Water is H₂O.

The Hydrogen in heavy water is usually ²H.

Lemonade consists primarily of <i>Citrus limon</i>.

Take a lemon and squeeze it with a juicer.

The mixture of apple juice and <u class="spelling">eldeflower</u> juice is very
pleasant.

Elderflower cordial, with one <mark>part</mark> cordial to ten <mark>part</mark>s
water, stands a<mark>part</mark> from the rest.

The recommended restaurant is <bdi lang="">My Juice Café (At The Beach)</bdi>.

The proposal is to write English, but in reverse order. "Juice" would become "<bdo
dir=rtl>Juice</bdo>">

In French we call it sirop de sureau.

Simply Orange Juice Company
Apopka, FL 32703
U.S.A.

www.simply<wbr>orange<wbr>juice.com

4.6 Links §p30

2

4.6.1 Introduction §p30

2

302

https://dom.spec.whatwg.org/#concept-node-document

keywords that are defined as specifying hyperlinksp302, must also create a hyperlinkp302.

A hyperlinkp302 can have one or more hyperlink annotations that modify the processing semantics of that hyperlink.

The href attribute on ap257 and areap471 elements must have a value that is a valid URL potentially surrounded by spacesp96.

The target attribute, if present, must be a valid navigable target name or keywordp996. It gives the name of the navigablep989 that will
be used. User agents use this name when following hyperlinksp309.

The download attribute, if present, indicates that the author intends the hyperlink to be used for downloading a resourcep310. The
attribute may have a value; the value, if any, specifies the default filename that the author recommends for use in labeling the
resource in a local file system. There are no restrictions on allowed values, but authors are cautioned that most file systems have
limitations with regard to what punctuation is supported in filenames, and user agents are likely to adjust filenames accordingly.

The ping attribute, if present, gives the URLs of the resources that are interested in being notified if the user follows the hyperlink. The
value must be a set of space-separated tokensp94, each of which must be a valid non-empty URLp96 whose scheme is an HTTP(S)
scheme. The value is used by the user agent for hyperlink auditingp312.

The rel attribute on ap257 and areap471 elements controls what kinds of links the elements create. The attribute's value must be an
unordered set of unique space-separated tokensp95. The allowed keywords and their meaningsp314 are defined below.

relp303 's supported tokens are the keywords defined in HTML link typesp314 which are allowed on ap257 and areap471 elements, impact
the processing model, and are supported by the user agent. The possible supported tokens are noreferrerp325, noopenerp325, and
openerp325. relp303 's supported tokens must only include the tokens from this list that the user agent implements the processing model
for.

The relp303 attribute has no default value. If the attribute is omitted or if none of the values in the attribute are recognized by the user
agent, then the document has no particular relationship with the destination resource other than there being a hyperlink between the
two.

The hreflang attribute on ap257 elements that create hyperlinksp302, if present, gives the language of the linked resource. It is purely
advisory. The value must be a valid BCP 47 language tag. [BCP47]p1475 User agents must not consider this attribute authoritative —
upon fetching the resource, user agents must use only language information associated with the resource to determine its language,
not metadata included in the link to the resource.

The type attribute, if present, gives the MIME type of the linked resource. It is purely advisory. The value must be a valid MIME type
string. User agents must not consider the typep303 attribute authoritative — upon fetching the resource, user agents must not use
metadata included in the link to the resource to determine its type.

The referrerpolicy attribute is a referrer policy attributep100. Its purpose is to set the referrer policy used when following
hyperlinksp309. [REFERRERPOLICY]p1481

When an ap257 or areap471 element's activation behavior is invoked, the user agent may allow the user to indicate a preference
regarding whether the hyperlink is to be used for navigationp1014 or whether the resource it specifies is to be downloaded.

In the absence of a user preference, the default should be navigation if the element has no downloadp303 attribute, and should be to
download the specified resource if it does.

The activation behavior of an ap257 or areap471 element element given an event event is:

1. If element has no hrefp303 attribute, then return.

2. Let hyperlinkSuffix be null.

The hrefp303 attribute on ap257 and areap471 elements is not required; when those elements do not have hrefp303 attributes they do
not create hyperlinks.

Note

4.6.2 Links created by ap257 and areap471 elements §p30

3

✔ MDN

303

https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

3. If element is an ap257 element, and event's target is an imgp346 with an ismapp350 attribute specified, then:

1. Let x and y be 0.

2. If event's isTrusted attribute is initialized to true, then set x to the distance in CSS pixels from the left edge of the
image to the location of the click, and set y to the distance in CSS pixels from the top edge of the image to the
location of the click.

3. If x is negative, set x to 0.

4. If y is negative, set y to 0.

5. Set hyperlinkSuffix to the concatenation of U+003F (?), the value of x expressed as a base-ten integer using ASCII
digits, U+002C (,), and the value of y expressed as a base-ten integer using ASCII digits.

4. Let userInvolvement be event's user navigation involvementp1014.

5. If the user has expressed a preference to download the hyperlink, then set userInvolvement to "browser UIp1014".

6. If element has a downloadp303 attribute, or if the user has expressed a preference to download the hyperlink, then download
the hyperlinkp310 created by element with hyperlinkSuffixp310 set to hyperlinkSuffix and userInvolvementp310 set to
userInvolvement.

7. Otherwise, follow the hyperlinkp309 created by element with hyperlinkSuffixp309 set to hyperlinkSuffix and userInvolvementp309

set to userInvolvement.

interface mixin HTMLHyperlinkElementUtils {
[CEReactions] stringifier attribute USVString href;
readonly attribute USVString origin;
[CEReactions] attribute USVString protocol;
[CEReactions] attribute USVString username;
[CEReactions] attribute USVString password;
[CEReactions] attribute USVString host;
[CEReactions] attribute USVString hostname;
[CEReactions] attribute USVString port;
[CEReactions] attribute USVString pathname;
[CEReactions] attribute USVString search;
[CEReactions] attribute USVString hash;

};

That is, if the user has expressed a specific preference for downloading, this no longer counts as merely
"activationp1014".

Note

hyperlink.toString()
hyperlink.hrefp305

Returns the hyperlink's URL.
Can be set, to change the URL.

hyperlink.originp306

Returns the hyperlink's URL's origin.

hyperlink.protocolp306

Returns the hyperlink's URL's scheme.
Can be set, to change the URL's scheme.

hyperlink.usernamep306

Returns the hyperlink's URL's username.

For web developers (non-normative)

IDL

4.6.3 API for ap257 and areap471 elements §p30

4

304

https://dom.spec.whatwg.org/#concept-event-target
https://dom.spec.whatwg.org/#dom-event-istrusted
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

An element implementing the HTMLHyperlinkElementUtilsp304 mixin has an associated url (null or a URL). It is initially null.

An element implementing the HTMLHyperlinkElementUtilsp304 mixin has an associated set the url algorithm, which runs these
steps:

1. Set this element's urlp305 to null.

2. If this element's hrefp303 content attribute is absent, then return.

3. Let url be the result of encoding-parsing a URLp97 given this element's hrefp303 content attribute's value, relative to this
element's node document.

4. If url is not failure, then set this element's urlp305 to url.

When elements implementing the HTMLHyperlinkElementUtilsp304 mixin are created, and whenever those elements have their
hrefp303 content attribute set, changed, or removed, the user agent must set the urlp305.

An element implementing the HTMLHyperlinkElementUtilsp304 mixin has an associated reinitialize url algorithm, which runs these
steps:

1. If the element's urlp305 is non-null, its scheme is "blob", and it has an opaque path, then terminate these steps.

2. Set the urlp305.

To update href, set the element's hrefp303 content attribute's value to the element's urlp305, serialized.

The href getter steps are:

Can be set, to change the URL's username.

hyperlink.passwordp306

Returns the hyperlink's URL's password.
Can be set, to change the URL's password.

hyperlink.hostp307

Returns the hyperlink's URL's host and port (if different from the default port for the scheme).
Can be set, to change the URL's host and port.

hyperlink.hostnamep307

Returns the hyperlink's URL's host.
Can be set, to change the URL's host.

hyperlink.portp307

Returns the hyperlink's URL's port.
Can be set, to change the URL's port.

hyperlink.pathnamep308

Returns the hyperlink's URL's path.
Can be set, to change the URL's path.

hyperlink.searchp308

Returns the hyperlink's URL's query (includes leading "?" if non-empty).
Can be set, to change the URL's query (ignores leading "?").

hyperlink.hashp308

Returns the hyperlink's URL's fragment (includes leading "#" if non-empty).
Can be set, to change the URL's fragment (ignores leading "#").

This is only observable for blob: URLs as parsing them involves a Blob URL Store lookup.
Note

305

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://url.spec.whatwg.org/#concept-url-parser
https://w3c.github.io/FileAPI/#BlobURLStore
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-url-serializer

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null and this has no hrefp303 content attribute, return the empty string.

4. Otherwise, if url is null, return this's hrefp303 content attribute's value.

5. Return url, serialized.

The hrefp305 setter steps are to set this's hrefp303 content attribute's value to the given value.

The origin getter steps are:

1. Reinitialize urlp305.

2. If this's urlp305 is null, return the empty string.

3. Return the serializationp898 of this's urlp305 's origin.

The protocol getter steps are:

1. Reinitialize urlp305.

2. If this's urlp305 is null, return ":".

3. Return this's urlp305 's scheme, followed by ":".

The protocolp306 setter steps are:

1. Reinitialize urlp305.

2. If this's urlp305 is null, then return.

3. Basic URL parse the given value, followed by ":", with this's urlp305 as url and scheme start state as state override.

4. Update hrefp305.

The username getter steps are:

1. Reinitialize urlp305.

2. If this's urlp305 is null, return the empty string.

3. Return this's urlp305 's username.

The usernamep306 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null or url cannot have a username/password/port, then return.

4. Set the username, given url and the given value.

5. Update hrefp305.

The password getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null, then return the empty string.

Because the URL parser ignores multiple consecutive colons, providing a value of "https:" (or even "https::::") is the
same as providing a value of "https".

Note

306

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-origin
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-scheme
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-basic-url-parser
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#scheme-start-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-username
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#set-the-username
https://webidl.spec.whatwg.org/#this

4. Return url's password.

The passwordp306 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null or url cannot have a username/password/port, then return.

4. Set the password, given url and the given value.

5. Update hrefp305.

The host getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url or url's host is null, return the empty string.

4. If url's port is null, return url's host, serialized.

5. Return url's host, serialized, followed by ":" and url's port, serialized.

The hostp307 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null or url has an opaque path, then return.

4. Basic URL parse the given value, with url as url and host state as state override.

5. Update hrefp305.

The hostname getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url or url's host is null, return the empty string.

4. Return url's host, serialized.

The hostnamep307 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null or url has an opaque path, then return.

4. Basic URL parse the given value, with url as url and hostname state as state override.

5. Update hrefp305.

The port getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url or url's port is null, return the empty string.

4. Return url's port, serialized.

The portp307 setter steps are:
307

https://url.spec.whatwg.org/#concept-url-password
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#set-the-password
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#host-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#hostname-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null or url cannot have a username/password/port, then return.

4. If the given value is the empty string, then set url's port to null.

5. Otherwise, basic URL parse the given value, with url as url and port state as state override.

6. Update hrefp305.

The pathname getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null, then return the empty string.

4. Return the result of URL path serializing url.

The pathnamep308 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null or url has an opaque path, then return.

4. Set url's path to the empty list.

5. Basic URL parse the given value, with url as url and path start state as state override.

6. Update hrefp305.

The search getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null, or url's query is either null or the empty string, return the empty string.

4. Return "?", followed by url's query.

The searchp308 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null, terminate these steps.

4. If the given value is the empty string, set url's query to null.

5. Otherwise:

1. Let input be the given value with a single leading "?" removed, if any.

2. Set url's query to the empty string.

3. Basic URL parse input, with url as url and query state as state override.

6. Update hrefp305.

The hash getter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

308

https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#port-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-path-serializer
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#path-start-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#query-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this

3. If url is null, or url's fragment is either null or the empty string, return the empty string.

4. Return "#", followed by url's fragment.

The hashp308 setter steps are:

1. Reinitialize urlp305.

2. Let url be this's urlp305.

3. If url is null, then return.

4. If the given value is the empty string, set url's fragment to null.

5. Otherwise:

1. Let input be the given value with a single leading "#" removed, if any.

2. Set url's fragment to the empty string.

3. Basic URL parse input, with url as url and fragment state as state override.

6. Update hrefp305.

An element element cannot navigate if any of the following are true:

• element's node document is not fully activep1003; or

• element is not an ap257 element and is not connected.

To get an element's noopener, given an ap257, areap471, or formp514 element element, a URL record url, and a string target, perform
the following steps. They return a boolean.

1. If element's link typesp314 include the noopenerp325 or noreferrerp325 keyword, then return true.

2. If element's link typesp314 do not include the openerp325 keyword and target is an ASCII case-insensitive match for "_blank",
then return true.

3. If url's scheme is "blob":

1. Let blobOrigin be url's blob URL entry's environment's originp1076.

2. Let topLevelOrigin be element's relevant settings objectp1083 's top-level originp1076.

3. If blobOrigin is not same sitep900 with topLevelOrigin, then return true.

4. Return false.

To follow the hyperlink created by an element subject, given an optional hyperlinkSuffix (default null) and an optional
userInvolvement (default "nonep1014"):

1. If subject cannot navigatep309, then return.

2. Let replace be false.

3. Let targetAttributeValue be the empty string.

4. If subject is an ap257 or areap471 element, then set targetAttributeValue to the result of getting an element's targetp176 given
subject.

5. Let urlRecord be the result of encoding-parsing a URLp97 given subject's hrefp303 attribute value, relative to subject's node

This is also used by form submissionp629 for the formp514 element. The exception for ap257 elements is for compatibility with web
content.

Note

4.6.4 Following hyperlinks §p30

9

309

https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#fragment-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#connected
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-blob-entry
https://w3c.github.io/FileAPI/#blob-url-entry-environment
https://dom.spec.whatwg.org/#concept-node-document

document.

6. If urlRecord is failure, then return.

7. Let noopener be the result of getting an element's noopenerp309 with subject, urlRecord, and targetAttributeValue.

8. Let targetNavigable be the first return value of applying the rules for choosing a navigablep997 given targetAttributeValue,
subject's node navigablep989, and noopener.

9. If targetNavigable is null, then return.

10. Let urlString be the result of applying the URL serializer to urlRecord.

11. If hyperlinkSuffix is non-null, then append it to urlString.

12. Let referrerPolicy be the current state of subject's referrerpolicy content attribute.

13. If subject's link typesp314 includes the noreferrerp325 keyword, then set referrerPolicy to "no-referrer".

14. Navigatep1014 targetNavigable to urlString using subject's node document, with referrerPolicyp1014 set to referrerPolicy and
userInvolvementp1014 set to userInvolvement.

In some cases, resources are intended for later use rather than immediate viewing. To indicate that a resource is intended to be
downloaded for use later, rather than immediately used, the downloadp303 attribute can be specified on the ap257 or areap471 element
that creates the hyperlinkp302 to that resource.

The attribute can furthermore be given a value, to specify the filename that user agents are to use when storing the resource in a file
system. This value can be overridden by the `Content-Disposition` HTTP header's filename parameters. [RFC6266]p1481

In cross-origin situations, the downloadp303 attribute has to be combined with the `Content-Disposition` HTTP header, specifically
with the attachment disposition type, to avoid the user being warned of possibly nefarious activity. (This is to protect users from being
made to download sensitive personal or confidential information without their full understanding.)

To download the hyperlink created by an element subject, given an optional hyperlinkSuffix (default null) and an optional
userInvolvement (default "nonep1014"):

1. If subject cannot navigatep309, then return.

2. If subject's node document's active sandboxing flag setp917 has the sandboxed downloads browsing context flagp916 set, then
return.

3. Let urlString be the result of encoding-parsing-and-serializing a URLp97 given subject's hrefp303 attribute value, relative to
subject's node document.

4. If urlString is failure, then return.

5. If hyperlinkSuffix is non-null, then append it to urlString.

6. If userInvolvement is not "browser UIp1014", then:

1. Assert: subject has a downloadp303 attribute.

2. Let navigation be subject's relevant global objectp1083 's navigation APIp952.

3. Let filename be the value of subject's downloadp303 attribute.

4. Let continue be the result of firing a download request navigate eventp975 at navigation with destinationURLp975 set
to urlString, userInvolvementp975 set to userInvolvement, and filenamep975 set to filename.

Unlike many other types of navigations, following hyperlinks does not have special "replacep1014" behavior for when
documents are not completely loadedp1063. This is true for both user-initiated instances of following hyperlinks, as well as
script-triggered ones via, e.g., aElement.click().

Note

4.6.5 Downloading resources §p31

0

✔ MDN

310

https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-serializer
https://dom.spec.whatwg.org/#concept-node-document
https://httpwg.org/specs/rfc6266.html
https://httpwg.org/specs/rfc6266.html
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert

5. If continue is false, then return.

7. Run these steps in parallelp43:

1. Optionally, the user agent may abort these steps, if it believes doing so would safeguard the user from a
potentially hostile download.

2. Let request be a new request whose URL is urlString, client is entry settings objectp1080, initiator is "download",
destination is the empty string, and whose synchronous flag and use-URL-credentials flag are set.

3. Handle the result of fetching request as a downloadp311.

When a user agent is to handle a resource obtained from a fetch as a download, it should provide the user with a way to save the
resource for later use, if a resource is successfully obtained. Otherwise, it should report any problems downloading the file to the user.

If the user agent needs a filename for a resource being handled as a downloadp311, it should select one using the following algorithm.

1. Let filename be the undefined value.

2. If the resource has a `Content-Disposition` header, that header specifies the attachment disposition type, and the header
includes filename information, then let filename have the value specified by the header, and jump to the step labeled
sanitize below. [RFC6266]p1481

3. Let interface origin be the origin of the Documentp130 in which the downloadp310 or navigatep1014 action resulting in the
download was initiated, if any.

4. Let resource origin be the originp898 of the URL of the resource being downloaded, unless that URL's scheme component is
data, in which case let resource origin be the same as the interface origin, if any.

5. If there is no interface origin, then let trusted operation be true. Otherwise, let trusted operation be true if resource origin is
the same originp899 as interface origin, and false otherwise.

6. If trusted operation is true and the resource has a `Content-Disposition` header and that header includes filename
information, then let filename have the value specified by the header, and jump to the step labeled sanitize below.
[RFC6266]p1481

7. If the download was not initiated from a hyperlinkp302 created by an ap257 or areap471 element, or if the element of the
hyperlinkp302 from which it was initiated did not have a downloadp303 attribute when the download was initiated, or if there
was such an attribute but its value when the download was initiated was the empty string, then jump to the step labeled no
proposed filename.

8. Let proposed filename have the value of the downloadp303 attribute of the element of the hyperlinkp302 that initiated the
download at the time the download was initiated.

9. If trusted operation is true, let filename have the value of proposed filename, and jump to the step labeled sanitize below.

10. If the resource has a `Content-Disposition` header and that header specifies the attachment disposition type, let filename
have the value of proposed filename, and jump to the step labeled sanitize below. [RFC6266]p1481

11. No proposed filename: If trusted operation is true, or if the user indicated a preference for having the resource in question
downloaded, let filename have a value derived from the URL of the resource in an implementation-defined manner, and jump
to the step labeled sanitize below.

12. Let filename be set to the user's preferred filename or to a filename selected by the user agent, and jump to the step labeled
sanitize below.

This algorithm is intended to mitigate security dangers involved in downloading files from untrusted sites, and user
agents are strongly urged to follow it.

⚠Warning!

If the algorithm reaches this step, then a download was begun from a different origin than the resource
being downloaded, and the origin did not mark the file as suitable for downloading, and the download was
not initiated by the user. This could be because a downloadp303 attribute was used to trigger the download,
or because the resource in question is not of a type that the user agent supports.

⚠Warning!

311

https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://httpwg.org/specs/rfc6266.html
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url-scheme
https://httpwg.org/specs/rfc6266.html
https://httpwg.org/specs/rfc6266.html
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined

13. Sanitize: Optionally, allow the user to influence filename. For example, a user agent could prompt the user for a filename,
potentially providing the value of filename as determined above as a default value.

14. Adjust filename to be suitable for the local file system.

15. If the platform conventions do not in any way use extensionsp312 to determine the types of file on the file system, then return
filename as the filename.

16. Let claimed type be the type given by the resource's Content-Type metadatap98, if any is known. Let named type be the type
given by filename's extensionp312, if any is known. For the purposes of this step, a type is a mapping of a MIME type to an
extensionp312.

17. If named type is consistent with the user's preferences (e.g., because the value of filename was determined by prompting
the user), then return filename as the filename.

18. If claimed type and named type are the same type (i.e., the type given by the resource's Content-Type metadatap98 is
consistent with the type given by filename's extensionp312), then return filename as the filename.

19. If the claimed type is known, then alter filename to add an extensionp312 corresponding to claimed type.

Otherwise, if named type is known to be potentially dangerous (e.g. it will be treated by the platform conventions as a native
executable, shell script, HTML application, or executable-macro-capable document) then optionally alter filename to add a
known-safe extensionp312 (e.g. ".txt").

20. Return filename as the filename.

For the purposes of this algorithm, a file extension consists of any part of the filename that platform conventions dictate will be used
for identifying the type of the file. For example, many operating systems use the part of the filename following the last dot (".") in the
filename to determine the type of the file, and from that the manner in which the file is to be opened or executed.

User agents should ignore any directory or path information provided by the resource itself, its URL, and any downloadp303 attribute, in
deciding where to store the resulting file in the user's file system.

If a hyperlinkp302 created by an ap257 or areap471 element has a pingp303 attribute, and the user follows the hyperlink, and the value of
the element's hrefp303 attribute can be parsedp97, relative to the element's node document, without failure, then the user agent must
take the pingp303 attribute's value, split that string on ASCII whitespace, parsep97 each resulting token, relative to the element's node
document, and then run these steps for each resulting URL ping URL, ignoring when parsing returns failure:

1. If ping URL's scheme is not an HTTP(S) scheme, then return.

2. Optionally, return. (For example, the user agent might wish to ignore any or all ping URLs in accordance with the user's
expressed preferences.)

This could be dangerous, because, for instance, a hostile server could be trying to get a user to
unknowingly download private information and then re-upload it to the hostile server, by tricking the user
into thinking the data is from the hostile server.

Thus, it is in the user's interests that the user be somehow notified that the resource in question comes
from quite a different source, and to prevent confusion, any suggested filename from the potentially
hostile interface origin should be ignored.

For example, this could involve removing characters that are not legal in filenames, or trimming leading and trailing
whitespace.

Example

This last step would make it impossible to download executables, which might not be desirable. As always, implementers
are forced to balance security and usability in this matter.

Note

4.6.6 Hyperlink auditing §p31

2

312

https://mimesniff.spec.whatwg.org/#mime-type
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme

3. Let settingsObject be the element's node document's relevant settings objectp1083.

4. Let request be a new request whose URL is ping URL, method is `POST`, header list is « (`Content-Typep98`, `text/
pingp1447`) », body is `PING`, client is settingsObject, destination is the empty string, credentials mode is "include", referrer
is "no-referrer", and whose use-URL-credentials flag is set, and whose initiator type is "ping".

5. Let target URL be the result of encoding-parsing-and-serializing a URLp97 given the element's hrefp303 attribute's value,
relative to the element's node document, and then:

↪ If the URL of the Documentp130 object containing the hyperlink being audited and ping URL have the same
originp899

↪ If the origins are different, but the scheme of the URL of the Documentp130 containing the hyperlink being
audited is not "https"

request must include a `Ping-Fromp313` header with, as its value, the URL of the document containing the hyperlink,
and a `Ping-Top313` HTTP header with, as its value, the target URL.

↪ Otherwise
request must include a `Ping-Top313` HTTP header with, as its value, target URL. request does not include a
`Ping-Fromp313` header.

6. Fetch request.

This may be done in parallelp43 with the primary fetch, and is independent of the result of that fetch.

User agents should allow the user to adjust this behavior, for example in conjunction with a setting that disables the sending of HTTP
`Referer` (sic) headers. Based on the user's preferences, UAs may either ignorep45 the pingp303 attribute altogether, or selectively
ignore URLs in the list (e.g. ignoring any third-party URLs); this is explicitly accounted for in the steps above.

User agents must ignore any entity bodies returned in the responses. User agents may close the connection prematurely once they
start receiving a response body.

When the pingp303 attribute is present, user agents should clearly indicate to the user that following the hyperlink will also cause
secondary requests to be sent in the background, possibly including listing the actual target URLs.

The `Ping-From` and `Ping-To` HTTP request headers are included in hyperlink auditingp312 requests. Their value is a URL, serialized.

Note

For example, a visual user agent could include the hostnames of the target ping URLs along with the hyperlink's actual URL in a
status bar or tooltip.

Example

The pingp303 attribute is redundant with pre-existing technologies like HTTP redirects and JavaScript in allowing web pages to track
which off-site links are most popular or allowing advertisers to track click-through rates.

However, the pingp303 attribute provides these advantages to the user over those alternatives:

• It allows the user to see the final target URL unobscured.

• It allows the UA to inform the user about the out-of-band notifications.

• It allows the user to disable the notifications without losing the underlying link functionality.

• It allows the UA to optimize the use of available network bandwidth so that the target page loads faster.

Thus, while it is possible to track users without this feature, authors are encouraged to use the pingp303 attribute so that the user
agent can make the user experience more transparent.

Note

4.6.6.1 The `Ping-Fromp313` and `Ping-Top313` headers §p31

3

313

https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-method
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#request-initiator-type
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-fetch
https://httpwg.org/specs/rfc7231.html#header.referer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer

The following table summarizes the link types that are defined by this specification, by their corresponding keywords. This table is non-
normative; the actual definitions for the link types are given in the next few sections.

In this section, the term referenced document refers to the resource identified by the element representing the link, and the term
current document refers to the resource within which the element representing the link finds itself.

To determine which link types apply to a linkp177, ap257, areap471, or formp514 element, the element's rel attribute must be split on
ASCII whitespace. The resulting tokens are the keywords for the link types that apply to that element.

Except where otherwise specified, a keyword must not be specified more than once per relp303 attribute.

Some of the sections that follow the table below list synonyms for certain keywords. The indicated synonyms are to be handled as
specified by user agents, but must not be used in documents (for example, the keyword "copyright").

Keywords are always ASCII case-insensitive, and must be compared as such.

Keywords that are body-ok affect whether linkp177 elements are allowed in the bodyp179. The body-okp314 keywords are dns-
prefetchp317, modulepreloadp323, pingbackp326, preconnectp326, prefetchp327, preloadp328, and stylesheetp331.

New link types that are to be implemented by web browsers are to be added to this standard. The remainder can be registered as
extensionsp335.

Link type Effect on... body-
okp314

Has `Link`
processing

Brief description
linkp177 ap257 and

areap471
formp514

alternatep315 Hyperlinkp302 not
allowed

· · Gives alternate representations of the current document.

canonicalp317 Hyperlinkp302 not allowed · · Gives the preferred URL for the current document.
authorp316 Hyperlinkp302 not

allowed
· · Gives a link to the author of the current document or article.

bookmarkp317 not allowed Hyperlinkp302 not
allowed

· · Gives the permalink for the nearest ancestor section.

dns-prefetchp317 External
Resourcep302

not allowed Yes · Specifies that the user agent should preemptively perform DNS resolution for the
target resource's originp898.

expectp318 Internal
Resourcep302

not allowed · · Expect an element with the target ID to appear in the current document.

externalp319 not allowed Annotationp303 · · Indicates that the referenced document is not part of the same site as the current
document.

helpp319 Hyperlinkp302 · · Provides a link to context-sensitive help.
iconp320 External

Resourcep302
not allowed · · Imports an icon to represent the current document.

manifestp322 External
Resourcep302

not allowed · · Imports or links to an application manifest. [MANIFEST]p1479

modulepreloadp323 External
Resourcep302

not allowed Yes · Specifies that the user agent must preemptively fetch the module scriptp1091 and
store it in the document's module mapp131 for later evaluation. Optionally, the
module's dependencies can be fetched as well.

licensep321 Hyperlinkp302 · · Indicates that the main content of the current document is covered by the
copyright license described by the referenced document.

nextp335 Hyperlinkp302 · · Indicates that the current document is a part of a series, and that the next
document in the series is the referenced document.

nofollowp325 not allowed Annotationp303 · · Indicates that the current document's original author or publisher does not
endorse the referenced document.

noopenerp325 not allowed Annotationp303 · · Creates a top-level traversablep990 with a non-auxiliary browsing contextp999 if the
hyperlink would otherwise create one that was auxiliary (i.e., has an appropriate
targetp303 attribute value).

noreferrerp325 not allowed Annotationp303 · · No `Referer` (sic) header will be included. Additionally, has the same effect as
noopenerp325.

openerp325 not allowed Annotationp303 · · Creates an auxiliary browsing contextp999 if the hyperlink would otherwise create a
top-level traversablep990 with a non-auxiliary browsing contextp999 (i.e., has

Thus, rel="next" is the same as rel="NEXT".
Example

4.6.7 Link types §p31

4

✔ MDN

314

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://httpwg.org/specs/rfc8288.html#header
https://w3c.github.io/manifest/#dfn-manifest
https://httpwg.org/specs/rfc7231.html#header.referer

Link type Effect on... body-
okp314

Has `Link`
processing

Brief description
linkp177 ap257 and

areap471
formp514

"_blank" as targetp303 attribute value).
pingbackp326 External

Resourcep302
not allowed Yes · Gives the address of the pingback server that handles pingbacks to the current

document.
preconnectp326 External

Resourcep302
not allowed Yes Yes Specifies that the user agent should preemptively connect to the target resource's

originp898.
prefetchp327 External

Resourcep302
not allowed Yes · Specifies that the user agent should preemptively fetch and cache the target

resource as it is likely to be required for a followup navigationp1014.
preloadp328 External

Resourcep302
not allowed Yes Yes Specifies that the user agent must preemptively fetch and cache the target

resource for current navigationp1014 according to the potential destination given by
the asp181 attribute (and the priority associated with the corresponding
destination).

prevp335 Hyperlinkp302 · · Indicates that the current document is a part of a series, and that the previous
document in the series is the referenced document.

privacy-
policyp331

Hyperlinkp302 not
allowed

· · Gives a link to information about the data collection and usage practices that
apply to the current document.

searchp331 Hyperlinkp302 · · Gives a link to a resource that can be used to search through the current
document and its related pages.

stylesheetp331 External
Resourcep302

not allowed Yes · Imports a style sheet.

tagp334 not allowed Hyperlinkp302 not
allowed

· · Gives a tag (identified by the given address) that applies to the current document.

terms-of-
servicep335

Hyperlinkp302 not
allowed

· · Gives a link to information about the agreements between the current document's
provider and users who wish to use the current document.

The alternatep315 keyword may be used with linkp177, ap257, and areap471 elements.

The meaning of this keyword depends on the values of the other attributes.

↪ If the element is a linkp177 element and the relp178 attribute also contains the keyword stylesheetp331

The alternatep315 keyword modifies the meaning of the stylesheetp331 keyword in the way described for that keyword. The
alternatep315 keyword does not create a link of its own.

↪ If the alternatep315 keyword is used with the typep303 attribute set to the value application/rss+xml or the value
application/atom+xml

The keyword creates a hyperlinkp302 referencing a syndication feed (though not necessarily syndicating exactly the same
content as the current page).

For the purposes of feed autodiscovery, user agents should consider all linkp177 elements in the document with the
alternatep315 keyword used and with their typep303 attribute set to the value application/rss+xml or the value application/
atom+xml. If the user agent has the concept of a default syndication feed, the first such element (in tree order) should be used
as the default.

4.6.7.1 Link type "alternate" §p31

5

Here, a set of linkp177 elements provide some style sheets:

<!-- a persistent style sheet -->
<link rel="stylesheet" href="default.css">

<!-- the preferred alternate style sheet -->
<link rel="stylesheet" href="green.css" title="Green styles">

<!-- some alternate style sheets -->
<link rel="alternate stylesheet" href="contrast.css" title="High contrast">
<link rel="alternate stylesheet" href="big.css" title="Big fonts">
<link rel="alternate stylesheet" href="wide.css" title="Wide screen">

Example

⚠ MDN

315

https://httpwg.org/specs/rfc8288.html#header
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://fetch.spec.whatwg.org/#concept-request-destination
https://dom.spec.whatwg.org/#concept-tree-order

↪ Otherwise
The keyword creates a hyperlinkp302 referencing an alternate representation of the current document.

The nature of the referenced document is given by the hreflangp303, and typep303 attributes.

If the alternatep315 keyword is used with the hreflangp303 attribute, and that attribute's value differs from the document
element's languagep158, it indicates that the referenced document is a translation.

If the alternatep315 keyword is used with the typep303 attribute, it indicates that the referenced document is a reformulation of
the current document in the specified format.

The hreflangp303 and typep303 attributes can be combined when specified with the alternatep315 keyword.

This relationship is transitive — that is, if a document links to two other documents with the link type "alternatep315", then, in
addition to implying that those documents are alternative representations of the first document, it is also implying that those
two documents are alternative representations of each other.

The authorp316 keyword may be used with linkp177, ap257, and areap471 elements. This keyword creates a hyperlinkp302.

The following linkp177 elements give syndication feeds for a blog:

<link rel="alternate" type="application/atom+xml" href="posts.xml" title="Cool Stuff Blog">
<link rel="alternate" type="application/atom+xml" href="posts.xml?category=robots" title="Cool
Stuff Blog: robots category">
<link rel="alternate" type="application/atom+xml" href="comments.xml" title="Cool Stuff Blog:
Comments">

Such linkp177 elements would be used by user agents engaged in feed autodiscovery, with the first being the default (where
applicable).

The following example offers various different syndication feeds to the user, using ap257 elements:

<p>You can access the planets database using Atom feeds:</p>

<a href="recently-visited-planets.xml" rel="alternate" type="application/

atom+xml">Recently Visited Planets
Known Bad

Planets
Unexplored

Planets

These links would not be used in feed autodiscovery.

Example

The following example shows how you can specify versions of the page that use alternative formats, are aimed at other
languages, and that are intended for other media:

<link rel=alternate href="/en/html" hreflang=en type=text/html title="English HTML">
<link rel=alternate href="/fr/html" hreflang=fr type=text/html title="French HTML">
<link rel=alternate href="/en/html/print" hreflang=en type=text/html media=print
title="English HTML (for printing)">
<link rel=alternate href="/fr/html/print" hreflang=fr type=text/html media=print title="French
HTML (for printing)">
<link rel=alternate href="/en/pdf" hreflang=en type=application/pdf title="English PDF">
<link rel=alternate href="/fr/pdf" hreflang=fr type=application/pdf title="French PDF">

Example

4.6.7.2 Link type "author" §p31

6

316

https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element

For ap257 and areap471 elements, the authorp316 keyword indicates that the referenced document provides further information about the
author of the nearest articlep206 element ancestor of the element defining the hyperlink, if there is one, or of the page as a whole,
otherwise.

For linkp177 elements, the authorp316 keyword indicates that the referenced document provides further information about the author
for the page as a whole.

Synonyms: For historical reasons, user agents must also treat linkp177, ap257, and areap471 elements that have a rev attribute with the
value "made" as having the authorp316 keyword specified as a link relationship.

The bookmarkp317 keyword may be used with ap257 and areap471 elements. This keyword creates a hyperlinkp302.

The bookmarkp317 keyword gives a permalink for the nearest ancestor articlep206 element of the linking element in question, or of the
section the linking element is most closely associated withp0, if there are no ancestor articlep206 elements.

The canonicalp317 keyword may be used with linkp177 element. This keyword creates a hyperlinkp302.

The canonicalp317 keyword indicates that URL given by the hrefp178 attribute is the preferred URL for the current document. That helps
search engines reduce duplicate content, as described in more detail in The Canonical Link Relation. [RFC6596]p1482

The dns-prefetchp317 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302. This keyword is
body-okp314.

The "referenced document" can be, and often is, a mailto: URL giving the email address of the author. [MAILTO]p1479

Note

4.6.7.3 Link type "bookmark" §p31

7

The following snippet has three permalinks. A user agent could determine which permalink applies to which part of the spec by
looking at where the permalinks are given.

...
<body>
<h1>Example of permalinks</h1>
<div id="a">
<h2>First example</h2>
<p>This permalink applies to
only the content from the first H2 to the second H2. The DIV isn't
exactly that section, but it roughly corresponds to it.</p>

</div>
<h2>Second example</h2>
<article id="b">
<p>This permalink applies to
the outer ARTICLE element (which could be, e.g., a blog post).</p>
<article id="c">
<p>This permalink applies to
the inner ARTICLE element (which could be, e.g., a blog comment).</p>

</article>
</article>

</body>
...

Example

4.6.7.4 Link type "canonical" §p31

7

4.6.7.5 Link type "dns-prefetch" §p31

7

MDN

317

https://www.rfc-editor.org/rfc/rfc6068#section-2

The dns-prefetchp317 keyword indicates that preemptively performing DNS resolution for the originp898 of the specified resource is
likely to be beneficial, as it is highly likely that the user will require resources located at that originp898, and the user experience would
be improved by preempting the latency costs associated with DNS resolution.

There is no default type for resources given by the dns-prefetchp317 keyword.

The appropriate times to fetch and processp183 this type of link are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

The fetch and process the linked resourcep183 steps for this type of linked resource, given a linkp177 element el, are:

1. Let url be the result of encoding-parsing a URLp97 given el's hrefp178 attribute's value, relative to el's node document.

2. If url is failure, then return.

3. Let partitionKey be the result of determining the network partition key given el's node document's relevant settings
objectp1083.

4. The user agent should resolve an origin given partitionKey and url's origin.

The expectp318 keyword may be used with linkp177 elements. This keyword creates an internal resource linkp302.

An internal resource linkp302 created by the expectp318 keyword can be used to block renderingp134 until the element that it
indicatesp1054 is connected to the document and fully parsed.

There is no default type for resources given by the expectp318 keyword.

Whenever any of the following conditions occur for a linkp177 element el:

• the expectp318 internal resource linkp302 is created on el that is already browsing-context connectedp46;

• an expectp318 internal resource linkp302 has been created on el and el becomes browsing-context connectedp46;

• an expectp318 internal resource linkp302 has been created on el, el is already browsing-context connectedp46, and el's hrefp178

attribute is set, changed, or removed; or

• an expectp318 internal resource linkp302 has been created on el, el is already browsing-context connectedp46, and el's
mediap179 attribute is set, changed, or removed,

then processp318 el.

To process internal resource link given a linkp177 element el, run these steps:

1. Let doc be el's node document.

2. Let url be the result of encoding-parsing a URLp97 given el's hrefp178 attribute's value, relative to doc.

3. If this fails, or if url does not equal doc's URL with exclude fragments set to false, then unblock renderingp135 on el and return.

4. Let indicatedElement be the result of selecting the indicated partp1054 given doc and url.

5. If all of the following are true:

◦ doc's current document readinessp133 is "loading";

As the results of this algorithm can be cached, future fetches could be faster.
Note

4.6.7.6 Link type "expect" §p31

8

318

https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#determine-the-network-partition-key
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#resolve-an-origin
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-equals
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#url-equals-exclude-fragments

◦ el creates an internal resource linkp302;

◦ el is browsing-context connectedp46;

◦ el's relp178 attribute contains expectp318;

◦ el is potentially render-blockingp103;

◦ el's mediap179 attribute matches the environmentp95; and

◦ indicatedElement is not an element, or is on a stack of open elementsp1286 of an HTML parserp1271 whose associated
Documentp130 is doc,

then block renderingp134 on el.

6. Otherwise, unblock renderingp135 on el.

To process internal resource links given a Documentp130 doc:

1. For each expectp318 linkp177 element link in doc's render-blocking element setp134, processp318 link.

The following attribute change steps, given element, localName, value, and namespace, are used to ensure expectp318 linkp177

elements respond to dynamic idp154 and namep1427 changes:

1. If namespace is not null, then return.

2. If element is in a stack of open elementsp1286 of an HTML parserp1271, then return.

3. If any of the following is true:

◦ localName is idp154; or

◦ localName is namep1427 and element is an ap257 element,

then process internal resource linksp319 given element's node document.

The externalp319 keyword may be used with ap257, areap471, and formp514 elements. This keyword does not create a hyperlinkp302, but
annotatesp303 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The externalp319 keyword indicates that the link is leading to a document that is not part of the site that the current document forms a
part of.

The helpp319 keyword may be used with linkp177, ap257, areap471, and formp514 elements. This keyword creates a hyperlinkp302.

For ap257, areap471, and formp514 elements, the helpp319 keyword indicates that the referenced document provides further help
information for the parent of the element defining the hyperlink, and its children.

For linkp177 elements, the helpp319 keyword indicates that the referenced document provides help for the page as a whole.

For ap257 and areap471 elements, on some browsers, the helpp319 keyword causes the link to use a different cursor.

4.6.7.7 Link type "external" §p31

9

4.6.7.8 Link type "help" §p31

9

In the following example, the form control has associated context-sensitive help. The user agent could use this information, for
example, displaying the referenced document if the user presses the "Help" or "F1" key.

<p><label> Topic: <input name=topic> (Help)</label></p>

Example

319

https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://dom.spec.whatwg.org/#concept-node-document

The iconp320 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302.

The specified resource is an icon representing the page or site, and should be used by the user agent when representing the page in
the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are provided, the user agent must select the most
appropriate icon according to the typep179, mediap179, and sizesp180 attributes. If there are multiple equally appropriate icons, user
agents must use the last one declared in tree order at the time that the user agent collected the list of icons. If the user agent tries to
use an icon but that icon is determined, upon closer examination, to in fact be inappropriate (e.g. because it uses an unsupported
format), then the user agent must try the next-most-appropriate icon as determined by the attributes.

There is no default type for resources given by the iconp320 keyword. However, for the purposes of determining the type of the
resourcep182, user agents must expect the resource to be an image.

The sizesp180 keywords represent icon sizes in raw pixels (as opposed to CSS pixels).

To parse and process the attribute's value, the user agent must first split the attribute's value on ASCII whitespace, and must then
parse each resulting keyword to determine what it represents.

The any keyword represents that the resource contains a scalable icon, e.g. as provided by an SVG image.

Other keywords must be further parsed as follows to determine what they represent:

• If the keyword doesn't contain exactly one U+0078 LATIN SMALL LETTER X or U+0058 LATIN CAPITAL LETTER X character,
then this keyword doesn't represent anything. Return for that keyword.

• Let width string be the string before the "x" or "X".

• Let height string be the string after the "x" or "X".

• If either width string or height string start with a U+0030 DIGIT ZERO (0) character or contain any characters other than
ASCII digits, then this keyword doesn't represent anything. Return for that keyword.

• Apply the rules for parsing non-negative integersp77 to width string to obtain width.

• Apply the rules for parsing non-negative integersp77 to height string to obtain height.

• The keyword represents that the resource contains a bitmap icon with a width of width device pixels and a height of height
device pixels.

The keywords specified on the sizesp180 attribute must not represent icon sizes that are not actually available in the linked resource.

The linked resource fetch setup stepsp183 for this type of linked resource, given a linkp177 element el and request request, are:

1. Set request's destination to "image".

2. Return true.

The process a link headerp184 steps for this type of linked resource are to do nothing.

In the absence of a linkp177 with the iconp320 keyword, for Documentp130 objects whose URL's scheme is an HTTP(S) scheme, user
agents may instead run these steps in parallelp43:

1. Let request be a new request whose URL is the URL record obtained by resolving the URL "/favicon.ico" against the
Documentp130 object's URL, client is the Documentp130 object's relevant settings objectp1083, destination is "image", synchronous

4.6.7.9 Link type "icon" §p32

0

User agents are not required to update icons when the list of icons changes, but are encouraged to do so.
Note

An icon that is 50 CSS pixels wide intended for displays with a device pixel density of two device pixels per CSS pixel (2x, 192dpi)
would have a width of 100 raw pixels. This feature does not support indicating that a different resource is to be used for small
high-resolution icons vs large low-resolution icons (e.g. 50×50 2x vs 100×100 1x).

Note

✔ MDN

320

https://dom.spec.whatwg.org/#concept-tree-order
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-digit
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-destination
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#synchronous-flag

flag is set, credentials mode is "include", and whose use-URL-credentials flag is set.

2. Let response be the result of fetching request.

3. Use response's unsafe responsep98 as an icon as if it had been declared using the iconp320 keyword.

For historical reasons, the iconp320 keyword may be preceded by the keyword "shortcut". If the "shortcut" keyword is present, the
relp303 attribute's entire value must be an ASCII case-insensitive match for the string "shortcut icon" (with a single U+0020 SPACE
character between the tokens and no other ASCII whitespace).

The licensep321 keyword may be used with linkp177, ap257, areap471, and formp514 elements. This keyword creates a hyperlinkp302.

The licensep321 keyword indicates that the referenced document provides the copyright license terms under which the main content of
the current document is provided.

This specification does not specify how to distinguish between the main content of a document and content that is not deemed to be
part of that main content. The distinction should be made clear to the user.

The following snippet shows the top part of an application with several icons.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>lsForums — Inbox</title>
<link rel=icon href=favicon.png sizes="16x16" type="image/png">
<link rel=icon href=windows.ico sizes="32x32 48x48" type="image/vnd.microsoft.icon">
<link rel=icon href=mac.icns sizes="128x128 512x512 8192x8192 32768x32768">
<link rel=icon href=iphone.png sizes="57x57" type="image/png">
<link rel=icon href=gnome.svg sizes="any" type="image/svg+xml">
<link rel=stylesheet href=lsforums.css>
<script src=lsforums.js></script>
<meta name=application-name content="lsForums">

</head>
<body>
...

Example

4.6.7.10 Link type "license" §p32

1

Consider a photo sharing site. A page on that site might describe and show a photograph, and the page might be marked up as
follows:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Exampl Pictures: Kissat</title>
<link rel="stylesheet" href="/style/default">

</head>
<body>
<h1>Kissat</h1>
<nav>
Return to photo index

</nav>
<figure>

<figcaption>Kissat</figcaption>

</figure>
<p>One of them has six toes!</p>

Example

321

https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace

Synonyms: For historical reasons, user agents must also treat the keyword "copyright" like the licensep321 keyword.

The manifestp322 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302.

The manifestp322 keyword indicates the manifest file that provides metadata associated with the current document.

There is no default type for resources given by the manifestp322 keyword.

When a web application is not installed, the appropriate time to fetch and process the linked resourcep183 for this link type is when the
user agent deems it necessary. For example, when the user chooses to install the web application.

For an installed web application, the appropriate times to fetch and process the linked resourcep183 for this link type are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

In any case, only the first linkp177 element in tree order whose relp178 attribute contains the token manifestp322 may be used.

A user agent must not delay the load eventp1359 for this link type.

The linked resource fetch setup stepsp183 for this type of linked resource, given a linkp177 element el and request request, are:

1. Let navigable be el's node document's node navigablep989.

2. If navigable is null, then return false.

3. If navigable is not a top-level traversablep990, then return false.

4. Set request's initiator to "manifest".

5. Set request's destination to "manifest".

6. Set request's mode to "cors".

7. Set request's credentials mode to the CORS settings attribute credentials modep99 for el's crossoriginp179 content attribute.

8. Return true.

To process this type of linked resourcep184 given a linkp177 element el, boolean success, response response, and byte sequence
bodyBytes:

1. If response's Content-Type metadatap98 is not a JSON MIME type, then set success to false.

<p><small>MIT
Licensed</small></p>

<footer>
Home | Photo index
<p><small>© copyright 2009 Exampl Pictures. All Rights Reserved.</small></p>

</footer>
</body>

</html>

In this case the licensep321 applies to just the photo (the main content of the document), not the whole document. In particular not
the design of the page itself, which is covered by the copyright given at the bottom of the document. This could be made clearer in
the styling (e.g. making the license link prominently positioned near the photograph, while having the page copyright in light small
text at the foot of the page).

4.6.7.11 Link type "manifest" §p32

2

⚠ MDN

322

https://w3c.github.io/manifest/#dfn-installed-web-application
https://w3c.github.io/manifest/#dfn-installed-web-application
https://w3c.github.io/manifest/#dfn-installed-web-application
https://dom.spec.whatwg.org/#concept-tree-order
https://fetch.spec.whatwg.org/#concept-request
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://mimesniff.spec.whatwg.org/#json-mime-type

2. If success is true:

1. Let document URL be el's node document's URL.

2. Let manifest URL be response's URL.

3. Process the manifest given document URL, manifest URL, and bodyBytes. [MANIFEST]p1479

The process a link headerp184 steps for this type of linked resource are to do nothing.

The modulepreloadp323 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302. This keyword
is body-okp314.

The modulepreloadp323 keyword is a specialized alternative to the preloadp328 keyword, with a processing model geared toward
preloading module scriptsp1085. In particular, it uses the specific fetch behavior for module scripts (including, e.g., a different
interpretation of the crossoriginp179 attribute), and places the result into the appropriate module mapp131 for later evaluation. In
contrast, a similar external resource linkp302 using the preloadp328 keyword would place the result in the preload cache, without
affecting the document's module mapp131.

Additionally, implementations can take advantage of the fact that module scriptsp1085 declare their dependencies in order to fetch the
specified module's dependency as well. This is intended as an optimization opportunity, since the user agent knows that, in all
likelihood, those dependencies will also be needed later. It will not generally be observable without using technology such as service
workers, or monitoring on the server side. Notably, the appropriate loadp1471 or errorp1471 events will occur after the specified module
is fetched, and will not wait for any dependencies.

A user agent must not delay the load eventp1359 for this link type.

The appropriate times to fetch and process the linked resourcep183 for such a link are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

The fetch and process the linked resourcep183 algorithm for modulepreloadp323 links, given a linkp177 element el, is as follows:

1. If el's hrefp178 attribute's value is the empty string, then return.

2. Let destination be the current state of el's asp181 attribute (a destination), or "script" if it is in no state.

3. If destination is not script-like, then queue an element taskp1125 on the networking task sourcep1134 given el to fire an event
named errorp1471 at el, and return.

4. Let url be the result of encoding-parsing a URLp97 given el's hrefp178 attribute's value, relative to el's node document.

5. If url is failure, then return.

6. Let settings object be el's node document's relevant settings objectp1083.

7. Let credentials mode be the CORS settings attribute credentials modep99 for el's crossoriginp179 attribute.

8. Let cryptographic nonce be el.[[CryptographicNonce]]p100.

9. Let integrity metadata be the value of el's integrityp179 attribute, if it is specified, or the empty string otherwise.

10. If el does not have an integrityp179 attribute, then set integrity metadata to the result of resolving a module integrity

4.6.7.12 Link type "modulepreload" §p32

3

Unlike some other link relations, changing the relevant attributes (such as asp181, crossoriginp179, and referrerpolicyp179) of
such a linkp177 does not trigger a new fetch. This is because the document's module mapp131 has already been populated by a
previous fetch, and so re-fetching would be pointless.

Note

MDN

323

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-response-url
https://w3c.github.io/manifest/#dfn-processing-a-manifest
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

metadatap1086 with url and settings object.

11. Let referrer policy be the current state of el's referrerpolicyp179 attribute.

12. Let fetch priority be the current state of el's fetchpriorityp181 attribute.

13. Let options be a script fetch optionsp1085 whose cryptographic noncep1086 is cryptographic nonce, integrity metadatap1086 is
integrity metadata, parser metadatap1086 is "not-parser-inserted", credentials modep1086 is credentials mode, referrer
policyp1086 is referrer policy, and fetch priorityp1086 is fetch priority.

14. Fetch a modulepreload module script graphp1089 given url, destination, settings object, options, and with the following steps
given result:

1. If result is null, then fire an event named errorp1471 at el, and return.

2. Fire an event named loadp1471 at el.

The process a link headerp184 steps for this type of linked resource are to do nothing.

The following snippet shows the top part of an application with several modules preloaded:

<!DOCTYPE html>
<html lang="en">
<title>IRCFog</title>

<link rel="modulepreload" href="app.mjs">
<link rel="modulepreload" href="helpers.mjs">
<link rel="modulepreload" href="irc.mjs">
<link rel="modulepreload" href="fog-machine.mjs">

<script type="module" src="app.mjs">
...

Assume that the module graph for the application is as follows:

app.mjs

irc.mjs fog-machine.js

helpers.mjs

Here we see the application developer has used modulepreloadp323 to declare all of the modules in their module graph, ensuring
that the user agent initiates fetches for them all. Without such preloading, the user agent might need to go through multiple
network roundtrips before discovering helpers.mjs, if technologies such as HTTP/2 Server Push are not in play. In this way,
modulepreloadp323 linkp177 elements can be used as a sort of "manifest" of the application's modules.

Example

The following code shows how modulepreloadp323 links can be used in conjunction with import() to ensure network fetching is
done ahead of time, so that when import() is called, the module is already ready (but not evaluated) in the module mapp1119:

<link rel="modulepreload" href="awesome-viewer.mjs">

<button onclick="import('./awesome-viewer.mjs').then(m => m.view())">
View awesome thing

</button>

Example

324

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-import-calls

The nofollowp325 keyword may be used with ap257, areap471, and formp514 elements. This keyword does not create a hyperlinkp302, but
annotatesp303 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The nofollowp325 keyword indicates that the link is not endorsed by the original author or publisher of the page, or that the link to the
referenced document was included primarily because of a commercial relationship between people affiliated with the two pages.

The noopenerp325 keyword may be used with ap257, areap471, and formp514 elements. This keyword does not create a hyperlinkp302, but
annotatesp303 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The keyword indicates that any newly created top-level traversablep990 which results from following the hyperlinkp302 will not contain an
auxiliary browsing contextp999. E.g., the resulting Windowp922 's openerp930 getter will return null.

The noreferrerp325 keyword may be used with ap257, areap471, and formp514 elements. This keyword does not create a hyperlinkp302, but
annotatesp303 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

It indicates that no referrer information is to be leaked when following the link and also implies the noopenerp325 keyword behavior
under the same conditions.

The openerp325 keyword may be used with ap257, areap471, and formp514 elements. This keyword does not create a hyperlinkp302, but

4.6.7.13 Link type "nofollow" §p32

5

4.6.7.14 Link type "noopener" §p32

5

See also the processing modelp998.
Note

This typically creates a top-level traversablep990 with an auxiliary browsing contextp999 (assuming there is no existing navigablep989

whose target namep989 is "example"):

Help!

This creates a top-level traversablep990 with a non-auxiliary browsing contextp999 (assuming the same thing):

Help!

These are equivalent and only navigate the parent navigablep989:

Home

Home

Example

4.6.7.15 Link type "noreferrer" §p32

5

See also the processing modelp310 where referrer is directly manipulated.
Note

 has the same behavior as <a href="..." rel="noreferrer noopener"
target="_blank">.

Example

4.6.7.16 Link type "opener" §p32

5

✔ MDN

✔ MDN

325

annotatesp303 any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The keyword indicates that any newly created top-level traversablep990 which results from following the hyperlinkp302 will contain an
auxiliary browsing contextp999.

The pingbackp326 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302. This keyword is
body-okp314.

For the semantics of the pingbackp326 keyword, see Pingback 1.0. [PINGBACK]p1481

The preconnectp326 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302. This keyword is
body-okp314.

The preconnectp326 keyword indicates that preemptively initiating a connection to the originp898 of the specified resource is likely to be
beneficial, as it is highly likely that the user will require resources located at that originp898, and the user experience would be improved
by preempting the latency costs associated with establishing the connection.

There is no default type for resources given by the preconnectp326 keyword.

A user agent must not delay the load eventp1359 for this link type.

The appropriate times to fetch and processp183 this type of link are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

• When the crossoriginp179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is set, changed, or removed.

The fetch and process the linked resourcep183 steps for this type of linked resource, given a linkp177 element el, are to create link
optionsp185 from el and to preconnectp326 given the result.

The process a link headerp184 step for this type of linked resource given a link processing optionsp184 options are to preconnectp326 given
options.

To preconnect given a link processing optionsp184 options:

1. If options's hrefp185 is an empty string, return.

2. Let url be the result of encoding-parsing a URLp97 given options's hrefp185, relative to options's base URLp185.

See also the processing modelp309.
Note

In the following example the openerp325 is used to allow the help page popup to navigate its opener, e.g., in case what the user is
looking for can be found elsewhere. An alternative might be to use a named target, rather than _blank, but this has the potential
to clash with existing names.

Help!

Example

4.6.7.17 Link type "pingback" §p32

6

4.6.7.18 Link type "preconnect" §p32

6

✔ MDN

326

Passing the base URL instead of a document or environment is tracked by issue #9715.

3. If url is failure, then return.

4. If url's scheme is not an HTTP(S) scheme, then return.

5. Let partitionKey be the result of determining the network partition key given options's environmentp185.

6. Let useCredentials be true.

7. If options's crossoriginp185 is Anonymousp99 and options's originp185 does not have the same originp899 as url's origin, then set
useCredentials to false.

8. The user agent should obtain a connection given partitionKey, url's origin, and useCredentials.

The user agent should attempt to initiate a preconnect and perform the full connection handshake (DNS+TCP for HTTP, and
DNS+TCP+TLS for HTTPS origins) whenever possible, but is allowed to elect to perform a partial handshake (DNS only for
HTTP, and DNS or DNS+TCP for HTTPS origins), or skip it entirely, due to resource constraints or other reasons.

The optimal number of connections per origin is dependent on the negotiated protocol, users current connectivity profile,
available device resources, global connection limits, and other context specific variables. As a result, the decision for how
many connections should be opened is deferred to the user agent.

The prefetchp327 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302. This keyword is
body-okp314.

The prefetchp327 keyword indicates that preemptively fetching and caching the specified resource or same-site document is likely to
be beneficial, as it is highly likely that the user will require this resource for future navigations.

There is no default type for resources given by the prefetchp327 keyword.

The appropriate times to fetch and processp183 this type of link are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

• When the crossoriginp179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is set, changed, or removed.

The fetch and process the linked resourcep183 algorithm for prefetchp327 links, given a linkp177 element el, is as follows:

1. If el's hrefp178 attribute's value is the empty string, then return.

2. Let options be the result of creating link optionsp185 from el.

3. Set options's destinationp185 to the empty string.

4. Let request be the result of creating a link requestp184 given options.

5. If request is null, then return.

6. Set request's initiator to "prefetch".

7. Let processPrefetchResponse be the following steps given a response response and null, failure, or a byte sequence
bytesOrNull:

1. If response is a network error, fire an event named errorp1471 at el.

This connection is obtained but not used directly. It will remain in the connection pool for subsequent use.
Note

4.6.7.19 Link type "prefetch" §p32

7

MDN

327

https://github.com/whatwg/html/issues/9715
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#determine-the-network-partition-key
https://url.spec.whatwg.org/#concept-url-origin
https://fetch.spec.whatwg.org/#concept-connection-obtain
https://url.spec.whatwg.org/#concept-url-origin
https://fetch.spec.whatwg.org/#concept-connection-pool
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-network-error
https://dom.spec.whatwg.org/#concept-event-fire

2. Otherwise, fire an event named loadp1471 at el.

8. The user agent should fetch request, with processResponseConsumeBody set to processPrefetchResponse. User agents may
delay the fetching of request to prioritize other requests that are necessary for the current document.

The process a link headerp184 steps for this type of linked resource are to do nothing.

The preloadp328 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302. This keyword is
body-okp314.

The preloadp328 keyword indicates that the user agent will preemptively fetch and cache the specified resource according to the
potential destination given by the asp181 attribute, and the priority given by the fetchpriorityp181 attribute, as it is highly likely that
the user will require this resource for the current navigation.

There is no default type for resources given by the preloadp328 keyword.

A user agent must not delay the load eventp1359 for this link type.

The appropriate times to fetch and process the linked resourcep183 for such a link are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

• When the asp181 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

• When the typep179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46, but was previously not obtained due to the typep179 attribute specifying an unsupported type for the request
destination, is set, removed, or changed.

• When the mediap179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46, but was previously not obtained due to the mediap179 attribute not matching the environmentp95, is changed or
removed.

A Documentp130 has a map of preloaded resources, which is an ordered map, initially empty.

A preload key is a struct. It has the following items:

URL
A URL

destination
A string

mode
A request mode, either "same-origin", "cors", or "no-cors"

credentials mode
A credentials mode

A preload entry is a struct. It has the following items:

integrity metadata
A string

4.6.7.20 Link type "preload" §p32

8

User-agents might perform additional operations when a resource is loaded, such as preemptively decoding imagesp351 or creating
stylesheets. However, these additional operations cannot have observable effects.

Note

⚠ MDN

328

https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-priority
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://fetch.spec.whatwg.org/#concept-request-destination
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item

response
Null or a response

on response available
Null, or an algorithm accepting a response or null

To consume a preloaded resource for Windowp922 window, given a URL url, a string destination, a string mode, a string
credentialsMode, a string integrityMetadata, and onResponseAvailable, which is an algorithm accepting a response:

1. Let key be a preload keyp328 whose URLp328 is url, destinationp328 is destination, modep328 is mode, and credentials modep328 is
credentialsMode.

2. Let preloads be window's associated Documentp923 's map of preloaded resourcesp328.

3. If key does not exist in preloads, then return false.

4. Let entry be preloads[key].

5. Let consumerIntegrityMetadata be the result of parsing integrityMetadata.

6. Let preloadIntegrityMetadata be the result of parsing entry's integrity metadatap328.

7. If none of the following conditions apply:

◦ consumerIntegrityMetadata is no metadata;

◦ consumerIntegrityMetadata is equal to preloadIntegrityMetadata; or

This comparison would ignore unknown integrity options. See issue #116.

then return false.

8. Remove preloads[key].

9. If entry's responsep329 is null, then set entry's on response availablep329 to onResponseAvailable.

10. Otherwise, call onResponseAvailable with entry's responsep329.

11. Return true.

For the purposes of this section, a string type matches a string destination if the following algorithm returns true:

1. If type is an empty string, then return true.

2. If destination is "fetch", then return true.

3. Let mimeTypeRecord be the result of parsing type.

4. If mimeTypeRecord is failure, then return false.

5. If mimeTypeRecord is not supported by the user agent, then return false.

6. If any of the following are true:

◦ destination is "audio" or "video", and mimeTypeRecord is an audio or video MIME type;

◦ destination is a script-like destination and mimeTypeRecord is a JavaScript MIME type;

A mistmatch in integrity metadata between the preload and the consumer, even if both match the data, would lead to an
additional fetch from the network.

Note

It is important that network errors are added to the preload cache so that if a preload request results in an error, the
erroneous response isn't re-requested from the network later. This also has security implications; consider the case
where a developer specifies subresource integrity metadata on a preload request, but not the following resource request.
If the preload request fails subresource integrity verification and is discarded, the resource request will fetch and
consume a potentially-malicious response from the network without verifying its integrity. [SRI]p1482

Note

329

https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#map-exists
https://w3c.github.io/webappsec-subresource-integrity/#parse-metadata
https://w3c.github.io/webappsec-subresource-integrity/#parse-metadata
https://github.com/w3c/webappsec-subresource-integrity/issues/116
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#map-remove
https://mimesniff.spec.whatwg.org/#parse-a-mime-type
https://mimesniff.spec.whatwg.org/#supported-by-the-user-agent
https://mimesniff.spec.whatwg.org/#audio-or-video-mime-type
https://fetch.spec.whatwg.org/#request-destination-script-like
https://mimesniff.spec.whatwg.org/#javascript-mime-type

◦ destination is "image" and mimeTypeRecord is an image MIME type;

◦ destination is "font" and mimeTypeRecord is a font MIME type;

◦ destination is "json" and mimeTypeRecord is a JSON MIME type;

◦ destination is "style" and mimeTypeRecord's essence is text/cssp1474; or

◦ destination is "track" and mimeTypeRecord's essence is text/vttp1474,

then return true.

7. Return false.

To create a preload key for a request request, return a new preload keyp328 whose URLp328 is request's URL, destinationp328 is
request's destination, modep328 is request's mode, and credentials modep328 is request's credentials mode.

To translate a preload destination given a string destination:

1. If destination is not "fetch", "font", "image", "script", "style", or "track", then return null.

2. Return the result of translating destination.

To preload given a link processing optionsp184 options and an optional processResponse, which is an algorithm accepting a response:

1. If options's typep185 doesn't matchp329 options's destinationp185, then return.

2. If options's destinationp185 is "image" and options's source setp185 is not null, then set options's hrefp185 to the result of
selecting an image sourcep371 from options's source setp185.

3. Let request be the result of creating a link requestp184 given options.

4. If request is null, then return.

5. Let unsafeEndTime be 0.

6. Let entry be a new preload entryp328 whose integrity metadatap328 is options's integrityp185.

7. Let key be the result of creating a preload keyp330 given request.

8. If options's documentp185 is "pending", then set request's initiator type to "early hint".

9. Let controller be null.

10. Let reportTiming given a Documentp130 document be to report timing for controller given document's relevant global
objectp1083.

11. Set controller to the result of fetching request, with processResponseConsumeBody set to the following steps given a
response response and null, failure, or a byte sequence bodyBytes:

1. If bodyBytes is a byte sequence, then set response's body to bodyBytes as a body.

2. Otherwise, set response to a network error.

3. Set unsafeEndTime to the unsafe shared current time.

4. If options's documentp185 is not null, then call reportTiming given options's documentp185.

5. If entry's on response availablep329 is null, then set entry's responsep329 to response; otherwise call entry's on
response availablep329 given response.

6. If processResponse is given, then call processResponse with response.

By using processResponseConsumeBody, we have extracted the entire body. This is necessary to ensure the
preloader loads the entire body from the network, regardless of whether the preload will be consumed (which
is uncertain at this point). This step then resets the request's body to a new body containing the same bytes,
so that other specifications can read from it at the time of actual consumption, despite us having already done
so once.

Note

330

https://mimesniff.spec.whatwg.org/#image-mime-type
https://mimesniff.spec.whatwg.org/#font-mime-type
https://mimesniff.spec.whatwg.org/#json-mime-type
https://mimesniff.spec.whatwg.org/#mime-type-essence
https://mimesniff.spec.whatwg.org/#mime-type-essence
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-potential-destination-translate
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#finalize-and-report-timing
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#byte-sequence-as-a-body
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#bodyinit-safely-extract
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-network-error
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time

12. Let commit be the following steps given a Documentp130 document:

1. If entry's responsep329 is not null, then call reportTiming given document.

2. Set document's map of preloaded resourcesp328[key] to entry.

13. If options's documentp185 is null, then set options's on document readyp185 to commit. Otherwise, call commit with options's
documentp185.

The fetch and process the linked resourcep183 steps for this type of linked resource, given a linkp177 element el, are:

1. Update the source setp372 for el.

2. Let options be the result of creating link optionsp185 from el.

3. Preloadp330 options, with the following steps given a response response:

1. If response is a network error, fire an event named errorp1471 at el. Otherwise, fire an event named loadp1471 at el.

The actual browsers' behavior is different from the spec here, and the feasibility of changing the behavior has
not yet been investigated. See issue #1142.

The process a link headerp184 step for this type of link given a link processing optionsp184 options is to preloadp330 options.

The privacy-policyp331 keyword may be used with linkp177, ap257, and areap471 elements. This keyword creates a hyperlinkp302.

The privacy-policyp331 keyword indicates that the referenced document contains information about the data collection and usage
practices that apply to the current document, as described in more detail in Additional Link Relation Types. The referenced document
may be a standalone privacy policy, or a specific section of some more general document. [RFC6903]p1482

The searchp331 keyword may be used with linkp177, ap257, areap471, and formp514 elements. This keyword creates a hyperlinkp302.

The searchp331 keyword indicates that the referenced document provides an interface specifically for searching the document and its
related resources.

The stylesheetp331 keyword may be used with linkp177 elements. This keyword creates an external resource linkp302 that contributes
to the styling processing model. This keyword is body-okp314.

The specified resource is a CSS style sheet that describes how to present the document.

If the alternatep315 keyword is also specified on the linkp177 element, then the link is an alternative style sheet; in this case, the
titlep157 attribute must be specified on the linkp177 element, with a non-empty value.

The default type for resources given by the stylesheetp331 keyword is text/cssp1474.

A linkp177 element of this type is implicitly potentially render-blockingp103 if the element was created by its node document's parser.

When the disabledp181 attribute of a linkp177 element with a stylesheetp331 keyword is set, disable the associated CSS style sheet.

4.6.7.21 Link type "privacy-policy" §p33

1

4.6.7.22 Link type "search" §p33

1

OpenSearch description documents can be used with linkp177 elements and the searchp331 link type to enable user agents to
autodiscover search interfaces. [OPENSEARCH]p1480

Note

4.6.7.23 Link type "stylesheet" §p33

1

⚠ MDN

331

https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://github.com/whatwg/html/issues/1142
https://drafts.csswg.org/cssom/#css-style-sheet
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/cssom/#disable-a-css-style-sheet
https://drafts.csswg.org/cssom/#associated-css-style-sheet

The appropriate times to fetch and processp183 this type of link are:

• When the external resource linkp302 is created on a linkp177 element that is already browsing-context connectedp46.

• When the external resource linkp302 's linkp177 element becomes browsing-context connectedp46.

• When the hrefp178 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is changed.

• When the disabledp181 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is set, changed, or removed.

• When the crossoriginp179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is set, changed, or removed.

• When the typep179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46 is set or changed to a value that does not or no longer matches the Content-Type metadatap98 of the previous
obtained external resource, if any.

• When the typep179 attribute of the linkp177 element of an external resource linkp302 that is already browsing-context
connectedp46, but was previously not obtained due to the typep179 attribute specifying an unsupported type, is removed or
changed.

• When the external resource linkp302 that is already browsing-context connectedp46 changes from being an alternative style
sheetp331 to not being one, or vice versa.

Quirk: If the document has been set to quirks mode, has the same originp899 as the URL of the external resource, and the Content-Type
metadatap98 of the external resource is not a supported style sheet type, the user agent must instead assume it to be text/cssp1474.

The linked resource fetch setup stepsp183 for this type of linked resource, given a linkp177 element el and request request, are:

1. If el's disabledp181 attribute is set, then return false.

2. If el contributes a script-blocking style sheetp204, append el to its node document's script-blocking style sheet setp204.

3. If el's mediap179 attribute's value matches the environmentp95 and el is potentially render-blockingp103, then block
renderingp134 on el.

4. If el is currently render-blockingp134, then set request's render-blocking to true.

5. Return true.

See issue #968 for plans to use the CSSOM fetch a CSS style sheet algorithm instead of the default fetch and process the linked
resourcep183 algorithm. In the meantime, any critical subresourcep45 request should have its render-blocking set to whether or not
the linkp177 element is currently render-blockingp134.

To process this type of linked resourcep184 given a linkp177 element el, boolean success, response response, and byte sequence
bodyBytes:

1. If the resource's Content-Type metadatap98 is not text/cssp1474, then set success to false.

2. If el no longer creates an external resource linkp302 that contributes to the styling processing model, or if, since the resource
in question was fetchedp183, it has become appropriate to fetchp183 it again, then:

1. Remove el from el's node document's script-blocking style sheet setp204.

2. Return.

3. If el has an associated CSS style sheet, remove the CSS style sheet.

4. If success is true, then:

1. Create a CSS style sheet with the following properties:

type
text/cssp1474

332

https://dom.spec.whatwg.org/#concept-document-quirks
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request
https://infra.spec.whatwg.org/#set-append
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#request-render-blocking
https://github.com/whatwg/html/issues/968
https://drafts.csswg.org/cssom/#fetching-css-style-sheets
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#request-render-blocking
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/cssom/#associated-css-style-sheet
https://drafts.csswg.org/cssom/#remove-a-css-style-sheet
https://drafts.csswg.org/cssom/#create-a-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-type

location
response's URL list[0]

We provide a URL here on the assumption that w3c/csswg-drafts issue #9316 will be fixed.

owner node
el

media
The mediap179 attribute of el.

title
The titlep179 attribute of el, if el is in a document tree, or the empty string otherwise.

alternate flag
Set if the link is an alternative style sheetp331 and el's explicitly enabledp181 is false; unset otherwise.

origin-clean flag
Set if the resource is CORS-same-originp98; unset otherwise.

parent CSS style sheet
owner CSS rule

null

disabled flag
Left at its default value.

CSS rules
Left uninitialized.

This doesn't seem right. Presumably we should be using bodyBytes? Tracked as issue #2997.

The CSS environment encoding is the result of running the following steps: [CSSSYNTAX]p1477

1. If el has a charsetp1427 attribute, get an encoding from that attribute's value. If that succeeds, return the
resulting encoding. [ENCODING]p1478

2. Otherwise, return the document's character encoding. [DOM]p1478

2. Fire an event named loadp1471 at el.

5. Otherwise, fire an event named errorp1471 at el.

6. If el contributes a script-blocking style sheetp204, then:

1. Assert: el's node document's script-blocking style sheet setp204 contains el.

2. Remove el from its node document's script-blocking style sheet setp204.

7. Unblock renderingp135 on el.

The process a link headerp184 steps for this type of linked resource are to do nothing.

This is a reference to the (possibly absent at this time) attribute, rather than a copy of the attribute's
current value. CSSOM defines what happens when the attribute is dynamically set, changed, or removed.

Note

This is similarly a reference to the attribute, rather than a copy of the attribute's current value.
Note

333

https://drafts.csswg.org/cssom/#concept-css-style-sheet-location
https://fetch.spec.whatwg.org/#concept-response-url-list
https://github.com/w3c/csswg-drafts/issues/9316
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-node
https://drafts.csswg.org/cssom/#concept-css-style-sheet-media
https://drafts.csswg.org/cssom/#concept-css-style-sheet-title
https://dom.spec.whatwg.org/#in-a-document-tree
https://drafts.csswg.org/cssom/#concept-css-style-sheet-alternate-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-origin-clean-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-parent-css-style-sheet
https://drafts.csswg.org/cssom/#concept-css-style-sheet-owner-css-rule
https://drafts.csswg.org/cssom/#concept-css-style-sheet-disabled-flag
https://drafts.csswg.org/cssom/#concept-css-style-sheet-css-rules
https://github.com/whatwg/html/issues/2997
https://drafts.csswg.org/css-syntax/#environment-encoding
https://encoding.spec.whatwg.org/#concept-encoding-get
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#concept-node-document

The tagp334 keyword may be used with ap257 and areap471 elements. This keyword creates a hyperlinkp302.

The tagp334 keyword indicates that the tag that the referenced document represents applies to the current document.

4.6.7.24 Link type "tag" §p33

4

Since it indicates that the tag applies to the current document, it would be inappropriate to use this keyword in the markup of a tag
cloudp776, which lists the popular tags across a set of pages.

Note

This document is about some gems, and so it is tagged with "https://en.wikipedia.org/wiki/Gemstone" to unambiguously
categorize it as applying to the "jewel" kind of gems, and not to, say, the towns in the US, the Ruby package format, or the Swiss
locomotive class:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>My Precious</title>

</head>
<body>
<header><h1>My precious</h1> <p>Summer 2012</p></header>
<p>Recently I managed to dispose of a red gem that had been
bothering me. I now have a much nicer blue sapphire.</p>
<p>The red gem had been found in a bauxite stone while I was digging
out the office level, but nobody was willing to haul it away. The
same red gem stayed there for literally years.</p>
<footer>
Tags: Gemstone

</footer>
</body>

</html>

Example

In this document, there are two articles. The "tagp334" link, however, applies to the whole page (and would do so wherever it was
placed, including if it was within the articlep206 elements).

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Gem 4/4</title>

</head>
<body>
<article>
<h1>801: Steinbock</h1>
<p>The number 801 Gem 4/4 electro-diesel has an ibex and was rebuilt in 2002.</p>

</article>
<article>
<h1>802: Murmeltier</h1>
<figure>
<img src="https://upload.wikimedia.org/wikipedia/commons/b/b0/

Trains_de_la_Bernina_en_hiver_2.jpg"
alt="The 802 was red with pantographs and tall vents on the side.">

<figcaption>The 802 in the 1980s, above Lago Bianco.</figcaption>
</figure>
<p>The number 802 Gem 4/4 electro-diesel has a marmot and was rebuilt in 2003.</p>

</article>
<p class="topic">Gem

4/4</p>
</body>

Example

334

The terms-of-servicep335 keyword may be used with linkp177, ap257, and areap471 elements. This keyword creates a hyperlinkp302.

The terms-of-servicep335 keyword indicates that the referenced document contains information about the agreements between the
current document's provider and users who wish to use the current document, as described in more detail in Additional Link Relation
Types. [RFC6903]p1482

Some documents form part of a sequence of documents.

A sequence of documents is one where each document can have a previous sibling and a next sibling. A document with no previous
sibling is the start of its sequence, a document with no next sibling is the end of its sequence.

A document may be part of multiple sequences.

The nextp335 keyword may be used with linkp177, ap257, areap471, and formp514 elements. This keyword creates a hyperlinkp302.

The nextp335 keyword indicates that the document is part of a sequence, and that the link is leading to the document that is the next
logical document in the sequence.

When the nextp335 keyword is used with a linkp177 element, user agents should process such links as if they were using one of the
dns-prefetchp317, preconnectp326, or prefetchp327 keywords. Which keyword the user agent wishes to use is implementation-
dependent; for example, a user agent may wish to use the less-costly preconnectp326 processing model when trying to conserve data,
battery power, or processing power, or may wish to pick a keyword depending on heuristic analysis of past user behavior in similar
scenarios.

The prevp335 keyword may be used with linkp177, ap257, areap471, and formp514 elements. This keyword creates a hyperlinkp302.

The prevp335 keyword indicates that the document is part of a sequence, and that the link is leading to the document that is the
previous logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "previous" like the prevp335 keyword.

Extensions to the predefined set of link types may be registered on the microformats page for existing rel values. [MFREL]p1480

Anyone is free to edit the microformats page for existing rel values at any time to add a type. Extension types must be specified with
the following information:

Keyword
The actual value being defined. The value should not be confusingly similar to any other defined value (e.g. differing only in case).

If the value contains a U+003A COLON character (:), it must also be an absolute URL.

</html>

4.6.7.25 Link Type "terms-of-service" §p33

5

4.6.7.26 Sequential link types §p33

5

4.6.7.26.1 Link type "next" §p33

5

4.6.7.26.2 Link type "prev" §p33

5

4.6.7.27 Other link types §p33

5

335

https://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
https://url.spec.whatwg.org/#syntax-url-absolute

Effect on... linkp177

One of the following:

Not allowed
The keyword must not be specified on linkp177 elements.

Hyperlink
The keyword may be specified on a linkp177 element; it creates a hyperlinkp302.

External Resource
The keyword may be specified on a linkp177 element; it creates an external resource linkp302.

Effect on... ap257 and areap471

One of the following:

Not allowed
The keyword must not be specified on ap257 and areap471 elements.

Hyperlink
The keyword may be specified on ap257 and areap471 elements; it creates a hyperlinkp302.

External Resource
The keyword may be specified on ap257 and areap471 elements; it creates an external resource linkp302.

Hyperlink Annotation
The keyword may be specified on ap257 and areap471 elements; it annotatesp303 other hyperlinksp302 created by the element.

Effect on... formp514

One of the following:

Not allowed
The keyword must not be specified on formp514 elements.

Hyperlink
The keyword may be specified on formp514 elements; it creates a hyperlinkp302.

External Resource
The keyword may be specified on formp514 elements; it creates an external resource linkp302.

Hyperlink Annotation
The keyword may be specified on formp514 elements; it annotatesp303 other hyperlinksp302 created by the element.

Brief description
A short non-normative description of what the keyword's meaning is.

Specification
A link to a more detailed description of the keyword's semantics and requirements. It could be another page on the wiki, or a link to
an external page.

Synonyms
A list of other keyword values that have exactly the same processing requirements. Authors should not use the values defined to be
synonyms, they are only intended to allow user agents to support legacy content. Anyone may remove synonyms that are not used
in practice; only names that need to be processed as synonyms for compatibility with legacy content are to be registered in this
way.

Status
One of the following:

Proposed
The keyword has not received wide peer review and approval. Someone has proposed it and is, or soon will be, using it.

Ratified
The keyword has received wide peer review and approval. It has a specification that unambiguously defines how to handle pages
that use the keyword, including when they use it in incorrect ways.

Discontinued
The keyword has received wide peer review and it has been found wanting. Existing pages are using this keyword, but new pages
should avoid it. The "brief description" and "specification" entries will give details of what authors should use instead, if anything.

If a keyword is found to be redundant with existing values, it should be removed and listed as a synonym for the existing value.

If a keyword is registered in the "proposed" state for a period of a month or more without being used or specified, then it may be

336

removed from the registry.

If a keyword is added with the "proposed" status and found to be redundant with existing values, it should be removed and listed as
a synonym for the existing value. If a keyword is added with the "proposed" status and found to be harmful, then it should be
changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

Conformance checkers must use the information given on the microformats page for existing rel values to establish if a value is
allowed or not: values defined in this specification or marked as "proposed" or "ratified" must be accepted when used on the elements
for which they apply as described in the "Effect on..." field, whereas values marked as "discontinued" or not listed in either this
specification or on the aforementioned page must be rejected as invalid. Conformance checkers may cache this information (e.g. for
performance reasons or to avoid the use of unreliable network connectivity).

When an author uses a new type not defined by either this specification or the wiki page, conformance checkers should offer to add
the value to the wiki, with the details described above, with the "proposed" status.

Types defined as extensions in the microformats page for existing rel values with the status "proposed" or "ratified" may be used with
the rel attribute on linkp177, ap257, and areap471 elements in accordance to the "Effect on..." field. [MFREL]p1480

The insp337 and delp338 elements represent edits to the document.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Transparentp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

citep339 — Link to the source of the quotation or more information about the edit
datetimep339 — Date and (optionally) time of the change

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLModElementp340.

The insp337 element representsp141 an addition to the document.

4.7 Edits §p33

7

The following represents the addition of a single paragraph:

<aside>

Example

4.7.1 The ins element §p33

7

✔ MDN

337

https://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
https://w3c.github.io/html-aria/#el-ins
https://w3c.github.io/html-aam/#el-ins

insp337 elements should not cross implied paragraphp152 boundaries.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

<ins>
<p> I like fruit. </p>

</ins>
</aside>

As does the following, because everything in the asidep214 element here counts as phrasing contentp150 and therefore there is just
one paragraphp152:

<aside>
<ins>
Apples are tasty.

</ins>
<ins>
So are pears.

</ins>
</aside>

The following example represents the addition of two paragraphs, the second of which was inserted in two parts. The first insp337

element in this example thus crosses a paragraph boundary, which is considered poor form.

<aside>
<!-- don't do this -->
<ins datetime="2005-03-16 00:00Z">
<p> I like fruit. </p>
Apples are tasty.

</ins>
<ins datetime="2007-12-19 00:00Z">
So are pears.

</ins>
</aside>

Here is a better way of marking this up. It uses more elements, but none of the elements cross implied paragraph boundaries.

<aside>
<ins datetime="2005-03-16 00:00Z">
<p> I like fruit. </p>

</ins>
<ins datetime="2005-03-16 00:00Z">
Apples are tasty.

</ins>
<ins datetime="2007-12-19 00:00Z">
So are pears.

</ins>
</aside>

Example

4.7.2 The del element §p33

8

✔ MDN

338

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Transparentp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

citep339 — Link to the source of the quotation or more information about the edit
datetimep339 — Date and (optionally) time of the change

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLModElementp340.

The delp338 element representsp141 a removal from the document.

delp338 elements should not cross implied paragraphp152 boundaries.

The cite attribute may be used to specify the URL of a document that explains the change. When that document is long, for instance
the minutes of a meeting, authors are encouraged to include a fragment pointing to the specific part of that document that discusses
the change.

If the citep339 attribute is present, it must be a valid URL potentially surrounded by spacesp96 that explains the change. To obtain the
corresponding citation link, the value of the attribute must be parsedp97 relative to the element's node document. User agents may
allow users to follow such citation links, but they are primarily intended for private use (e.g., by server-side scripts collecting statistics
about a site's edits), not for readers.

The datetime attribute may be used to specify the time and date of the change.

If present, the datetimep339 attribute's value must be a valid date string with optional timep93.

User agents must parse the datetimep339 attribute according to the parse a date or time stringp93 algorithm. If that doesn't return a
datep83 or a global date and timep87, then the modification has no associated timestamp (the value is non-conforming; it is not a valid
date string with optional timep93). Otherwise, the modification is marked as having been made at the given datep83 or global date and
timep87. If the given value is a global date and timep87 then user agents should use the associated time-zone offset information to
determine which time zone to present the given datetime in.

This value may be shown to the user, but it is primarily intended for private use.

The insp337 and delp338 elements must implement the HTMLModElementp340 interface:

The following shows a "to do" list where items that have been done are crossed-off with the date and time of their completion.

<h1>To Do</h1>

Empty the dishwasher
<del datetime="2009-10-11T01:25-07:00">Watch Walter Lewin's lectures
<del datetime="2009-10-10T23:38-07:00">Download more tracks
Buy a printer

Example

4.7.3 Attributes common to insp337 and delp338 elements §p33

9

✔ MDN

339

https://w3c.github.io/html-aria/#el-del
https://w3c.github.io/html-aam/#el-del
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-node-document

[Exposed=Window]
interface HTMLModElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString cite;
[CEReactions] attribute DOMString dateTime;

};

The cite IDL attribute must reflectp104 the element's citep339 content attribute. The dateTime IDL attribute must reflectp104 the
element's datetimep339 content attribute.

This section is non-normative.

Since the insp337 and delp338 elements do not affect paragraphingp152, it is possible, in some cases where paragraphs are impliedp152

(without explicit pp229 elements), for an insp337 or delp338 element to span both an entire paragraph or other non-phrasing contentp150

elements and part of another paragraph. For example:

<section>
<ins>
<p>
This is a paragraph that was inserted.

</p>
This is another paragraph whose first sentence was inserted
at the same time as the paragraph above.

</ins>
This is a second sentence, which was there all along.

</section>

By only wrapping some paragraphs in pp229 elements, one can even get the end of one paragraph, a whole second paragraph, and the
start of a third paragraph to be covered by the same insp337 or delp338 element (though this is very confusing, and not considered good
practice):

<section>
This is the first paragraph. <ins>This sentence was
inserted.
<p>This second paragraph was inserted.</p>
This sentence was inserted too.</ins> This is the
third paragraph in this example.
<!-- (don't do this) -->

</section>

However, due to the way implied paragraphsp152 are defined, it is not possible to mark up the end of one paragraph and the start of the
very next one using the same insp337 or delp338 element. You instead have to use one (or two) pp229 element(s) and two insp337 or
delp338 elements, as for example:

<section>
<p>This is the first paragraph. This sentence was
deleted.</p>
<p>This sentence was deleted too. That
sentence needed a separate element.</p>

</section>

Partly because of the confusion described above, authors are strongly encouraged to always mark up all paragraphs with the pp229

element, instead of having insp337 or delp338 elements that cross implied paragraphsp152 boundaries.

IDL

4.7.4 Edits and paragraphs §p34

0

340

This section is non-normative.

The content models of the olp238 and ulp239 elements do not allow insp337 and delp338 elements as children. Lists always represent all
their items, including items that would otherwise have been marked as deleted.

To indicate that an item is inserted or deleted, an insp337 or delp338 element can be wrapped around the contents of the lip241 element.
To indicate that an item has been replaced by another, a single lip241 element can have one or more delp338 elements followed by one
or more insp337 elements.

This section is non-normative.

The elements that form part of the table model have complicated content model requirements that do not allow for the insp337 and
delp338 elements, so indicating edits to a table can be difficult.

To indicate that an entire row or an entire column has been added or removed, the entire contents of each cell in that row or column
can be wrapped in insp337 or delp338 elements (respectively).

In the following example, a list that started empty had items added and removed from it over time. The bits in the example that
have been emphasized show the parts that are the "current" state of the list. The list item numbers don't take into account the
edits, though.

<h1>Stop-ship bugs</h1>

<ins datetime="2008-02-12T15:20Z">Bug 225:
Rain detector doesn't work in snow</ins>
<del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-14T12:02Z">Bug 228:
Water buffer overflows in April</ins>
<ins datetime="2008-02-16T13:50Z">Bug 230:
Water heater doesn't use renewable fuels</ins>
<del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-16T14:25Z">Bug 232:
Carbon dioxide emissions detected after startup</ins>

Example

In the following example, a list that started with just fruit was replaced by a list with just colors.

<h1>List of fruits<ins>colors</ins></h1>

Lime<ins>Green</ins>
Apple
Orange
Pear
<ins>Teal</ins>
Lemon<ins>Yellow</ins>
Olive
<ins>Purple</ins>

Example

Here, a table's row has been added:

<table>

Example

4.7.5 Edits and lists §p34

1

4.7.6 Edits and tables §p34

1

341

Generally speaking, there is no good way to indicate more complicated edits (e.g. that a cell was removed, moving all subsequent cells
up or to the left).

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
Zero or more sourcep343 elements, followed by one imgp346 element, optionally intermixed with script-supporting elementsp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLPictureElement : HTMLElement {

[HTMLConstructor] constructor();
};

<thead>
<tr> <th> Game name <th> Game publisher <th> Verdict

<tbody>
<tr> <td> Diablo 2 <td> Blizzard <td> 8/10
<tr> <td> Portal <td> Valve <td> 10/10
<tr> <td> <ins>Portal 2</ins> <td> <ins>Valve</ins> <td> <ins>10/10</ins>

</table>

Here, a column has been removed (the time at which it was removed is given also, as is a link to the page explaining why):

<table>
<thead>
<tr> <th> Game name <th> Game publisher <th> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">Verdict
<tbody>
<tr> <td> Diablo 2 <td> Blizzard <td> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">8/10
<tr> <td> Portal <td> Valve <td> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">10/10
<tr> <td> Portal 2 <td> Valve <td> <del cite="/edits/r192"

datetime="2011-05-02 14:23Z">10/10
</table>

4.8 Embedded content §p34

2

IDL

4.8.1 The picture element §p34

2

✔ MDN

✔ MDN

342

https://w3c.github.io/html-aria/#el-picture
https://w3c.github.io/html-aam/#el-picture

The picturep342 element is a container which provides multiple sources to its contained imgp346 element to allow authors to
declaratively control or give hints to the user agent about which image resource to use, based on the screen pixel density, viewport
size, image format, and other factors. It representsp141 its children.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a picturep342 element, before the imgp346 element.
As a child of a media elementp414, before any flow contentp149 or trackp411 elements.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

typep343 — Type of embedded resource
mediap343 — Applicable media
srcp344 (in audiop410 or videop406) — Address of the resource
srcsetp344 (in picturep342) — Images to use in different situations, e.g., high-resolution displays, small monitors, etc.
sizesp344 (in picturep342) — Image sizes for different page layouts
widthp477 (in picturep342) — Horizontal dimension
heightp477 (in picturep342) — Vertical dimension

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLSourceElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString type;
[CEReactions] attribute USVString srcset;
[CEReactions] attribute DOMString sizes;
[CEReactions] attribute DOMString media;
[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;

};

The sourcep343 element allows authors to specify multiple alternative source setsp364 for imgp346 elements or multiple alternative media
resourcesp415 for media elementsp414. It does not representp141 anything on its own.

The type attribute may be present. If present, the value must be a valid MIME type string.

The media attribute may also be present. If present, the value must contain a valid media query listp95. The user agent will skip to the
next sourcep343 element if the value does not match the environmentp95.

The picturep342 element is somewhat different from the similar-looking videop406 and audiop410 elements. While all of them contain
sourcep343 elements, the sourcep343 element's srcp344 attribute has no meaning when the element is nested within a picturep342

element, and the resource selection algorithm is different. Also, the picturep342 element itself does not display anything; it merely
provides a context for its contained imgp346 element that enables it to choose from multiple URLs.

Note

IDL

4.8.2 The source element §p34

3

✔ MDN

✔ MDN

343

https://drafts.csswg.org/css2/#viewport
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/html-aria/#el-source
https://w3c.github.io/html-aam/#el-source
https://mimesniff.spec.whatwg.org/#valid-mime-type

The remainder of the requirements depend on whether the parent is a picturep342 element or a media elementp414:

↪ The sourcep343 element's parent is a picturep342 element
The srcset attribute must be present, and is a srcset attributep362.

The srcsetp344 attribute contributes the image sourcesp364 to the source setp364, if the sourcep343 element is selected.

If the srcsetp344 attribute has any image candidate stringsp362 using a width descriptorp362, the sizesp344 attribute may also be
present. If, additionally, the following sibling imgp346 element does not allow auto-sizesp348, the sizesp344 attribute must be
present. The sizes attribute is a sizes attributep363, which contributes the source sizep364 to the source setp364, if the sourcep343

element is selected.

The sourcep343 element supports dimension attributesp477. The imgp346 element can use the widthp477 and heightp477 attributes
of a sourcep343 element, instead of those on the imgp346 element itself, to determine its rendered dimensions and aspect-ratio,
as defined in the Rendering sectionp1409.

The typep343 attribute gives the type of the images in the source setp364, to allow the user agent to skip to the next sourcep343

element if it does not support the given type.

When a sourcep343 element has a following sibling sourcep343 element or imgp346 element with a srcsetp347 attribute specified, it
must have at least one of the following:

• A mediap343 attribute specified with a value that, after stripping leading and trailing ASCII whitespace, is not the empty
string and is not an ASCII case-insensitive match for the string "all".

• A typep343 attribute specified.

The srcp344 attribute must not be present.

↪ The sourcep343 element's parent is a media elementp414

The src attribute gives the URL of the media resourcep415. The value must be a valid non-empty URL potentially surrounded by
spacesp96. This attribute must be present.

The typep343 attribute gives the type of the media resourcep415, to help the user agent determine if it can play this media
resourcep415 before fetching it. The codecs parameter, which certain MIME types define, might be necessary to specify exactly
how the resource is encoded. [RFC6381]p1481

The mediap343 attribute is only evaluated once during the resource selection algorithmp420 for media elementsp414. In contrast, when
using the picturep342 element, the user agent will react to changes in the environmentp376.

Note

If the imgp346 element allows auto-sizesp348, then the sizesp344 attribute can be omitted on previous sibling sourcep343

elements. In such cases, it is equivalent to specifying autop363.

Note

If the typep343 attribute is not specified, the user agent will not select a different sourcep343 element if it finds that it does
not support the image format after fetching it.

Note

Dynamically modifying a sourcep343 element's srcp344 or typep343 attribute when the element is already inserted in a
videop406 or audiop410 element will have no effect. To change what is playing, just use the srcp416 attribute on the media
elementp414 directly, possibly making use of the canPlayType()p418 method to pick from amongst available resources.
Generally, manipulating sourcep343 elements manually after the document has been parsed is an unnecessarily complicated
approach.

Note

The following list shows some examples of how to use the codecs= MIME parameter in the typep343 attribute.

H.264 Constrained baseline profile video (main and extended video compatible) level 3 and Low-Complexity

Example

344

https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#concept-url

The srcsetp344 and sizesp344 attributes must not be present.

The sourcep343 HTML element insertion stepsp45, given insertedNode, are:

1. If insertedNode's parent is a media elementp414 that has no srcp416 attribute and whose networkStatep418 has the value
NETWORK_EMPTYp418, then invoke that media elementp414 's resource selection algorithmp420.

2. If insertedNode's next sibling is an imgp346 element and its parent is a picturep342 element, then, count this as a relevant
mutationp365 for the imgp346 element.

The sourcep343 HTML element removing stepsp45, given removedNode and oldParent, are:

1. If removedNode's next sibling was an imgp346 element and oldParent is a picturep342 element, then, count this as a relevant
mutationp365 for the imgp346 element.

The IDL attributes src, type, srcset, sizes and media must reflectp104 the respective content attributes of the same name.

AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>

H.264 'High' profile video (incompatible with main, baseline, or extended profiles) level 3 and Low-Complexity
AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.64001E, mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8, mp4a.40.2"'>

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240, mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container

<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>

Theora video and Vorbis audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

Theora video and Speex audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>

Vorbis audio alone in Ogg container

<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

Speex audio alone in Ogg container

<source src='audio.spx' type='audio/ogg; codecs=speex'>

FLAC audio alone in Ogg container

<source src='audio.oga' type='audio/ogg; codecs=flac'>

Dirac video and Vorbis audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

345

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
Form-associated elementp513.
If the element has a usemapp473 attribute: Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.
As a child of a picturep342 element, after all sourcep343 elements.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

altp347 — Replacement text for use when images are not available
srcp347 — Address of the resource
srcsetp347 — Images to use in different situations, e.g., high-resolution displays, small monitors, etc.
sizesp347 — Image sizes for different page layouts
crossoriginp348 — How the element handles crossorigin requests
usemapp473 — Name of image mapp473 to use
ismapp350 — Whether the image is a server-side image map
widthp477 — Horizontal dimension
heightp477 — Vertical dimension
referrerpolicyp348 — Referrer policy for fetches initiated by the element
decodingp348 — Decoding hint to use when processing this image for presentation
loadingp348 — Used when determining loading deferral
fetchpriorityp348 — Sets the priority for fetches initiated by the element

If the author isn't sure if user agents will all be able to render the media resources provided, the author can listen to the errorp1471

event on the last sourcep343 element and trigger fallback behavior:

<script>
function fallback(video) {

// replace <video> with its contents
while (video.hasChildNodes()) {

if (video.firstChild instanceof HTMLSourceElement)
video.removeChild(video.firstChild);

else
video.parentNode.insertBefore(video.firstChild, video);

}
video.parentNode.removeChild(video);

}
</script>
<video controls autoplay>
<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'

onerror="fallback(parentNode)">
...

</video>

Example

4.8.3 The img element §p34

6

✔ MDN

✔ MDN

346

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch

Accessibility considerationsp146:
If the element has a non-empty altp347 attribute: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:

[Exposed=Window,
LegacyFactoryFunction=Image(optional unsigned long width, optional unsigned long height)]

interface HTMLImageElement : HTMLElement {
[HTMLConstructor] constructor();

[CEReactions] attribute DOMString alt;
[CEReactions] attribute USVString src;
[CEReactions] attribute USVString srcset;
[CEReactions] attribute DOMString sizes;
[CEReactions] attribute DOMString? crossOrigin;
[CEReactions] attribute DOMString useMap;
[CEReactions] attribute boolean isMap;
[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;
readonly attribute unsigned long naturalWidth;
readonly attribute unsigned long naturalHeight;
readonly attribute boolean complete;
readonly attribute USVString currentSrc;
[CEReactions] attribute DOMString referrerPolicy;
[CEReactions] attribute DOMString decoding;
[CEReactions] attribute DOMString loading;
[CEReactions] attribute DOMString fetchPriority;

Promise<undefined> decode();

// also has obsolete members
};

An imgp346 element represents an image.

An imgp346 element has a dimension attribute source, initially set to the element itself.

The image given by the src and srcset attributes, and any previous sibling sourcep343 elements' srcsetp344 attributes if the parent is
a picturep342 element, is the embedded content; the value of the alt attribute provides equivalent content for those who cannot
process images or who have image loading disabled (i.e. it is the imgp346 element's fallback contentp150).

The requirements on the altp347 attribute's value are described in a separate sectionp378.

The srcp347 attribute must be present, and must contain a valid non-empty URL potentially surrounded by spacesp96 referencing a non-
interactive, optionally animated, image resource that is neither paged nor scripted.

The srcsetp347 attribute may also be present, and is a srcset attributep362.

The srcsetp347 attribute and the srcp347 attribute (if width descriptorsp362 are not used) contribute the image sourcesp364 to the source
setp364 (if no sourcep343 element was selected).

If the srcsetp347 attribute is present and has any image candidate stringsp362 using a width descriptorp362, the sizesp347 attribute must
also be present. If the srcsetp347 attribute is not specified, and the loadingp348 attribute is in the Lazyp101 state, the sizesp347 attribute
may be specified with the value "auto" (ASCII case-insensitive). The sizes attribute is a sizes attributep363, which contributes the

The requirements above imply that images can be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector documents (single-
page PDFs, XML files with an SVG document element), animated bitmaps (APNGs, animated GIFs), animated vector graphics (XML
files with an SVG document element that use declarative SMIL animation), and so forth. However, these definitions preclude SVG
files with script, multipage PDF files, interactive MNG files, HTML documents, plain text documents, and the like. [PNG]p1481

[GIF]p1478 [JPEG]p1479 [PDF]p1480 [XML]p1484 [APNG]p1475 [SVG]p1482 [MNG]p1480

Note

IDL

✔ MDN

347

https://w3c.github.io/html-aria/#el-img
https://w3c.github.io/html-aam/#el-img
https://w3c.github.io/html-aria/#el-img-empty-alt
https://w3c.github.io/html-aam/#el-img-empty-alt
https://webidl.spec.whatwg.org/#LegacyFactoryFunction
https://webidl.spec.whatwg.org/#idl-promise
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-case-insensitive

source sizep364 to the source setp364 (if no sourcep343 element was selected).

An imgp346 element allows auto-sizes if:

• its loadingp348 attribute is in the Lazyp101 state, and

• its sizesp347 attribute's value is "auto" (ASCII case-insensitive), or starts with "auto," (ASCII case-insensitive).

The crossorigin attribute is a CORS settings attributep99. Its purpose is to allow images from third-party sites that allow cross-origin
access to be used with canvasp677.

The referrerpolicy attribute is a referrer policy attributep100. Its purpose is to set the referrer policy used when fetching the image.
[REFERRERPOLICY]p1481

The decoding attribute indicates the preferred method to decodep366 this image. The attribute, if present, must be an image decoding
hintp366. This attribute's missing value defaultp76 and invalid value defaultp76 are both the autop366 state.

The fetchpriority attribute is a fetch priority attributep103. Its purpose is to set the priority used when fetching the image.

The loading attribute is a lazy loading attributep101. Its purpose is to indicate the policy for loading images that are outside the
viewport.

When the loadingp348 attribute's state is changed to the Eagerp101 state, the user agent must run these steps:

1. Let resumptionSteps be the imgp346 element's lazy load resumption stepsp101.

2. If resumptionSteps is null, then return.

3. Set the imgp346 's lazy load resumption stepsp101 to null.

4. Invoke resumptionSteps.

The imgp346 HTML element insertion stepsp45, given insertedNode, are:

1. If insertedNode's parent is a picturep342 element, then, count this as a relevant mutationp365 for insertedNode.

The imgp346 HTML element removing stepsp45, given removedNode and oldParent, are:

1. If oldParent is a picturep342 element, then, count this as a relevant mutationp365 for removedNode.

<div id=very-large></div> <!-- Everything after this div is below the viewport -->

In the example above, the images load as follows:

↪ 1.jpeg, 2.jpeg, 4.jpeg
The images load eagerly and delay the window's load event.

↪ 3.jpeg
The image loads when layout is known, due to being in the viewport, however it does not delay the window's load event.

↪ 5.jpeg
The image loads only once scrolled into the viewport, and does not delay the window's load event.

Developers are encouraged to specify a preferred aspect ratio via widthp477 and heightp477 attributes on lazy loaded images,
even if CSS sets the image's width and height properties, to prevent the page layout from shifting around after the image
loads.

Note

Example

✔ MDN

MDN

348

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch

The imgp346 element must not be used as a layout tool. In particular, imgp346 elements should not be used to display transparent
images, as such images rarely convey meaning and rarely add anything useful to the document.

What an imgp346 element represents depends on the srcp347 attribute and the altp347 attribute.

↪ If the srcp347 attribute is set and the altp347 attribute is set to the empty string
The image is either decorative or supplemental to the rest of the content, redundant with some other information in the
document.

If the image is availablep364 and the user agent is configured to display that image, then the element representsp141 the
element's image data.

Otherwise, the element representsp141 nothing, and may be omitted completely from the rendering. User agents may provide
the user with a notification that an image is present but has been omitted from the rendering.

↪ If the srcp347 attribute is set and the altp347 attribute is set to a value that isn't empty
The image is a key part of the content; the altp347 attribute gives a textual equivalent or replacement for the image.

If the image is availablep364 and the user agent is configured to display that image, then the element representsp141 the
element's image data.

Otherwise, the element representsp141 the text given by the altp347 attribute. User agents may provide the user with a
notification that an image is present but has been omitted from the rendering.

↪ If the srcp347 attribute is set and the altp347 attribute is not
The image might be a key part of the content, and there is no textual equivalent of the image available.

If the image is availablep364 and the user agent is configured to display that image, then the element representsp141 the
element's image data.

If the image has a srcp347 attribute whose value is the empty string, then the element representsp141 nothing.

Otherwise, the user agent should display some sort of indicator that there is an image that is not being rendered, and may, if
requested by the user, or if so configured, or when required to provide contextual information in response to navigation, provide
caption information for the image, derived as follows:

1. If the image has a titlep157 attribute whose value is not the empty string, then return the value of that attribute.

2. If the image is a descendant of a figurep249 element that has a child figcaptionp252 element, and, ignoring the
figcaptionp252 element and its descendants, the figurep249 element has no flow contentp149 descendants other than
inter-element whitespacep147 and the imgp346 element, then return the contents of the first such figcaptionp252

element.

3. Return nothing. (There is no caption information.)

↪ If the srcp347 attribute is not set and either the altp347 attribute is set to the empty string or the altp347 attribute is
not set at all

The element representsp141 nothing.

↪ Otherwise
The element representsp141 the text given by the altp347 attribute.

The altp347 attribute does not represent advisory information. User agents must not present the contents of the altp347 attribute in the
same way as content of the titlep157 attribute.

User agents may always provide the user with the option to display any image, or to prevent any image from being displayed. User
agents may also apply heuristics to help the user make use of the image when the user is unable to see it, e.g. due to a visual
disability or because they are using a text terminal with no graphics capabilities. Such heuristics could include, for instance, optical

In a conforming document, the absence of the altp347 attribute indicates that the image is a key part of the content but that
a textual replacement for the image was not available when the image was generated.

Note

349

character recognition (OCR) of text found within the image.

The contents of imgp346 elements, if any, are ignored for the purposes of rendering.

The usemapp473 attribute, if present, can indicate that the image has an associated image mapp473.

The ismap attribute, when used on an element that is a descendant of an ap257 element with an hrefp303 attribute, indicates by its
presence that the element provides access to a server-side image map. This affects how events are handled on the corresponding ap257

element.

The ismapp350 attribute is a boolean attributep75. The attribute must not be specified on an element that does not have an ancestor
ap257 element with an hrefp303 attribute.

The imgp346 element supports dimension attributesp477.

The alt, src, srcset and sizes IDL attributes must reflectp104 the respective content attributes of the same name.

The crossOrigin IDL attribute must reflectp104 the crossoriginp348 content attribute, limited to only known valuesp105.

The useMap IDL attribute must reflectp104 the usemapp473 content attribute.

The isMap IDL attribute must reflectp104 the ismapp350 content attribute.

The referrerPolicy IDL attribute must reflectp104 the referrerpolicyp348 content attribute, limited to only known valuesp105.

The decoding IDL attribute must reflectp104 the decodingp348 content attribute, limited to only known valuesp105.

The loading IDL attribute must reflectp104 the loadingp348 content attribute, limited to only known valuesp105.

The fetchPriority IDL attribute must reflectp104 the fetchpriorityp348 content attribute, limited to only known valuesp105.

While user agents are encouraged to repair cases of missing altp347 attributes, authors must not rely on such
behavior. Requirements for providing text to act as an alternative for imagesp378 are described in detail below.

⚠Warning!

The usemapp473 and ismapp350 attributes can result in confusing behavior when used together with sourcep343 elements with the
mediap343 attribute specified in a picturep342 element.

Note

image.widthp351 [= value]
image.heightp351 [= value]

These attributes return the actual rendered dimensions of the image, or 0 if the dimensions are not known.
They can be set, to change the corresponding content attributes.

image.naturalWidthp351

image.naturalHeightp351

These attributes return the natural dimensions of the image, or 0 if the dimensions are not known.

image.completep351

Returns true if the image has been completely downloaded or if no image is specified; otherwise, returns false.

image.currentSrcp351

Returns the image's absolute URL.

image.decodep351()
This method causes the user agent to decodep366 the image in parallelp43, returning a promise that fulfills when decoding is
complete.
The promise will be rejected with an "EncodingError" DOMException if the image cannot be decoded.

For web developers (non-normative)

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

350

https://url.spec.whatwg.org/#syntax-url-absolute
https://webidl.spec.whatwg.org/#encodingerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if the image is being
renderedp1388; or else the density-corrected natural width and heightp364 of the image, in CSS pixels, if the image has density-corrected
natural width and heightp364 and is availablep364 but is not being renderedp1388; or else 0, if the image is not availablep364 or does not
have density-corrected natural width and heightp364. [CSS]p1476

On setting, they must act as if they reflectedp104 the respective content attributes of the same name.

The IDL attributes naturalWidth and naturalHeight must return the density-corrected natural width and heightp364 of the image, in
CSS pixels, if the image has density-corrected natural width and heightp364 and is availablep364, or else 0. [CSS]p1476

The complete getter steps are:

1. If any of the following are true:

◦ both the srcp347 attribute and the srcsetp347 attribute are omitted;

◦ the srcsetp347 attribute is omitted and the srcp347 attribute's value is the empty string;

◦ the imgp346 element's current requestp363 's statep363 is completely availablep364 and its pending requestp363 is null; or

◦ the imgp346 element's current requestp363 's statep363 is brokenp364 and its pending requestp363 is null,

then return true.

2. Return false.

The currentSrc IDL attribute must return the imgp346 element's current requestp363 's current URLp363.

The decode() method, when invoked, must perform the following steps:

1. Let promise be a new promise.

2. Queue a microtaskp1125 to perform the following steps:

1. Let global be this's relevant global objectp1083.

2. If any of the following are true:

▪ this's node document is not fully activep1003; or

▪ this's current requestp363 's statep363 is brokenp364,

then reject promise with an "EncodingError" DOMException.

3. Otherwise, in parallelp43, wait for one of the following cases to occur, and perform the corresponding actions:

image = new Imagep353([width [, height]])
Returns a new imgp346 element, with the widthp477 and heightp477 attributes set to the values passed in the relevant arguments,
if applicable.

Since the density-corrected natural width and heightp364 of an image take into account any orientation specified in its metadata,
naturalWidthp351 and naturalHeightp351 reflect the dimensions after applying any rotation needed to correctly orient the image,
regardless of the value of the 'image-orientation' property.

Note

This is done because updating the image datap367 takes place in a microtask as well. Thus, to make code such as

img.src = "stars.jpg";
img.decode();

properly decode stars.jpg, we need to delay any processing by one microtask.

Note

351

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images-3/#the-image-orientation
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#encodingerror
https://webidl.spec.whatwg.org/#dfn-DOMException

↪ This imgp346 element's node document stops being fully activep1003

↪ This imgp346 element's current requestp363 changes or is mutated
↪ This imgp346 element's current requestp363 's statep363 becomes brokenp364

Queue a global taskp1125 on the DOM manipulation task sourcep1134 with global to reject promise with an
"EncodingError" DOMException.

↪ This imgp346 element's current requestp363 's statep363 becomes completely availablep364

Decodep366 the image.

If decoding does not need to be performed for this image (for example because it is a vector graphic) or the
decoding process completes successfully, then queue a global taskp1125 on the DOM manipulation task
sourcep1134 with global to resolve promise with undefined.

If decoding fails (for example due to invalid image data), then queue a global taskp1125 on the DOM
manipulation task sourcep1134 with global to reject promise with an "EncodingError" DOMException.

User agents should ensure that the decoded media data stays readily available until at least the end of the
next successful update the renderingp1128 step in the event loopp1123. This is an important part of the API
contract, and should not be broken if at all possible. (Typically, this would only be violated in low-memory
situations that require evicting decoded image data, or when the image is too large to keep in decoded form
for this period of time.)

3. Return promise.

Animated images will become completely availablep364 only after all their frames are loaded. Thus, even
though an implementation could decode the first frame before that point, the above steps will not do so,
instead waiting until all frames are available.

Note

Without the decode()p351 method, the process of loading an imgp346 element and then displaying it might look like the following:

const img = new Image();
img.src = "nebula.jpg";
img.onload = () => {

document.body.appendChild(img);
};
img.onerror = () => {

document.body.appendChild(new Text("Could not load the nebula :("));
};

However, this can cause notable dropped frames, as the paint that occurs after inserting the image into the DOM causes a
synchronous decode on the main thread.

This can instead be rewritten using the decode()p351 method:

const img = new Image();
img.src = "nebula.jpg";
img.decode().then(() => {

document.body.appendChild(img);
}).catch(() => {

document.body.appendChild(new Text("Could not load the nebula :("));
});

This latter form avoids the dropped frames of the original, by allowing the user agent to decode the image in parallelp43, and only
inserting it into the DOM (and thus causing it to be painted) once the decoding process is complete.

Example

Because the decode()p351 method attempts to ensure that the decoded image data is available for at least one frame, it can be
Example

352

https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#encodingerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#encodingerror
https://webidl.spec.whatwg.org/#dfn-DOMException

A legacy factory function is provided for creating HTMLImageElementp347 objects (in addition to the factory methods from DOM such as
createElement()): Image(width, height). When invoked, the legacy factory function must perform the following steps:

1. Let document be the current global objectp1083 's associated Documentp923.

2. Let img be the result of creating an element given document, imgp346, and the HTML namespace.

3. If width is given, then set an attribute value for img using "widthp477" and width.

4. If height is given, then set an attribute value for img using "heightp477" and height.

5. Return img.

combined with the requestAnimationFrame()p1187 API. This means it can be used with coding styles or frameworks that ensure
that all DOM modifications are batched together as animation frame callbacksp1187:

const container = document.querySelector("#container");

const { containerWidth, containerHeight } = computeDesiredSize();
requestAnimationFrame(() => {
container.style.width = containerWidth;
container.style.height = containerHeight;

});

// ...

const img = new Image();
img.src = "supernova.jpg";
img.decode().then(() => {

requestAnimationFrame(() => container.appendChild(img));
});

A single image can have different appropriate alternative text depending on the context.

In each of the following cases, the same image is used, yet the altp347 text is different each time. The image is the coat of arms of
the Carouge municipality in the canton Geneva in Switzerland.

Here it is used as a supplementary icon:

<p>I lived in Carouge.</p>

Here it is used as an icon representing the town:

<p>Home town: </p>

Here it is used as part of a text on the town:

<p>Carouge has a coat of arms.</p>
<p></p>
<p>It is used as decoration all over the town.</p>

Here it is used as a way to support a similar text where the description is given as well as, instead of as an alternative to, the
image:

<p>Carouge has a coat of arms.</p>
<p></p>
<p>The coat of arms depicts a lion, sitting in front of a tree.
It is used as decoration all over the town.</p>

Example

353

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

Here it is used as part of a story:

<p>She picked up the folder and a piece of paper fell out.</p>
<p><img src="carouge.svg" alt="Shaped like a shield, the paper had a
red background, a green tree, and a yellow lion with its tongue
hanging out and whose tail was shaped like an S."></p>
<p>She stared at the folder. S! The answer she had been looking for all
this time was simply the letter S! How had she not seen that before? It all
came together now. The phone call where Hector had referred to a lion's tail,
the time Maria had stuck her tongue out...</p>

Here it is not known at the time of publication what the image will be, only that it will be a coat of arms of some kind, and thus no
replacement text can be provided, and instead only a brief caption for the image is provided, in the titlep157 attribute:

<p>The last user to have uploaded a coat of arms uploaded this one:</p>
<p></p>

Ideally, the author would find a way to provide real replacement text even in this case, e.g. by asking the previous user. Not
providing replacement text makes the document more difficult to use for people who are unable to view images, e.g. blind users,
or users or very low-bandwidth connections or who pay by the byte, or users who are forced to use a text-only web browser.

Here are some more examples showing the same picture used in different contexts, with different appropriate alternate texts each
time.

<article>
<h1>My cats</h1>
<h2>Fluffy</h2>
<p>Fluffy is my favorite.</p>

<p>She's just too cute.</p>
<h2>Miles</h2>
<p>My other cat, Miles just eats and sleeps.</p>

</article>

<article>
<h1>Photography</h1>
<h2>Shooting moving targets indoors</h2>
<p>The trick here is to know how to anticipate; to know at what speed and
what distance the subject will pass by.</p>
<img src="fluffy.jpg" alt="A cat flying by, chasing a ball of yarn, can be
photographed quite nicely using this technique.">
<h2>Nature by night</h2>
<p>To achieve this, you'll need either an extremely sensitive film, or
immense flash lights.</p>

</article>

<article>
<h1>About me</h1>
<h2>My pets</h2>
<p>I've got a cat named Fluffy and a dog named Miles.</p>

<p>My dog Miles and I like go on long walks together.</p>
<h2>music</h2>
<p>After our walks, having emptied my mind, I like listening to Bach.</p>

</article>

<article>

Example

354

This section is non-normative.

To embed an image in HTML, when there is only a single image resource, use the imgp346 element and its srcp347 attribute.

However, there are a number of situations for which the author might wish to use multiple image resources that the user agent can
choose from:

• Different users might have different environmental characteristics:

◦ The users' physical screen size might be different from one another.

◦ The users' screen pixel density might be different from one another.

<h1>Fluffy and the Yarn</h1>
<p>Fluffy was a cat who liked to play with yarn. She also liked to jump.</p>
<aside></aside>
<p>She would play in the morning, she would play in the evening.</p>

</article>

4.8.4.1 Introduction §p35

5

<h2>From today's featured article</h2>

<p>Marie Lloyd (1870–1922)
was an English music hall singer, ...

Example

A mobile phone's screen might be 4 inches diagonally, while a laptop's screen might be 14 inches diagonally.

4″

14″

Example

This is only relevant when an image's rendered size depends on the viewport size.
Note

A mobile phone's screen might have three times as many physical pixels per inch compared to another mobile
phone's screen, regardless of their physical screen size.

Example

4.8.4 Images §p35

5

355

https://drafts.csswg.org/css2/#viewport

◦ The users' zoom level might be different from one another, or might change for a single user over time.

The zoom level and the screen pixel density (the previous point) can both affect the number of physical screen
pixels per CSS pixel. This ratio is usually referred to as device-pixel-ratio.

◦ The users' screen orientation might be different from one another, or might change for a single user over time.

◦ The users' network speed, network latency and bandwidth cost might be different from one another, or might
change for a single user over time.

• Authors might want to show the same image content but with different rendered size depending on, usually, the width of the
viewport. This is usually referred to as viewport-based selection.

1x 3x

A user might zoom in to a particular image to be able to get a more detailed look.
Example

A tablet can be held upright or rotated 90 degrees, so that the screen is either "portrait" or "landscape".

Portrait
Landscape

Example

A user might be on a fast, low-latency and constant-cost connection while at work, on a slow, low-latency and
constant-cost connection while at home, and on a variable-speed, high-latency and variable-cost connection
anywhere else.

Example

A web page might have a banner at the top that always spans the entire viewport width. In this case, the rendered size
of the image depends on the physical size of the screen (assuming a maximised browser window).

Example

356

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

• Authors might want to show different image content depending on the rendered size of the image. This is usually referred to
as art direction.

• Authors might want to show the same image content but using different image formats, depending on which image formats
the user agent supports. This is usually referred to as image format-based selection.

The above situations are not mutually exclusive. For example, it is reasonable to combine different resources for different device-pixel-

Another web page might have images in columns, with a single column for screens with a small physical size, two
columns for screens with medium physical size, and three columns for screens with big physical size, with the images
varying in rendered size in each case to fill up the viewport. In this case, the rendered size of an image might be bigger
in the one-column layout compared to the two-column layout, despite the screen being smaller.

Narrow, 1 column

Medium, 2 columns

Wide, 3 columns

Example

When a web page is viewed on a screen with a large physical size (assuming a maximised browser window), the author
might wish to include some less relevant parts surrounding the critical part of the image. When the same web page is
viewed on a screen with a small physical size, the author might wish to show only the critical part of the image.

Example

A web page might have some images in the JPEG, WebP and JPEG XR image formats, with the latter two having better
compression abilities compared to JPEG. Since different user agents can support different image formats, with some
formats offering better compression ratios, the author would like to serve the better formats to user agents that support
them, while providing JPEG fallback for user agents that don't.

Example

357

https://drafts.csswg.org/css2/#viewport

ratiop356 with different resources for art directionp357.

While it is possible to solve these problems using scripting, doing so introduces some other problems:

• Some user agents aggressively download images specified in the HTML markup, before scripts have had a chance to run, so
that web pages complete loading sooner. If a script changes which image to download, the user agent will potentially start
two separate downloads, which can instead cause worse page loading performance.

• If the author avoids specifying any image in the HTML markup and instead instantiates a single download from script, that
avoids the double download problem above but then no image will be downloaded at all for users with scripting disabled and
the aggressive image downloading optimization will also be disabled.

With this in mind, this specification introduces a number of features to address the above problems in a declarative manner.

Device-pixel-ratiop356-based selection when the rendered size of the image is fixed
The srcp347 and srcsetp347 attributes on the imgp346 element can be used, using the x descriptor, to provide multiple images that
only vary in their size (the smaller image is a scaled-down version of the bigger image).

Viewport-based selectionp356

The srcsetp347 and sizesp347 attributes can be used, using the w descriptor, to provide multiple images that only vary in their size
(the smaller image is a scaled-down version of the bigger image).

The x descriptor is not appropriate when the rendered size of the image depends on the viewport width (viewport-based
selectionp356), but can be used together with art directionp357.

Note

<h2>From today's featured article</h2>
<img src="/uploads/100-marie-lloyd.jpg"

srcset="/uploads/150-marie-lloyd.jpg 1.5x, /uploads/200-marie-lloyd.jpg 2x"
alt="" width="100" height="150">

<p>Marie Lloyd (1870–1922)
was an English music hall singer, ...

The user agent can choose any of the given resources depending on the user's screen's pixel density, zoom level, and possibly
other factors such as the user's network conditions.

For backwards compatibility with older user agents that don't yet understand the srcsetp347 attribute, one of the URLs is
specified in the imgp346 element's srcp347 attribute. This will result in something useful (though perhaps lower-resolution than the
user would like) being displayed even in older user agents. For new user agents, the srcp347 attribute participates in the
resource selection, as if it was specified in srcsetp347 with a 1x descriptor.

The image's rendered size is given in the widthp477 and heightp477 attributes, which allows the user agent to allocate space for
the image before it is downloaded.

Example

In this example, a banner image takes up the entire viewport width (using appropriate CSS).

<h1><img sizes="100vw" srcset="wolf-400.jpg 400w, wolf-800.jpg 800w, wolf-1600.jpg 1600w"
src="wolf-400.jpg" alt="The rad wolf"></h1>

The user agent will calculate the effective pixel density of each image from the specified w descriptors and the specified
rendered size in the sizesp347 attribute. It can then choose any of the given resources depending on the user's screen's pixel
density, zoom level, and possibly other factors such as the user's network conditions.

If the user's screen is 320 CSS pixels wide, this is equivalent to specifying wolf-400.jpg 1.25x, wolf-800.jpg 2.5x,
wolf-1600.jpg 5x. On the other hand, if the user's screen is 1200 CSS pixels wide, this is equivalent to specifying
wolf-400.jpg 0.33x, wolf-800.jpg 0.67x, wolf-1600.jpg 1.33x. By using the w descriptors and the sizesp347 attribute,
the user agent can choose the correct image source to download regardless of how large the user's device is.

For backwards compatibility, one of the URLs is specified in the imgp346 element's srcp347 attribute. In new user agents, the

Example

358

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Art directionp357-based selection
The picturep342 element and the sourcep343 element, together with the mediap343 attribute, can be used to provide multiple images
that vary the image content (for instance the smaller image might be a cropped version of the bigger image).

srcp347 attribute is ignored when the srcsetp347 attribute uses w descriptors.

In this example, the web page has three layouts depending on the width of the viewport. The narrow layout has one column of
images (the width of each image is about 100%), the middle layout has two columns of images (the width of each image is
about 50%), and the widest layout has three columns of images, and some page margin (the width of each image is about
33%). It breaks between these layouts when the viewport is 30em wide and 50em wide, respectively.

<img sizes="(max-width: 30em) 100vw, (max-width: 50em) 50vw, calc(33vw - 100px)"
srcset="swing-200.jpg 200w, swing-400.jpg 400w, swing-800.jpg 800w, swing-1600.jpg 1600w"
src="swing-400.jpg" alt="Kettlebell Swing">

The sizesp347 attribute sets up the layout breakpoints at 30em and 50em, and declares the image sizes between these
breakpoints to be 100vw, 50vw, or calc(33vw - 100px). These sizes do not necessarily have to match up exactly with the
actual image width as specified in the CSS.

The user agent will pick a width from the sizesp347 attribute, using the first item with a <media-condition> (the part in
parentheses) that evaluates to true, or using the last item (calc(33vw - 100px)) if they all evaluate to false.

For example, if the viewport width is 29em, then (max-width: 30em) evaluates to true and 100vw is used, so the image size, for
the purpose of resource selection, is 29em. If the viewport width is instead 32em, then (max-width: 30em) evaluates to false,
but (max-width: 50em) evaluates to true and 50vw is used, so the image size, for the purpose of resource selection, is 16em
(half the viewport width). Notice that the slightly wider viewport results in a smaller image because of the different layout.

The user agent can then calculate the effective pixel density and choose an appropriate resource similarly to the previous
example.

Example

This example is the same as the previous example, but the image is lazy-loadedp101. In this case, the sizesp347 attribute can use
the autop363 keyword, and the user agent will use the widthp477 attribute (or the width specified in CSS) for the source sizep364.

<img loading="lazy" width="200" height="200" sizes="auto"
srcset="swing-200.jpg 200w, swing-400.jpg 400w, swing-800.jpg 800w, swing-1600.jpg 1600w"
src="swing-400.jpg" alt="Kettlebell Swing">

For better backwards-compatibility with legacy user agents that don't support the autop363 keyword, fallback sizes can be
specified if desired.

<img loading="lazy" width="200" height="200"
sizes="auto, (max-width: 30em) 100vw, (max-width: 50em) 50vw, calc(33vw - 100px)"
srcset="swing-200.jpg 200w, swing-400.jpg 400w, swing-800.jpg 800w, swing-1600.jpg 1600w"
src="swing-400.jpg" alt="Kettlebell Swing">

Example

<picture>
<source media="(min-width: 45em)" srcset="large.jpg">
<source media="(min-width: 32em)" srcset="med.jpg">

</picture>

The user agent will choose the first sourcep343 element for which the media query in the mediap343 attribute matches, and then
choose an appropriate URL from its srcsetp344 attribute.

The rendered size of the image varies depending on which resource is chosen. To specify dimensions that the user agent can

Example

359

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

Image format-based selectionp357

The typep343 attribute on the sourcep343 element can be used to provide multiple images in different formats.

This section is non-normative.

CSS and media queries can be used to construct graphical page layouts that adapt dynamically to the user's environment, in particular
to different viewport dimensions and pixel densities. For content, however, CSS does not help; instead, we have the imgp346 element's
srcsetp347 attribute and the picturep342 element. This section walks through a sample case showing how to use these features.

Consider a situation where on wide screens (wider than 600 CSS pixels) a 300×150 image named a-rectangle.png is to be used, but
on smaller screens (600 CSS pixels and less), a smaller 100×100 image called a-square.png is to be used. The markup for this would
look like this:

<figure>
<picture>
<source srcset="a-square.png" media="(max-width: 600px)">

</picture>
<figcaption>Barney Frank, 2011</figcaption>

</figure>

use before having downloaded the image, CSS can be used.

img { width: 300px; height: 300px }
@media (min-width: 32em) { img { width: 500px; height:300px } }
@media (min-width: 45em) { img { width: 700px; height:400px } }

CSS

This example combines art directionp357- and device-pixel-ratiop356-based selection. A banner that takes half the viewport is
provided in two versions, one for wide screens and one for narrow screens.

<h1>
<picture>
<source media="(max-width: 500px)" srcset="banner-phone.jpeg, banner-phone-HD.jpeg 2x">

</picture>
</h1>

Example

<h2>From today's featured article</h2>
<picture>
<source srcset="/uploads/100-marie-lloyd.webp" type="image/webp">
<source srcset="/uploads/100-marie-lloyd.jxr" type="image/vnd.ms-photo">

</picture>
<p>Marie Lloyd (1870–1922)
was an English music hall singer, ...

In this example, the user agent will choose the first source that has a typep343 attribute with a supported MIME type. If the user
agent supports WebP images, the first sourcep343 element will be chosen. If not, but the user agent does support JPEG XR
images, the second sourcep343 element will be chosen. If neither of those formats are supported, the imgp346 element will be
chosen.

Example

4.8.4.1.1 Adaptive images §p36

0

360

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

The problem with this is that the user agent does not necessarily know what dimensions to use for the image when the image is
loading. To avoid the layout having to be reflowed multiple times as the page is loading, CSS and CSS media queries can be used to
provide the dimensions:

<style>
#a { width: 300px; height: 150px; }
@media (max-width: 600px) { #a { width: 100px; height: 100px; } }

</style>
<figure>
<picture>
<source srcset="a-square.png" media="(max-width: 600px)">

</picture>
<figcaption>Barney Frank, 2011</figcaption>

</figure>

Alternatively, the widthp477 and heightp477 attributes can be used to provide the width and height for legacy user agents, using CSS
just for the user agents that support picturep342:

<style media="(max-width: 600px)">
#a { width: 100px; height: 100px; }

</style>
<figure>
<picture>
<source srcset="a-square.png" media="(max-width: 600px)">
<img src="a-rectangle.png" width="300" height="150"
alt="Barney Frank wears a suit and glasses." id="a">

</picture>
<figcaption>Barney Frank, 2011</figcaption>

</figure>

The imgp346 element is used with the srcp347 attribute, which gives the URL of the image to use for legacy user agents that do not
support the picturep342 element. This leads to a question of which image to provide in the srcp347 attribute.

If the author wants the biggest image in legacy user agents, the markup could be as follows:

<picture>
<source srcset="pear-mobile.jpeg" media="(max-width: 720px)">
<source srcset="pear-tablet.jpeg" media="(max-width: 1280px)">

</picture>

However, if legacy mobile user agents are more important, one can list all three images in the sourcep343 elements, overriding the
srcp347 attribute entirely.

<picture>
<source srcset="pear-mobile.jpeg" media="(max-width: 720px)">
<source srcset="pear-tablet.jpeg" media="(max-width: 1280px)">
<source srcset="pear-desktop.jpeg">

</picture>

Since at this point the srcp347 attribute is actually being ignored entirely by picturep342-supporting user agents, the srcp347 attribute
can default to any image, including one that is neither the smallest nor biggest:

For details on what to put in the altp347 attribute, see the Requirements for providing text to act as an alternative for imagesp378

section.

Note

361

<picture>
<source srcset="pear-mobile.jpeg" media="(max-width: 720px)">
<source srcset="pear-tablet.jpeg" media="(max-width: 1280px)">
<source srcset="pear-desktop.jpeg">

</picture>

Above the max-width media feature is used, giving the maximum (viewport) dimensions that an image is intended for. It is also
possible to use min-width instead.

<picture>
<source srcset="pear-desktop.jpeg" media="(min-width: 1281px)">
<source srcset="pear-tablet.jpeg" media="(min-width: 721px)">

</picture>

A srcset attribute is an attribute with requirements defined in this section.

If present, its value must consist of one or more image candidate stringsp362, each separated from the next by a U+002C COMMA
character (,). If an image candidate stringp362 contains no descriptors and no ASCII whitespace after the URL, the following image
candidate stringp362, if there is one, must begin with one or more ASCII whitespace.

An image candidate string consists of the following components, in order, with the further restrictions described below this list:

1. Zero or more ASCII whitespace.

2. A valid non-empty URLp96 that does not start or end with a U+002C COMMA character (,), referencing a non-interactive,
optionally animated, image resource that is neither paged nor scripted.

3. Zero or more ASCII whitespace.

4. Zero or one of the following:

◦ A width descriptor, consisting of: ASCII whitespace, a valid non-negative integerp77 giving a number greater than
zero representing the width descriptor value, and a U+0077 LATIN SMALL LETTER W character.

◦ A pixel density descriptor, consisting of: ASCII whitespace, a valid floating-point numberp77 giving a number
greater than zero representing the pixel density descriptor value, and a U+0078 LATIN SMALL LETTER X
character.

5. Zero or more ASCII whitespace.

There must not be an image candidate stringp362 for an element that has the same width descriptor valuep362 as another image
candidate stringp362 's width descriptor valuep362 for the same element.

There must not be an image candidate stringp362 for an element that has the same pixel density descriptor valuep362 as another image
candidate stringp362 's pixel density descriptor valuep362 for the same element. For the purpose of this requirement, an image candidate
stringp362 with no descriptors is equivalent to an image candidate stringp362 with a 1x descriptor.

If an image candidate stringp362 for an element has the width descriptorp362 specified, all other image candidate stringsp362 for that
element must also have the width descriptorp362 specified.

The specified width in an image candidate stringp362 's width descriptorp362 must match the natural width in the resource given by the
image candidate stringp362 's URL, if it has a natural width.

If an element has a sizes attributep363 present, all image candidate stringsp362 for that element must have the width descriptorp362

specified.

4.8.4.2 Attributes common to sourcep343, imgp346, and linkp177 elements §p36

2

4.8.4.2.1 Srcset attributes §p36

2

362

https://drafts.csswg.org/css2/#viewport
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-width

A sizes attribute is an attribute with requirements defined in this section.

If present, the value must be a valid source size listp363.

A valid source size list is a string that matches the following grammar: [CSSVALUES]p1477 [MQ]p1480

<source-size-list> = <source-size>#? , <source-size-value>
<source-size> = <media-condition> <source-size-value> | auto
<source-size-value> = <length> | auto

A <source-size-value>p363 that is a <length> must not be negative, and must not use CSS functions other than the math functions.

The keyword auto is a width that is computed in parse a sizes attributep375. If present, it must be the first entry and the entire <source-
size-list>p363 value must either be the string "auto" (ASCII case-insensitive) or start with the string "auto," (ASCII case-insensitive).

The autop363 keyword may be specified in the sizesp344 attribute of sourcep343 elements and sizesp347 attribute of imgp346 elements, if
the following conditions are met. Otherwise, autop363 must not be specified.

• The element is a sourcep343 element with a following sibling imgp346 element.

• The element is an imgp346 element.

• The imgp346 element referenced in either condition above allows auto-sizesp348.

The <source-size-value>p363 gives the intended layout width of the image. The author can specify different widths for different
environments with <media-condition>s.

An imgp346 element has a current request and a pending request. The current requestp363 is initially set to a new image requestp363.
The pending requestp363 is initially set to null.

An image request has a state, current URL, and image data.

An image requestp363 's statep363 is one of the following:

Unavailable
The user agent hasn't obtained any image data, or has obtained some or all of the image data but hasn't yet decoded enough of the
image to get the image dimensions.

Partially available
The user agent has obtained some of the image data and at least the image dimensions are available.

4.8.4.2.2 Sizes attributes §p36

3

If the imgp346 element that initiated the image loading (with the update the image datap367 or react to environment changesp376

algorithms) allows auto-sizesp348 and is being renderedp1388, then autop363 is the concrete object size width. Otherwise, the autop363

value is ignored and the next source sizep364 is used instead, if any.

Note

In addition, it is strongly encouraged to specify dimensions using the widthp477 and heightp477 attributes or with CSS. Without
specified dimensions, the image will likely render with 300x150 dimensions because sizes="auto" implies contain-intrinsic-
size: 300px 150px in the Rendering sectionp1408.

Note

Percentages are not allowed in a <source-size-value>p363, to avoid confusion about what it would be relative to. The 'vw' unit can
be used for sizes relative to the viewport width.

Note

4.8.4.3 Processing model §p36

3

363

https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#math-function
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-images/#concrete-object-size
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/css-values/#vw
https://drafts.csswg.org/css2/#viewport

Completely available
The user agent has obtained all of the image data and at least the image dimensions are available.

Broken
The user agent has obtained all of the image data that it can, but it cannot even decode the image enough to get the image
dimensions (e.g. the image is corrupted, or the format is not supported, or no data could be obtained).

An image requestp363 's current URLp363 is initially the empty string.

An image requestp363 's image datap363 is the decoded image data.

When an image requestp363 's statep363 is either partially availablep363 or completely availablep364, the image requestp363 is said to be
available.

When an imgp346 element's current requestp363 's statep363 is completely availablep364 and the user agent can decode the media data
without errors, then the imgp346 element is said to be fully decodable.

An image requestp363 's statep363 is initially unavailablep363.

When an imgp346 element's current requestp363 is availablep364, the imgp346 element provides a paint source whose width is the image's
density-corrected natural widthp364 (if any), whose height is the image's density-corrected natural heightp364 (if any), and whose
appearance is the natural appearance of the image.

An imgp346 element is said to use srcset or picture if it has a srcsetp347 attribute specified or if it has a parent that is a picturep342

element.

Each imgp346 element has a last selected source, which must initially be null.

Each image requestp363 has a current pixel density, which must initially be 1.

Each image requestp363 has preferred density-corrected dimensions, which is either a struct consisting of a width and a height or
is null. It must initially be null.

To determine the density-corrected natural width and height of an imgp346 element img:

1. Let dim be img's current requestp363 's preferred density-corrected dimensionsp364.

2. If dim is null, set dim to img's natural dimensions.

3. Set dim's width to dim's width divided by img's current requestp363 's current pixel densityp364.

4. Set dim's height to dim's height divided by img's current requestp363 's current pixel densityp364.

5. Return dim.

All imgp346 and linkp177 elements are associated with a source setp364.

A source set is an ordered set of zero or more image sourcesp364 and a source sizep364.

An image source is a URL, and optionally either a pixel density descriptorp362, or a width descriptorp362.

A source size is a <source-size-value>p363. When a source sizep364 has a unit relative to the viewport, it must be interpreted relative
to the imgp346 element's node document's viewport. Other units must be interpreted the same as in Media Queries. [MQ]p1480

The preferred density-corrected dimensionsp364 are set in the prepare an image for presentationp371 algorithm based on
meta information in the image.

Note

For example, if the current pixel densityp364 is 3.125, that means that there are 300 device pixels per CSS inch, and thus if the
image data is 300x600, it has density-corrected natural width and heightp364 of 96 CSS pixels by 192 CSS pixels.

Example

364

https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-values/#in
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://url.spec.whatwg.org/#concept-url
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css2/#viewport

A parse error for algorithms in this section indicates a non-fatal mismatch between input and requirements. User agents are
encouraged to expose parse errorp365s somehow.

Whether the image is fetched successfully or not (e.g. whether the response status was an ok status) must be ignored when
determining the image's type and whether it is a valid image.

The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type
headersp98 giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's
associated Content-Type headersp98.

User agents must not support non-image resources with the imgp346 element (e.g. XML files whose document element is an HTML
element). User agents must not run executable code (e.g. scripts) embedded in the image resource. User agents must only display the
first page of a multipage resource (e.g. a PDF file). User agents must not allow the resource to act in an interactive fashion, but should
honour any animation in the resource.

This specification does not specify which image types are to be supported.

By default, images are obtained immediately. User agents may provide users with the option to instead obtain them on-demand. (The
on-demand option might be used by bandwidth-constrained users, for example.)

When obtaining images immediately, the user agent must synchronously update the image datap367 of the imgp346 element, with the
restart animation flag set if so stated, whenever that element is created or has experienced relevant mutationsp365.

When obtaining images on demand, the user agent must update the image datap367 of an imgp346 element whenever it needs the
image data (i.e., on demand), but only if the imgp346 element's current requestp363 's statep363 is unavailablep363. When an imgp346

element has experienced relevant mutationsp365, if the user agent only obtains images on demand, the imgp346 element's current
requestp363 's statep363 must return to unavailablep363.

The relevant mutations for an imgp346 element are as follows:

• The element's srcp347, srcsetp347, widthp477, or sizesp347 attributes are set, changed, or removed.

• The element's srcp347 attribute is set to the same value as the previous value. This must set the restart animation flag for the
update the image datap367 algorithm.

• The element's crossoriginp348 attribute's state is changed.

• The element's referrerpolicyp348 attribute's state is changed.

• The imgp346 or sourcep343 HTML element insertion stepsp45 or HTML element removing stepsp45 count the mutation as a
relevant mutationp365.

• The element's parent is a picturep342 element and a sourcep343 element that is a previous sibling has its srcsetp344,
sizesp344, mediap343, typep343, widthp477 or heightp477 attributes set, changed, or removed.

• The element's adopting steps are run.

• If the element allows auto-sizesp348: the element starts or stops being renderedp1388, or its concrete object size width
changes. This must set the maybe omit events flag for the update the image datap367 algorithm.

This allows servers to return images with error responses, and have them displayed.
Note

4.8.4.3.1 When to obtain images §p36

5

4.8.4.3.2 Reacting to DOM mutations §p36

5

365

https://fetch.spec.whatwg.org/#ok-status
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-adopt-ext
https://drafts.csswg.org/css-images/#concrete-object-size

Each Documentp130 object must have a list of available images. Each image in this list is identified by a tuple consisting of an
absolute URL, a CORS settings attributep99 mode, and, if the mode is not No CORSp99, an originp898. Each image furthermore has an
ignore higher-layer caching flag. User agents may copy entries from one Documentp130 object's list of available imagesp366 to
another at any time (e.g. when the Documentp130 is created, user agents can add to it all the images that are loaded in other
Documentp130s), but must not change the keys of entries copied in this way when doing so, and must unset the ignore higher-layer
cachingp366 flag for the copied entry. User agents may also remove images from such lists at any time (e.g. to save memory). User
agents must remove entries in the list of available imagesp366 as appropriate given higher-layer caching semantics for the resource
(e.g. the HTTP `Cache-Control` response header) when the ignore higher-layer cachingp366 flag is unset.

Image data is usually encoded in order to reduce file size. This means that in order for the user agent to present the image to the
screen, the data needs to be decoded. Decoding is the process which converts an image's media data into a bitmap form, suitable for
presentation to the screen. Note that this process can be slow relative to other processes involved in presenting content. Thus, the
user agent can choose when to perform decoding, in order to create the best user experience.

Image decoding is said to be synchronous if it prevents presentation of other content until it is finished. Typically, this has an effect of
atomically presenting the image and any other content at the same time. However, this presentation is delayed by the amount of time
it takes to perform the decode.

Image decoding is said to be asynchronous if it does not prevent presentation of other content. This has an effect of presenting non-
image content faster. However, the image content is missing on screen until the decode finishes. Once the decode is finished, the
screen is updated with the image.

In both synchronous and asynchronous decoding modes, the final content is presented to screen after the same amount of time has
elapsed. The main difference is whether the user agent presents non-image content ahead of presenting the final content.

In order to aid the user agent in deciding whether to perform synchronous or asynchronous decode, the decodingp348 attribute can be
set on imgp346 elements. The possible values of the decodingp348 attribute are the following image decoding hint keywords:

Keyword State Description

sync Sync Indicates a preference to decodep366 this image synchronously for atomic presentation with other content.
async Async Indicates a preference to decodep366 this image asynchronously to avoid delaying presentation of other content.
auto Auto Indicates no preference in decoding mode (the default).

When decodingp366 an image, the user agent should respect the preference indicated by the decodingp348 attribute's state. If the state
indicated is autop366, then the user agent is free to choose any decoding behavior.

4.8.4.3.3 The list of available images §p36

6

The list of available imagesp366 is intended to enable synchronous switching when changing the srcp347 attribute to a URL that has
previously been loaded, and to avoid re-downloading images in the same document even when they don't allow caching per HTTP.
It is not used to avoid re-downloading the same image while the previous image is still loading.

Note

The user agent can also store the image data separately from the list of available imagesp366.
Note

For example, if a resource has the HTTP response header `Cache-Control: must-revalidate`, and its ignore higher-layer
cachingp366 flag is unset, the user agent would remove it from the list of available imagesp366 but could keep the image data
separately, and use that if the server responds with a 304 Not Modified status.

Example

4.8.4.3.4 Decoding images §p36

6

It is also possible to control the decoding behavior using the decode()p351 method. Since the decode()p351 method performs
decodingp366 independently from the process responsible for presenting content to screen, it is unaffected by the decodingp348

attribute.

Note

366

https://url.spec.whatwg.org/#syntax-url-absolute
https://httpwg.org/specs/rfc7234.html#header.cache-control

When the user agent is to update the image data of an imgp346 element, optionally with the restart animations flag set, optionally
with the maybe omit events flag set, it must run the following steps:

1. If the element's node document is not fully activep1003, then:

1. Continue running this algorithm in parallelp43.

2. Wait until the element's node document is fully activep1003.

3. If another instance of this algorithm for this imgp346 element was started after this instance (even if it aborted and
is no longer running), then return.

4. Queue a microtaskp1125 to continue this algorithm.

2. If the user agent cannot support images, or its support for images has been disabled, then abort the image requestp370 for
the current requestp363 and the pending requestp363, set current requestp363 's statep363 to unavailablep363, set pending
requestp363 to null, and return.

3. Let previous URL be the current requestp363 's current URLp363.

4. Let selected source be null and selected pixel density be undefined.

5. If the element does not use srcset or picturep364 and it has a srcp347 attribute specified whose value is not the empty
string, then set selected source to the value of the element's srcp347 attribute and set selected pixel density to 1.0.

6. Set the element's last selected sourcep364 to selected source.

7. If selected source is not null, then:

1. Let urlString be the result of encoding-parsing-and-serializing a URLp97 given selected source, relative to the
element's node document.

2. If urlString is failure, then abort this inner set of steps.

3. Let key be a tuple consisting of urlString, the imgp346 element's crossoriginp348 attribute's mode, and, if that mode
is not No CORSp99, the node document's origin.

4. If the list of available imagesp366 contains an entry for key, then:

1. Set the ignore higher-layer cachingp366 flag for that entry.

2. Abort the image requestp370 for the current requestp363 and the pending requestp363.

3. Set pending requestp363 to null.

4. Let current requestp363 be a new image requestp363 whose image datap363 is that of the entry and whose
statep363 is completely availablep364.

5. Prepare current request for presentationp371 given img.

6. Set current requestp363 's current pixel densityp364 to selected pixel density.

7. Queue an element taskp1125 on the DOM manipulation task sourcep1134 given the imgp346 element and the
following steps:

1. If restart animation is set, then restart the animationp1408.

2. Set current requestp363 's current URLp363 to urlString.

3. If maybe omit events is not set or previousURL is not equal to urlString, then fire an event
named loadp1471 at the imgp346 element.

8. Abort the update the image datap367 algorithm.

4.8.4.3.5 Updating the image data §p36

7

This algorithm cannot be called from steps running in parallelp43. If a user agent needs to call this algorithm from steps running in
parallelp43, it needs to queuep1125 a task to do so.

Note

367

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-event-fire

8. Queue a microtaskp1125 to perform the rest of this algorithm, allowing the taskp1124 that invoked this algorithm to continue.

9. If another instance of this algorithm for this imgp346 element was started after this instance (even if it aborted and is no
longer running), then return.

10. Let selected source and selected pixel density be the URL and pixel density that results from selecting an image sourcep371,
respectively.

11. If selected source is null, then:

1. Set the current requestp363 's statep363 to brokenp364, abort the image requestp370 for the current requestp363 and the
pending requestp363, and set pending requestp363 to null.

2. Queue an element taskp1125 on the DOM manipulation task sourcep1134 given the imgp346 element and the following
steps:

1. Change the current requestp363 's current URLp363 to the empty string.

2. If all of the following are true:

▪ the element has a srcp347 attribute or it uses srcset or picturep364; and

▪ maybe omit events is not set or previousURL is not the empty string,

then fire an event named errorp1471 at the imgp346 element.

3. Return.

12. Let urlString be the result of encoding-parsing-and-serializing a URLp97 given selected source, relative to the element's node
document.

13. If urlString is failure, then:

1. Abort the image requestp370 for the current requestp363 and the pending requestp363.

2. Set the current requestp363 's statep363 to brokenp364.

3. Set pending requestp363 to null.

4. Queue an element taskp1125 on the DOM manipulation task sourcep1134 given the imgp346 element and the following
steps:

1. Change the current requestp363 's current URLp363 to selected source.

2. If maybe omit events is not set or previousURL is not equal to selected source, then fire an event named
errorp1471 at the imgp346 element.

5. Return.

14. If the pending requestp363 is not null and urlString is the same as the pending requestp363 's current URLp363, then return.

15. If urlString is the same as the current requestp363 's current URLp363 and current requestp363 's statep363 is partially availablep363,
then abort the image requestp370 for the pending requestp363, queue an element taskp1125 on the DOM manipulation task
sourcep1134 given the imgp346 element to restart the animationp1408 if restart animation is set, and return.

16. Abort the image requestp370 for the pending requestp363.

17. Set image request to a new image requestp363 whose current URLp363 is urlString.

18. If current requestp363 's statep363 is unavailablep363 or brokenp364, then set the current requestp363 to image request. Otherwise,
set the pending requestp363 to image request.

19. Let request be the result of creating a potential-CORS requestp98 given urlString, "image", and the current state of the
element's crossoriginp348 content attribute.

20. Set request's client to the element's node document's relevant settings objectp1083.

Only the last instance takes effect, to avoid multiple requests when, for example, the srcp347, srcsetp347, and
crossoriginp348 attributes are all set in succession.

Note

368

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document

21. If the element uses srcset or picturep364, set request's initiator to "imageset".

22. Set request's referrer policy to the current state of the element's referrerpolicyp348 attribute.

23. Set request's priority to the current state of the element's fetchpriorityp348 attribute.

24. Let delay load event be true if the imgp346 's lazy loading attributep101 is in the Eagerp101 state, or if scripting is disabledp1083 for
the imgp346, and false otherwise.

25. If the will lazy load element stepsp101 given the imgp346 return true, then:

1. Set the imgp346 's lazy load resumption stepsp101 to the rest of this algorithm starting with the step labeled fetch the
image.

2. Start intersection-observing a lazy loading elementp101 for the imgp346 element.

3. Return.

26. Fetch the image: Fetch request. Return from this algorithm, and run the remaining steps as part of the fetch's
processResponse for the response response.

The resource obtained in this fashion, if any, is image request's image datap363. It can be either CORS-same-originp98 or
CORS-cross-originp98; this affects the image's interaction with other APIs (e.g., when used on a canvasp677).

When delay load event is true, fetching the image must delay the load eventp1359 of the element's node document until the
taskp1124 that is queuedp1125 by the networking task sourcep1134 once the resource has been fetched (defined belowp370) has
been run.

27. As soon as possible, jump to the first applicable entry from the following list:

↪ If the resource type is multipart/x-mixed-replacep1445

The next taskp1124 that is queuedp1125 by the networking task sourcep1134 while the image is being fetched must run the
following steps:

1. If image request is the pending requestp363 and at least one body part has been completely decoded, abort
the image requestp370 for the current requestp363, and upgrade the pending request to the current
requestp371.

2. Otherwise, if image request is the pending requestp363 and the user agent is able to determine that image
request's image is corrupted in some fatal way such that the image dimensions cannot be obtained, abort
the image requestp370 for the current requestp363, upgrade the pending request to the current requestp371,
and set the current requestp363 's statep363 to brokenp364.

3. Otherwise, if image request is the current requestp363, its statep363 is unavailablep363, and the user agent is
able to determine image request's image's width and height, set the current requestp363 's statep363 to
partially availablep363.

4. Otherwise, if image request is the current requestp363, its statep363 is unavailablep363, and the user agent is
able to determine that image request's image is corrupted in some fatal way such that the image
dimensions cannot be obtained, set the current requestp363 's statep363 to brokenp364.

Each taskp1124 that is queuedp1125 by the networking task sourcep1134 while the image is being fetched must update the
presentation of the image, but as each new body part comes in, if the user agent is able to determine the image's
width and height, it must prepare the img element's current request for presentationp371 given the imgp346 element and
replace the previous image. Once one body part has been completely decoded, perform the following steps:

1. Set the imgp346 element's current requestp363 's statep363 to completely availablep364.

2. If maybe omit events is not set or previousURL is not equal to urlString, then queue an element taskp1125 on
the DOM manipulation task sourcep1134 given the imgp346 element to fire an event named loadp1471 at the

This, unfortunately, can be used to perform a rudimentary port scan of the user's local network (especially
in conjunction with scripting, though scripting isn't actually necessary to carry out such an attack). User
agents may implement cross-originp898 access control policies that are stricter than those described above
to mitigate this attack, but unfortunately such policies are typically not compatible with existing web
content.

⚠Warning!

369

https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire

imgp346 element.

↪ If the resource type and data corresponds to a supported image format, as described belowp365

The next taskp1124 that is queuedp1125 by the networking task sourcep1134 while the image is being fetched must run the
following steps:

1. If the user agent is able to determine image request's image's width and height, and image request is
pending requestp363, set image request's statep363 to partially availablep363.

2. Otherwise, if the user agent is able to determine image request's image's width and height, and image
request is current requestp363, prepare image request for presentationp371 given the imgp346 element and set
image request's statep363 to partially availablep363.

3. Otherwise, if the user agent is able to determine that image request's image is corrupted in some fatal way
such that the image dimensions cannot be obtained, and image request is pending requestp363:

1. Abort the image requestp370 for the current requestp363 and the pending requestp363.

2. Upgrade the pending request to the current requestp371.

3. Set current requestp363 's statep363 to brokenp364.

4. Fire an event named errorp1471 at the imgp346 element.

4. Otherwise, if the user agent is able to determine that image request's image is corrupted in some fatal way
such that the image dimensions cannot be obtained, and image request is current requestp363:

1. Abort the image requestp370 for image request.

2. If maybe omit events is not set or previousURL is not equal to urlString, then fire an event named
errorp1471 at the imgp346 element.

That taskp1124, and each subsequent taskp1124, that is queuedp1125 by the networking task sourcep1134 while the image is
being fetched, if image request is the current requestp363, must update the presentation of the image appropriately
(e.g., if the image is a progressive JPEG, each packet can improve the resolution of the image).

Furthermore, the last taskp1124 that is queuedp1125 by the networking task sourcep1134 once the resource has been
fetched must additionally run these steps:

1. If image request is the pending requestp363, abort the image requestp370 for the current requestp363, upgrade
the pending request to the current requestp371 and prepare image request for presentationp371 given the
imgp346 element.

2. Set image request to the completely availablep364 state.

3. Add the image to the list of available imagesp366 using the key key, with the ignore higher-layer cachingp366

flag set.

4. If maybe omit events is not set or previousURL is not equal to urlString, then fire an event named loadp1471

at the imgp346 element.

↪ Otherwise
The image data is not in a supported file format; the user agent must set image request's statep363 to brokenp364,
abort the image requestp370 for the current requestp363 and the pending requestp363, upgrade the pending request to
the current requestp371 if image request is the pending requestp363, and then, if maybe omit events is not set or
previousURL is not equal to urlString, queue an element taskp1125 on the DOM manipulation task sourcep1134 given the
imgp346 element to fire an event named errorp1471 at the imgp346 element.

While a user agent is running the above algorithm for an element x, there must be a strong reference from the element's node
document to the element x, even if that element is not connected.

To abort the image request for an image requestp363 or null image request means to run the following steps:

1. If image request is null, then return.

2. Forget image request's image datap363, if any.

3. Abort any instance of the fetching algorithm for image request, discarding any pending tasks generated by that algorithm.
370

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#connected
https://fetch.spec.whatwg.org/#concept-fetch

To upgrade the pending request to the current request for an imgp346 element means to run the following steps:

1. Let the imgp346 element's current requestp363 be the pending requestp363.

2. Let the imgp346 element's pending requestp363 be null.

To prepare an image for presentation for an image requestp363 req given image element img:

1. Let exifTagMap be the EXIF tags obtained from req's image datap363, as defined by the relevant codec. [EXIF]p1478

2. Let physicalWidth and physicalHeight be the width and height obtained from req's image datap363, as defined by the relevant
codec.

3. Let dimX be the value of exifTagMap's tag 0xA002 (PixelXDimension).

4. Let dimY be the value of exifTagMap's tag 0xA003 (PixelYDimension).

5. Let resX be the value of exifTagMap's tag 0x011A (XResolution).

6. Let resY be the value of exifTagMap's tag 0x011B (YResolution).

7. Let resUnit be the value of exifTagMap's tag 0x0128 (ResolutionUnit).

8. If either dimX or dimY is not a positive integer, then return.

9. If either resX or resY is not a positive floating-point number, then return.

10. If resUnit is not equal to 2 (Inch), then return.

11. Let widthFromDensity be the value of physicalWidth, multiplied by 72 and divided by resX.

12. Let heightFromDensity be the value of physicalHeight, multiplied by 72 and divided by resY.

13. If widthFromDensity is not equal to dimX or heightFromDensity is not equal to dimY, then return.

14. If req's image datap363 is CORS-cross-originp98, then set img's natural dimensions to dimX and dimY, scale img's pixel data
accordingly, and return.

15. Set req's preferred density-corrected dimensionsp364 to a struct with its width set to dimX and its height set to dimY.

16. Update req's imgp346 element's presentation appropriately.

It is not yet specified what would be the case if EXIF arrives after the image is already presented. See issue #4929.

To select an image source given an imgp346 element el:

1. Update the source setp372 for el.

2. If el's source setp364 is empty, return null as the URL and undefined as the pixel density.

3. Return the result of selecting an imagep371 from el's source setp364.

To select an image source from a source set given a source setp364 sourceSet:

1. If an entry b in sourceSet has the same associated pixel density descriptorp362 as an earlier entry a in sourceSet, then
remove entry b. Repeat this step until none of the entries in sourceSet have the same associated pixel density descriptorp362

4.8.4.3.6 Preparing an image for presentation §p37

1

Resolution in EXIF is equivalent to CSS points per inch, therefore 72 is the base for computing size from resolution.
Note

4.8.4.3.7 Selecting an image source §p37

1

371

https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-values/#pt
https://github.com/w3c/csswg-drafts/issues/4929

as an earlier entry.

2. In an implementation-defined manner, choose one image sourcep364 from sourceSet. Let this be selectedSource.

3. Return selectedSource and its associated pixel density.

When asked to create a source set given a string default source, a string srcset, a string sizes, and an element or null img:

1. Let source set be an empty source setp364.

2. If srcset is not an empty string, then set source set to the result of parsingp373 srcset.

3. Let source sizep364 be the result of parsingp375 sizes with img.

4. If default source is not the empty string and source set does not contain an image sourcep364 with a pixel density
descriptorp362 value of 1, and no image sourcep364 with a width descriptorp362, append default source to source set.

5. Normalize the source densitiesp376 of source set.

6. Return source set.

When asked to update the source set for a given imgp346 or linkp177 element el, user agents must do the following:

1. Set el's source setp364 to an empty source setp364.

2. Let elements be « el ».

3. If el is an imgp346 element whose parent node is a picturep342 element, then replace the contents of elements with el's parent
node's child elements, retaining relative order.

4. Let img be el if el is an imgp346 element, otherwise null.

5. For each child in elements:

1. If child is el:

1. Let default source be the empty string.

2. Let srcset be the empty string.

3. Let sizes be the empty string.

4. If el is an imgp346 element that has a srcsetp347 attribute, then set srcset to that attribute's value.

5. Otherwise, if el is a linkp177 element that has an imagesrcsetp180 attribute, then set srcset to that
attribute's value.

6. If el is an imgp346 element that has a sizesp347 attribute, then set sizes to that attribute's value.

7. Otherwise, if el is a linkp177 element that has an imagesizesp180 attribute, then set sizes to that
attribute's value.

8. If el is an imgp346 element that has a srcp347 attribute, then set default source to that attribute's value.

9. Otherwise, if el is a linkp177 element that has an hrefp178 attribute, then set default source to that
attribute's value.

10. Let el's source setp364 be the result of creating a source setp372 given default source, srcset, sizes, and
img.

11. Return.

4.8.4.3.8 Creating a source set from attributes §p37

2

4.8.4.3.9 Updating the source set §p37

2

372

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#list-replace
https://infra.spec.whatwg.org/#list-iterate

2. If child is not a sourcep343 element, then continue.

3. If child does not have a srcsetp344 attribute, continue to the next child.

4. Parse child's srcset attributep373 and let the returned source setp364 be source set.

5. If source set has zero image sourcesp364, continue to the next child.

6. If child has a mediap343 attribute, and its value does not match the environmentp95, continue to the next child.

7. Parse child's sizes attributep375 with img, and let source set's source sizep364 be the returned value.

8. If child has a typep343 attribute, and its value is an unknown or unsupported MIME type, continue to the next child.

9. If child has widthp477 or heightp477 attributes, set el's dimension attribute sourcep347 to child. Otherwise, set el's
dimension attribute sourcep347 to el.

10. Normalize the source densitiesp376 of source set.

11. Let el's source setp364 be source set.

12. Return.

When asked to parse a srcset attribute from an element, parse the value of the element's srcset attributep362 as follows:

1. Let input be the value passed to this algorithm.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let candidates be an initially empty source setp364.

4. Splitting loop: Collect a sequence of code points that are ASCII whitespace or U+002C COMMA characters from input given
position. If any U+002C COMMA characters were collected, that is a parse errorp365.

5. If position is past the end of input, return candidates.

6. Collect a sequence of code points that are not ASCII whitespace from input given position, and let that be url.

7. Let descriptors be a new empty list.

8. If url ends with U+002C (,), then:

1. Remove all trailing U+002C COMMA characters from url. If this removed more than one character, that is a parse
errorp365.

Otherwise:

1. Descriptor tokenizer: Skip ASCII whitespace within input given position.

2. Let current descriptor be the empty string.

3. Let state be in descriptor.

4. Let c be the character at position. Do the following depending on the value of state. For the purpose of this step,
"EOF" is a special character representing that position is past the end of input.

If el is a linkp177 element, then elements contains only el, so this step will be reached immediately
and the rest of the algorithm will not run.

Note

Each imgp346 element independently considers its previous sibling sourcep343 elements plus the imgp346 element itself for selecting
an image sourcep364, ignoring any other (invalid) elements, including other imgp346 elements in the same picturep342 element, or
sourcep343 elements that are following siblings of the relevant imgp346 element.

Note

4.8.4.3.10 Parsing a srcset attribute §p37

3

373

https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#skip-ascii-whitespace

↪ In descriptor
Do the following, depending on the value of c:

↪ ASCII whitespace
If current descriptor is not empty, append current descriptor to descriptors and let current descriptor
be the empty string. Set state to after descriptor.

↪ U+002C COMMA (,)
Advance position to the next character in input. If current descriptor is not empty, append current
descriptor to descriptors. Jump to the step labeled descriptor parser.

↪ U+0028 LEFT PARENTHESIS (()
Append c to current descriptor. Set state to in parens.

↪ EOF
If current descriptor is not empty, append current descriptor to descriptors. Jump to the step labeled
descriptor parser.

↪ Anything else
Append c to current descriptor.

↪ In parens
Do the following, depending on the value of c:

↪ U+0029 RIGHT PARENTHESIS ())
Append c to current descriptor. Set state to in descriptor.

↪ EOF
Append current descriptor to descriptors. Jump to the step labeled descriptor parser.

↪ Anything else
Append c to current descriptor.

↪ After descriptor
Do the following, depending on the value of c:

↪ ASCII whitespace
Stay in this state.

↪ EOF
Jump to the step labeled descriptor parser.

↪ Anything else
Set state to in descriptor. Set position to the previous character in input.

Advance position to the next character in input. Repeat this step.

9. Descriptor parser: Let error be no.

10. Let width be absent.

11. Let density be absent.

12. Let future-compat-h be absent.

13. For each descriptor in descriptors, run the appropriate set of steps from the following list:

↪ If the descriptor consists of a valid non-negative integerp77 followed by a U+0077 LATIN SMALL LETTER W
character

1. If the user agent does not support the sizesp347 attribute, let error be yes.

In order to be compatible with future additions, this algorithm supports multiple descriptors and descriptors
with parens.

Note

374

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

2. If width and density are not both absent, then let error be yes.

3. Apply the rules for parsing non-negative integersp77 to the descriptor. If the result is 0, let error be yes.
Otherwise, let width be the result.

↪ If the descriptor consists of a valid floating-point numberp77 followed by a U+0078 LATIN SMALL LETTER X
character

1. If width, density and future-compat-h are not all absent, then let error be yes.

2. Apply the rules for parsing floating-point number valuesp78 to the descriptor. If the result is less than 0, let
error be yes. Otherwise, let density be the result.

↪ If the descriptor consists of a valid non-negative integerp77 followed by a U+0068 LATIN SMALL LETTER H
character

This is a parse errorp365.

1. If future-compat-h and density are not both absent, then let error be yes.

2. Apply the rules for parsing non-negative integersp77 to the descriptor. If the result is 0, let error be yes.
Otherwise, let future-compat-h be the result.

↪ Anything else
Let error be yes.

14. If future-compat-h is not absent and width is absent, let error be yes.

15. If error is still no, then append a new image sourcep364 to candidates whose URL is url, associated with a width width if not
absent and a pixel density density if not absent. Otherwise, there is a parse errorp365.

16. Return to the step labeled splitting loop.

When asked to parse a sizes attribute from an element element, with an imgp346 element or null img:

1. Let unparsed sizes list be the result of parsing a comma-separated list of component values from the value of element's sizes
attributep363 (or the empty string, if the attribute is absent). [CSSSYNTAX]p1477

2. Let size be null.

3. For each unparsed size in unparsed sizes list:

1. Remove all consecutive <whitespace-token>s from the end of unparsed size. If unparsed size is now empty, then
that is a parse errorp365; continue.

2. If the last component value in unparsed size is a valid non-negative <source-size-value>p363, then set size to its
value and remove the component value from unparsed size. Any CSS function other than the math functions is
invalid. Otherwise, there is a parse errorp365; continue.

3. If size is autop363, and img is not null, and img is being renderedp1388, and img allows auto-sizesp348, then set size to
the concrete object size width of img, in CSS pixels.

4. Remove all consecutive <whitespace-token>s from the end of unparsed size. If unparsed size is now empty:

A conforming user agent will support the sizesp347 attribute. However, user agents typically implement
and ship features in an incremental manner in practice.

Note

If density is 0, the natural dimensions will be infinite. User agents are expected to have limits in how big
images can be rendered.

Note

4.8.4.3.11 Parsing a sizes attribute §p37

5

If size is still autop363, then it will be ignored.
Note

375

https://drafts.csswg.org/css-images/#natural-dimensions
https://infra.spec.whatwg.org/#algorithm-limits
https://drafts.csswg.org/css-syntax/#parse-a-comma-separated-list-of-component-values
https://drafts.csswg.org/css-syntax/#typedef-whitespace-token
https://infra.spec.whatwg.org/#iteration-continue
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/css-values/#math-function
https://infra.spec.whatwg.org/#iteration-continue
https://drafts.csswg.org/css-images/#concrete-object-size
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-syntax/#typedef-whitespace-token

1. If this was not the last item in unparsed sizes list, that is a parse errorp365.

2. If size is not autop363, then return size. Otherwise, continue.

5. Parse the remaining component values in unparsed size as a <media-condition>. If it does not parse correctly, or it
does parse correctly but the <media-condition> evaluates to false, continue. [MQ]p1480

6. If size is not autop363, then return size. Otherwise, continue.

4. Return 100vw.

An image sourcep364 can have a pixel density descriptorp362, a width descriptorp362, or no descriptor at all accompanying its URL.
Normalizing a source setp364 gives every image sourcep364 a pixel density descriptorp362.

When asked to normalize the source densities of a source setp364 source set, the user agent must do the following:

1. Let source size be source set's source sizep364.

2. For each image sourcep364 in source set:

1. If the image sourcep364 has a pixel density descriptorp362, continue to the next image sourcep364.

2. Otherwise, if the image sourcep364 has a width descriptorp362, replace the width descriptorp362 with a pixel density
descriptorp362 with a valuep362 of the width descriptor valuep362 divided by the source sizep364 and a unit of x.

3. Otherwise, give the image sourcep364 a pixel density descriptorp362 of 1x.

The user agent may at any time run the following algorithm to update an imgp346 element's image in order to react to changes in the
environment. (User agents are not required to ever run this algorithm; for example, if the user is not looking at the page any more,
the user agent might want to wait until the user has returned to the page before determining which image to use, in case the
environment changes again in the meantime.)

1. Await a stable statep1131. The synchronous sectionp1131 consists of all the remaining steps of this algorithm until the algorithm
says the synchronous sectionp1131 has ended. (Steps in synchronous sectionsp1131 are marked with ⌛.)

2. ⌛ If the imgp346 element does not use srcset or picturep364, its node document is not fully activep1003, has image data whose
resource type is multipart/x-mixed-replacep1445, or the pending requestp363 is not null, then return.

3. ⌛ Let selected source and selected pixel density be the URL and pixel density that results from selecting an image sourcep371,
respectively.

It is invalid to use a bare <source-size-value>p363 that is a <length> (without an accompanying <media-condition>) as an entry in
the <source-size-list>p363 that is not the last entry. However, the parsing algorithm allows it at any point in the <source-size-
list>p363, and will accept it immediately as the size if the preceding entries in the list weren't used. This is to enable future
extensions, and protect against simple author errors such as a final trailing comma. A bare autop363 keyword is allowed to have
other entries following it to provide a fallback for legacy user agents.

Note

4.8.4.3.12 Normalizing the source densities §p37

6

If the source sizep364 is 0, then the density would be infinity, which results in the natural dimensions being 0 by
0.

Note

4.8.4.3.13 Reacting to environment changes §p37

6

User agents are encouraged to run this algorithm in particular when the user changes the viewport's size (e.g. by resizing the
window or changing the page zoom), and when an imgp346 element is inserted into a documentp46, so that the density-corrected
natural width and heightp364 match the new viewport, and so that the correct image is chosen when art directionp357 is involved.

Note

376

https://drafts.csswg.org/css-syntax/#component-value
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://infra.spec.whatwg.org/#iteration-continue
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/mediaqueries/#typedef-media-condition
https://infra.spec.whatwg.org/#iteration-continue
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document

4. ⌛ If selected source is null, then return.

5. ⌛ If selected source and selected pixel density are the same as the element's last selected sourcep364 and current pixel
densityp364, then return.

6. ⌛ Let urlString be the result of encoding-parsing-and-serializing a URLp97 given selected source, relative to the element's
node document.

7. ⌛ If urlString is failure, then return.

8. ⌛ Let corsAttributeState be the state of the element's crossoriginp348 content attribute.

9. ⌛ Let origin be the imgp346 element's node document's origin.

10. ⌛ Let client be the imgp346 element's node document's relevant settings objectp1083.

11. ⌛ Let key be a tuple consisting of urlString, corsAttributeState, and, if corsAttributeState is not No CORSp99, origin.

12. ⌛ Let image request be a new image requestp363 whose current URLp363 is urlString.

13. ⌛ Let the element's pending requestp363 be image request.

14. End the synchronous sectionp1131, continuing the remaining steps in parallelp43.

15. If the list of available imagesp366 contains an entry for key, then set image request's image datap363 to that of the entry.
Continue to the next step.

Otherwise:

1. Let request be the result of creating a potential-CORS requestp98 given urlString, "image", and corsAttributeState.

2. Set request's client to client, initiator to "imageset", and set request's synchronous flag.

3. Set request's referrer policy to the current state of the element's referrerpolicyp348 attribute.

4. Set request's priority to the current state of the element's fetchpriorityp348 attribute.

5. Let response be the result of fetching request.

6. If response's unsafe responsep98 is a network error or if the image format is unsupported (as determined by
applying the image sniffing rules, again as mentioned earlier), or if the user agent is able to determine that image
request's image is corrupted in some fatal way such that the image dimensions cannot be obtained, or if the
resource type is multipart/x-mixed-replacep1445, then let pending requestp363 be null and abort these steps.

7. Otherwise, response's unsafe responsep98 is image request's image datap363. It can be either CORS-same-originp98

or CORS-cross-originp98; this affects the image's interaction with other APIs (e.g., when used on a canvasp677).

16. Queue an element taskp1125 on the DOM manipulation task sourcep1134 given the imgp346 element and the following steps:

1. If the imgp346 element has experienced relevant mutationsp365 since this algorithm started, then let pending
requestp363 be null and abort these steps.

2. Let the imgp346 element's last selected sourcep364 be selected source and the imgp346 element's current pixel
densityp364 be selected pixel density.

3. Set the image request's statep363 to completely availablep364.

4. Add the image to the list of available imagesp366 using the key key, with the ignore higher-layer cachingp366 flag set.

5. Upgrade the pending request to the current requestp371.

6. Prepare image request for presentationp371 given the imgp346 element.

7. Fire an event named loadp1471 at the imgp346 element.

377

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-initiator
https://fetch.spec.whatwg.org/#synchronous-flag
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-network-error
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#concept-event-fire

Except where otherwise specified, the altp347 attribute must be specified and its value must not be empty; the value must be an
appropriate replacement for the image. The specific requirements for the altp347 attribute depend on what the image is intended to
represent, as described in the following sections.

The most general rule to consider when writing alternative text is the following: the intent is that replacing every image with the
text of its altp347 attribute does not change the meaning of the page.

So, in general, alternative text can be written by considering what one would have written had one not been able to include the image.

A corollary to this is that the altp347 attribute's value should never contain text that could be considered the image's caption, title, or
legend. It is supposed to contain replacement text that could be used by users instead of the image; it is not meant to supplement the
image. The titlep157 attribute can be used for supplemental information.

Another corollary is that the altp347 attribute's value should not repeat information that is already provided in the prose next to the
image.

When an ap257 element that creates a hyperlinkp302, or a buttonp566 element, has no textual content but contains one or more images,
the altp347 attributes must contain text that together convey the purpose of the link or button.

4.8.4.4 Requirements for providing text to act as an alternative for images §p37

8

4.8.4.4.1 General guidelines §p37

8

One way to think of alternative text is to think about how you would read the page containing the image to someone over the
phone, without mentioning that there is an image present. Whatever you say instead of the image is typically a good start for
writing the alternative text.

Note

4.8.4.4.2 A link or button containing nothing but the image §p37

8

In this example, a user is asked to pick their preferred color from a list of three. Each color is given by an image, but for users who
have configured their user agent not to display images, the color names are used instead:

<h1>Pick your color</h1>

Example

In this example, each button has a set of images to indicate the kind of color output desired by the user. The first image is used in
each case to give the alternative text.

<button name="rgb"><img src="blue"
alt=""></button>
<button name="cmyk"><img src="yellow"
alt=""></button>

Since each image represents one part of the text, it could also be written like this:

<button name="rgb"><img src="blue"
alt="B"></button>
<button name="cmyk"><img src="yellow"
alt="Y"></button>

However, with other alternative text, this might not work, and putting all the alternative text into one image in each case might

Example

378

Sometimes something can be more clearly stated in graphical form, for example as a flowchart, a diagram, a graph, or a simple map
showing directions. In such cases, an image can be given using the imgp346 element, but the lesser textual version must still be given,
so that users who are unable to view the image (e.g. because they have a very slow connection, or because they are using a text-only
browser, or because they are listening to the page being read out by a hands-free automobile voice web browser, or simply because
they are blind) are still able to understand the message being conveyed.

The text must be given in the altp347 attribute, and must convey the same message as the image specified in the srcp347 attribute.

It is important to realize that the alternative text is a replacement for the image, not a description of the image.

make more sense:

<button name="rgb"><img src="blue"
alt=""></button>
<button name="cmyk"><img src="yellow"
alt=""></button>

4.8.4.4.3 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs, maps,
illustrations §p37

9

In the following example we have a flowchart in image form, with text in the altp347 attribute rephrasing the flowchart in prose
form:

<p>In the common case, the data handled by the tokenization stage
comes from the network, but it can also come from script.</p>
<p><img src="images/parsing-model-overview.svg" alt="The Network
passes data to the Input Stream Preprocessor, which passes it to the
Tokenizer, which passes it to the Tree Construction stage. From there,
data goes to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to the
Tokenizer."></p>

Example

Here's another example, showing a good solution and a bad solution to the problem of including an image in a description.

First, here's the good solution. This sample shows how the alternative text should just be what you would have put in the prose if
the image had never existed.

<!-- This is the correct way to do things. -->
<p>
You are standing in an open field west of a house.

There is a small mailbox here.

</p>

Second, here's the bad solution. In this incorrect way of doing things, the alternative text is simply a description of the image,
instead of a textual replacement for the image. It's bad because when the image isn't shown, the text doesn't flow as well as in the
first example.

<!-- This is the wrong way to do things. -->
<p>
You are standing in an open field west of a house.

There is a small mailbox here.

Example

379

https://html.spec.whatwg.org/images/parsing-model-overview.svg

A document can contain information in iconic form. The icon is intended to help users of visual browsers to recognize features at a
glance.

In some cases, the icon is supplemental to a text label conveying the same meaning. In those cases, the altp347 attribute must be
present but must be empty.

In other cases, the icon has no text next to it describing what it means; the icon is supposed to be self-explanatory. In those cases, an
equivalent textual label must be given in the altp347 attribute.

Many pages include logos, insignia, flags, or emblems, which stand for a particular entity such as a company, organization, project,
band, software package, country, or some such.

If the logo is being used to represent the entity, e.g. as a page heading, the altp347 attribute must contain the name of the entity being
represented by the logo. The altp347 attribute must not contain text like the word "logo", as it is not the fact that it is a logo that is
being conveyed, it's the entity itself.

</p>

Text such as "Photo of white house with boarded door" would be equally bad alternative text (though it could be suitable for the
titlep157 attribute or in the figcaptionp252 element of a figurep249 with this image).

4.8.4.4.4 A short phrase or label with an alternative graphical representation: icons, logos §p38

0

Here the icons are next to text that conveys the same meaning, so they have an empty altp347 attribute:

<nav>
<p> Help</p>
<p>
Configuration Tools</p>

</nav>

Example

Here, posts on a news site are labeled with an icon indicating their topic.

<body>
<article>
<header>
<h1>Ratatouille wins <i>Best Movie of the Year</i> award</h1>
<p></p>

</header>
<p>Pixar has won yet another <i>Best Movie of the Year</i> award,
making this its 8th win in the last 12 years.</p>

</article>
<article>
<header>
<h1>Latest TWiT episode is online</h1>
<p></p>

</header>
<p>The latest TWiT episode has been posted, in which we hear
several tech news stories as well as learning much more about the
iPhone. This week, the panelists compare how reflective their
iPhones' Apple logos are.</p>

</article>
</body>

Example

380

If the logo is being used next to the name of the entity that it represents, then the logo is supplemental, and its altp347 attribute must
instead be empty.

If the logo is merely used as decorative material (as branding, or, for example, as a side image in an article that mentions the entity to
which the logo belongs), then the entry below on purely decorative images applies. If the logo is actually being discussed, then it is
being used as a phrase or paragraph (the description of the logo) with an alternative graphical representation (the logo itself), and the
first entry above applies.

Sometimes, an image just consists of text, and the purpose of the image is not to highlight the actual typographic effects used to
render the text, but just to convey the text itself.

In such cases, the altp347 attribute must be present but must consist of the same text as written in the image itself.

In the following snippets, all four of the above cases are present. First, we see a logo used to represent a company:

<h1></h1>

Next, we see a paragraph which uses a logo right next to the company name, and so doesn't have any alternative text:

<article>
<h2>News</h2>
<p>We have recently been looking at buying the <img src="alpha.gif"
alt=""> ΑΒΓ company, a small Greek company
specializing in our type of product.</p>

In this third snippet, we have a logo being used in an aside, as part of the larger article discussing the acquisition:

<aside><p></p></aside>
<p>The ΑΒΓ company has had a good quarter, and our
pie chart studies of their accounts suggest a much bigger blue slice
than its green and orange slices, which is always a good sign.</p>

</article>

Finally, we have an opinion piece talking about a logo, and the logo is therefore described in detail in the alternative text.

<p>Consider for a moment their logo:</p>

<p><img src="/images/logo" alt="It consists of a green circle with a
green question mark centered inside it."></p>

<p>How unoriginal can you get? I mean, oooooh, a question mark, how
revolutionary, how utterly ground-breaking, I'm
sure everyone will rush to adopt those specifications now! They could
at least have tried for some sort of, I don't know, sequence of
rounded squares with varying shades of green and bold white outlines,
at least that would look good on the cover of a blue book.</p>

This example shows how the alternative text should be written such that if the image isn't availablep364, and the text is used
instead, the text flows seamlessly into the surrounding text, as if the image had never been there in the first place.

Example

4.8.4.4.5 Text that has been rendered to a graphic for typographical effect §p38

1

Consider a graphic containing the text "Earth Day", but with the letters all decorated with flowers and plants. If the text is merely
being used as a heading, to spice up the page for graphical users, then the correct alternative text is just the same text "Earth
Day", and no mention need be made of the decorations:

Example

381

When an image is used to represent a character that cannot otherwise be represented in Unicode, for example gaiji, itaiji, or new
characters such as novel currency symbols, the alternative text should be a more conventional way of writing the same thing, e.g.
using the phonetic hiragana or katakana to give the character's pronunciation.

An image should not be used if characters would serve an identical purpose. Only when the text cannot be directly represented using
text, e.g., because of decorations or because there is no appropriate character (as in the case of gaiji), would an image be appropriate.

In many cases, the image is actually just supplementary, and its presence merely reinforces the surrounding text. In these cases, the
altp347 attribute must be present but its value must be the empty string.

In general, an image falls into this category if removing the image doesn't make the page any less useful, but including the image
makes it a lot easier for users of visual browsers to understand the concept.

<h1></h1>

An illuminated manuscript might use graphics for some of its images. The alternative text in such a situation is just the character
that the image represents.

<p>nce upon a time and a long long time ago, late at
night, when it was dark, over the hills, through the woods, across a great ocean, in a land far
away, in a small house, on a hill, under a full moon...

Example

In this example from 1997, a new-fangled currency symbol that looks like a curly E with two bars in the middle instead of one is
represented using an image. The alternative text gives the character's pronunciation.

<p>Only 5.99!

Example

If an author is tempted to use an image because their default system font does not support a given character, then web fonts are a
better solution than images.

Note

4.8.4.4.6 A graphical representation of some of the surrounding text §p38

2

A flowchart that repeats the previous paragraph in graphical form:

<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<p></p>

In these cases, it would be wrong to include alternative text that consists of just a caption. If a caption is to be included, then either
the titlep157 attribute can be used, or the figurep249 and figcaptionp252 elements can be used. In the latter case, the image
would in fact be a phrase or paragraph with an alternative graphical representation, and would thus require alternative text.

<!-- Using the title="" attribute -->
<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.

Example

382

Sometimes, an image is not critical to the content, but is nonetheless neither purely decorative nor entirely redundant with the text. In
these cases, the altp347 attribute must be present, and its value should either be the empty string, or a textual representation of the
information that the image conveys. If the image has a caption giving the image's title, then the altp347 attribute's value must not be
empty (as that would be quite confusing for non-visual readers).

Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<p><img src="images/parsing-model-overview.svg" alt=""

title="Flowchart representation of the parsing model."></p>

<!-- Using <figure> and <figcaption> -->
<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<figure>
<img src="images/parsing-model-overview.svg" alt="The Network leads to
the Input Stream Preprocessor, which leads to the Tokenizer, which
leads to the Tree Construction stage. The Tree Construction stage
leads to two items. The first is Script Execution, which leads via
document.write() back to the Tokenizer. The second item from which
Tree Construction leads is the DOM. The DOM is related to the Script
Execution.">
<figcaption>Flowchart representation of the parsing model.</figcaption>

</figure>

<!-- This is WRONG. Do not do this. Instead, do what the above examples do. -->
<p>The Network passes data to the Input Stream Preprocessor, which
passes it to the Tokenizer, which passes it to the Tree Construction
stage. From there, data goes to both the DOM and to Script Execution.
Script Execution is linked to the DOM, and, using document.write(),
passes data to the Tokenizer.</p>
<p><img src="images/parsing-model-overview.svg"

alt="Flowchart representation of the parsing model."></p>
<!-- Never put the image's caption in the alt="" attribute! -->

A graph that repeats the previous paragraph in graphical form:

<p>According to a study covering several billion pages,
about 62% of documents on the web in 2007 triggered the Quirks
rendering mode of web browsers, about 30% triggered the Almost
Standards mode, and about 9% triggered the Standards mode.</p>
<p></p>

Example

4.8.4.4.7 Ancillary images §p38

3

Consider a news article about a political figure, in which the individual's face was shown in an image. The image is not purely
decorative, as it is relevant to the story. The image is not entirely redundant with the story either, as it shows what the politician
looks like. Whether any alternative text need be provided is an authoring decision, decided by whether the image influences the
interpretation of the prose.

In this first variant, the image is shown without context, and no alternative text is provided:

Example

383

If an image is decorative but isn't especially page-specific — for example an image that forms part of a site-wide design scheme — the
image should be specified in the site's CSS, not in the markup of the document.

However, a decorative image that isn't discussed by the surrounding text but still has some relevance can be included in a page using
the imgp346 element. Such images are decorative, but still form part of the content. In these cases, the altp347 attribute must be
present but its value must be the empty string.

<p> Ahead of today's referendum,
the President wrote an open letter to all registered voters. In it, she admitted that the country
was
divided.</p>

If the picture is just a face, there might be no value in describing it. It's of no interest to the reader whether the individual has red
hair or blond hair, whether the individual has white skin or black skin, whether the individual has one eye or two eyes.

However, if the picture is more dynamic, for instance showing the politician as angry, or particularly happy, or devastated, some
alternative text would be useful in setting the tone of the article, a tone that might otherwise be missed:

<p>
Ahead of today's referendum, the President wrote an open letter to all
registered voters. In it, she admitted that the country was divided.
</p>

<p>
Ahead of today's referendum, the President wrote an open letter to all
registered voters. In it, she admitted that the country was divided.
</p>

Whether the individual was "sad" or "happy" makes a difference to how the rest of the paragraph is to be interpreted: is she likely
saying that she is unhappy with the country being divided, or is she saying that the prospect of a divided country is good for her
political career? The interpretation varies based on the image.

If the image has a caption, then including alternative text avoids leaving the non-visual user confused as to what the caption refers
to.

<p>Ahead of today's referendum, the President wrote an open letter to
all registered voters. In it, she admitted that the country was divided.</p>
<figure>
<img src="president.jpeg"

alt="A high forehead, cheerful disposition, and dark hair round out the President's face.">
<figcaption> The President of Ruritania. Photo © 2014 PolitiPhoto. </figcaption>

</figure>

Example

4.8.4.4.8 A purely decorative image that doesn't add any information §p38

4

Examples where the image is purely decorative despite being relevant would include things like a photo of the Black Rock City
landscape in a blog post about an event at Burning Man, or an image of a painting inspired by a poem, on a page reciting that
poem. The following snippet shows an example of the latter case (only the first verse is included in this snippet):

<h1>The Lady of Shalott</h1>
<p></p>
<p>On either side the river lie

Long fields of barley and of rye,

That clothe the wold and meet the sky;

Example

384

When a picture has been sliced into smaller image files that are then displayed together to form the complete picture again, one of the
images must have its altp347 attribute set as per the relevant rules that would be appropriate for the picture as a whole, and then all
the remaining images must have their altp347 attribute set to the empty string.

Generally, image mapsp473 should be used instead of slicing an image for links.

However, if an image is indeed sliced and any of the components of the sliced picture are the sole contents of links, then one image
per link must have alternative text in its altp347 attribute representing the purpose of the link.

In some cases, the image is a critical part of the content. This could be the case, for instance, on a page that is part of a photo gallery.
The image is the whole point of the page containing it.

And through the field the road run by

To many-tower'd Camelot;

And up and down the people go,

Gazing where the lilies blow

Round an island there below,

The island of Shalott.</p>

4.8.4.4.9 A group of images that form a single larger picture with no links §p38

5

In the following example, a picture representing a company logo for XYZ Corp has been split into two pieces, the first containing
the letters "XYZ" and the second with the word "Corp". The alternative text ("XYZ Corp") is all in the first image.

<h1></h1>

Example

In the following example, a rating is shown as three filled stars and two empty stars. While the alternative text could have been
"★★★☆☆", the author has instead decided to more helpfully give the rating in the form "3 out of 5". That is the alternative text of
the first image, and the rest have blank alternative text.

<p>Rating: <meter max=5 value=3><img src="1" alt="3 out of 5"
><img src="0" alt=""
></meter></p>

Example

4.8.4.4.10 A group of images that form a single larger picture with links §p38

5

In the following example, a picture representing the flying spaghetti monster emblem, with each of the left noodly appendages and
the right noodly appendages in different images, so that the user can pick the left side or the right side in an adventure.

<h1>The Church</h1>
<p>You come across a flying spaghetti monster. Which side of His
Noodliness do you wish to reach out for?</p>
<p><img src="fsm-middle.png" alt=""
></p>

Example

4.8.4.4.11 A key part of the content §p38

5

385

How to provide alternative text for an image that is a key part of the content depends on the image's provenance.

The general case
When it is possible for detailed alternative text to be provided, for example if the image is part of a series of screenshots in a
magazine review, or part of a comic strip, or is a photograph in a blog entry about that photograph, text that can serve as a
substitute for the image must be given as the contents of the altp347 attribute.

Images that defy a complete description
In certain cases, the nature of the image might be such that providing thorough alternative text is impractical. For example, the
image could be indistinct, or could be a complex fractal, or could be a detailed topographical map.

In these cases, the altp347 attribute must contain some suitable alternative text, but it may be somewhat brief.

A screenshot in a gallery of screenshots for a new OS, with some alternative text:

<figure>
<img src="KDE%20Light%20desktop.png"

alt="The desktop is blue, with icons along the left hand side in
two columns, reading System, Home, K-Mail, etc. A window is
open showing that menus wrap to a second line if they
cannot fit in the window. The window has a list of icons
along the top, with an address bar below it, a list of
icons for tabs along the left edge, a status bar on the
bottom, and two panes in the middle. The desktop has a bar
at the bottom of the screen with a few buttons, a pager, a
list of open applications, and a clock.">

<figcaption>Screenshot of a KDE desktop.</figcaption>
</figure>

Example

A graph in a financial report:

<img src="sales.gif"
title="Sales graph"
alt="From 1998 to 2005, sales increased by the following percentages
with each year: 624%, 75%, 138%, 40%, 35%, 9%, 21%">

Note that "sales graph" would be inadequate alternative text for a sales graph. Text that would be a good caption is not
generally suitable as replacement text.

Example

Sometimes there simply is no text that can do justice to an image. For example, there is little that can be said to usefully
describe a Rorschach inkblot test. However, a description, even if brief, is still better than nothing:

<figure>
<img src="/commons/a/a7/Rorschach1.jpg" alt="A shape with left-right
symmetry with indistinct edges, with a small gap in the center, two
larger gaps offset slightly from the center, with two similar gaps
under them. The outline is wider in the top half than the bottom
half, with the sides extending upwards higher than the center, and
the center extending below the sides.">
<figcaption>A black outline of the first of the ten cards
in the Rorschach inkblot test.</figcaption>

</figure>

Note that the following would be a very bad use of alternative text:

<!-- This example is wrong. Do not copy it. -->

Example

386

Images whose contents are not known
In some unfortunate cases, there might be no alternative text available at all, either because the image is obtained in some
automated fashion without any associated alternative text (e.g., a webcam), or because the page is being generated by a script
using user-provided images where the user did not provide suitable or usable alternative text (e.g. photograph sharing sites), or
because the author does not themself know what the images represent (e.g. a blind photographer sharing an image on their blog).

In such cases, the altp347 attribute may be omitted, but one of the following conditions must be met as well:

• The imgp346 element is in a figurep249 element that contains a figcaptionp252 element that contains content other than
inter-element whitespacep147, and, ignoring the figcaptionp252 element and its descendants, the figurep249 element has
no flow contentp149 descendants other than inter-element whitespacep147 and the imgp346 element.

• The titlep157 attribute is present and has a non-empty value.

<figure>
<img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline
of the first of the ten cards in the Rorschach inkblot test.">
<figcaption>A black outline of the first of the ten cards
in the Rorschach inkblot test.</figcaption>

</figure>

Including the caption in the alternative text like this isn't useful because it effectively duplicates the caption for users who don't
have images, taunting them twice yet not helping them any more than if they had only read or heard the caption once.

Another example of an image that defies full description is a fractal, which, by definition, is infinite in detail.

The following example shows one possible way of providing alternative text for the full view of an image of the Mandelbrot set.

<img src="ms1.jpeg" alt="The Mandelbrot set appears as a cardioid with
its cusp on the real axis in the positive direction, with a smaller
bulb aligned along the same center line, touching it in the negative
direction, and with these two shapes being surrounded by smaller bulbs
of various sizes.">

Example

Similarly, a photograph of a person's face, for example in a biography, can be considered quite relevant and key to the content,
but it can be hard to fully substitute text for:

<section class="bio">
<h1>A Biography of Isaac Asimov</h1>
<p>Born Isaak Yudovich Ozimov in 1920, Isaac was a prolific author.</p>
<p><img src="headpics/asimov.jpeg" alt="Isaac Asimov had dark hair, a tall forehead, and wore

glasses.
Later in life, he wore long white sideburns."></p>
<p>Asimov was born in Russia, and moved to the US when he was three years old.</p>
<p>...</p>

</section>

In such cases it is unnecessary (and indeed discouraged) to include a reference to the presence of the image itself in the
alternative text, since such text would be redundant with the browser itself reporting the presence of the image. For example, if
the alternative text was "A photo of Isaac Asimov", then a conforming user agent might read that out as "(Image) A photo of
Isaac Asimov" rather than the more useful "(Image) Isaac Asimov had dark hair, a tall forehead, and wore glasses...".

Example

Relying on the titlep157 attribute is currently discouraged as many user agents do not expose the attribute in an
accessible manner as required by this specification (e.g. requiring a pointing device such as a mouse to cause a
tooltip to appear, which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or
tablet).

Note

387

Such cases are to be kept to an absolute minimum. If there is even the slightest possibility of the author having the ability to
provide real alternative text, then it would not be acceptable to omit the altp347 attribute.

Note

A photo on a photo-sharing site, if the site received the image with no metadata other than the caption, could be marked up as
follows:

<figure>

<figcaption>Bubbles traveled everywhere with us.</figcaption>

</figure>

It would be better, however, if a detailed description of the important parts of the image obtained from the user and included on
the page.

Example

A blind user's blog in which a photo taken by the user is shown. Initially, the user might not have any idea what the photo they
took shows:

<article>
<h1>I took a photo</h1>
<p>I went out today and took a photo!</p>
<figure>

<figcaption>A photograph taken blindly from my front porch.</figcaption>

</figure>
</article>

Eventually though, the user might obtain a description of the image from their friends and could then include alternative text:

<article>
<h1>I took a photo</h1>
<p>I went out today and took a photo!</p>
<figure>
<img src="photo2.jpeg" alt="The photograph shows my squirrel
feeder hanging from the edge of my roof. It is half full, but there
are no squirrels around. In the background, out-of-focus trees fill the
shot. The feeder is made of wood with a metal grate, and it contains
peanuts. The edge of the roof is wooden too, and is painted white
with light blue streaks.">
<figcaption>A photograph taken blindly from my front porch.</figcaption>

</figure>
</article>

Example

Sometimes the entire point of the image is that a textual description is not available, and the user is to provide the description.
For instance, the point of a CAPTCHA image is to see if the user can literally read the graphic. Here is one way to mark up a
CAPTCHA (note the titlep157 attribute):

<p><label>What does this image say?

<input type=text name=captcha></label>
(If you cannot see the image, you can use an audio test instead.)</p>

Another example would be software that displays images and asks for alternative text precisely for the purpose of then writing a
page with correct alternative text. Such a page could have a table of images, like this:

Example

388

Generally authors should avoid using imgp346 elements for purposes other than showing images.

If an imgp346 element is being used for purposes other than showing an image, e.g. as part of a service to count page views, then the
altp347 attribute must be the empty string.

In such cases, the widthp477 and heightp477 attributes should both be set to zero.

This section does not apply to documents that are publicly accessible, or whose target audience is not necessarily personally known to
the author, such as documents on a web site, emails sent to public mailing lists, or software documentation.

When an image is included in a private communication (such as an HTML email) aimed at a specific person who is known to be able to
view images, the altp347 attribute may be omitted. However, even in such cases authors are strongly urged to include alternative text
(as appropriate according to the kind of image involved, as described in the above entries), so that the email is still usable should the
user use a mail client that does not support images, or should the document be forwarded on to other users whose abilities might not
include easily seeing images.

Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain alternative text from their users. However, it
is recognized that in many cases, this will not be possible.

For images that are the sole contents of links, markup generators should examine the link target to determine the title of the target, or
the URL of the target, and use information obtained in this manner as the alternative text.

For images that have captions, markup generators should use the figurep249 and figcaptionp252 elements, or the titlep157 attribute,
to provide the image's caption.

As a last resort, implementers should either set the altp347 attribute to the empty string, under the assumption that the image is a
purely decorative image that doesn't add any information but is still specific to the surrounding content, or omit the altp347 attribute
altogether, under the assumption that the image is a key part of the content.

<table>
<thead>
<tr> <th> Image <th> Description

<tbody>
<tr>
<td>
<td> <input name="alt2421">

<tr>
<td>
<td> <input name="alt2422">

</table>

Notice that even in this example, as much useful information as possible is still included in the titlep157 attribute.

Since some users cannot use images at all (e.g. because they have a very slow connection, or because they are using a text-
only browser, or because they are listening to the page being read out by a hands-free automobile voice web browser, or simply
because they are blind), the altp347 attribute is only allowed to be omitted rather than being provided with replacement text
when no alternative text is available and none can be made available, as in the above examples. Lack of effort from the part of
the author is not an acceptable reason for omitting the altp347 attribute.

Note

4.8.4.4.12 An image not intended for the user §p38

9

4.8.4.4.13 An image in an email or private document intended for a specific person who is known to be able to view
images §p38

9

4.8.4.4.14 Guidance for markup generators §p38

9

389

Markup generators may specify a generator-unable-to-provide-required-alt attribute on imgp346 elements for which they have
been unable to obtain alternative text and for which they have therefore omitted the altp347 attribute. The value of this attribute must
be the empty string. Documents containing such attributes are not conforming, but conformance checkers will silently ignorep390 this
error.

Markup generators should generally avoid using the image's own filename as the alternative text. Similarly, markup generators should
avoid generating alternative text from any content that will be equally available to presentation user agents (e.g., web browsers).

A conformance checker must report the lack of an altp347 attribute as an error unless one of the conditions listed below applies:

• The imgp346 element is in a figurep249 element that satisfies the conditions described abovep387.

• The imgp346 element has a titlep157 attribute with a value that is not the empty string (also as described abovep387).

• The conformance checker has been configured to assume that the document is an email or document intended for a specific
person who is known to be able to view images.

• The imgp346 element has a (non-conforming) generator-unable-to-provide-required-altp390 attribute whose value is the
empty string. A conformance checker that is not reporting the lack of an altp347 attribute as an error must also not report the
presence of the empty generator-unable-to-provide-required-altp390 attribute as an error. (This case does not
represent a case where the document is conforming, only that the generator could not determine appropriate alternative text
— validators are not required to show an error in this case, because such an error might encourage markup generators to
include bogus alternative text purely in an attempt to silence validators. Naturally, conformance checkers may report the
lack of an altp347 attribute as an error even in the presence of the generator-unable-to-provide-required-altp390

attribute; for example, there could be a user option to report all conformance errors even those that might be the more or
less inevitable result of using a markup generator.)

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

This is intended to avoid markup generators from being pressured into replacing the error of omitting the altp347 attribute with the
even more egregious error of providing phony alternative text, because state-of-the-art automated conformance checkers cannot
distinguish phony alternative text from correct alternative text.

Note

This is because once a page is generated, it will typically not be updated, whereas the browsers that later read the page can be
updated by the user, therefore the browser is likely to have more up-to-date and finely-tuned heuristics than the markup generator
did when generating the page.

Note

4.8.4.4.15 Guidance for conformance checkers §p39

0

4.8.5 The iframe element §p39

0

✔ MDN

✔ MDN

390

srcp391 — Address of the resource
srcdocp391 — A document to render in the iframep390

namep395 — Name of content navigablep991

sandboxp395 — Security rules for nested content
allowp397 — Permissions policy to be applied to the iframep390 's contents
allowfullscreenp397 — Whether to allow the iframep390 's contents to use requestFullscreen()
widthp477 — Horizontal dimension
heightp477 — Vertical dimension
referrerpolicyp398 — Referrer policy for fetches initiated by the element
loadingp398 — Used when determining loading deferral

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLIFrameElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute (TrustedHTML or DOMString) srcdoc;
[CEReactions] attribute DOMString name;
[SameObject, PutForwards=value] readonly attribute DOMTokenList sandbox;
[CEReactions] attribute DOMString allow;
[CEReactions] attribute boolean allowFullscreen;
[CEReactions] attribute DOMString width;
[CEReactions] attribute DOMString height;
[CEReactions] attribute DOMString referrerPolicy;
[CEReactions] attribute DOMString loading;
readonly attribute Document? contentDocument;
readonly attribute WindowProxy? contentWindow;
Document? getSVGDocument();

// also has obsolete members
};

The iframep390 element representsp141 its content navigablep991.

The src attribute gives the URL of a page that the element's content navigablep991 is to contain. The attribute, if present, must be a
valid non-empty URL potentially surrounded by spacesp96. If the itempropp795 attribute is specified on an iframep390 element, then the
srcp391 attribute must also be specified.

The srcdoc attribute gives the content of the page that the element's content navigablep991 is to contain. The value of the attribute is
used to constructp1032 an iframe srcdoc document, which is a Documentp130 whose URL matches about:srcdocp96.

The srcdocp391 attribute, if present, must have a value using the HTML syntaxp1259 that consists of the following syntactic components,
in the given order:

1. Any number of commentsp1270 and ASCII whitespace.

2. Optionally, a DOCTYPEp1259.

3. Any number of commentsp1270 and ASCII whitespace.

4. The document element, in the form of an htmlp172 elementp1260.

5. Any number of commentsp1270 and ASCII whitespace.

The above requirements apply in XML documents as well.
Note

IDL

✔ MDN

391

https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-iframe
https://w3c.github.io/html-aam/#el-iframe
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#xml-document

The iframep390 HTML element insertion stepsp45, given insertedNode, are:

1. If insertedNode's shadow-including root's browsing contextp999 is null, then return.

2. Create a new child navigablep992 for insertedNode.

Here a blog uses the srcdocp391 attribute in conjunction with the sandboxp395 attribute described below to provide users of user
agents that support this feature with an extra layer of protection from script injection in the blog post comments:

<article>
<h1>I got my own magazine!</h1>
<p>After much effort, I've finally found a publisher, and so now I
have my own magazine! Isn't that awesome?! The first issue will come
out in September, and we have articles about getting food, and about
getting in boxes, it's going to be great!</p>
<footer>
<p>Written by cap, 1 hour ago.

</footer>
<article>
<footer> Thirteen minutes ago, ch wrote: </footer>
<iframe sandbox srcdoc="<p>did you get a cover picture yet?"></iframe>

</article>
<article>
<footer> Nine minutes ago, cap wrote: </footer>
<iframe sandbox srcdoc="<p>Yeah, you can see it in my gallery."></iframe>
</article>
<article>
<footer> Five minutes ago, ch wrote: </footer>
<iframe sandbox srcdoc="<p>hey that's earl's table.

<p>you should get earl&amp;me on the next cover."></iframe>
</article>

Notice the way that quotes have to be escaped (otherwise the srcdocp391 attribute would end prematurely), and the way raw
ampersands (e.g. in URLs or in prose) mentioned in the sandboxed content have to be doubly escaped — once so that the
ampersand is preserved when originally parsing the srcdocp391 attribute, and once more to prevent the ampersand from being
misinterpreted when parsing the sandboxed content.

Furthermore, notice that since the DOCTYPEp1259 is optional in iframe srcdoc documentsp391, and the htmlp172, headp173, and
bodyp205 elements have optional start and end tagsp1263, and the titlep174 element is also optional in iframe srcdoc
documentsp391, the markup in a srcdocp391 attribute can be relatively succinct despite representing an entire document, since only
the contents of the bodyp205 element need appear literally in the syntax. The other elements are still present, but only by
implication.

Example

In the HTML syntaxp1259, authors need only remember to use U+0022 QUOTATION MARK characters (") to wrap the attribute
contents and then to escape all U+0026 AMPERSAND (&) and U+0022 QUOTATION MARK (") characters, and to specify the
sandboxp395 attribute, to ensure safe embedding of content. (And remember to escape ampersands before quotation marks, to
ensure quotation marks become " and not &quot;.)

Note

In XML the U+003C LESS-THAN SIGN character (<) needs to be escaped as well. In order to prevent attribute-value normalization,
some of XML's whitespace characters — specifically U+0009 CHARACTER TABULATION (tab), U+000A LINE FEED (LF), and U+000D
CARRIAGE RETURN (CR) — also need to be escaped. [XML]p1484

Note

If the srcp391 attribute and the srcdocp391 attribute are both specified together, the srcdocp391 attribute takes priority. This allows
authors to provide a fallback URL for legacy user agents that do not support the srcdocp391 attribute.

Note

392

https://www.w3.org/TR/xml/#AVNormalize
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-shadow-including-root

3. If insertedNode has a sandboxp395 attribute, then parse the sandboxing directivep916 given the attribute's value and
insertedNode's iframe sandboxing flag setp917.

4. Process the iframe attributesp393 for insertedNode, with initialInsertionp393 set to true.

The iframep390 HTML element removing stepsp45, given removedNode, are to destroy a child navigablep995 given removedNode.

Although iframep390s are processed while in a shadow tree, per the above, several other aspects of their behavior are not well-
defined with regards to shadow trees. See issue #763 for more detail.

Whenever an iframep390 element with a non-null content navigablep991 has its srcdocp391 attribute set, changed, or removed, the user
agent must process the iframe attributesp393.

Similarly, whenever an iframep390 element with a non-null content navigablep991 but with no srcdocp391 attribute specified has its
srcp391 attribute set, changed, or removed, the user agent must process the iframe attributesp393.

To process the iframe attributes for an element element, with an optional boolean initialInsertion (default false):

1. If element's srcdocp391 attribute is specified, then:

1. Set element's current navigation was lazy loadedp395 boolean to false.

2. If the will lazy load element stepsp101 given element return true, then:

1. Set element's lazy load resumption stepsp101 to the rest of this algorithm starting with the step labeled
navigate to the srcdoc resource.

2. Set element's current navigation was lazy loadedp395 boolean to true.

3. Start intersection-observing a lazy loading elementp101 for element.

4. Return.

3. Navigate to the srcdoc resource: Navigate an iframe or framep394 given element, about:srcdocp96, the empty
string, and the value of element's srcdocp391 attribute.

The resulting Documentp130 must be considered an iframe srcdoc documentp391.

2. Otherwise:

1. Let url be the result of running the shared attribute processing steps for iframe and frame elementsp394 given
element and initialInsertion.

2. If url is null, then return.

3. If url matches about:blankp96 and initialInsertion is true, then:

1. Run the iframe load event stepsp394 given element.

2. Return.

4. Let referrerPolicy be the current state of element's referrerpolicyp398 content attribute.

5. Set element's current navigation was lazy loadedp395 boolean to false.

6. If the will lazy load element stepsp101 given element return true, then:

1. Set element's lazy load resumption stepsp101 to the rest of this algorithm starting with the step labeled
navigate.

2. Set element's current navigation was lazy loadedp395 boolean to true.

3. Start intersection-observing a lazy loading elementp101 for element.

4. Return.

This happens without any unloadp1472 events firing (the element's content documentp992 is destroyedp995, not unloadedp1064).
Note

393

https://dom.spec.whatwg.org/#concept-shadow-tree
https://github.com/whatwg/html/issues/763

7. Navigate: Navigate an iframe or framep394 given element, url, and referrerPolicy.

The shared attribute processing steps for iframe and frame elements, given an element element and a boolean initialInsertion,
are:

1. Let url be the URL record about:blankp53.

2. If element has a srcp391 attribute specified, and its value is not the empty string, then:

1. Let maybeURL be the result of encoding-parsing a URLp97 given that attribute's value, relative to element's node
document.

2. If maybeURL is not failure, then set url to maybeURL.

3. If the inclusive ancestor navigablesp994 of element's node navigablep989 contains a navigablep989 whose active documentp989 's
URL equals url with exclude fragments set to true, then return null.

4. If url matches about:blankp96 and initialInsertion is true, then perform the URL and history update stepsp1028 given element's
content navigablep991 's active documentp989 and url.

5. Return url.

To navigate an iframe or frame given an element element, a URL url, a referrer policy referrerPolicy, and an optional string-or-null
srcdocString (default null):

1. Let historyHandling be "autop1014".

2. If element's content navigablep991 's active documentp989 is not completely loadedp1063, then set historyHandling to
"replacep1014".

3. If element is an iframep390, then set element's pending resource-timing start timep395 to the current high resolution time
given element's node document's relevant global objectp1083.

4. Navigatep1014 element's content navigablep991 to url using element's node document, with historyHandlingp1014 set to
historyHandling, referrerPolicyp1014 set to referrerPolicy, and documentResourcep1014 set to srcdocString.

Each Documentp130 has an iframe load in progress flag and a mute iframe load flag. When a Documentp130 is created, these flags
must be unset for that Documentp130.

To run the iframe load event steps, given an iframep390 element element:

1. Assert: element's content navigablep991 is not null.

2. Let childDocument be element's content navigablep991 's active documentp989.

3. If childDocument has its mute iframe loadp394 flag set, then return.

4. If element's pending resource-timing start timep395 is not null, then:

1. Let global be element's node document's relevant global objectp1083.

2. Let fallbackTimingInfo be a new fetch timing info whose start time is element's pending resource-timing start
timep395 and whose response end time is the current high resolution time given global.

3. Mark resource timing given fallbackTimingInfo, url, "iframep390", global, the empty string, a new response body
info, and 0.

4. Set element's pending resource-timing start timep395 to null.

5. Set childDocument's iframe load in progressp394 flag.

6. Fire an event named loadp1471 at element.

7. Unset childDocument's iframe load in progressp394 flag.

This is necessary in case url is something like about:blank?foo. If url is just plain about:blank, this will do nothing.
Note

394

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-equals
https://url.spec.whatwg.org/#url-equals-exclude-fragments
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#fetch-timing-info
https://fetch.spec.whatwg.org/#fetch-timing-info-start-time
https://fetch.spec.whatwg.org/#fetch-timing-info-end-time
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/resource-timing/#dfn-mark-resource-timing
https://fetch.spec.whatwg.org/#response-body-info
https://fetch.spec.whatwg.org/#response-body-info
https://dom.spec.whatwg.org/#concept-event-fire

If an element type potentially delays the load event, then for each element element of that type, the user agent must delay the
load eventp1359 of element's node document if element's content navigablep991 is non-null and any of the following are true:

• element's content navigablep991 's active documentp989 is not ready for post-load tasksp1359;

• element's content navigablep991 's is delaying load eventsp989 is true; or

• anything is delaying the load eventp1359 of element's content navigablep991 's active documentp989.

Each iframep390 element has an associated current navigation was lazy loaded boolean, initially false. It is set and unset in the
process the iframe attributesp393 algorithm.

An iframep390 element whose current navigation was lazy loadedp395 boolean is false potentially delays the load eventp395.

Each iframep390 element has an associated null or DOMHighResTimeStamp pending resource-timing start time, initially set to null.

The name attribute, if present, must be a valid navigable target namep996. The given value is used to name the element's content
navigablep991 if present when that is createdp992.

The sandbox attribute, when specified, enables a set of extra restrictions on any content hosted by the iframep390. Its value must be an
unordered set of unique space-separated tokensp95 that are ASCII case-insensitive. The allowed values are:

• allow-downloadsp917

• allow-formsp916

• allow-modalsp916

• allow-orientation-lockp916

• allow-pointer-lockp916

• allow-popupsp916

• allow-popups-to-escape-sandboxp916

• allow-presentationp917

• allow-same-originp916

• allow-scriptsp916

• allow-top-navigationp916

• allow-top-navigation-by-user-activationp916

• allow-top-navigation-to-custom-protocolsp917

When the attribute is set, the content is treated as being from a unique opaque originp898, forms, scripts, and various potentially
annoying APIs are disabled, and links are prevented from targeting other navigablesp989. The allow-same-originp916 keyword causes
the content to be treated as being from its real origin instead of forcing it into an opaque originp898; the allow-top-navigationp916

keyword allows the content to navigatep1014 its traversable navigablep990; the allow-top-navigation-by-user-activationp916

keyword behaves similarly but allows such navigationp1014 only when the browsing context's active windowp989 has transient
activationp830; the allow-top-navigation-to-custom-protocolsp917 reenables navigations toward non fetch scheme to be handed off
to external softwarep1024; and the allow-formsp916, allow-modalsp916, allow-orientation-lockp916, allow-pointer-lockp916, allow-
popupsp916, allow-presentationp917, allow-scriptsp916, and allow-popups-to-escape-sandboxp916 keywords re-enable forms, modal

This, in conjunction with scripting, can be used to probe the URL space of the local network's HTTP servers. User
agents may implement cross-originp898 access control policies that are stricter than those described above to
mitigate this attack, but unfortunately such policies are typically not compatible with existing web content.

⚠Warning!

If, during the handling of the loadp1471 event, element's content navigablep991 is again navigatedp1014, that will further delay the
load eventp1359.

Note

If, when the element is created, the srcdocp391 attribute is not set, and the srcp391 attribute is either also not set or set but its
value cannot be parsedp97, the element's content navigablep991 will remain at the initial about:blankp131 Documentp130.

Note

If the user navigatesp1014 away from this page, the iframep390 's content navigablep991 's active WindowProxyp989 object will proxy
new Windowp922 objects for new Documentp130 objects, but the srcp391 attribute will not change.

Note

✔ MDN

395

https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://fetch.spec.whatwg.org/#fetch-scheme

dialogs, screen orientation lock, the pointer lock API, popups, the presentation API, scripts, and the creation of unsandboxed auxiliary
browsing contextsp999 respectively. The allow-downloadsp917 keyword allows content to perform downloads. [POINTERLOCK]p1481

[SCREENORIENTATION]p1482 [PRESENTATION]p1481

The allow-top-navigationp916 and allow-top-navigation-by-user-activationp916 keywords must not both be specified, as doing
so is redundant; only allow-top-navigationp916 will have an effect in such non-conformant markup.

Similarly, the allow-top-navigation-to-custom-protocolsp917 keyword must not be specified if either allow-top-navigationp916 or
allow-popupsp916 are specified, as doing so is redundant.

When an iframep390 element's sandboxp395 attribute is set or changed while it has a non-null content navigablep991, the user agent
must parse the sandboxing directivep916 given the attribute's value and the iframep390 element's iframe sandboxing flag setp917.

When an iframep390 element's sandboxp395 attribute is removed while it has a non-null content navigablep991, the user agent must
empty the iframep390 element's iframe sandboxing flag setp917.

To allow alert()p1167, confirm()p1168, and prompt()p1168 inside sandboxed content, both the allow-modalsp916 and allow-same-
originp916 keywords need to be specified, and the loaded URL needs to be same originp899 with the top-level originp1076. Without
the allow-same-originp916 keyword, the content is always treated as cross-origin, and cross-origin content cannot show simple
dialogsp1168.

Note

Setting both the allow-scriptsp916 and allow-same-originp916 keywords together when the embedded page has the
same originp899 as the page containing the iframep390 allows the embedded page to simply remove the sandboxp395

attribute and then reload itself, effectively breaking out of the sandbox altogether.

⚠Warning!

These flags only take effect when the content navigablep991 of the iframep390 element is navigatedp1014. Removing
them, or removing the entire sandboxp395 attribute, has no effect on an already-loaded page.

⚠Warning!

Potentially hostile files should not be served from the same server as the file containing the iframep390 element.
Sandboxing hostile content is of minimal help if an attacker can convince the user to just visit the hostile content
directly, rather than in the iframep390. To limit the damage that can be caused by hostile HTML content, it should be
served from a separate dedicated domain. Using a different domain ensures that scripts in the files are unable to
attack the site, even if the user is tricked into visiting those pages directly, without the protection of the sandboxp395

attribute.

⚠Warning!

In this example, some completely-unknown, potentially hostile, user-provided HTML content is embedded in a page. Because it is
served from a separate domain, it is affected by all the normal cross-site restrictions. In addition, the embedded page has scripting
disabled, plugins disabled, forms disabled, and it cannot navigate any frames or windows other than itself (or any frames or
windows it itself embeds).

<p>We're not scared of you! Here is your content, unedited:</p>
<iframe sandbox src="https://usercontent.example.net/getusercontent.cgi?id=12193"></iframe>

It is important to use a separate domain so that if the attacker convinces the user to visit that page directly, the
page doesn't run in the context of the site's origin, which would make the user vulnerable to any attack found in
the page.

⚠Warning!

Example

In this example, a gadget from another site is embedded. The gadget has scripting and forms enabled, and the origin sandbox
restrictions are lifted, allowing the gadget to communicate with its originating server. The sandbox is still useful, however, as it

Example

396

The allow attribute, when specified, determines the container policy that will be used when the permissions policyp131 for a
Documentp130 in the iframep390 's content navigablep991 is initialized. Its value must be a serialized permissions policy.
[PERMISSIONSPOLICY]p1480

The allowfullscreen attribute is a boolean attributep75. When specified, it indicates that Documentp130 objects in the iframep390

element's content navigablep991 will be initialized with a permissions policyp131 which allows the "fullscreen" feature to be used from
any originp898. This is enforced by the process permissions policy attributes algorithm. [PERMISSIONSPOLICY]p1480

disables plugins and popups, thus reducing the risk of the user being exposed to malware and other annoyances.

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
src="https://maps.example.com/embedded.html"></iframe>

Suppose a file A contained the following fragment:

<iframe sandbox="allow-same-origin allow-forms" src=B></iframe>

Suppose that file B contained an iframe also:

<iframe sandbox="allow-scripts" src=C></iframe>

Further, suppose that file C contained a link:

Link

For this example, suppose all the files were served as text/htmlp1444.

Page C in this scenario has all the sandboxing flags set. Scripts are disabled, because the iframep390 in A has scripts disabled, and
this overrides the allow-scriptsp916 keyword set on the iframep390 in B. Forms are also disabled, because the inner iframep390 (in
B) does not have the allow-formsp916 keyword set.

Suppose now that a script in A removes all the sandboxp395 attributes in A and B. This would change nothing immediately. If the
user clicked the link in C, loading page D into the iframep390 in B, page D would now act as if the iframep390 in B had the allow-
same-originp916 and allow-formsp916 keywords set, because that was the state of the content navigablep991 in the iframep390 in A
when page B was loaded.

Generally speaking, dynamically removing or changing the sandboxp395 attribute is ill-advised, because it can make it quite hard to
reason about what will be allowed and what will not.

Example

In this example, an iframep390 is used to embed a map from an online navigation service. The allowp397 attribute is used to enable
the Geolocation API within the nested context.

<iframe src="https://maps.example.com/" allow="geolocation"></iframe>

Example

Here, an iframep390 is used to embed a player from a video site. The allowfullscreenp397 attribute is needed to enable the player
to show its video fullscreen.

<article>
<header>
<p> Fred Flintstone</p>
<p>12:44 — Private

Post</p>

Example

397

https://w3c.github.io/webappsec-feature-policy/#container-policy
https://w3c.github.io/webappsec-feature-policy/#serialized-permissions-policy
https://w3c.github.io/webappsec-feature-policy/#process-permissions-policy-attributes

To determine whether a Documentp130 object document is allowed to use the policy-controlled-feature feature, run these steps:

1. If document's browsing contextp999 is null, then return false.

2. If document is not fully activep1003, then return false.

3. If the result of running is feature enabled in document for origin on feature, document, and document's origin is "Enabled",
then return true.

4. Return false.

The iframep390 element supports dimension attributesp477 for cases where the embedded content has specific dimensions (e.g. ad units
have well-defined dimensions).

An iframep390 element never has fallback contentp150, as it will always create a new child navigablep992, regardless of whether the
specified initial contents are successfully used.

The referrerpolicy attribute is a referrer policy attributep100. Its purpose is to set the referrer policy used when processing the
iframe attributesp393. [REFERRERPOLICY]p1481

The loading attribute is a lazy loading attributep101. Its purpose is to indicate the policy for loading iframep390 elements that are
outside the viewport.

When the loadingp398 attribute's state is changed to the Eagerp101 state, the user agent must run these steps:

1. Let resumptionSteps be the iframep390 element's lazy load resumption stepsp101.

2. If resumptionSteps is null, then return.

3. Set the iframep390 's lazy load resumption stepsp101 to null.

4. Invoke resumptionSteps.

Descendants of iframep390 elements represent nothing. (In legacy user agents that do not support iframep390 elements, the contents
would be parsed as markup that could act as fallback content.)

The IDL attributes src, name, sandbox, and allow must reflectp104 the respective content attributes of the same name.

The srcdoc getter steps are:

</header>
<p>Check out my new ride!</p>
<iframe src="https://video.example.com/embed?id=92469812" allowfullscreen></iframe>

</article>

Neither allowp397 nor allowfullscreenp397 can grant access to a feature in an iframep390 element's content navigablep991 if the
element's node document is not already allowed to use that feature.

Note

Because they only influence the permissions policyp131 of the content navigablep991 's active documentp989, the
allowp397 and allowfullscreenp397 attributes only take effect when the content navigablep991 of the iframep390 is
navigatedp1014. Adding or removing them has no effect on an already-loaded document.

⚠Warning!

The HTML parserp1271 treats markup inside iframep390 elements as text.
Note

✔ MDN
✔ MDN

398

https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/webappsec-feature-policy/#is-feature-enabled
https://dom.spec.whatwg.org/#concept-document-origin
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy

1. Let attribute be the result of running get an attribute by namespace and local name given null, srcdocp391 's local name, and
this.

2. If attribute is null, then return the empty string.

3. Return attribute's value.

The srcdocp398 setter steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, the given value, "HTMLIFrameElement srcdoc", and "script".

2. Set an attribute value given this, srcdocp391 's local name, and compliantString.

The supported tokens for sandboxp398 's DOMTokenList are the allowed values defined in the sandboxp395 attribute and supported by the
user agent.

The allowFullscreen IDL attribute must reflectp104 the allowfullscreenp397 content attribute.

The referrerPolicy IDL attribute must reflectp104 the referrerpolicyp398 content attribute, limited to only known valuesp105.

The loading IDL attribute must reflectp104 the loadingp398 content attribute, limited to only known valuesp105.

The contentDocument getter steps are to return the this's content documentp992.

The contentWindow getter steps are to return this's content windowp992.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

srcp400 — Address of the resource
typep400 — Type of embedded resource
widthp477 — Horizontal dimension
heightp477 — Vertical dimension
Any other attribute that has no namespace (see prose).

Accessibility considerationsp146:
For authors.
For implementers.

Here is an example of a page using an iframep390 to include advertising from an advertising broker:

<iframe src="https://ads.example.com/?customerid=923513721&format=banner"
width="468" height="60"></iframe>

Example

4.8.6 The embed element §p39

9

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

399

https://dom.spec.whatwg.org/#concept-element-attributes-get-by-namespace
https://dom.spec.whatwg.org/#concept-attribute-local-name
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-attribute-value
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-attribute-local-name
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#interface-domtokenlist
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/html-aria/#el-embed
https://w3c.github.io/html-aam/#el-embed

DOM interfacep147:

[Exposed=Window]
interface HTMLEmbedElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString width;
[CEReactions] attribute DOMString height;
Document? getSVGDocument();

// also has obsolete members
};

The embedp399 element provides an integration point for an external application or interactive content.

The src attribute gives the URL of the resource being embedded. The attribute, if present, must contain a valid non-empty URL
potentially surrounded by spacesp96.

If the itempropp795 attribute is specified on an embedp399 element, then the srcp400 attribute must also be specified.

The type attribute, if present, gives the MIME type by which the plugin to instantiate is selected. The value must be a valid MIME type
string. If both the typep400 attribute and the srcp400 attribute are present, then the typep400 attribute must specify the same type as the
explicit Content-Type metadatap98 of the resource given by the srcp400 attribute.

While any of the following conditions are occurring, any pluginp47 instantiated for the element must be removed, and the embedp399

element representsp141 nothing:

• The element has neither a srcp400 attribute nor a typep400 attribute.

• The element has a media elementp414 ancestor.

• The element has an ancestor objectp402 element that is not showing its fallback contentp150.

An embedp399 element is said to be potentially active when the following conditions are all met simultaneously:

• The element is in a document or was in a document the last time the event loopp1123 reached step 1p1126.

• The element's node document is fully activep1003.

• The element has either a srcp400 attribute set or a typep400 attribute set (or both).

• The element's srcp400 attribute is either absent or its value is not the empty string.

• The element is not a descendant of a media elementp414.

• The element is not a descendant of an objectp402 element that is not showing its fallback contentp150.

• The element is being renderedp1388, or was being renderedp1388 the last time the event loopp1123 reached step 1p1126.

Whenever an embedp399 element that was not potentially activep400 becomes potentially activep400, and whenever a potentially
activep400 embedp399 element that is remaining potentially activep400 and has its srcp400 attribute set, changed, or removed or its
typep400 attribute set, changed, or removed, the user agent must queue an element taskp1125 on the embed task source given the
element to run the embed element setup stepsp400 for that element.

The embed element setup steps for a given embedp399 element element are as follows:

1. If another taskp1124 has since been queued to run the embed element setup stepsp400 for element, then return.

2. If element has a srcp400 attribute set, then:

1. Let url be the result of encoding-parsing a URLp97 given element's srcp400 attribute's value, relative to element's
node document.

2. If url is failure, then return.

IDL

400

https://url.spec.whatwg.org/#concept-url
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

3. Let request be a new request whose URL is url, client is element's node document's relevant settings objectp1083,
destination is "embed", credentials mode is "include", mode is "navigate", initiator type is "embed", and whose
use-URL-credentials flag is set.

4. Fetch request, with processResponse set to the following steps given response response:

1. If another taskp1124 has since been queued to run the embed element setup stepsp400 for element, then
return.

2. If response is a network error, then fire an event named loadp1471 at element, and return.

3. Let type be the result of determining the type of contentp401 given element and response.

4. Switch on type:

↪ null

1. Display no pluginp401 for element.

↪ Otherwise

1. If element's content navigablep991 is null, then create a new child navigablep992 for
element.

2. Navigatep1014 element's content navigablep991 to response's URL using element's node
document, with responsep1014 set to response, and historyHandlingp1014 set to
"replacep1014".

3. element now representsp141 its content navigablep991.

Fetching the resource must delay the load eventp1359 of element's node document.

3. Otherwise, display no pluginp401 for element.

To determine the type of the content given an embedp399 element element and a response response, run the following steps:

1. If element has a typep400 attribute, and that attribute's value is a type that a pluginp47 supports, then return the value of the
typep400 attribute.

2. If the path component of response's url matches a pattern that a pluginp47 supports, then return the type that that plugin can
handle.

3. If response has explicit Content-Type metadatap98, and that value is a type that a pluginp47 supports, then return that value.

4. Return null.

To display no plugin for an embedp399 element element:

1. Destroy a child navigablep995 given element.

2. Display an indication that no pluginp47 could be found for element, as the contents of element.

3. element now representsp141 nothing.

element's srcp400 attribute does not get updated if the content navigablep991 gets
further navigated to other locations.

Note

For example, a plugin might say that it can handle URLs with path components that end with the four character string
".swf".

Example

It is intentional that the above algorithm allows response to have a non-ok status. This allows servers to return data for plugins
even with error responses (e.g., HTTP 500 Internal Server Error codes can still contain plugin data).

Note

401

https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-response-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-response
https://url.spec.whatwg.org/#concept-url-path
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-path
https://fetch.spec.whatwg.org/#ok-status

Whenever an embedp399 element that was potentially activep400 stops being potentially activep400, any pluginp47 that had been
instantiated for that element must be unloaded.

The embedp399 element potentially delays the load eventp395.

The embedp399 element supports dimension attributesp477.

The IDL attributes src and type each must reflectp104 the respective content attributes of the same name.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
Listedp513 form-associated elementp513.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
Transparentp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

datap403 — Address of the resource
typep403 — Type of embedded resource
namep403 — Name of content navigablep991

formp598 — Associates the element with a formp514 element
widthp477 — Horizontal dimension
heightp477 — Vertical dimension

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLObjectElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString data;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString name;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString width;
[CEReactions] attribute DOMString height;
readonly attribute Document? contentDocument;
readonly attribute WindowProxy? contentWindow;
Document? getSVGDocument();

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;

The embedp399 element has no fallback contentp150; its descendants are ignored.
Note

IDL

4.8.7 The object element §p40

2

✔ MDN

✔ MDN

402

https://w3c.github.io/html-aria/#el-object
https://w3c.github.io/html-aam/#el-object

readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

// also has obsolete members
};

Depending on the type of content instantiated by the objectp402 element, the node also supports other interfaces.

The objectp402 element can represent an external resource, which, depending on the type of the resource, will either be treated as an
image or as a child navigablep992.

The data attribute specifies the URL of the resource. It must be present, and must contain a valid non-empty URL potentially
surrounded by spacesp96.

The type attribute, if present, specifies the type of the resource. If present, the attribute must be a valid MIME type string.

The name attribute, if present, must be a valid navigable target namep996. The given value is used to name the element's content
navigablep991, if applicable, and if present when the element's content navigablep991 is createdp992.

Whenever one of the following conditions occur:

• the element is created,

• the element is popped off the stack of open elementsp1286 of an HTML parserp1271 or XML parserp1384,

• the element is not on the stack of open elementsp1286 of an HTML parserp1271 or XML parserp1384, and it is either inserted into
a documentp46 or removed from a documentp46,

• the element's node document changes whether it is fully activep1003,

• one of the element's ancestor objectp402 elements changes to or from showing its fallback contentp150,

• the element's classidp1429 attribute is set, changed, or removed,

• the element's classidp1429 attribute is not present, and its datap403 attribute is set, changed, or removed,

• neither the element's classidp1429 attribute nor its datap403 attribute are present, and its typep403 attribute is set, changed,
or removed,

• the element changes from being renderedp1388 to not being rendered, or vice versa,

...the user agent must queue an element taskp1125 on the DOM manipulation task sourcep1134 given the objectp402 element to run the
following steps to (re)determine what the objectp402 element represents. This taskp1124 being queuedp1125 or actively running must
delay the load eventp1359 of the element's node document.

1. If the user has indicated a preference that this objectp402 element's fallback contentp150 be shown instead of the element's
usual behavior, then jump to the step below labeled fallback.

2. If the element has an ancestor media elementp414, or has an ancestor objectp402 element that is not showing its fallback
contentp150, or if the element is not in a document whose browsing contextp999 is non-null, or if the element's node document
is not fully activep1003, or if the element is still in the stack of open elementsp1286 of an HTML parserp1271 or XML parserp1384, or
if the element is not being renderedp1388, then jump to the step below labeled fallback.

3. If the datap403 attribute is present and its value is not the empty string, then:

1. If the typep403 attribute is present and its value is not a type that the user agent supports, then the user agent may
jump to the step below labeled fallback without fetching the content to examine its real type.

2. Let url be the result of encoding-parsing a URLp97 given the datap403 attribute's value, relative to the element's

For example, a user could ask for the element's fallback contentp150 to be shown because that content uses a format that
the user finds more accessible.

Note

403

https://url.spec.whatwg.org/#concept-url
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-node-document

node document.

3. If url is failure, then fire an event named errorp1471 at the element and jump to the step below labeled fallback.

4. Let request be a new request whose URL is url, client is the element's node document's relevant settings
objectp1083, destination is "object", credentials mode is "include", mode is "navigate", initiator type is "object",
and whose use-URL-credentials flag is set.

5. Fetch request.

Fetching the resource must delay the load eventp1359 of the element's node document until the taskp1124 that is
queuedp1125 by the networking task sourcep1134 once the resource has been fetched (defined next) has been run.

6. If the resource is not yet available (e.g. because the resource was not available in the cache, so that loading the
resource required making a request over the network), then jump to the step below labeled fallback. The taskp1124

that is queuedp1125 by the networking task sourcep1134 once the resource is available must restart this algorithm
from this step. Resources can load incrementally; user agents may opt to consider a resource "available" whenever
enough data has been obtained to begin processing the resource.

7. If the load failed (e.g. there was an HTTP 404 error, there was a DNS error), fire an event named errorp1471 at the
element, then jump to the step below labeled fallback.

8. Determine the resource type, as follows:

1. Let the resource type be unknown.

2. If the user agent is configured to strictly obey Content-Type headers for this resource, and the resource
has associated Content-Type metadatap98, then let the resource type be the type specified in the
resource's Content-Type metadatap98, and jump to the step below labeled handler.

3. Run the appropriate set of steps from the following list:

↪ If the resource has associated Content-Type metadatap98

1. Let binary be false.

2. If the type specified in the resource's Content-Type metadatap98 is "text/plain", and
the result of applying the rules for distinguishing if a resource is text or binary to the
resource is that the resource is not text/plain, then set binary to true.

3. If the type specified in the resource's Content-Type metadatap98 is "application/
octet-stream", then set binary to true.

4. If binary is false, then let the resource type be the type specified in the resource's
Content-Type metadatap98, and jump to the step below labeled handler.

5. If there is a typep403 attribute present on the objectp402 element, and its value is not
application/octet-stream, then run the following steps:

1. If the attribute's value is a type that starts with "image/" that is not also an
XML MIME type, then let the resource type be the type specified in that
typep403 attribute.

2. Jump to the step below labeled handler.

↪ Otherwise, if the resource does not have associated Content-Type metadatap98

1. If there is a typep403 attribute present on the objectp402 element, then let the tentative
type be the type specified in that typep403 attribute.

Otherwise, let tentative type be the computed type of the resource.

2. If tentative type is not application/octet-stream, then let resource type be tentative

This can introduce a vulnerability, wherein a site is trying to embed a resource that uses
a particular type, but the remote site overrides that and instead furnishes the user agent
with a resource that triggers a different type of content with different security
characteristics.

⚠Warning!

404

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#rules-for-text-or-binary
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1

type and jump to the step below labeled handler.

4. If applying the URL parser algorithm to the URL of the specified resource (after any redirects) results in a
URL record whose path component matches a pattern that a pluginp47 supports, then let resource type be
the type that that plugin can handle.

9. Handler: Handle the content as given by the first of the following cases that matches:

↪ If the resource type is an XML MIME type, or if the resource type does not start with "image/"
If the objectp402 element's content navigablep991 is null, then create a new child navigablep992 for the
element.

Let response be the response from fetch.

If response's URL does not match about:blankp96, then navigatep1014 the element's content navigablep991 to
response's URL using the element's node document, with historyHandlingp1014 set to "replacep1014".

The objectp402 element representsp141 its content navigablep991.

↪ If the resource type starts with "image/", and support for images has not been disabled
Destroy a child navigablep995 given the objectp402 element.

Apply the image sniffing rules to determine the type of the image.

The objectp402 element representsp141 the specified image.

If the image cannot be rendered, e.g. because it is malformed or in an unsupported format, jump to the step
below labeled fallback.

↪ Otherwise
The given resource type is not supported. Jump to the step below labeled fallback.

10. The element's contents are not part of what the objectp402 element represents.

11. If the objectp402 element does not represent its content navigablep991, then once the resource is completely
loaded, queue an element taskp1125 on the DOM manipulation task sourcep1134 given the objectp402 element to fire
an event named loadp1471 at the element.

12. Return.

4. Fallback: The objectp402 element representsp141 the element's children. This is the element's fallback contentp150. Destroy a
child navigablep995 given the element.

For example, a plugin might say that it can handle resources with path components that end with the
four character string ".swf".

Example

It is possible for this step to finish, or for one of the substeps above to jump straight to the next step, with
resource type still being unknown. In both cases, the next step will trigger fallback.

Note

The datap403 attribute of the objectp402 element doesn't get updated if the content navigablep991 gets
further navigatedp1014 to other locations.

Note

If the previous step ended with the resource type being unknown, this is the case that is triggered.
Note

If the element does represent its content navigablep991, then an analogous task will be queued when the
created Documentp130 is completely finished loadingp1063.

Note

405

https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-path
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url
https://dom.spec.whatwg.org/#concept-node-document
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

Due to the algorithm above, the contents of objectp402 elements act as fallback contentp150, used only when referenced resources can't
be shown (e.g. because it returned a 404 error). This allows multiple objectp402 elements to be nested inside each other, targeting
multiple user agents with different capabilities, with the user agent picking the first one it supports.

The objectp402 element potentially delays the load eventp395.

The formp598 attribute is used to explicitly associate the objectp402 element with its form ownerp598.

The objectp402 element supports dimension attributesp477.

The IDL attributes data, type, and name each must reflectp104 the respective content attributes of the same name.

The contentDocument getter steps are to return this's content documentp992.

The contentWindow getter steps are to return this's content windowp992.

The willValidatep625, validityp625, and validationMessagep627 attributes, and the checkValidity()p627, reportValidity()p627, and
setCustomValidity()p625 methods, are part of the constraint validation APIp624. The formp599 IDL attribute is part of the element's
forms API.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
If the element has a controlsp464 attribute: Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
If the element has a srcp416 attribute: zero or more trackp411 elements, then transparentp151, but with no media elementp414

descendants.
If the element does not have a srcp416 attribute: zero or more sourcep343 elements, then zero or more trackp411 elements, then
transparentp151, but with no media elementp414 descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

srcp416 — Address of the resource
crossoriginp417 — How the element handles crossorigin requests
posterp407 — Poster frame to show prior to video playback
preloadp429 — Hints how much buffering the media resourcep415 will likely need
autoplayp435 — Hint that the media resourcep415 can be started automatically when the page is loaded
playsinlinep408 — Encourage the user agent to display video content within the element's playback area
loopp433 — Whether to loop the media resourcep415

mutedp465 — Whether to mute the media resourcep415 by default
controlsp464 — Show user agent controls
widthp477 — Horizontal dimension

In this example, an HTML page is embedded in another using the objectp402 element.

<figure>
<object data="clock.html"></object>
<figcaption>My HTML Clock</figcaption>

</figure>

Example

4.8.8 The video element §p40

6

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

406

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

heightp477 — Vertical dimension

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLVideoElement : HTMLMediaElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;
readonly attribute unsigned long videoWidth;
readonly attribute unsigned long videoHeight;
[CEReactions] attribute USVString poster;
[CEReactions] attribute boolean playsInline;

};

A videop406 element is used for playing videos or movies, and audio files with captions.

Content may be provided inside the videop406 element. User agents should not show this content to the user; it is intended for older
web browsers which do not support videop406, so that text can be shown to the users of these older browsers informing them of how to
access the video contents.

The videop406 element is a media elementp414 whose media datap415 is ostensibly video data, possibly with associated audio data.

The srcp416, crossoriginp417, preloadp429, autoplayp435, loopp433, mutedp465, and controlsp464 attributes are the attributes common to
all media elementsp415.

The poster attribute gives the URL of an image file that the user agent can show while no video data is available. The attribute, if
present, must contain a valid non-empty URL potentially surrounded by spacesp96.

If the specified resource is to be used, then, when the element is created or when the posterp407 attribute is set, changed, or removed,
the user agent must run the following steps to determine the element's poster frame (regardless of the value of the element's show
poster flagp432):

1. If there is an existing instance of this algorithm running for this videop406 element, abort that instance of this algorithm
without changing the poster framep407.

2. If the posterp407 attribute's value is the empty string or if the attribute is absent, then there is no poster framep407; return.

3. Let url be the result of encoding-parsing a URLp97 given the posterp407 attribute's value, relative to the element's node
document.

4. If url is failure, then return. There is no poster framep407.

5. Let request be a new request whose URL is url, client is the element's node document's relevant settings objectp1083,
destination is "image", initiator type is "video", credentials mode is "include", and whose use-URL-credentials flag is set.

6. Fetch request. This must delay the load eventp1359 of the element's node document.

7. If an image is thus obtained, the poster framep407 is that image. Otherwise, there is no poster framep407.

In particular, this content is not intended to address accessibility concerns. To make video content accessible to the partially
sighted, the blind, the hard-of-hearing, the deaf, and those with other physical or cognitive disabilities, a variety of features are
available. Captions can be provided, either embedded in the video stream or as external files using the trackp411 element. Sign-
language tracks can be embedded in the video stream. Audio descriptions can be embedded in the video stream or in text form
using a WebVTT file referenced using the trackp411 element and synthesized into speech by the user agent. WebVTT can also be
used to provide chapter titles. For users who would rather not use a media element at all, transcripts or other textual alternatives
can be provided by simply linking to them in the prose near the videop406 element. [WEBVTT]p1484

Note

Note

IDL

407

https://w3c.github.io/html-aria/#el-video
https://w3c.github.io/html-aam/#el-video
https://w3c.github.io/webvtt/#webvtt-file
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-node-document

The playsinline attribute is a boolean attributep75. If present, it serves as a hint to the user agent that the video ought to be
displayed "inline" in the document by default, constrained to the element's playback area, instead of being displayed fullscreen or in
an independent resizable window.

A videop406 element represents what is given for the first matching condition in the list below:

↪ When no video data is available (the element's readyStatep435 attribute is either HAVE_NOTHINGp433, or HAVE_METADATAp433

but no video data has yet been obtained at all, or the element's readyStatep435 attribute is any subsequent value but
the media resourcep415 does not have a video channel)

The videop406 element representsp141 its poster framep407, if any, or else transparent black with no natural dimensions.

↪ When the videop406 element is pausedp436, the current playback positionp432 is the first frame of video, and the
element's show poster flagp432 is set

The videop406 element representsp141 its poster framep407, if any, or else the first frame of the video.

↪ When the videop406 element is pausedp436, and the frame of video corresponding to the current playback positionp432

is not available (e.g. because the video is seeking or buffering)
↪ When the videop406 element is neither potentially playingp436 nor pausedp436 (e.g. when seeking or stalled)

The videop406 element representsp141 the last frame of the video to have been rendered.

↪ When the videop406 element is pausedp436

The videop406 element representsp141 the frame of video corresponding to the current playback positionp432.

↪ Otherwise (the videop406 element has a video channel and is potentially playingp436)
The videop406 element representsp141 the frame of video at the continuously increasing "current" positionp432. When the current
playback positionp432 changes such that the last frame rendered is no longer the frame corresponding to the current playback
positionp432 in the video, the new frame must be rendered.

Frames of video must be obtained from the video track that was selectedp448 when the event loopp1123 last reached step 1p1126.

The videop406 element also representsp141 any text track cuesp451 whose text track cue active flagp452 is set and whose text trackp449 is
in the showingp450 mode, and any audio from the media resourcep415, at the current playback positionp432.

Any audio associated with the media resourcep415 must, if played, be played synchronized with the current playback positionp432, at the
element's effective media volumep465. The user agent must play the audio from audio tracks that were enabledp448 when the event
loopp1123 last reached step 1.

In addition to the above, the user agent may provide messages to the user (such as "buffering", "no video loaded", "error", or more
detailed information) by overlaying text or icons on the video or other areas of the element's playback area, or in another appropriate
manner.

User agents that cannot render the video may instead make the element representp141 a link to an external video playback utility or to
the video data itself.

When a videop406 element's media resourcep415 has a video channel, the element provides a paint source whose width is the media
resourcep415 's natural widthp409, whose height is the media resourcep415 's natural heightp409, and whose appearance is the frame of
video corresponding to the current playback positionp432, if that is available, or else (e.g. when the video is seeking or buffering) its
previous appearance, if any, or else (e.g. because the video is still loading the first frame) blackness.

The image given by the posterp407 attribute, the poster framep407, is intended to be a representative frame of the video (typically
one of the first non-blank frames) that gives the user an idea of what the video is like.

Note

The absence of the playsinlinep408 attribute does not imply that the video will display fullscreen by default. Indeed, most user
agents have chosen to play all videos inline by default, and in such user agents the playsinlinep408 attribute has no effect.

Note

Which frame in a video stream corresponds to a particular playback position is defined by the video stream's format.
Note

408

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-images-4/#paint-source

The natural width and natural height of the media resourcep415 are the dimensions of the resource in CSS pixels after taking into
account the resource's dimensions, aspect ratio, clean aperture, resolution, and so forth, as defined for the format used by the
resource. If an anamorphic format does not define how to apply the aspect ratio to the video data's dimensions to obtain the "correct"
dimensions, then the user agent must apply the ratio by increasing one dimension and leaving the other unchanged.

The videoWidth IDL attribute must return the natural widthp409 of the video in CSS pixels. The videoHeight IDL attribute must return
the natural heightp409 of the video in CSS pixels. If the element's readyStatep435 attribute is HAVE_NOTHINGp433, then the attributes must
return 0.

Whenever the natural widthp409 or natural heightp409 of the video changes (including, for example, because the selected video trackp448

was changed), if the element's readyStatep435 attribute is not HAVE_NOTHINGp433, the user agent must queue a media element taskp415

given the media elementp414 to fire an event named resizep468 at the media elementp414.

The videop406 element supports dimension attributesp477.

In the absence of style rules to the contrary, video content should be rendered inside the element's playback area such that the video
content is shown centered in the playback area at the largest possible size that fits completely within it, with the video content's
aspect ratio being preserved. Thus, if the aspect ratio of the playback area does not match the aspect ratio of the video, the video will
be shown letterboxed or pillarboxed. Areas of the element's playback area that do not contain the video represent nothing.

The natural width of a videop406 element's playback area is the natural width of the poster framep407, if that is available and the
element currently representsp141 its poster frame; otherwise, it is the natural widthp409 of the video resource, if that is available;
otherwise the natural width is missing.

The natural height of a videop406 element's playback area is the natural height of the poster framep407, if that is available and the
element currently representsp141 its poster frame; otherwise it is the natural heightp409 of the video resource, if that is available;
otherwise the natural height is missing.

The default object size is a width of 300 CSS pixels and a height of 150 CSS pixels. [CSSIMAGES]p1476

User agents should provide controls to enable or disable the display of closed captions, audio description tracks, and other additional
data associated with the video stream, though such features should, again, not interfere with the page's normal rendering.

User agents may allow users to view the video content in manners more suitable to the user, such as fullscreen or in an independent
resizable window. User agents may even trigger such a viewing mode by default upon playing a video, although they should not do so
when the playsinlinep408 attribute is specified. As with the other user interface features, controls to enable this should not interfere
with the page's normal rendering unless the user agent is exposing a user interfacep464. In such an independent viewing mode,
however, user agents may make full user interfaces visible, even if the controlsp464 attribute is absent.

User agents may allow video playback to affect system features that could interfere with the user's experience; for example, user
agents could disable screensavers while video playback is in progress.

The poster IDL attribute must reflectp104 the posterp407 content attribute.

The playsInline IDL attribute must reflectp104 the playsinlinep408 content attribute.

video.videoWidthp409

video.videoHeightp409

These attributes return the natural dimensions of the video, or 0 if the dimensions are not known.

For web developers (non-normative)

In user agents that implement CSS, the above requirement can be implemented by using the style rule suggested in the Rendering
sectionp1407.

Note

This example shows how to detect when a video has failed to play correctly:

<script>

Example

409

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-images/#default-object-size
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
If the element has a controlsp464 attribute: Interactive contentp150.
If the element has a controlsp464 attribute: Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
If the element has a srcp416 attribute: zero or more trackp411 elements, then transparentp151, but with no media elementp414

descendants.
If the element does not have a srcp416 attribute: zero or more sourcep343 elements, then zero or more trackp411 elements, then
transparentp151, but with no media elementp414 descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

srcp416 — Address of the resource
crossoriginp417 — How the element handles crossorigin requests
preloadp429 — Hints how much buffering the media resourcep415 will likely need
autoplayp435 — Hint that the media resourcep415 can be started automatically when the page is loaded
loopp433 — Whether to loop the media resourcep415

mutedp465 — Whether to mute the media resourcep415 by default
controlsp464 — Show user agent controls

Accessibility considerationsp146:
For authors.

function failed(e) {
// video playback failed - show a message saying why
switch (e.target.error.code) {

case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the video playback.');
break;

case e.target.error.MEDIA_ERR_NETWORK:
alert('A network error caused the video download to fail part-way.');
break;

case e.target.error.MEDIA_ERR_DECODE:
alert('The video playback was aborted due to a corruption problem or because the video used

features your browser did not support.');
break;

case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
alert('The video could not be loaded, either because the server or network failed or because

the format is not supported.');
break;

default:
alert('An unknown error occurred.');
break;

}
}

</script>
<p><video src="tgif.vid" autoplay controls onerror="failed(event)"></video></p>
<p>Download the video file.</p>

4.8.9 The audio element §p41

0

✔ MDN

✔ MDN

410

https://w3c.github.io/html-aria/#el-audio

For implementers.

DOM interfacep147:

[Exposed=Window,
LegacyFactoryFunction=Audio(optional DOMString src)]

interface HTMLAudioElement : HTMLMediaElement {
[HTMLConstructor] constructor();

};

An audiop410 element representsp141 a sound or audio stream.

Content may be provided inside the audiop410 element. User agents should not show this content to the user; it is intended for older
web browsers which do not support audiop410, so that text can be shown to the users of these older browsers informing them of how to
access the audio contents.

The audiop410 element is a media elementp414 whose media datap415 is ostensibly audio data.

The srcp416, crossoriginp417, preloadp429, autoplayp435, loopp433, mutedp465, and controlsp464 attributes are the attributes common to
all media elementsp415.

A legacy factory function is provided for creating HTMLAudioElementp411 objects (in addition to the factory methods from DOM such as
createElement()): Audio(src). When invoked, the legacy factory function must perform the following steps:

1. Let document be the current global objectp1083 's associated Documentp923.

2. Let audio be the result of creating an element given document, audiop410, and the HTML namespace.

3. Set an attribute value for audio using "preloadp429" and "autop429".

4. If src is given, then set an attribute value for audio using "srcp416" and src. (This will cause the user agent to invokep417 the
object's resource selection algorithmp420 before returning.)

5. Return audio.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a media elementp414, before any flow contentp149.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

In particular, this content is not intended to address accessibility concerns. To make audio content accessible to the deaf or to
those with other physical or cognitive disabilities, a variety of features are available. If captions or a sign language video are
available, the videop406 element can be used instead of the audiop410 element to play the audio, allowing users to enable the visual
alternatives. Chapter titles can be provided to aid navigation, using the trackp411 element and a WebVTT file. And, naturally,
transcripts or other textual alternatives can be provided by simply linking to them in the prose near the audiop410 element.
[WEBVTT]p1484

Note

audio = new Audiop411([url])
Returns a new audiop410 element, with the srcp416 attribute set to the value passed in the argument, if applicable.

For web developers (non-normative)

IDL

4.8.10 The track element §p41

1

✔ MDN

✔ MDN

411

https://w3c.github.io/html-aam/#el-audio
https://webidl.spec.whatwg.org/#LegacyFactoryFunction
https://w3c.github.io/webvtt/#webvtt-file
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

Content attributesp146:
Global attributesp154

kindp412 — The type of text track
srcp412 — Address of the resource
srclangp413 — Language of the text track
labelp413 — User-visible label
defaultp413 — Enable the track if no other text trackp449 is more suitable

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTrackElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString kind;
[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString srclang;
[CEReactions] attribute DOMString label;
[CEReactions] attribute boolean default;

const unsigned short NONE = 0;
const unsigned short LOADING = 1;
const unsigned short LOADED = 2;
const unsigned short ERROR = 3;
readonly attribute unsigned short readyState;

readonly attribute TextTrack track;
};

The trackp411 element allows authors to specify explicit external timed text tracksp449 for media elementsp414. It does not representp141

anything on its own.

The kind attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

subtitles Subtitles Transcription or translation of the dialogue, suitable for when the sound is available but not understood (e.g. because the user
does not understand the language of the media resourcep415 's audio track). Overlaid on the video.

captions Captions Transcription or translation of the dialogue, sound effects, relevant musical cues, and other relevant audio information, suitable for
when sound is unavailable or not clearly audible (e.g. because it is muted, drowned-out by ambient noise, or because the user is
deaf). Overlaid on the video; labeled as appropriate for the hard-of-hearing.

descriptions Descriptions Textual descriptions of the video component of the media resourcep415, intended for audio synthesis when the visual component is
obscured, unavailable, or not usable (e.g. because the user is interacting with the application without a screen while driving, or
because the user is blind). Synthesized as audio.

chapters Chapters
metadata

Tracks intended for use from script. Not displayed by the user agent.

metadata Metadata

The attribute's missing value defaultp76 is the subtitlesp412 state, and its invalid value defaultp76 is the metadatap412 state.

The src attribute gives the URL of the text track data. The value must be a valid non-empty URL potentially surrounded by spacesp96.
This attribute must be present.

The element has an associated track URL (a string), initially the empty string.

When the element's srcp412 attribute is set, run these steps:

1. Let trackURL be failure.

2. Let value be the element's srcp412 attribute value.

IDL

412

https://w3c.github.io/html-aria/#el-track
https://w3c.github.io/html-aam/#el-track
https://url.spec.whatwg.org/#concept-url

3. If value is not the empty string, then set trackURL to the result of encoding-parsing-and-serializing a URLp97 given value,
relative to the element's node document.

4. Set the element's track URLp412 to trackURL if it is not failure; otherwise to the empty string.

If the element's track URLp412 identifies a WebVTT resource, and the element's kindp412 attribute is not in the chapters metadatap412 or
metadatap412 state, then the WebVTT file must be a WebVTT file using cue text. [WEBVTT]p1484

The srclang attribute gives the language of the text track data. The value must be a valid BCP 47 language tag. This attribute must be
present if the element's kindp412 attribute is in the subtitlesp412 state. [BCP47]p1475

If the element has a srclangp413 attribute whose value is not the empty string, then the element's track language is the value of the
attribute. Otherwise, the element has no track languagep413.

The label attribute gives a user-readable title for the track. This title is used by user agents when listing subtitlep412, captionp412, and
audio descriptionp412 tracks in their user interface.

The value of the labelp413 attribute, if the attribute is present, must not be the empty string. Furthermore, there must not be two
trackp411 element children of the same media elementp414 whose kindp412 attributes are in the same state, whose srclangp413

attributes are both missing or have values that represent the same language, and whose labelp413 attributes are again both missing or
both have the same value.

If the element has a labelp413 attribute whose value is not the empty string, then the element's track label is the value of the
attribute. Otherwise, the element's track labelp413 is an empty string.

The default attribute is a boolean attributep75, which, if specified, indicates that the track is to be enabled if the user's preferences do
not indicate that another track would be more appropriate.

Each media elementp414 must have no more than one trackp411 element child whose kindp412 attribute is in the subtitlesp412 or
captionsp412 state and whose defaultp413 attribute is specified.

Each media elementp414 must have no more than one trackp411 element child whose kindp412 attribute is in the descriptionp412 state
and whose defaultp413 attribute is specified.

Each media elementp414 must have no more than one trackp411 element child whose kindp412 attribute is in the chapters metadatap412

state and whose defaultp413 attribute is specified.

The readyState attribute must return the numeric value corresponding to the text track readiness statep450 of the trackp411 element's
text trackp449, as defined by the following list:

NONE (numeric value 0)
The text track not loadedp450 state.

There is no limit on the number of trackp411 elements whose kindp412 attribute is in the metadatap412 state and whose defaultp413

attribute is specified.

Note

track.readyStatep413

Returns the text track readiness statep450, represented by a number from the following list:
track.NONEp413 (0)

The text track not loadedp450 state.
track.LOADINGp414 (1)

The text track loadingp450 state.
track.LOADEDp414 (2)

The text track loadedp450 state.
track.ERRORp414 (3)

The text track failed to loadp450 state.

track.trackp414

Returns the TextTrackp457 object corresponding to the text trackp449 of the trackp411 element.

For web developers (non-normative)

413

https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/webvtt/#webvtt-file-using-cue-text

LOADING (numeric value 1)
The text track loadingp450 state.

LOADED (numeric value 2)
The text track loadedp450 state.

ERROR (numeric value 3)
The text track failed to loadp450 state.

The track IDL attribute must, on getting, return the trackp411 element's text trackp449 's corresponding TextTrackp457 object.

The src, srclang, label, and default IDL attributes must reflectp104 the respective content attributes of the same name. The kind IDL
attribute must reflectp104 the content attribute of the same name, limited to only known valuesp105.

HTMLMediaElementp414 objects (audiop410 and videop406, in this specification) are simply known as media elements.

enum CanPlayTypeResult { "" /* empty string */, "maybe", "probably" };
typedef (MediaStream or MediaSource or Blob) MediaProvider;

[Exposed=Window]
interface HTMLMediaElement : HTMLElement {

// error state
readonly attribute MediaError? error;

// network state
[CEReactions] attribute USVString src;
attribute MediaProvider? srcObject;
readonly attribute USVString currentSrc;
[CEReactions] attribute DOMString? crossOrigin;
const unsigned short NETWORK_EMPTY = 0;
const unsigned short NETWORK_IDLE = 1;
const unsigned short NETWORK_LOADING = 2;
const unsigned short NETWORK_NO_SOURCE = 3;
readonly attribute unsigned short networkState;
[CEReactions] attribute DOMString preload;
readonly attribute TimeRanges buffered;
undefined load();
CanPlayTypeResult canPlayType(DOMString type);

// ready state
const unsigned short HAVE_NOTHING = 0;
const unsigned short HAVE_METADATA = 1;
const unsigned short HAVE_CURRENT_DATA = 2;

This video has subtitles in several languages:

<video src="brave.webm">
<track kind=subtitles src=brave.en.vtt srclang=en label="English">
<track kind=captions src=brave.en.hoh.vtt srclang=en label="English for the Hard of Hearing">
<track kind=subtitles src=brave.fr.vtt srclang=fr lang=fr label="Français">
<track kind=subtitles src=brave.de.vtt srclang=de lang=de label="Deutsch">

</video>

(The langp158 attributes on the last two describe the language of the labelp413 attribute, not the language of the subtitles
themselves. The language of the subtitles is given by the srclangp413 attribute.)

Example

IDL

4.8.11 Media elements §p41

4

✔ MDN

✔ MDN

414

https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/FileAPI/#dfn-Blob

const unsigned short HAVE_FUTURE_DATA = 3;
const unsigned short HAVE_ENOUGH_DATA = 4;
readonly attribute unsigned short readyState;
readonly attribute boolean seeking;

// playback state
attribute double currentTime;
undefined fastSeek(double time);
readonly attribute unrestricted double duration;
object getStartDate();
readonly attribute boolean paused;
attribute double defaultPlaybackRate;
attribute double playbackRate;
attribute boolean preservesPitch;
readonly attribute TimeRanges played;
readonly attribute TimeRanges seekable;
readonly attribute boolean ended;
[CEReactions] attribute boolean autoplay;
[CEReactions] attribute boolean loop;
Promise<undefined> play();
undefined pause();

// controls
[CEReactions] attribute boolean controls;
attribute double volume;
attribute boolean muted;
[CEReactions] attribute boolean defaultMuted;

// tracks
[SameObject] readonly attribute AudioTrackList audioTracks;
[SameObject] readonly attribute VideoTrackList videoTracks;
[SameObject] readonly attribute TextTrackList textTracks;
TextTrack addTextTrack(TextTrackKind kind, optional DOMString label = "", optional DOMString language

= "");
};

The media element attributes, srcp416, crossoriginp417, preloadp429, autoplayp435, loopp433, mutedp465, and controlsp464, apply to
all media elementsp414. They are defined in this section.

Media elementsp414 are used to present audio data, or video and audio data, to the user. This is referred to as media data in this
section, since this section applies equally to media elementsp414 for audio or for video. The term media resource is used to refer to
the complete set of media data, e.g. the complete video file, or complete audio file.

A media resourcep415 has an associated origin, which is either "none", "multiple", "rewritten", or an originp898. It is initially set to
"none".

A media resourcep415 can have multiple audio and video tracks. For the purposes of a media elementp414, the video data of the media
resourcep415 is only that of the currently selected track (if any) as given by the element's videoTracksp445 attribute when the event
loopp1123 last reached step 1p1126, and the audio data of the media resourcep415 is the result of mixing all the currently enabled tracks (if
any) given by the element's audioTracksp445 attribute when the event loopp1123 last reached step 1p1126.

Each media elementp414 has a unique media element event task source.

To queue a media element task with a media elementp414 element and a series of steps steps, queue an element taskp1125 on the
media elementp414 's media element event task sourcep415 given element and steps.

Both audiop410 and videop406 elements can be used for both audio and video. The main difference between the two is simply that
the audiop410 element has no playback area for visual content (such as video or captions), whereas the videop406 element does.

Note

415

https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#idl-promise

All media elementsp414 have an associated error status, which records the last error the element encountered since its resource
selection algorithmp420 was last invoked. The error attribute, on getting, must return the MediaErrorp416 object created for this last
error, or null if there has not been an error.

[Exposed=Window]
interface MediaError {

const unsigned short MEDIA_ERR_ABORTED = 1;
const unsigned short MEDIA_ERR_NETWORK = 2;
const unsigned short MEDIA_ERR_DECODE = 3;
const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;

readonly attribute unsigned short code;
readonly attribute DOMString message;

};

Every MediaErrorp416 object has a message, which is a string, and a code, which is one of the following:

MEDIA_ERR_ABORTED (numeric value 1)
The fetching process for the media resourcep415 was aborted by the user agent at the user's request.

MEDIA_ERR_NETWORK (numeric value 2)
A network error of some description caused the user agent to stop fetching the media resourcep415, after the resource was
established to be usable.

MEDIA_ERR_DECODE (numeric value 3)
An error of some description occurred while decoding the media resourcep415, after the resource was established to be usable.

MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)
The media resourcep415 indicated by the srcp416 attribute or assigned media provider objectp417 was not suitable.

To create a MediaError, given an error code which is one of the above values, return a new MediaErrorp416 object whose codep416 is
the given error code and whose messagep416 is a string containing any details the user agent is able to supply about the cause of the
error condition, or the empty string if the user agent is unable to supply such details. This message string must not contain only the
information already available via the supplied error code; for example, it must not simply be a translation of the code into a string
format. If no additional information is available beyond that provided by the error code, the messagep416 must be set to the empty
string.

The code getter steps are to return this's codep416.

The message getter steps are to return this's messagep416.

The src content attribute on media elementsp414 gives the URL of the media resource (video, audio) to show. The attribute, if present,

4.8.11.1 Error codes §p41

6

media.errorp416

Returns a MediaErrorp416 object representing the current error state of the element.
Returns null if there is no error.

For web developers (non-normative)

media.errorp416.codep416

Returns the current error's error code, from the list below.

media.errorp416.messagep416

Returns a specific informative diagnostic message about the error condition encountered. The message and message format are
not generally uniform across different user agents. If no such message is available, then the empty string is returned.

For web developers (non-normative)

4.8.11.2 Location of the media resource §p41

6

IDL

✔ MDN

416

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url

must contain a valid non-empty URL potentially surrounded by spacesp96.

If the itempropp795 attribute is specified on the media elementp414, then the srcp416 attribute must also be specified.

The crossorigin content attribute on media elementsp414 is a CORS settings attributep99.

If a media elementp414 is created with a srcp416 attribute, the user agent must immediatelyp43 invoke the media elementp414 's resource
selection algorithmp420.

If a srcp416 attribute of a media elementp414 is set or changed, the user agent must invoke the media elementp414 's media element load
algorithmp419. (Removing the srcp416 attribute does not do this, even if there are sourcep343 elements present.)

The src IDL attribute on media elementsp414 must reflectp104 the content attribute of the same name.

The crossOrigin IDL attribute must reflectp104 the crossoriginp417 content attribute, limited to only known valuesp105.

A media provider object is an object that can represent a media resourcep415, separate from a URL. MediaStream objects,
MediaSource objects, and Blob objects are all media provider objectsp417.

Each media elementp414 can have an assigned media provider object, which is a media provider objectp417. When a media
elementp414 is created, it has no assigned media provider objectp417.

The currentSrc IDL attribute must initially be set to the empty string. Its value is changed by the resource selection algorithmp420

defined below.

The srcObject IDL attribute, on getting, must return the element's assigned media provider objectp417, if any, or null otherwise. On
setting, it must set the element's assigned media provider objectp417 to the new value, and then invoke the element's media element
load algorithmp419.

A media resourcep415 can be described in terms of its type, specifically a MIME type, in some cases with a codecs parameter. (Whether
the codecs parameter is allowed or not depends on the MIME type.) [RFC6381]p1481

Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't say anything except what the container type
is, and even a type like "video/mp4; codecs="avc1.42E01E, mp4a.40.2"" doesn't include information like the actual bitrate (only the
maximum bitrate). Thus, given a type, a user agent can often only know whether it might be able to play media of that type (with
varying levels of confidence), or whether it definitely cannot play media of that type.

A type that the user agent knows it cannot render is one that describes a resource that the user agent definitely does not
support, for example because it doesn't recognize the container type, or it doesn't support the listed codecs.

The MIME type "application/octet-stream" with no parameters is never a type that the user agent knows it cannot renderp417. User
agents must treat that type as equivalent to the lack of any explicit Content-Type metadatap98 when it is used to label a potential
media resourcep415.

media.srcObjectp417 [= source]
Allows the media elementp414 to be assigned a media provider objectp417.

media.currentSrcp417

Returns the URL of the current media resourcep415, if any.
Returns the empty string when there is no media resourcep415, or it doesn't have a URL.

For web developers (non-normative)

There are three ways to specify a media resourcep415: the srcObjectp417 IDL attribute, the srcp416 content attribute, and sourcep343

elements. The IDL attribute takes priority, followed by the content attribute, followed by the elements.

Note

4.8.11.3 MIME types §p41

7

Only the MIME type "application/octet-stream" with no parameters is special-cased here; if any parameter appears with it, it
Note

✔ MDN

✔ MDN

417

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/FileAPI/#dfn-Blob
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#mime-type
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1

The canPlayType(type) method must return the empty string if type is a type that the user agent knows it cannot renderp417 or is
the type "application/octet-stream"; it must return "probably" if the user agent is confident that the type represents a media
resourcep415 that it can render if used in with this audiop410 or videop406 element; and it must return "maybe" otherwise. Implementers
are encouraged to return "maybep418" unless the type can be confidently established as being supported or not. Generally, a user agent
should never return "probablyp418" for a type that allows the codecs parameter if that parameter is not present.

As media elementsp414 interact with the network, their current network activity is represented by the networkState attribute. On
getting, it must return the current network state of the element, which must be one of the following values:

NETWORK_EMPTY (numeric value 0)
The element has not yet been initialized. All attributes are in their initial states.

NETWORK_IDLE (numeric value 1)
The element's resource selection algorithmp420 is active and has selected a resourcep415, but it is not actually using the network at
this time.

NETWORK_LOADING (numeric value 2)
The user agent is actively trying to download data.

NETWORK_NO_SOURCE (numeric value 3)
The element's resource selection algorithmp420 is active, but it has not yet found a resourcep415 to use.

will be treated just like any other MIME type. This is a deviation from the rule that unknown MIME type parameters should be
ignored.

media.canPlayTypep418(type)
Returns the empty string (a negative response), "maybe", or "probably" based on how confident the user agent is that it can
play media resources of the given type.

For web developers (non-normative)

This script tests to see if the user agent supports a (fictional) new format to dynamically decide whether to use a videop406

element:

<section id="video">
<p>Download video</p>

</section>
<script>
const videoSection = document.getElementById('video');
const videoElement = document.createElement('video');
const support = videoElement.canPlayType('video/x-new-fictional-format;codecs="kittens,bunnies"');
if (support === "probably") {

videoElement.setAttribute("src", "playing-cats.nfv");
videoSection.replaceChildren(videoElement);

}
</script>

Example

The typep343 attribute of the sourcep343 element allows the user agent to avoid downloading resources that use formats it cannot
render.

Note

4.8.11.4 Network states §p41

8

media.networkStatep418

Returns the current state of network activity for the element, from the codes in the list below.

For web developers (non-normative)

418

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1

The resource selection algorithmp420 defined below describes exactly when the networkStatep418 attribute changes value and what
events fire to indicate changes in this state.

All media elementsp414 have a can autoplay flag, which must begin in the true state, and a delaying-the-load-event flag, which
must begin in the false state. While the delaying-the-load-event flagp419 is true, the element must delay the load eventp1359 of its
document.

When the load() method on a media elementp414 is invoked, the user agent must run the media element load algorithmp419.

A media elementp414 has an associated boolean is currently stalled, which is initially false.

The media element load algorithm consists of the following steps.

1. Set this element's is currently stalledp419 to false.

2. Abort any already-running instance of the resource selection algorithmp420 for this element.

3. Let pending tasks be a list of all tasksp1124 from the media elementp414 's media element event task sourcep415 in one of the
task queuesp1123.

4. For each task in pending tasks that would resolve pending play promisesp438 or reject pending play promisesp438, immediately
resolve or reject those promises in the order the corresponding tasks were queued.

5. Remove each taskp1124 in pending tasks from its task queuep1123.

6. If the media elementp414 's networkStatep418 is set to NETWORK_LOADINGp418 or NETWORK_IDLEp418, queue a media element
taskp415 given the media elementp414 to fire an event named abortp467 at the media elementp414.

7. If the media elementp414 's networkStatep418 is not set to NETWORK_EMPTYp418, then:

1. Queue a media element taskp415 given the media elementp414 to fire an event named emptiedp467 at the media
elementp414.

2. If a fetching process is in progress for the media elementp414, the user agent should stop it.

3. If the media elementp414 's assigned media provider objectp417 is a MediaSource object, then detach it.

4. Forget the media element's media-resource-specific tracksp429.

5. If readyStatep435 is not set to HAVE_NOTHINGp433, then set it to that state.

6. If the pausedp436 attribute is false, then:

1. Set the pausedp436 attribute to true.

2. Take pending play promisesp438 and reject pending play promisesp438 with the result and an "AbortError"
DOMException.

7. If seekingp443 is true, set it to false.

8. Set the current playback positionp432 to 0.

Set the official playback positionp432 to 0.

If this changed the official playback positionp432, then queue a media element taskp415 given the media elementp414

4.8.11.5 Loading the media resource §p41

9

media.loadp419()
Causes the element to reset and start selecting and loading a new media resourcep415 from scratch.

For web developers (non-normative)

Basically, pending events and callbacks are discarded and promises in-flight to be resolved/rejected are resolved/
rejected immediately when the media element starts loading a new resource.

Note

419

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/media-source/#idl-def-mediasource
https://w3c.github.io/media-source/#mediasource-detach
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException

to fire an event named timeupdatep468 at the media elementp414.

9. Set the timeline offsetp433 to Not-a-Number (NaN).

10. Update the durationp432 attribute to Not-a-Number (NaN).

8. Set the playbackRatep438 attribute to the value of the defaultPlaybackRatep438 attribute.

9. Set the errorp416 attribute to null and the can autoplay flagp419 to true.

10. Invoke the media elementp414 's resource selection algorithmp420.

11.

The resource selection algorithm for a media elementp414 is as follows. This algorithm is always invoked as part of a taskp1124, but
one of the first steps in the algorithm is to return and continue running the remaining steps in parallelp43. In addition, this algorithm
interacts closely with the event loopp1123 mechanism; in particular, it has synchronous sectionsp1131 (which are triggered as part of the
event loopp1123 algorithm). Steps in such sections are marked with ⌛.

1. Set the element's networkStatep418 attribute to the NETWORK_NO_SOURCEp418 value.

2. Set the element's show poster flagp432 to true.

3. Set the media elementp414 's delaying-the-load-event flagp419 to true (this delays the load eventp1359).

4. Await a stable statep1131, allowing the taskp1124 that invoked this algorithm to continue. The synchronous sectionp1131 consists
of all the remaining steps of this algorithm until the algorithm says the synchronous sectionp1131 has ended. (Steps in
synchronous sectionsp1131 are marked with ⌛.)

5. ⌛ If the media elementp414 's blocked-on-parserp451 flag is false, then populate the list of pending text tracksp451.

6. ⌛ If the media elementp414 has an assigned media provider objectp417, then let mode be object.

⌛ Otherwise, if the media elementp414 has no assigned media provider objectp417 but has a srcp416 attribute, then let mode be
attribute.

⌛ Otherwise, if the media elementp414 does not have an assigned media provider objectp417 and does not have a srcp416

attribute, but does have a sourcep343 element child, then let mode be children and let candidate be the first such sourcep343

element child in tree order.

⌛ Otherwise, the media elementp414 has no assigned media provider objectp417 and has neither a srcp416 attribute nor a
sourcep343 element child:

1. ⌛ Set the networkStatep418 to NETWORK_EMPTYp418.

2. ⌛ Set the element's delaying-the-load-event flagp419 to false. This stops delaying the load eventp1359.

3. End the synchronous sectionp1131 and return.

7. ⌛ Set the media elementp414 's networkStatep418 to NETWORK_LOADINGp418.

8. ⌛ Queue a media element taskp415 given the media elementp414 to fire an event named loadstartp467 at the media
elementp414.

9. Run the appropriate steps from the following list:

↪ If mode is object

1. ⌛ Set the currentSrcp417 attribute to the empty string.

2. End the synchronous sectionp1131, continuing the remaining steps in parallelp43.

3. Run the resource fetch algorithmp423 with the assigned media provider objectp417. If that algorithm returns
without aborting this one, then the load failed.

The user agent will notp432 fire a durationchangep468 event for this particular change of the duration.
Note

Playback of any previously playing media resourcep415 for this element stops.
Note

420

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-event-fire

4. Failed with media provider: Reaching this step indicates that the media resource failed to load. Take pending
play promisesp438 and queue a media element taskp415 given the media elementp414 to run the dedicated
media source failure stepsp422 with the result.

5. Wait for the taskp1124 queued by the previous step to have executed.

6. Return. The element won't attempt to load another resource until this algorithm is triggered again.

↪ If mode is attribute

1. ⌛ If the srcp416 attribute's value is the empty string, then end the synchronous sectionp1131, and jump down
to the failed with attribute step below.

2. ⌛ Let urlRecord be the result of encoding-parsing a URLp97 given the srcp416 attribute's value, relative to the
media elementp414 's node document when the srcp416 attribute was last changed.

3. ⌛ If urlRecord is not failure, then set the currentSrcp417 attribute to the result of applying the URL serializer
to urlRecord.

4. End the synchronous sectionp1131, continuing the remaining steps in parallelp43.

5. If urlRecord is not failure, then run the resource fetch algorithmp423 with urlRecord. If that algorithm returns
without aborting this one, then the load failed.

6. Failed with attribute: Reaching this step indicates that the media resource failed to load or that urlRecord is
failure. Take pending play promisesp438 and queue a media element taskp415 given the media elementp414 to
run the dedicated media source failure stepsp422 with the result.

7. Wait for the taskp1124 queued by the previous step to have executed.

8. Return. The element won't attempt to load another resource until this algorithm is triggered again.

↪ Otherwise (mode is children)

1. ⌛ Let pointer be a position defined by two adjacent nodes in the media elementp414 's child list, treating the
start of the list (before the first child in the list, if any) and end of the list (after the last child in the list, if
any) as nodes in their own right. One node is the node before pointer, and the other node is the node after
pointer. Initially, let pointer be the position between the candidate node and the next node, if there are any,
or the end of the list, if it is the last node.

As nodes are inserted and removed into the media elementp414, pointer must be updated as follows:

If a new node is inserted between the two nodes that define pointer
Let pointer be the point between the node before pointer and the new node. In other words, insertions at
pointer go after pointer.

If the node before pointer is removed
Let pointer be the point between the node after pointer and the node before the node after pointer. In
other words, pointer doesn't move relative to the remaining nodes.

If the node after pointer is removed
Let pointer be the point between the node before pointer and the node after the node before pointer. Just
as with the previous case, pointer doesn't move relative to the remaining nodes.

Other changes don't affect pointer.

2. ⌛ Process candidate: If candidate does not have a srcp344 attribute, or if its srcp344 attribute's value is the
empty string, then end the synchronous sectionp1131, and jump down to the failed with elements step below.

3. ⌛ If candidate has a mediap343 attribute whose value does not match the environmentp95, then end the
synchronous sectionp1131, and jump down to the failed with elements step below.

4. ⌛ Let urlRecord be the result of encoding-parsing a URLp97 given candidate's srcp416 attribute's value,
relative to candidate's node document when the srcp416 attribute was last changed.

5. ⌛ If urlRecord is failure, then end the synchronous sectionp1131, and jump down to the failed with elements
step below.

6. ⌛ If candidate has a typep343 attribute whose value, when parsed as a MIME type (including any codecs
described by the codecs parameter, for types that define that parameter), represents a type that the user

421

https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-serializer
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-document
https://mimesniff.spec.whatwg.org/#mime-type

agent knows it cannot renderp417, then end the synchronous sectionp1131, and jump down to the failed with
elements step below.

7. ⌛ Set the currentSrcp417 attribute to the result of applying the URL serializer to urlRecord.

8. End the synchronous sectionp1131, continuing the remaining steps in parallelp43.

9. Run the resource fetch algorithmp423 with urlRecord. If that algorithm returns without aborting this one, then
the load failed.

10. Failed with elements: Queue a media element taskp415 given the media elementp414 to fire an event named
errorp468 at candidate.

11. Await a stable statep1131. The synchronous sectionp1131 consists of all the remaining steps of this algorithm
until the algorithm says the synchronous sectionp1131 has ended. (Steps in synchronous sectionsp1131 are
marked with ⌛.)

12. ⌛ Forget the media element's media-resource-specific tracksp429.

13. ⌛ Find next candidate: Let candidate be null.

14. ⌛ Search loop: If the node after pointer is the end of the list, then jump to the waiting step below.

15. ⌛ If the node after pointer is a sourcep343 element, let candidate be that element.

16. ⌛ Advance pointer so that the node before pointer is now the node that was after pointer, and the node after
pointer is the node after the node that used to be after pointer, if any.

17. ⌛ If candidate is null, jump back to the search loop step. Otherwise, jump back to the process candidate
step.

18. ⌛ Waiting: Set the element's networkStatep418 attribute to the NETWORK_NO_SOURCEp418 value.

19. ⌛ Set the element's show poster flagp432 to true.

20. ⌛ Queue a media element taskp415 given the media elementp414 to set the element's delaying-the-load-event
flagp419 to false. This stops delaying the load eventp1359.

21. End the synchronous sectionp1131, continuing the remaining steps in parallelp43.

22. Wait until the node after pointer is a node other than the end of the list. (This step might wait forever.)

23. Await a stable statep1131. The synchronous sectionp1131 consists of all the remaining steps of this algorithm
until the algorithm says the synchronous sectionp1131 has ended. (Steps in synchronous sectionsp1131 are
marked with ⌛.)

24. ⌛ Set the element's delaying-the-load-event flagp419 back to true (this delays the load eventp1359 again, in
case it hasn't been fired yet).

25. ⌛ Set the networkStatep418 back to NETWORK_LOADINGp418.

26. ⌛ Jump back to the find next candidate step above.

The dedicated media source failure steps with a list of promises promises are the following steps:

1. Set the errorp416 attribute to the result of creating a MediaErrorp416 with MEDIA_ERR_SRC_NOT_SUPPORTEDp416.

2. Forget the media element's media-resource-specific tracksp429.

3. Set the element's networkStatep418 attribute to the NETWORK_NO_SOURCEp418 value.

4. Set the element's show poster flagp432 to true.

5. Fire an event named errorp467 at the media elementp414.

6. Reject pending play promisesp438 with promises and a "NotSupportedError" DOMException.

7. Set the element's delaying-the-load-event flagp419 to false. This stops delaying the load eventp1359.

To verify a media response given a response response, a media resourcep415 resource, and "entire resource" or a (number,
number or "until end") tuple byteRange:

422

https://url.spec.whatwg.org/#concept-url-serializer
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-response

1. If response is a network error, then return false.

2. If byteRange is "entire resource", then return true.

3. Let internalResponse be response's unsafe responsep98.

4. If internalResponse's status is 200, then return true.

5. If internalResponse's status is not 206, then return false.

6. If the result of extracting content-range values from internalResponse is failure, then return false.

7. Let origin be "rewritten" if internalResponse's URL is null; otherwise internalResponse's URL's origin.

8. Let previousOrigin be resource's originp415.

9. If any of the following are true:

◦ previousOrigin is "none";

◦ origin and previousOrigin are "rewritten"; or

◦ origin and previousOrigin are originsp898, and origin is same originp899 with previousOrigin,

then set resource's originp415 to origin.

Otherwise, if response is CORS-cross-originp98, then return false.

Otherwise, set resource's originp415 to "multiple".

10. Return true.

The resource fetch algorithm for a media elementp414 and a given URL record or media provider objectp417 is as follows:

1. Let mode be remote.

2. If the algorithm was invoked with media provider objectp417, then set mode to local.

Otherwise:

1. Let object be the result of obtaining a blob object using the URL record's blob URL entry and the media
elementp414 's node document's relevant settings objectp1083.

2. If object is a media provider objectp417, then set mode to local.

3. If mode is remote, then let the current media resource be the resource given by the URL record passed to this algorithm;
otherwise, let the current media resource be the resource given by the media provider objectp417. Either way, the current
media resource is now the element's media resourcep415.

4. Remove all media-resource-specific text tracksp452 from the media elementp414 's list of pending text tracksp451, if any.

5. Run the appropriate steps from the following list:

↪ If mode is remote

1. Optionally, run the following substeps. This is the expected behavior if the user agent intends to not attempt
to fetch the resource until the user requests it explicitly (e.g. as a way to implement the preloadp429

attribute's nonep429 keyword).

1. Set the networkStatep418 to NETWORK_IDLEp418.

Note that the extracted values are not used, and in particular are not compared to byteRange. So this step serves as
syntactic validation of the `Content-Range` header, but if the `Content-Range` values on the response mismatch the
`Range` values on the request, that is not considered a failure.

Note

This ensures that opaque responses with range headers do not leak information by being patched together with other
responses from different origins.

Note

423

https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#concept-response-status
https://wicg.github.io/background-fetch/#extract-content-range-values
https://httpwg.org/specs/rfc7233.html#header.content-range
https://httpwg.org/specs/rfc7233.html#header.content-range
https://httpwg.org/specs/rfc7233.html#header.range
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-origin
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/FileAPI/#blob-url-obtain-object
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-blob-entry
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url

2. Queue a media element taskp415 given the media elementp414 to fire an event named suspendp467

at the element.

3. Queue a media element taskp415 given the media elementp414 to set the element's delaying-the-
load-event flagp419 to false. This stops delaying the load eventp1359.

4. Wait for the task to be run.

5. Wait for an implementation-defined event (e.g., the user requesting that the media element begin
playback).

6. Set the element's delaying-the-load-event flagp419 back to true (this delays the load eventp1359

again, in case it hasn't been fired yet).

7. Set the networkStatep418 to NETWORK_LOADINGp418.

2. Let destination be "audio" if the media elementp414 is an audiop410 element, or "video" otherwise.

3. Let request be the result of creating a potential-CORS requestp98 given current media resource's URL record,
destination, and the current state of media elementp414 's crossoriginp655 content attribute.

4. Set request's client to the media elementp414 's node document's relevant settings objectp1083.

5. Set request's initiator type to destination.

6. Let byteRange, which is "entire resource" or a (number, number or "until end") tuple, be the byte range
required to satisfy missing data in media datap415. This value is implementation-defined and may rely on
codec, network conditions or other heuristics. The user-agent may determine to fetch the resource in full, in
which case byteRange would be "entire resource", to fetch from a byte offset until the end, in which case
byteRange would be (number, "until end"), or to fetch a range between two byte offsets, im which case
byteRange would be a (number, number) tuple representing the two offsets.

7. If byteRange is not "entire resource", then:

1. If byteRange[1] is "until end" then add a range header to request given byteRange[0].

2. Otherwise, add a range header to request given byteRange[0] and byteRange[1].

8. Fetch request, with processResponse set to the following steps given response response:

1. Let global be the media elementp414 's node document's relevant global objectp1083.

2. Let updateMedia be to queue a media element taskp415 given the media elementp414 to run the
first appropriate steps from the media data processing steps listp426 below. (A new task is used for
this so that the work described below occurs relative to the appropriate media element event task
sourcep415 rather than using the networking task sourcep1134.)

3. Let processEndOfMedia be the following step: If the fetching process has completed without
errors, including decoding the media data, and if all of the data is available to the user agent
without network access, then, the user agent must move on to the final step below. This might
never happen, e.g. when streaming an infinite resource such as web radio, or if the resource is
longer than the user agent's ability to cache data.

4. If the result of verifyingp422 response given the current media resource and byteRange is false,
then abort these steps.

5. Otherwise, incrementally read response's body given updateMedia, processEndOfMedia, an empty
algorithm, and global.

6. Update the media datap415 with the contents of response's unsafe responsep98 obtained in this
fashion. response can be CORS-same-originp98 or CORS-cross-originp98; this affects whether
subtitles referenced in the media datap415 are exposed in the API and, for videop406 elements,
whether acanvasp677 gets tainted when the video is drawn on it.

The media element stall timeout is an implementation-defined length of time, which should be about
three seconds. When a media elementp414 that is actively attempting to obtain media datap415 has failed to
receive any data for a duration equal to the media element stall timeoutp424, the user agent must queue a
media element taskp415 given the media elementp414 to:

424

https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#request-initiator-type
https://infra.spec.whatwg.org/#implementation-defined
https://fetch.spec.whatwg.org/#concept-request-add-range-header
https://fetch.spec.whatwg.org/#concept-request-add-range-header
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#body-incrementally-read
https://fetch.spec.whatwg.org/#concept-response-body
https://infra.spec.whatwg.org/#implementation-defined

1. Fire an event named stalledp467 at the element.

2. Set the element's is currently stalledp419 to true.

User agents may allow users to selectively block or slow media datap415 downloads. When a media
elementp414 's download has been blocked altogether, the user agent must act as if it was stalled (as
opposed to acting as if the connection was closed). The rate of the download may also be throttled
automatically by the user agent, e.g. to balance the download with other connections sharing the same
bandwidth.

User agents may decide to not download more content at any time, e.g. after buffering five minutes of a one
hour media resource, while waiting for the user to decide whether to play the resource or not, while waiting
for user input in an interactive resource, or when the user navigates away from the page. When a media
elementp414 's download has been suspended, the user agent must queue a media element taskp415 given
the media elementp414 to set the networkStatep418 to NETWORK_IDLEp418 and fire an event named
suspendp467 at the element. If and when downloading of the resource resumes, the user agent must queue a
media element taskp415 given the media elementp414 to set the networkStatep418 to NETWORK_LOADINGp418.
Between the queuing of these tasks, the load is suspended (so progressp467 events don't fire, as described
above).

When a user agent decides to completely suspend a download, e.g., if it is waiting until the user starts
playback before downloading any further content, the user agent must queue a media element taskp415

given the media elementp414 to set the element's delaying-the-load-event flagp419 to false. This stops
delaying the load eventp1359.

Although the above steps give an algorithm for issuing requests, the user agent may use other means
besides those exact ones, especially in the face of error conditions. For example, the user agent may
reconnect to the server or switch to a streaming protocol. The user agent must only consider the resource
erroneous, and proceed into the error branches of the above steps, if the user agent has given up trying to
fetch the resource.

To determine the format of the media resourcep415, the user agent must use the rules for sniffing audio and
video specifically.

While the load is not suspended (see below), every 350ms (±200ms) or for every byte received, whichever
is least frequent, queue a media element taskp415 given the media elementp414 to:

1. Fire an event named progressp467 at the element.

2. Set the element's is currently stalledp419 to false.

While the user agent might still need network access to obtain parts of the media resourcep415, the user
agent must remain on this step.

↪ Otherwise (mode is local)
The resource described by the current media resource, if any, contains the media datap415. It is CORS-same-originp98.

If the current media resource is a raw data stream (e.g. from a File object), then to determine the format of the
media resourcep415, the user agent must use the rules for sniffing audio and video specifically. Otherwise, if the data
stream is pre-decoded, then the format is the format given by the relevant specification.

Whenever new data for the current media resource becomes available, queue a media element taskp415 given the
media elementp414 to run the first appropriate steps from the media data processing steps listp426 below.

When the current media resource is permanently exhausted (e.g. all the bytes of a Blob have been processed), if

The preloadp429 attribute provides a hint regarding how much buffering the author thinks is advisable,
even in the absence of the autoplayp435 attribute.

Note

For example, if the user agent has discarded the first half of a video, the user agent will remain at this
step even once the playback has endedp436, because there is always the chance the user will seek back
to the start. In fact, in this situation, once playback has endedp436, the user agent will end up firing a
suspendp467 event, as described earlier.

Example

425

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/FileAPI/#dfn-file
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-audio-and-video-specifically
https://w3c.github.io/FileAPI/#dfn-Blob

there were no decoding errors, then the user agent must move on to the final step below. This might never happen,
e.g. if the current media resource is a MediaStream.

The media data processing steps list is as follows:

↪ If the media datap415 cannot be fetched at all, due to network errors, causing the user agent to give up
trying to fetch the resource

↪ If the media datap415 can be fetched but is found by inspection to be in an unsupported format, or can
otherwise not be rendered at all

DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and other fatal network errors that occur
before the user agent has established whether the current media resource is usable, as well as the file using an
unsupported container format, or using unsupported codecs for all the data, must cause the user agent to execute the
following steps:

1. The user agent should cancel the fetching process.

2. Abort this subalgorithm, returning to the resource selection algorithmp420.

↪ If the media resourcep415 is found to have an audio track

1. Create an AudioTrackp445 object to represent the audio track.

2. Update the media elementp414 's audioTracksp445 attribute's AudioTrackListp445 object with the new
AudioTrackp445 object.

3. Let enable be unknown.

4. If either the media resourcep415 or the URL of the current media resource indicate a particular set of audio
tracks to enable, or if the user agent has information that would facilitate the selection of specific audio
tracks to improve the user's experience, then: if this audio track is one of the ones to enable, then set
enable to true, otherwise, set enable to false.

5. If enable is still unknown, then, if the media elementp414 does not yet have an enabledp448 audio track, then
set enable to true, otherwise, set enable to false.

6. If enable is true, then enable this audio track, otherwise, do not enable this audio track.

7. Fire an event named addtrackp468 at this AudioTrackListp445 object, using TrackEventp467, with the
trackp467 attribute initialized to the new AudioTrackp445 object.

↪ If the media resourcep415 is found to have a video track

1. Create a VideoTrackp446 object to represent the video track.

2. Update the media elementp414 's videoTracksp445 attribute's VideoTrackListp445 object with the new
VideoTrackp446 object.

3. Let enable be unknown.

4. If either the media resourcep415 or the URL of the current media resource indicate a particular set of video
tracks to enable, or if the user agent has information that would facilitate the selection of specific video
tracks to improve the user's experience, then: if this video track is the first such video track, then set enable
to true, otherwise, set enable to false.

5. If enable is still unknown, then, if the media elementp414 does not yet have a selectedp448 video track, then
set enable to true, otherwise, set enable to false.

6. If enable is true, then select this track and unselect any previously selected video tracks, otherwise, do not
select this video track. If other tracks are unselected, then a change event will be firedp448.

This could be triggered by media fragment syntax, but it could also be triggered e.g. by the user agent
selecting a 5.1 surround sound audio track over a stereo audio track.

Example

This could again be triggered by media fragment syntax.
Example

426

https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-mediastream
https://url.spec.whatwg.org/#concept-url
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url
https://www.w3.org/TR/media-frags/#media-fragment-syntax

7. Fire an event named addtrackp468 at this VideoTrackListp445 object, using TrackEventp467, with the
trackp467 attribute initialized to the new VideoTrackp446 object.

↪ Once enough of the media datap415 has been fetched to determine the duration of the media resourcep415,
its dimensions, and other metadata

This indicates that the resource is usable. The user agent must follow these substeps:

1. Establish the media timelinep430 for the purposes of the current playback positionp432 and the earliest
possible positionp432, based on the media datap415.

2. Update the timeline offsetp433 to the date and time that corresponds to the zero time in the media
timelinep430 established in the previous step, if any. If no explicit time and date is given by the media
resourcep415, the timeline offsetp433 must be set to Not-a-Number (NaN).

3. Set the current playback positionp432 and the official playback positionp432 to the earliest possible
positionp432.

4. Update the durationp432 attribute with the time of the last frame of the resource, if known, on the media
timelinep430 established above. If it is not known (e.g. a stream that is in principle infinite), update the
durationp432 attribute to the value positive Infinity.

5. For videop406 elements, set the videoWidthp409 and videoHeightp409 attributes, and queue a media element
taskp415 given the media elementp414 to fire an event named resizep468 at the media elementp414.

6. Set the readyStatep435 attribute to HAVE_METADATAp433.

7. Let jumped be false.

8. If the media elementp414 's default playback start positionp432 is greater than zero, then seekp443 to that time,
and let jumped be true.

9. Let the media elementp414 's default playback start positionp432 be zero.

10. Let the initial playback position be zero.

11. If either the media resourcep415 or the URL of the current media resource indicate a particular start time,
then set the initial playback position to that time and, if jumped is still false, seekp443 to that time.

12. If there is no enabledp448 audio track, then enable an audio track. This will cause a change event to be
firedp448.

13. If there is no selectedp448 video track, then select a video track. This will cause a change event to be
firedp448.

Once the readyStatep435 attribute reaches HAVE_CURRENT_DATAp433, after the loadeddata event has been firedp434, set
the element's delaying-the-load-event flagp419 to false. This stops delaying the load eventp1359.

The user agent willp432 queue a media element taskp415 given the media elementp414 to fire an event
named durationchangep468 at the element at this point.

Note

Further resizep468 events will be fired if the dimensions subsequently change.
Note

A loadedmetadatap467 DOM event will be firedp434 as part of setting the readyStatep435 attribute to a
new value.

Note

For example, with media formats that support media fragment syntax, the fragment can be used to
indicate a start position.

Example

A user agent that is attempting to reduce network usage while still fetching the metadata for each media
Note

427

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://url.spec.whatwg.org/#concept-url-fragment

↪ Once the entire media resourcep415 has been fetched (but potentially before any of it has been decoded)
Fire an event named progressp467 at the media elementp414.

Set the networkStatep418 to NETWORK_IDLEp418 and fire an event named suspendp467 at the media elementp414.

If the user agent ever discards any media datap415 and then needs to resume the network activity to obtain it again,
then it must queue a media element taskp415 given the media elementp414 to set the networkStatep418 to
NETWORK_LOADINGp418.

↪ If the connection is interrupted after some media datap415 has been received, causing the user agent to
give up trying to fetch the resource

Fatal network errors that occur after the user agent has established whether the current media resource is usable (i.e.
once the media elementp414 's readyStatep435 attribute is no longer HAVE_NOTHINGp433) must cause the user agent to
execute the following steps:

1. The user agent should cancel the fetching process.

2. Set the errorp416 attribute to the result of creating a MediaErrorp416 with MEDIA_ERR_NETWORKp416.

3. Set the element's networkStatep418 attribute to the NETWORK_IDLEp418 value.

4. Set the element's delaying-the-load-event flagp419 to false. This stops delaying the load eventp1359.

5. Fire an event named errorp467 at the media elementp414.

6. Abort the overall resource selection algorithmp420.

↪ If the media datap415 is corrupted
Fatal errors in decoding the media datap415 that occur after the user agent has established whether the current media
resource is usable (i.e. once the media elementp414 's readyStatep435 attribute is no longer HAVE_NOTHINGp433) must
cause the user agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Set the errorp416 attribute to the result of creating a MediaErrorp416 with MEDIA_ERR_DECODEp416.

3. Set the element's networkStatep418 attribute to the NETWORK_IDLEp418 value.

4. Set the element's delaying-the-load-event flagp419 to false. This stops delaying the load eventp1359.

5. Fire an event named errorp467 at the media elementp414.

6. Abort the overall resource selection algorithmp420.

↪ If the media datap415 fetching process is aborted by the user
The fetching process is aborted by the user, e.g. because the user pressed a "stop" button, the user agent must
execute the following steps. These steps are not followed if the load()p419 method itself is invoked while these steps
are running, as the steps above handle that particular kind of abort.

1. The user agent should cancel the fetching process.

2. Set the errorp416 attribute to the result of creating a MediaErrorp416 with MEDIA_ERR_ABORTEDp416.

resourcep415 would also stop buffering at this point, following the rules described previouslyp425, which involve the
networkStatep418 attribute switching to the NETWORK_IDLEp418 value and a suspendp467 event firing.

The user agent is required to determine the duration of the media resourcep415 and go through this step before
playing.

Note

If the user agent can keep the media resourcep415 loaded, then the algorithm will continue to its final step below,
which aborts the algorithm.

Note

428

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

3. Fire an event named abortp467 at the media elementp414.

4. If the media elementp414 's readyStatep435 attribute has a value equal to HAVE_NOTHINGp433, set the element's
networkStatep418 attribute to the NETWORK_EMPTYp418 value, set the element's show poster flagp432 to true,
and fire an event named emptiedp467 at the element.

Otherwise, set the element's networkStatep418 attribute to the NETWORK_IDLEp418 value.

5. Set the element's delaying-the-load-event flagp419 to false. This stops delaying the load eventp1359.

6. Abort the overall resource selection algorithmp420.

↪ If the media datap415 can be fetched but has non-fatal errors or uses, in part, codecs that are unsupported,
preventing the user agent from rendering the content completely correctly but not preventing playback
altogether

The server returning data that is partially usable but cannot be optimally rendered must cause the user agent to
render just the bits it can handle, and ignore the rest.

↪ If the media resourcep415 is found to declare a media-resource-specific text trackp452 that the user agent
supports

If the media datap415 is CORS-same-originp98, run the steps to expose a media-resource-specific text trackp452 with the
relevant data.

6. Final step: If the user agent ever reaches this step (which can only happen if the entire resource gets loaded and kept
available): abort the overall resource selection algorithmp420.

When a media elementp414 is to forget the media element's media-resource-specific tracks, the user agent must remove from
the media elementp414 's list of text tracksp449 all the media-resource-specific text tracksp452, then empty the media elementp414 's
audioTracksp445 attribute's AudioTrackListp445 object, then empty the media elementp414 's videoTracksp445 attribute's
VideoTrackListp445 object. No events (in particular, no removetrackp468 events) are fired as part of this; the errorp467 and emptiedp467

events, fired by the algorithms that invoke this one, can be used instead.

The preload attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

auto Automatic Hints to the user agent that the user agent can put the user's needs first without risk to the server, up to and including optimistically
downloading the entire resource.(the

empty
string)
none None Hints to the user agent that either the author does not expect the user to need the media resource, or that the server wants to minimize

unnecessary traffic. This state does not provide a hint regarding how aggressively to actually download the media resource if buffering
starts anyway (e.g. once the user hits "play").

metadata Metadata Hints to the user agent that the author does not expect the user to need the media resource, but that fetching the resource metadata
(dimensions, track list, duration, etc.), and maybe even the first few frames, is reasonable. If the user agent precisely fetches no more
than the metadata, then the media elementp414 will end up with its readyStatep435 attribute set to HAVE_METADATAp433; typically though,
some frames will be obtained as well and it will probably be HAVE_CURRENT_DATAp433 or HAVE_FUTURE_DATAp433. When the media resource
is playing, hints to the user agent that bandwidth is to be considered scarce, e.g. suggesting throttling the download so that the media
data is obtained at the slowest possible rate that still maintains consistent playback.

The attribute's missing value defaultp76 and invalid value defaultp76 are both implementation-defined, though the Metadatap429 state is
suggested as a compromise between reducing server load and providing an optimal user experience.

The attribute can be changed even once the media resourcep415 is being buffered or played; the descriptions in the table above are to
be interpreted with that in mind.

Cross-origin videos do not expose their subtitles, since that would allow attacks such as hostile sites reading
subtitles from confidential videos on a user's intranet.

Note

Authors might switch the attribute from "nonep429" or "metadatap429" to "autop429" dynamically once the user begins playback. For
example, on a page with many videos this might be used to indicate that the many videos are not to be downloaded unless

Note

429

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#implementation-defined

The preloadp429 attribute is intended to provide a hint to the user agent about what the author thinks will lead to the best user
experience. The attribute may be ignored altogether, for example based on explicit user preferences or based on the available
connectivity.

The preload IDL attribute must reflectp104 the content attribute of the same name, limited to only known valuesp105.

The buffered attribute must return a new static normalized TimeRanges objectp466 that represents the ranges of the media
resourcep415, if any, that the user agent has buffered, at the time the attribute is evaluated. Users agents must accurately determine
the ranges available, even for media streams where this can only be determined by tedious inspection.

User agents may discard previously buffered data.

A media resourcep415 has a media timeline that maps times (in seconds) to positions in the media resourcep415. The origin of a
timeline is its earliest defined position. The duration of a timeline is its last defined position.

Establishing the media timeline: if the media resourcep415 somehow specifies an explicit timeline whose origin is not negative (i.e.
gives each frame a specific time offset and gives the first frame a zero or positive offset), then the media timelinep430 should be that
timeline. (Whether the media resourcep415 can specify a timeline or not depends on the media resource'sp415 format.) If the media
resourcep415 specifies an explicit start time and date, then that time and date should be considered the zero point in the media

requested, but that once one is requested it is to be downloaded aggressively.

The autoplayp435 attribute can override the preloadp429 attribute (since if the media plays, it naturally has to buffer first,
regardless of the hint given by the preloadp429 attribute). Including both is not an error, however.

Note

media.bufferedp430

Returns a TimeRangesp466 object that represents the ranges of the media resourcep415 that the user agent has buffered.

For web developers (non-normative)

Typically this will be a single range anchored at the zero point, but if, e.g. the user agent uses HTTP range requests in response to
seeking, then there could be multiple ranges.

Note

Thus, a time position included within a range of the objects return by the bufferedp430 attribute at one time can end up being not
included in the range(s) of objects returned by the same attribute at later times.

Note

Returning a new object each time is a bad pattern for attribute getters and is only enshrined here as it would be
costly to change it. It is not to be copied to new APIs.

⚠Warning!

4.8.11.6 Offsets into the media resource §p43

0

media.durationp432

Returns the length of the media resourcep415, in seconds, assuming that the start of the media resourcep415 is at time zero.
Returns NaN if the duration isn't available.
Returns Infinity for unbounded streams.

media.currentTimep432 [= value]
Returns the official playback positionp432, in seconds.
Can be set, to seek to the given time.

For web developers (non-normative)

430

timelinep430; the timeline offsetp433 will be the time and date, exposed using the getStartDate()p433 method.

If the media resourcep415 has a discontinuous timeline, the user agent must extend the timeline used at the start of the resource across
the entire resource, so that the media timelinep430 of the media resourcep415 increases linearly starting from the earliest possible
positionp432 (as defined below), even if the underlying media datap415 has out-of-order or even overlapping time codes.

In the rare case of a media resourcep415 that does not have an explicit timeline, the zero time on the media timelinep430 should
correspond to the first frame of the media resourcep415. In the even rarer case of a media resourcep415 with no explicit timings
of any kind, not even frame durations, the user agent must itself determine the time for each frame in an implementation-
defined manner.

If, in the case of a resource with no timing information, the user agent will nonetheless be able to seek to an earlier point than the first
frame originally provided by the server, then the zero time should correspond to the earliest seekable time of the media resourcep415;
otherwise, it should correspond to the first frame received from the server (the point in the media resourcep415 at which the user agent
began receiving the stream).

In any case, the user agent must ensure that the earliest possible positionp432 (as defined below) using the established media
timelinep430, is greater than or equal to zero.

The media timelinep430 also has an associated clock. Which clock is used is user-agent defined, and may be media
resourcep415-dependent, but it should approximate the user's wall clock.

For example, if two clips have been concatenated into one video file, but the video format exposes the original times for the two
clips, the video data might expose a timeline that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent would
not expose those times; it would instead expose the times as 00:15..00:29 and 00:29..01:02, as a single video.

Example

An example of a file format with no explicit timeline but with explicit frame durations is the Animated GIF format. An example of a
file format with no explicit timings at all is the JPEG-push format (multipart/x-mixed-replacep1445 with JPEG frames, often used
as the format for MJPEG streams).

Note

At the time of writing, there is no known format that lacks explicit frame time offsets yet still supports seeking to a frame before
the first frame sent by the server.

Note

Consider a stream from a TV broadcaster, which begins streaming on a sunny Friday afternoon in October, and always sends
connecting user agents the media data on the same media timeline, with its zero time set to the start of this stream. Months later,
user agents connecting to this stream will find that the first frame they receive has a time with millions of seconds. The
getStartDate()p433 method would always return the date that the broadcast started; this would allow controllers to display real
times in their scrubber (e.g. "2:30pm") rather than a time relative to when the broadcast began ("8 months, 4 hours, 12 minutes,
and 23 seconds").

Consider a stream that carries a video with several concatenated fragments, broadcast by a server that does not allow user agents
to request specific times but instead just streams the video data in a predetermined order, with the first frame delivered always
being identified as the frame with time zero. If a user agent connects to this stream and receives fragments defined as covering
timestamps 2010-03-20 23:15:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12 14:25:00 UTC to 2010-02-12 14:35:00 UTC, it
would expose this with a media timelinep430 starting at 0s and extending to 3,600s (one hour). Assuming the streaming server
disconnected at the end of the second clip, the durationp432 attribute would then return 3,600. The getStartDate()p433 method
would return a Date object with a time corresponding to 2010-03-20 23:15:00 UTC. However, if a different user agent connected
five minutes later, it would (presumably) receive fragments covering timestamps 2010-03-20 23:20:00 UTC to 2010-03-21
00:05:00 UTC and 2010-02-12 14:25:00 UTC to 2010-02-12 14:35:00 UTC, and would expose this with a media timelinep430 starting
at 0s and extending to 3,300s (fifty five minutes). In this case, the getStartDate()p433 method would return a Date object with a
time corresponding to 2010-03-20 23:20:00 UTC.

In both of these examples, the seekablep444 attribute would give the ranges that the controller would want to actually display in its
UI; typically, if the servers don't support seeking to arbitrary times, this would be the range of time from the moment the user
agent connected to the stream up to the latest frame that the user agent has obtained; however, if the user agent starts
discarding earlier information, the actual range might be shorter.

Example

431

https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-date-objects

Media elementsp414 have a current playback position, which must initially (i.e. in the absence of media datap415) be zero seconds.
The current playback positionp432 is a time on the media timelinep430.

Media elementsp414 also have an official playback position, which must initially be set to zero seconds. The official playback
positionp432 is an approximation of the current playback positionp432 that is kept stable while scripts are running.

Media elementsp414 also have a default playback start position, which must initially be set to zero seconds. This time is used to
allow the element to be seeked even before the media is loaded.

Each media elementp414 has a show poster flag. When a media elementp414 is created, this flag must be set to true. This flag is used
to control when the user agent is to show a poster frame for a videop406 element instead of showing the video contents.

The currentTime attribute must, on getting, return the media elementp414 's default playback start positionp432, unless that is zero, in
which case it must return the element's official playback positionp432. The returned value must be expressed in seconds. On setting, if
the media elementp414 's readyStatep435 is HAVE_NOTHINGp433, then it must set the media elementp414 's default playback start
positionp432 to the new value; otherwise, it must set the official playback positionp432 to the new value and then seekp443 to the new
value. The new value must be interpreted as being in seconds.

If the media resourcep415 is a streaming resource, then the user agent might be unable to obtain certain parts of the resource after it
has expired from its buffer. Similarly, some media resourcesp415 might have a media timelinep430 that doesn't start at zero. The earliest
possible position is the earliest position in the stream or resource that the user agent can ever obtain again. It is also a time on the
media timelinep430.

When the earliest possible positionp432 changes, then: if the current playback positionp432 is before the earliest possible positionp432, the
user agent must seekp443 to the earliest possible positionp432; otherwise, if the user agent has not fired a timeupdatep468 event at the
element in the past 15 to 250ms and is not still running event handlers for such an event, then the user agent must queue a media
element taskp415 given the media elementp414 to fire an event named timeupdatep468 at the element.

If at any time the user agent learns that an audio or video track has ended and all media datap415 relating to that track corresponds to
parts of the media timelinep430 that are before the earliest possible positionp432, the user agent may queue a media element taskp415

given the media elementp414 to run these steps:

1. Remove the track from the audioTracksp445 attribute's AudioTrackListp445 object or the videoTracksp445 attribute's
VideoTrackListp445 object as appropriate.

2. Fire an event named removetrackp468 at the media elementp414 's aforementioned AudioTrackListp445 or VideoTrackListp445

object, using TrackEventp467, with the trackp467 attribute initialized to the AudioTrackp445 or VideoTrackp446 object
representing the track.

The duration attribute must return the time of the end of the media resourcep415, in seconds, on the media timelinep430. If no media
datap415 is available, then the attributes must return the Not-a-Number (NaN) value. If the media resourcep415 is not known to be
bounded (e.g. streaming radio, or a live event with no announced end time), then the attribute must return the positive Infinity value.

The user agent must determine the duration of the media resourcep415 before playing any part of the media datap415 and before setting
readyStatep435 to a value greater than or equal to HAVE_METADATAp433, even if doing so requires fetching multiple parts of the resource.

When the length of the media resourcep415 changes to a known value (e.g. from being unknown to known, or from a previously
established length to a new length) the user agent must queue a media element taskp415 given the media elementp414 to fire an event
named durationchangep468 at the media elementp414. (The event is not fired when the duration is reset as part of loading a new media
resource.) If the duration is changed such that the current playback positionp432 ends up being greater than the time of the end of the
media resourcep415, then the user agent must also seekp443 to the time of the end of the media resourcep415.

The earliest possible positionp432 is not explicitly exposed in the API; it corresponds to the start time of the first range in the
seekablep444 attribute's TimeRangesp466 object, if any, or the current playback positionp432 otherwise.

Note

Because of the above requirement and the requirement in the resource fetch algorithmp423 that kicks in when the metadata of the
clip becomes knownp427, the current playback positionp432 can never be less than the earliest possible positionp432.

Note

432

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

Some video files also have an explicit date and time corresponding to the zero time in the media timelinep430, known as the timeline
offset. Initially, the timeline offsetp433 must be set to Not-a-Number (NaN).

The getStartDate() method must return a new Date objectp56 representing the current timeline offsetp433.

The loop attribute is a boolean attributep75 that, if specified, indicates that the media elementp414 is to seek back to the start of the
media resourcep415 upon reaching the end.

The loop IDL attribute must reflectp104 the content attribute of the same name.

Media elementsp414 have a ready state, which describes to what degree they are ready to be rendered at the current playback
positionp432. The possible values are as follows; the ready state of a media element at any particular time is the greatest value
describing the state of the element:

HAVE_NOTHING (numeric value 0)
No information regarding the media resourcep415 is available. No data for the current playback positionp432 is available. Media
elementsp414 whose networkStatep418 attribute are set to NETWORK_EMPTYp418 are always in the HAVE_NOTHINGp433 state.

HAVE_METADATA (numeric value 1)
Enough of the resource has been obtained that the duration of the resource is available. In the case of a videop406 element, the
dimensions of the video are also available. No media datap415 is available for the immediate current playback positionp432.

HAVE_CURRENT_DATA (numeric value 2)
Data for the immediate current playback positionp432 is available, but either not enough data is available that the user agent could
successfully advance the current playback positionp432 in the direction of playbackp440 at all without immediately reverting to the
HAVE_METADATAp433 state, or there is no more data to obtain in the direction of playbackp440. For example, in video this corresponds
to the user agent having data from the current frame, but not the next frame, when the current playback positionp432 is at the end
of the current frame; and to when playback has endedp436.

HAVE_FUTURE_DATA (numeric value 3)
Data for the immediate current playback positionp432 is available, as well as enough data for the user agent to advance the current
playback positionp432 in the direction of playbackp440 at least a little without immediately reverting to the HAVE_METADATAp433 state,
and the text tracks are readyp451. For example, in video this corresponds to the user agent having data for at least the current frame
and the next frame when the current playback positionp432 is at the instant in time between the two frames, or to the user agent
having the video data for the current frame and audio data to keep playing at least a little when the current playback positionp432 is
in the middle of a frame. The user agent cannot be in this state if playback has endedp436, as the current playback positionp432 can
never advance in this case.

HAVE_ENOUGH_DATA (numeric value 4)
All the conditions described for the HAVE_FUTURE_DATAp433 state are met, and, in addition, either of the following conditions is also
true:

• The user agent estimates that data is being fetched at a rate where the current playback positionp432, if it were to advance
at the element's playbackRatep438, would not overtake the available data before playback reaches the end of the media
resourcep415.

If an "infinite" stream ends for some reason, then the duration would change from positive Infinity to the time of the last frame or
sample in the stream, and the durationchangep468 event would be fired. Similarly, if the user agent initially estimated the media
resourcep415 's duration instead of determining it precisely, and later revises the estimate based on new information, then the
duration would change and the durationchangep468 event would be fired.

Example

4.8.11.7 Ready states §p43

3

media.readyStatep435

Returns a value that expresses the current state of the element with respect to rendering the current playback positionp432, from
the codes in the list below.

For web developers (non-normative)

✔ MDN

433

• The user agent has entered a state where waiting longer will not result in further data being obtained, and therefore
nothing would be gained by delaying playback any further. (For example, the buffer might be full.)

When the ready state of a media elementp414 whose networkStatep418 is not NETWORK_EMPTYp418 changes, the user agent must follow
the steps given below:

1. Apply the first applicable set of substeps from the following list:

↪ If the previous ready state was HAVE_NOTHINGp433, and the new ready state is HAVE_METADATAp433

Queue a media element taskp415 given the media elementp414 to fire an event named loadedmetadatap467 at the
element.

↪ If the previous ready state was HAVE_METADATAp433 and the new ready state is HAVE_CURRENT_DATAp433 or greater
If this is the first time this occurs for this media elementp414 since the load()p419 algorithm was last invoked, the user
agent must queue a media element taskp415 given the media elementp414 to fire an event named loadeddatap467 at
the element.

If the new ready state is HAVE_FUTURE_DATAp433 or HAVE_ENOUGH_DATAp433, then the relevant steps below must then be
run also.

↪ If the previous ready state was HAVE_FUTURE_DATAp433 or more, and the new ready state is
HAVE_CURRENT_DATAp433 or less

If the media elementp414 was potentially playingp436 before its readyStatep435 attribute changed to a value lower than
HAVE_FUTURE_DATAp433, and the element has not ended playbackp436, and playback has not stopped due to errorsp437,
paused for user interactionp437, or paused for in-band contentp437, the user agent must queue a media element
taskp415 given the media elementp414 to fire an event named timeupdatep468 at the element, and queue a media
element taskp415 given the media elementp414 to fire an event named waitingp468 at the element.

↪ If the previous ready state was HAVE_CURRENT_DATAp433 or less, and the new ready state is
HAVE_FUTURE_DATAp433

The user agent must queue a media element taskp415 given the media elementp414 to fire an event named canplayp467

at the element.

If the element's pausedp436 attribute is false, the user agent must notify about playingp438 for the element.

↪ If the new ready state is HAVE_ENOUGH_DATAp433

If the previous ready state was HAVE_CURRENT_DATAp433 or less, the user agent must queue a media element taskp415

given the media elementp414 to fire an event named canplayp467 at the element, and, if the element's pausedp436

attribute is false, notify about playingp438 for the element.

The user agent must queue a media element taskp415 given the media elementp414 to fire an event named
canplaythroughp467 at the element.

If the element is not eligible for autoplayp436, then the user agent must abort these substeps.

The user agent may run the following substeps:

1. Set the pausedp436 attribute to false.

2. If the element's show poster flagp432 is true, set it to false and run the time marches onp441 steps.

In practice, the difference between HAVE_METADATAp433 and HAVE_CURRENT_DATAp433 is negligible. Really the only time the difference
is relevant is when painting a videop406 element onto a canvasp677, where it distinguishes the case where something will be drawn
(HAVE_CURRENT_DATAp433 or greater) from the case where nothing is drawn (HAVE_METADATAp433 or less). Similarly, the difference
between HAVE_CURRENT_DATAp433 (only the current frame) and HAVE_FUTURE_DATAp433 (at least this frame and the next) can be
negligible (in the extreme, only one frame). The only time that distinction really matters is when a page provides an interface for
"frame-by-frame" navigation.

Note

Before this task is run, as part of the event loopp1123 mechanism, the rendering will have been updated to resize
the videop406 element if appropriate.

Note

434

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

3. Queue a media element taskp415 given the element to fire an event named playp468 at the element.

4. Notify about playingp438 for the element.

Alternatively, if the element is a videop406 element, the user agent may start observing whether the element
intersects the viewportp1388. When the element starts intersecting the viewportp1388, if the element is still eligible for
autoplayp436, run the substeps above. Optionally, when the element stops intersecting the viewportp1388, if the can
autoplay flagp419 is still true and the autoplayp435 attribute is still specified, run the following substeps:

1. Run the internal pause stepsp439 and set the can autoplay flagp419 to true.

2. Queue a media element taskp415 given the element to fire an event named pausep468 at the element.

The readyState IDL attribute must, on getting, return the value described above that describes the current ready state of the media
elementp414.

The autoplay attribute is a boolean attributep75. When present, the user agent (as described in the algorithm described herein) will
automatically begin playback of the media resourcep415 as soon as it can do so without stopping.

The autoplay IDL attribute must reflectp104 the content attribute of the same name.

The substeps for playing and pausing can run multiple times as the element starts or stops intersecting the
viewportp1388, as long as the can autoplay flagp419 is true.

Note

User agents do not need to support autoplay, and it is suggested that user agents honor user preferences on the
matter. Authors are urged to use the autoplayp435 attribute rather than using script to force the video to play, so
as to allow the user to override the behavior if so desired.

Note

It is possible for the ready state of a media element to jump between these states discontinuously. For example, the state of a
media element can jump straight from HAVE_METADATAp433 to HAVE_ENOUGH_DATAp433 without passing through the
HAVE_CURRENT_DATAp433 and HAVE_FUTURE_DATAp433 states.

Note

Authors are urged to use the autoplayp435 attribute rather than using script to trigger automatic playback, as this allows the user
to override the automatic playback when it is not desired, e.g. when using a screen reader. Authors are also encouraged to
consider not using the automatic playback behavior at all, and instead to let the user agent wait for the user to start playback
explicitly.

Note

4.8.11.8 Playing the media resource §p43

5

media.pausedp436

Returns true if playback is paused; false otherwise.

media.endedp437

Returns true if playback has reached the end of the media resourcep415.

media.defaultPlaybackRatep438 [= value]
Returns the default rate of playback, for when the user is not fast-forwarding or reversing through the media resourcep415.
Can be set, to change the default rate of playback.
The default rate has no direct effect on playback, but if the user switches to a fast-forward mode, when they return to the
normal playback mode, it is expected that the rate of playback will be returned to the default rate of playback.

For web developers (non-normative)

✔ MDN

435

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

The paused attribute represents whether the media elementp414 is paused or not. The attribute must initially be true.

A media elementp414 is a blocked media element if its readyStatep435 attribute is in the HAVE_NOTHINGp433 state, the
HAVE_METADATAp433 state, or the HAVE_CURRENT_DATAp433 state, or if the element has paused for user interactionp437 or paused for in-
band contentp437.

A media elementp414 is said to be potentially playing when its pausedp436 attribute is false, the element has not ended playbackp436,
playback has not stopped due to errorsp437, and the element is not a blocked media elementp436.

A media elementp414 is said to be eligible for autoplay when all of the following are true:

• its can autoplay flagp419 is true;

• its pausedp436 attribute is true;

• it has an autoplayp435 attribute specified;

• its node document's active sandboxing flag setp917 does not have the sandboxed automatic features browsing context flagp915

set; and

• its node document is allowed to usep398 the "autoplayp75" feature.

A media elementp414 is said to be allowed to play if the user agent and the system allow media playback in the current context.

A media elementp414 is said to have ended playback when:

• The element's readyStatep435 attribute is HAVE_METADATAp433 or greater, and

• Either:

◦ The current playback positionp432 is the end of the media resourcep415, and

◦ The direction of playbackp440 is forwards, and

◦ The media elementp414 does not have a loopp433 attribute specified.

media.playbackRatep438 [= value]
Returns the current rate playback, where 1.0 is normal speed.
Can be set, to change the rate of playback.

media.preservesPitchp438

Returns true if pitch-preserving algorithms are used when the playbackRatep438 is not 1.0. The default value is true.
Can be set to false to have the media resourcep415 's audio pitch change up or down depending on the playbackRatep438. This is
useful for aesthetic and performance reasons.

media.playedp438

Returns a TimeRangesp466 object that represents the ranges of the media resourcep415 that the user agent has played.

media.playp438()
Sets the pausedp436 attribute to false, loading the media resourcep415 and beginning playback if necessary. If the playback had
ended, will restart it from the start.

media.pausep439()
Sets the pausedp436 attribute to true, loading the media resourcep415 if necessary.

A waitingp468 DOM event can be firedp434 as a result of an element that is potentially playingp436 stopping playback due to its
readyStatep435 attribute changing to a value lower than HAVE_FUTURE_DATAp433.

Note

For example, a user agent could allow playback only when the media elementp414 's Windowp922 object has transient activationp830,
but an exception could be made to allow playback while mutedp465.

Example

436

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

Or:

◦ The current playback positionp432 is the earliest possible positionp432, and

◦ The direction of playbackp440 is backwards.

The ended attribute must return true if, the last time the event loopp1123 reached step 1p1126, the media elementp414 had ended
playbackp436 and the direction of playbackp440 was forwards, and false otherwise.

A media elementp414 is said to have stopped due to errors when the element's readyStatep435 attribute is HAVE_METADATAp433 or
greater, and the user agent encounters a non-fatal errorp429 during the processing of the media datap415, and due to that error, is not
able to play the content at the current playback positionp432.

A media elementp414 is said to have paused for user interaction when its pausedp436 attribute is false, the readyStatep435 attribute
is either HAVE_FUTURE_DATAp433 or HAVE_ENOUGH_DATAp433 and the user agent has reached a point in the media resourcep415 where the
user has to make a selection for the resource to continue.

It is possible for a media elementp414 to have both ended playbackp436 and paused for user interactionp437 at the same time.

When a media elementp414 that is potentially playingp436 stops playing because it has paused for user interactionp437, the user agent
must queue a media element taskp415 given the media elementp414 to fire an event named timeupdatep468 at the element.

A media elementp414 is said to have paused for in-band content when its pausedp436 attribute is false, the readyStatep435 attribute is
either HAVE_FUTURE_DATAp433 or HAVE_ENOUGH_DATAp433 and the user agent has suspended playback of the media resourcep415 in order
to play content that is temporally anchored to the media resourcep415 and has a nonzero length, or to play content that is temporally
anchored to a segment of the media resourcep415 but has a length longer than that segment.

When the current playback positionp432 reaches the end of the media resourcep415 when the direction of playbackp440 is forwards, then
the user agent must follow these steps:

1. If the media elementp414 has a loopp433 attribute specified, then seekp443 to the earliest possible positionp432 of the media
resourcep415 and return.

2. As defined above, the endedp437 IDL attribute starts returning true once the event loopp1123 returns to step 1p1126.

3. Queue a media element taskp415 given the media elementp414 and the following steps:

1. Fire an event named timeupdatep468 at the media elementp414.

2. If the media elementp414 has ended playbackp436, the direction of playbackp440 is forwards, and pausedp436 is false,
then:

1. Set the pausedp436 attribute to true.

2. Fire an event named pausep468 at the media elementp414.

3. Take pending play promisesp438 and reject pending play promisesp438 with the result and an "AbortError"
DOMException.

3. Fire an event named endedp468 at the media elementp414.

When the current playback positionp432 reaches the earliest possible positionp432 of the media resourcep415 when the direction of
playbackp440 is backwards, then the user agent must only queue a media element taskp415 given the media elementp414 to fire an event
named timeupdatep468 at the element.

One example of when a media elementp414 would be paused for in-band contentp437 is when the user agent is playing audio
descriptionsp412 from an external WebVTT file, and the synthesized speech generated for a cue is longer than the time between the
text track cue start timep451 and the text track cue end timep451.

Example

The word "reaches" here does not imply that the current playback positionp432 needs to have changed during normal playback; it
could be via seekingp443, for instance.

Note

437

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

The defaultPlaybackRate attribute gives the desired speed at which the media resourcep415 is to play, as a multiple of its intrinsic
speed. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't yet been set; on setting the
attribute must be set to the new value.

The playbackRate attribute gives the effective playback rate, which is the speed at which the media resourcep415 plays, as a multiple
of its intrinsic speed. If it is not equal to the defaultPlaybackRatep438, then the implication is that the user is using a feature such as
fast forward or slow motion playback. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't
yet been set; on setting, the user agent must follow these steps:

1. If the given value is not supported by the user agent, then throw a "NotSupportedError" DOMException.

2. Set playbackRatep438 to the new value, and if the element is potentially playingp436, change the playback speed.

When the defaultPlaybackRatep438 or playbackRatep438 attributes change value (either by being set by script or by being changed
directly by the user agent, e.g. in response to user control) the user agent must queue a media element taskp415 given the media
elementp414 to fire an event named ratechangep468 at the media elementp414. The user agent must process attribute changes smoothly
and must not introduce any perceivable gaps or muting of playback in response.

The preservesPitch getter steps are to return true if a pitch-preserving algorithm is in effect during playback. The setter steps are to
correspondingly switch the pitch-preserving algorithm on or off, without any perceivable gaps or muting of playback. By default, such a
pitch-preserving algorithm must be in effect (i.e., the getter will initially return true).

The played attribute must return a new static normalized TimeRanges objectp466 that represents the ranges of points on the media
timelinep430 of the media resourcep415 reached through the usual monotonic increase of the current playback positionp432 during normal
playback, if any, at the time the attribute is evaluated.

Each media elementp414 has a list of pending play promises, which must initially be empty.

To take pending play promises for a media elementp414, the user agent must run the following steps:

1. Let promises be an empty list of promises.

2. Copy the media elementp414 's list of pending play promisesp438 to promises.

3. Clear the media elementp414 's list of pending play promisesp438.

4. Return promises.

To resolve pending play promises for a media elementp414 with a list of promises promises, the user agent must resolve each
promise in promises with undefined.

To reject pending play promises for a media elementp414 with a list of promises promises and an exception name error, the user
agent must reject each promise in promises with error.

To notify about playing for a media elementp414, the user agent must run the following steps:

1. Take pending play promisesp438 and let promises be the result.

2. Queue a media element taskp415 given the element and the following steps:

1. Fire an event named playingp468 at the element.

2. Resolve pending play promisesp438 with promises.

When the play() method on a media elementp414 is invoked, the user agent must run the following steps.

The defaultPlaybackRatep438 is used by the user agent when it exposes a user interface to the userp464.
Note

Returning a new object each time is a bad pattern for attribute getters and is only enshrined here as it would be
costly to change it. It is not to be copied to new APIs.

⚠Warning!

438

https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

1. If the media elementp414 is not allowed to playp436, then return a promise rejected with a "NotAllowedError" DOMException.

2. If the media elementp414 's errorp416 attribute is not null and its codep416 is MEDIA_ERR_SRC_NOT_SUPPORTEDp416, then return a
promise rejected with a "NotSupportedError" DOMException.

3. Let promise be a new promise and append promise to the list of pending play promisesp438.

4. Run the internal play stepsp439 for the media elementp414.

5. Return promise.

The internal play steps for a media elementp414 are as follows:

1. If the media elementp414 's networkStatep418 attribute has the value NETWORK_EMPTYp418, invoke the media elementp414 's
resource selection algorithmp420.

2. If the playback has endedp436 and the direction of playbackp440 is forwards, seekp443 to the earliest possible positionp432 of the
media resourcep415.

3. If the media elementp414 's pausedp436 attribute is true, then:

1. Change the value of pausedp436 to false.

2. If the show poster flagp432 is true, set the element's show poster flagp432 to false and run the time marches onp441

steps.

3. Queue a media element taskp415 given the media elementp414 to fire an event named playp468 at the element.

4. If the media elementp414 's readyStatep435 attribute has the value HAVE_NOTHINGp433, HAVE_METADATAp433, or
HAVE_CURRENT_DATAp433, queue a media element taskp415 given the media elementp414 to fire an event named
waitingp468 at the element.

Otherwise, the media elementp414 's readyStatep435 attribute has the value HAVE_FUTURE_DATAp433 or
HAVE_ENOUGH_DATAp433: notify about playingp438 for the element.

4. Otherwise, if the media elementp414 's readyStatep435 attribute has the value HAVE_FUTURE_DATAp433 or
HAVE_ENOUGH_DATAp433, take pending play promisesp438 and queue a media element taskp415 given the media elementp414 to
resolve pending play promisesp438 with the result.

5. Set the media elementp414 's can autoplay flagp419 to false.

When the pause() method is invoked, and when the user agent is required to pause the media elementp414, the user agent must run
the following steps:

1. If the media elementp414 's networkStatep418 attribute has the value NETWORK_EMPTYp418, invoke the media elementp414 's
resource selection algorithmp420.

2. Run the internal pause stepsp439 for the media elementp414.

The internal pause steps for a media elementp414 are as follows:

1. Set the media elementp414 's can autoplay flagp419 to false.

This means that the dedicated media source failure stepsp422 have run. Playback is not possible until the media element
load algorithmp419 clears the errorp416 attribute.

Note

This will causep444 the user agent to queue a media element taskp415 given the media elementp414 to fire an event named
timeupdatep468 at the media elementp414.

Note

The media element is already playing. However, it's possible that promise will be rejectedp438 before the queued task is
run.

Note

439

https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#notallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

2. If the media elementp414 's pausedp436 attribute is false, run the following steps:

1. Change the value of pausedp436 to true.

2. Take pending play promisesp438 and let promises be the result.

3. Queue a media element taskp415 given the media elementp414 and the following steps:

1. Fire an event named timeupdatep468 at the element.

2. Fire an event named pausep468 at the element.

3. Reject pending play promisesp438 with promises and an "AbortError" DOMException.

4. Set the official playback positionp432 to the current playback positionp432.

If the element's playbackRatep438 is positive or zero, then the direction of playback is forwards. Otherwise, it is backwards.

When a media elementp414 is potentially playingp436 and its Documentp130 is a fully activep1003 Documentp130, its current playback
positionp432 must increase monotonically at the element's playbackRatep438 units of media time per unit time of the media
timelinep430 's clock. (This specification always refers to this as an increase, but that increase could actually be a decrease if the
element's playbackRatep438 is negative.)

Any time the user agent provides a stable statep1131, the official playback positionp432 must be set to the current playback positionp432.

While the direction of playbackp440 is backwards, any corresponding audio must be mutedp465. While the element's playbackRatep438 is
so low or so high that the user agent cannot play audio usefully, the corresponding audio must also be mutedp465. If the element's
playbackRatep438 is not 1.0 and preservesPitchp438 is true, the user agent must apply pitch adjustment to preserve the original pitch
of the audio. Otherwise, the user agent must speed up or slow down the audio without any pitch adjustment.

When a media elementp414 is potentially playingp436, its audio data played must be synchronized with the current playback positionp432,
at the element's effective media volumep465. The user agent must play the audio from audio tracks that were enabled when the event
loopp1123 last reached step 1p1126.

When a media elementp414 is not potentially playingp436, audio must not play for the element.

Media elementsp414 that are potentially playingp436 while not in a document must not play any video, but should play any audio
component. Media elements must not stop playing just because all references to them have been removed; only once a media element
is in a state where no further audio could ever be played by that element may the element be garbage collected.

Each media elementp414 has a list of newly introduced cues, which must be initially empty. Whenever a text track cuep451 is added
to the list of cuesp450 of a text trackp449 that is in the list of text tracksp449 for a media elementp414, that cuep451 must be added to the
media elementp414 's list of newly introduced cuesp440. Whenever a text trackp449 is added to the list of text tracksp449 for a media
elementp414, all of the cuesp451 in that text trackp449 's list of cuesp450 must be added to the media elementp414 's list of newly introduced
cuesp440. When a media elementp414 's list of newly introduced cuesp440 has new cues added while the media elementp414 's show poster

The element's playbackRatep438 can be 0.0, in which case the current playback positionp432 doesn't move, despite playback not
being paused (pausedp436 doesn't become true, and the pausep468 event doesn't fire).

Note

This specification doesn't define how the user agent achieves the appropriate playback rate — depending on the protocol and
media available, it is plausible that the user agent could negotiate with the server to have the server provide the media data at the
appropriate rate, so that (except for the period between when the rate is changed and when the server updates the stream's
playback rate) the client doesn't actually have to drop or interpolate any frames.

Note

It is possible for an element to which no explicit references exist to play audio, even if such an element is not still actively playing:
for instance, it could be unpaused but stalled waiting for content to buffer, or it could be still buffering, but with a suspendp467

event listener that begins playback. Even a media element whose media resourcep415 has no audio tracks could eventually play
audio again if it had an event listener that changes the media resourcep415.

Note

440

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#in-a-document

flagp432 is not set, then the user agent must run the time marches onp441 steps.

When a text track cuep451 is removed from the list of cuesp450 of a text trackp449 that is in the list of text tracksp449 for a media
elementp414, and whenever a text trackp449 is removed from the list of text tracksp449 of a media elementp414, if the media elementp414 's
show poster flagp432 is not set, then the user agent must run the time marches onp441 steps.

When the current playback positionp432 of a media elementp414 changes (e.g. due to playback or seeking), the user agent must run the
time marches onp441 steps. To support use cases that depend on the timing accuracy of cue event firing, such as synchronizing
captions with shot changes in a video, user agents should fire cue events as close as possible to their position on the media timeline,
and ideally within 20 milliseconds. If the current playback positionp432 changes while the steps are running, then the user agent must
wait for the steps to complete, and then must immediately rerun the steps. These steps are thus run as often as possible or needed.

The time marches on steps are as follows:

1. Let current cues be a list of cuesp451, initialized to contain all the cuesp451 of all the hiddenp450 or showingp450 text tracksp449 of
the media elementp414 (not the disabledp450 ones) whose start timesp451 are less than or equal to the current playback
positionp432 and whose end timesp451 are greater than the current playback positionp432.

2. Let other cues be a list of cuesp451, initialized to contain all the cuesp451 of hiddenp450 and showingp450 text tracksp449 of the
media elementp414 that are not present in current cues.

3. Let last time be the current playback positionp432 at the time this algorithm was last run for this media elementp414, if this is
not the first time it has run.

4. If the current playback positionp432 has, since the last time this algorithm was run, only changed through its usual monotonic
increase during normal playback, then let missed cues be the list of cuesp451 in other cues whose start timesp451 are greater
than or equal to last time and whose end timesp451 are less than or equal to the current playback positionp432. Otherwise, let
missed cues be an empty list.

5. Remove all the cuesp451 in missed cues that are also in the media elementp414 's list of newly introduced cuesp440, and then
empty the element's list of newly introduced cuesp440.

6. If the time was reached through the usual monotonic increase of the current playback positionp432 during normal playback,
and if the user agent has not fired a timeupdatep468 event at the element in the past 15 to 250ms and is not still running
event handlers for such an event, then the user agent must queue a media element taskp415 given the media elementp414 to
fire an event named timeupdatep468 at the element. (In the other cases, such as explicit seeks, relevant events get fired as
part of the overall process of changing the current playback positionp432.)

7. If all of the cuesp451 in current cues have their text track cue active flagp452 set, none of the cuesp451 in other cues have their
text track cue active flagp452 set, and missed cues is empty, then return.

8. If the time was reached through the usual monotonic increase of the current playback positionp432 during normal playback,
and there are cuesp451 in other cues that have their text track cue pause-on-exit flagp451 set and that either have their text
track cue active flagp452 set or are also in missed cues, then immediatelyp43 pausep439 the media elementp414.

9. Let events be a list of tasksp1124, initially empty. Each taskp1124 in this list will be associated with a text trackp449, a text track
cuep451, and a time, which are used to sort the list before the tasksp1124 are queued.

Let affected tracks be a list of text tracksp449, initially empty.

If one iteration takes a long time, this can cause short duration cuesp451 to be skipped over as the user agent rushes ahead to
"catch up", so these cues will not appear in the activeCuesp459 list.

Note

The event thus is not to be fired faster than about 66Hz or slower than 4Hz (assuming the event handlers don't take
longer than 250ms to run). User agents are encouraged to vary the frequency of the event based on the system load and
the average cost of processing the event each time, so that the UI updates are not any more frequent than the user
agent can comfortably handle while decoding the video.

Note

In the other cases, such as explicit seeks, playback is not paused by going past the end time of a cuep451, even if that
cuep451 has its text track cue pause-on-exit flagp451 set.

Note

441

https://dom.spec.whatwg.org/#concept-event-fire

When the steps below say to prepare an event named event for a text track cuep451 target with a time time, the user agent
must run these steps:

1. Let track be the text trackp449 with which the text track cuep451 target is associated.

2. Create a taskp1124 to fire an event named event at target.

3. Add the newly created taskp1124 to events, associated with the time time, the text trackp449 track, and the text track
cuep451 target.

4. Add track to affected tracks.

10. For each text track cuep451 in missed cues, prepare an eventp442 named enterp469 for the TextTrackCuep461 object with the
text track cue start timep451.

11. For each text track cuep451 in other cues that either has its text track cue active flagp452 set or is in missed cues, prepare an
eventp442 named exitp469 for the TextTrackCuep461 object with the later of the text track cue end timep451 and the text track
cue start timep451.

12. For each text track cuep451 in current cues that does not have its text track cue active flagp452 set, prepare an eventp442

named enterp469 for the TextTrackCuep461 object with the text track cue start timep451.

13. Sort the tasksp1124 in events in ascending time order (tasksp1124 with earlier times first).

Further sort tasksp1124 in events that have the same time by the relative text track cue orderp452 of the text track cuesp451

associated with these tasksp1124.

Finally, sort tasksp1124 in events that have the same time and same text track cue orderp452 by placing tasksp1124 that fire
enterp469 events before those that fire exitp469 events.

14. Queue a media element taskp415 given the media elementp414 for each taskp1124 in events, in list order.

15. Sort affected tracks in the same order as the text tracksp449 appear in the media elementp414 's list of text tracksp449, and
remove duplicates.

16. For each text trackp449 in affected tracks, in the list order, queue a media element taskp415 given the media elementp414 to fire
an event named cuechangep468 at the TextTrackp457 object, and, if the text trackp449 has a corresponding trackp411 element,
to then fire an event named cuechangep468 at the trackp411 element as well.

17. Set the text track cue active flagp452 of all the cuesp451 in the current cues, and unset the text track cue active flagp452 of all
the cuesp451 in the other cues.

18. Run the rules for updating the text track renderingp450 of each of the text tracksp449 in affected tracks that are showingp450,
providing the text trackp449 's text track languagep450 as the fallback language if it is not the empty string. For example, for
text tracksp449 based on WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]p1484

For the purposes of the algorithm above, a text track cuep451 is considered to be part of a text trackp449 only if it is listed in the text
track list of cuesp450, not merely if it is associated with the text trackp449.

When a media elementp414 is removed from a Documentp46, the user agent must run the following steps:

1. Await a stable statep1131, allowing the taskp1124 that removed the media elementp414 from the Documentp130 to continue. The
synchronous sectionp1131 consists of all the remaining steps of this algorithm. (Steps in the synchronous sectionp1131 are
marked with ⌛.)

2. ⌛ If the media elementp414 is in a document, return.

3. ⌛ Run the internal pause stepsp439 for the media elementp414.

If the media elementp414 's node document stops being a fully activep1003 document, then the playback will stopp440 until the
document is active again.

Note

442

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#in-a-document

The seeking attribute must initially have the value false.

The fastSeek(time) method must seekp443 to the time given by time, with the approximate-for-speed flag set.

When the user agent is required to seek to a particular new playback position in the media resourcep415, optionally with the
approximate-for-speed flag set, it means that the user agent must run the following steps. This algorithm interacts closely with the
event loopp1123 mechanism; in particular, it has a synchronous sectionp1131 (which is triggered as part of the event loopp1123 algorithm).
Steps in that section are marked with ⌛.

1. Set the media elementp414 's show poster flagp432 to false.

2. If the media elementp414 's readyStatep435 is HAVE_NOTHINGp433, return.

3. If the element's seekingp443 IDL attribute is true, then another instance of this algorithm is already running. Abort that other
instance of the algorithm without waiting for the step that it is running to complete.

4. Set the seekingp443 IDL attribute to true.

5. If the seek was in response to a DOM method call or setting of an IDL attribute, then continue the script. The remainder of
these steps must be run in parallelp43. With the exception of the steps marked with ⌛, they could be aborted at any time by
another instance of this algorithm being invoked.

6. If the new playback position is later than the end of the media resourcep415, then let it be the end of the media resourcep415

instead.

7. If the new playback position is less than the earliest possible positionp432, let it be that position instead.

8. If the (possibly now changed) new playback position is not in one of the ranges given in the seekablep444 attribute, then let it
be the position in one of the ranges given in the seekablep444 attribute that is the nearest to the new playback position. If
two positions both satisfy that constraint (i.e. the new playback position is exactly in the middle between two ranges in the
seekablep444 attribute) then use the position that is closest to the current playback positionp432. If there are no ranges given
in the seekablep444 attribute then set the seekingp443 IDL attribute to false and return.

9. If the approximate-for-speed flag is set, adjust the new playback position to a value that will allow for playback to resume
promptly. If new playback position before this step is before current playback positionp432, then the adjusted new playback
position must also be before the current playback positionp432. Similarly, if the new playback position before this step is after
current playback positionp432, then the adjusted new playback position must also be after the current playback positionp432.

10. Queue a media element taskp415 given the media elementp414 to fire an event named seekingp468 at the element.

11. Set the current playback positionp432 to the new playback position.

4.8.11.9 Seeking §p44

3

media.seekingp443

Returns true if the user agent is currently seeking.

media.seekablep444

Returns a TimeRangesp466 object that represents the ranges of the media resourcep415 to which it is possible for the user agent to
seek.

media.fastSeekp443(time)
Seeks to near the given time as fast as possible, trading precision for speed. (To seek to a precise time, use the currentTimep432

attribute.)
This does nothing if the media resource has not been loaded.

For web developers (non-normative)

For example, the user agent could snap to a nearby key frame, so that it doesn't have to spend time decoding then
discarding intermediate frames before resuming playback.

Example

If the media elementp414 was potentially playingp436 immediately before it started seeking, but seeking caused its
readyStatep435 attribute to change to a value lower than HAVE_FUTURE_DATAp433, then a waitingp468 event will be

Note

443

https://dom.spec.whatwg.org/#concept-event-fire

12. Wait until the user agent has established whether or not the media datap415 for the new playback position is available, and, if
it is, until it has decoded enough data to play back that position.

13. Await a stable statep1131. The synchronous sectionp1131 consists of all the remaining steps of this algorithm. (Steps in the
synchronous sectionp1131 are marked with ⌛.)

14. ⌛ Set the seekingp443 IDL attribute to false.

15. ⌛ Run the time marches onp441 steps.

16. ⌛ Queue a media element taskp415 given the media elementp414 to fire an event named timeupdatep468 at the element.

17. ⌛ Queue a media element taskp415 given the media elementp414 to fire an event named seekedp468 at the element.

The seekable attribute must return a new static normalized TimeRanges objectp466 that represents the ranges of the media
resourcep415, if any, that the user agent is able to seek to, at the time the attribute is evaluated.

User agents should adopt a very liberal and optimistic view of what is seekable. User agents should also buffer recent content where
possible to enable seeking to be fast.

Media resourcesp415 might be internally scripted or interactive. Thus, a media elementp414 could play in a non-linear fashion. If this
happens, the user agent must act as if the algorithm for seekingp443 was used whenever the current playback positionp432 changes in a
discontinuous fashion (so that the relevant events fire).

firedp434 at the element.

This step sets the current playback positionp432, and thus can immediately trigger other conditions, such as the rules
regarding when playback "reaches the end of the media resourcep437" (part of the logic that handles looping), even
before the user agent is actually able to render the media data for that position (as determined in the next step).

Note

The currentTimep432 attribute returns the official playback positionp432, not the current playback positionp432, and
therefore gets updated before script execution, separate from this algorithm.

Note

If the user agent can seek to anywhere in the media resourcep415, e.g. because it is a simple movie file and the user agent and the
server support HTTP Range requests, then the attribute would return an object with one range, whose start is the time of the first
frame (the earliest possible positionp432, typically zero), and whose end is the same as the time of the first frame plus the
durationp432 attribute's value (which would equal the time of the last frame, and might be positive Infinity).

Note

The range might be continuously changing, e.g. if the user agent is buffering a sliding window on an infinite stream. This is the
behavior seen with DVRs viewing live TV, for instance.

Note

Returning a new object each time is a bad pattern for attribute getters and is only enshrined here as it would be
costly to change it. It is not to be copied to new APIs.

⚠Warning!

For instance, consider a large video file served on an HTTP server without support for HTTP Range requests. A browser could
implement this by only buffering the current frame and data obtained for subsequent frames, never allow seeking, except for
seeking to the very start by restarting the playback. However, this would be a poor implementation. A high quality implementation
would buffer the last few minutes of content (or more, if sufficient storage space is available), allowing the user to jump back and
rewatch something surprising without any latency, and would in addition allow arbitrary seeking by reloading the file from the start
if necessary, which would be slower but still more convenient than having to literally restart the video and watch it all the way
through just to get to an earlier unbuffered spot.

Example

444

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

A media resourcep415 can have multiple embedded audio and video tracks. For example, in addition to the primary video and audio
tracks, a media resourcep415 could have foreign-language dubbed dialogues, director's commentaries, audio descriptions, alternative
angles, or sign-language overlays.

The audioTracks attribute of a media elementp414 must return a livep47 AudioTrackListp445 object representing the audio tracks
available in the media elementp414 's media resourcep415.

The videoTracks attribute of a media elementp414 must return a livep47 VideoTrackListp445 object representing the video tracks
available in the media elementp414 's media resourcep415.

The AudioTrackListp445 and VideoTrackListp445 interfaces are used by attributes defined in the previous section.

[Exposed=Window]
interface AudioTrackList : EventTarget {

readonly attribute unsigned long length;
getter AudioTrack (unsigned long index);
AudioTrack? getTrackById(DOMString id);

attribute EventHandler onchange;
attribute EventHandler onaddtrack;
attribute EventHandler onremovetrack;

};

[Exposed=Window]
interface AudioTrack {

readonly attribute DOMString id;
readonly attribute DOMString kind;
readonly attribute DOMString label;
readonly attribute DOMString language;
attribute boolean enabled;

};

[Exposed=Window]
interface VideoTrackList : EventTarget {

readonly attribute unsigned long length;
getter VideoTrack (unsigned long index);
VideoTrack? getTrackById(DOMString id);
readonly attribute long selectedIndex;

attribute EventHandler onchange;
attribute EventHandler onaddtrack;
attribute EventHandler onremovetrack;

};

4.8.11.10 Media resources with multiple media tracks §p44

5

media.audioTracksp445

Returns an AudioTrackListp445 object representing the audio tracks available in the media resourcep415.

media.videoTracksp445

Returns a VideoTrackListp445 object representing the video tracks available in the media resourcep415.

For web developers (non-normative)

There are only ever one AudioTrackListp445 object and one VideoTrackListp445 object per media elementp414, even if another
media resourcep415 is loaded into the element: the objects are reused. (The AudioTrackp445 and VideoTrackp446 objects are not,
though.)

Note

4.8.11.10.1 AudioTrackListp445 and VideoTrackListp445 objects §p44

5

IDL

✔ MDN

✔ MDN

445

https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#interface-eventtarget

[Exposed=Window]
interface VideoTrack {

readonly attribute DOMString id;
readonly attribute DOMString kind;
readonly attribute DOMString label;
readonly attribute DOMString language;
attribute boolean selected;

};

An AudioTrackListp445 object represents a dynamic list of zero or more audio tracks, of which zero or more can be enabled at a time.
Each audio track is represented by an AudioTrackp445 object.

A VideoTrackListp445 object represents a dynamic list of zero or more video tracks, of which zero or one can be selected at a time.
Each video track is represented by a VideoTrackp446 object.

Tracks in AudioTrackListp445 and VideoTrackListp445 objects must be consistently ordered. If the media resourcep415 is in a format
that defines an order, then that order must be used; otherwise, the order must be the relative order in which the tracks are declared in
the media resourcep415. The order used is called the natural order of the list.

media.audioTracksp445.lengthp447

media.videoTracksp445.lengthp447

Returns the number of tracks in the list.

audioTrack = media.audioTracksp445[index]
videoTrack = media.videoTracksp445[index]

Returns the specified AudioTrackp445 or VideoTrackp446 object.

audioTrack = media.audioTracksp445.getTrackByIdp447(id)
videoTrack = media.videoTracksp445.getTrackByIdp447(id)

Returns the AudioTrackp445 or VideoTrackp446 object with the given identifier, or null if no track has that identifier.

audioTrack.idp447

videoTrack.idp447

Returns the ID of the given track. This is the ID that can be used with a fragment if the format supports media fragment syntax,
and that can be used with the getTrackById() method.

audioTrack.kindp447

videoTrack.kindp447

Returns the category the given track falls into. The possible track categoriesp447 are given below.

audioTrack.labelp448

videoTrack.labelp448

Returns the label of the given track, if known, or the empty string otherwise.

audioTrack.languagep448

videoTrack.languagep448

Returns the language of the given track, if known, or the empty string otherwise.

audioTrack.enabledp448 [= value]
Returns true if the given track is active, and false otherwise.
Can be set, to change whether the track is enabled or not. If multiple audio tracks are enabled simultaneously, they are mixed.

media.videoTracksp445.selectedIndexp448

Returns the index of the currently selected track, if any, or −1 otherwise.

videoTrack.selectedp448 [= value]
Returns true if the given track is active, and false otherwise.
Can be set, to change whether the track is selected or not. Either zero or one video track is selected; selecting a new track while
a previous one is selected will unselect the previous one.

For web developers (non-normative)

446

https://url.spec.whatwg.org/#concept-url-fragment
https://www.w3.org/TR/media-frags/#media-fragment-syntax

The AudioTrackListp445 length and VideoTrackListp445 length attribute getters must return the number of tracks represented by
their objects at the time of getting.

The supported property indices of AudioTrackListp445 and VideoTrackListp445 objects at any instant are the numbers from zero to the
number of tracks represented by the respective object minus one, if any tracks are represented. If an AudioTrackListp445 or
VideoTrackListp445 object represents no tracks, it has no supported property indices.

To determine the value of an indexed property for a given index index in an AudioTrackListp445 or VideoTrackListp445 object list, the
user agent must return the AudioTrackp445 or VideoTrackp446 object that represents the indexth track in list.

The AudioTrackListp445 getTrackById(id) and VideoTrackListp445 getTrackById(id) methods must return the first AudioTrackp445

or VideoTrackp446 object (respectively) in the AudioTrackListp445 or VideoTrackListp445 object (respectively) whose identifier is equal
to the value of the id argument (in the natural order of the list, as defined above). When no tracks match the given argument, the
methods must return null.

The AudioTrackp445 and VideoTrackp446 objects represent specific tracks of a media resourcep415. Each track can have an identifier,
category, label, and language. These aspects of a track are permanent for the lifetime of the track; even if a track is removed from a
media resourcep415 's AudioTrackListp445 or VideoTrackListp445 objects, those aspects do not change.

In addition, AudioTrackp445 objects can each be enabled or disabled; this is the audio track's enabled state. When an AudioTrackp445 is
created, its enabled state must be set to false (disabled). The resource fetch algorithmp423 can override this.

Similarly, a single VideoTrackp446 object per VideoTrackListp445 object can be selected, this is the video track's selection state. When
a VideoTrackp446 is created, its selection state must be set to false (not selected). The resource fetch algorithmp423 can override this.

The AudioTrackp445 id and VideoTrackp446 id attributes must return the identifier of the track, if it has one, or the empty string
otherwise. If the media resourcep415 is in a format that supports media fragment syntax, the identifier returned for a particular track
must be the same identifier that would enable the track if used as the name of a track in the track dimension of such a fragment.
[INBAND]p1479

The AudioTrackp445 kind and VideoTrackp446 kind attributes must return the category of the track, if it has one, or the empty string
otherwise.

The category of a track is the string given in the first column of the table below that is the most appropriate for the track based on the
definitions in the table's second and third columns, as determined by the metadata included in the track in the media resourcep415. The
cell in the third column of a row says what the category given in the cell in the first column of that row applies to; a category is only
appropriate for an audio track if it applies to audio tracks, and a category is only appropriate for video tracks if it applies to video
tracks. Categories must only be returned for AudioTrackp445 objects if they are appropriate for audio, and must only be returned for
VideoTrackp446 objects if they are appropriate for video.

For Ogg files, the Role header field of the track gives the relevant metadata. For DASH media resources, the Role element conveys the
information. For WebM, only the FlagDefault element currently maps to a value. Sourcing In-band Media Resource Tracks from Media
Containers into HTML has further details. [OGGSKELETONHEADERS]p1480 [DASH]p1477 [WEBMCG]p1484 [INBAND]p1479

Return values for AudioTrackp445 's kindp447 and VideoTrackp446 's kindp447

Category Definition Applies
to...

Examples

"alternative" A possible alternative to the main track, e.g. a
different take of a song (audio), or a different angle
(video).

Audio
and
video.

Ogg: "audio/alternate" or "video/alternate"; DASH: "alternate" without "main"
and "commentary" roles, and, for audio, without the "dub" role (other roles
ignored).

"captions" A version of the main video track with captions burnt
in. (For legacy content; new content would use text
tracks.)

Video
only.

DASH: "caption" and "main" roles together (other roles ignored).

"descriptions" An audio description of a video track. Audio Ogg: "audio/audiodesc".

Each track in one of these objects thus has an index; the first has the index 0, and each subsequent track is numbered one higher
than the previous one. If a media resourcep415 dynamically adds or removes audio or video tracks, then the indices of the tracks
will change dynamically. If the media resourcep415 changes entirely, then all the previous tracks will be removed and replaced with
new tracks.

Note

For example, in Ogg files, this would be the Name header field of the track. [OGGSKELETONHEADERS]p1480
Example

447

https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-an-indexed-property
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://url.spec.whatwg.org/#concept-url-fragment

Category Definition Applies
to...

Examples

only.
"main" The primary audio or video track. Audio

and
video.

Ogg: "audio/main" or "video/main"; WebM: the "FlagDefault" element is set;
DASH: "main" role without "caption", "subtitle", and "dub" roles (other roles
ignored).

"main-desc" The primary audio track, mixed with audio
descriptions.

Audio
only.

AC3 audio in MPEG-2 TS: bsmod=2 and full_svc=1.

"sign" A sign-language interpretation of an audio track. Video
only.

Ogg: "video/sign".

"subtitles" A version of the main video track with subtitles burnt
in. (For legacy content; new content would use text
tracks.)

Video
only.

DASH: "subtitle" and "main" roles together (other roles ignored).

"translation" A translated version of the main audio track. Audio
only.

Ogg: "audio/dub". DASH: "dub" and "main" roles together (other roles
ignored).

"commentary" Commentary on the primary audio or video track, e.g.
a director's commentary.

Audio
and
video.

DASH: "commentary" role without "main" role (other roles ignored).

"" (empty
string)

No explicit kind, or the kind given by the track's
metadata is not recognized by the user agent.

Audio
and
video.

The AudioTrackp445 label and VideoTrackp446 label attributes must return the label of the track, if it has one, or the empty string
otherwise. [INBAND]p1479

The AudioTrackp445 language and VideoTrackp446 language attributes must return the BCP 47 language tag of the language of the
track, if it has one, or the empty string otherwise. If the user agent is not able to express that language as a BCP 47 language tag (for
example because the language information in the media resourcep415 's format is a free-form string without a defined interpretation),
then the method must return the empty string, as if the track had no language. [INBAND]p1479

The AudioTrackp445 enabled attribute, on getting, must return true if the track is currently enabled, and false otherwise. On setting, it
must enable the track if the new value is true, and disable it otherwise. (If the track is no longer in an AudioTrackListp445 object, then
the track being enabled or disabled has no effect beyond changing the value of the attribute on the AudioTrackp445 object.)

Whenever an audio track in an AudioTrackListp445 that was disabled is enabled, and whenever one that was enabled is disabled, the
user agent must queue a media element taskp415 given the media elementp414 to fire an event named changep468 at the
AudioTrackListp445 object.

An audio track that has no data for a particular position on the media timelinep430, or that does not exist at that position, must be
interpreted as being silent at that point on the timeline.

The VideoTrackListp445 selectedIndex attribute must return the index of the currently selected track, if any. If the
VideoTrackListp445 object does not currently represent any tracks, or if none of the tracks are selected, it must instead return −1.

The VideoTrackp446 selected attribute, on getting, must return true if the track is currently selected, and false otherwise. On setting, it
must select the track if the new value is true, and unselect it otherwise. If the track is in a VideoTrackListp445, then all the other
VideoTrackp446 objects in that list must be unselected. (If the track is no longer in a VideoTrackListp445 object, then the track being
selected or unselected has no effect beyond changing the value of the attribute on the VideoTrackp446 object.)

Whenever a track in a VideoTrackListp445 that was previously not selected is selected, and whenever the selected track in a
VideoTrackListp445 is unselected without a new track being selected in its stead, the user agent must queue a media element taskp415

given the media elementp414 to fire an event named changep468 at the VideoTrackListp445 object. This taskp1124 must be queuedp1125

before the taskp1124 that fires the resizep468 event, if any.

A video track that has no data for a particular position on the media timelinep430 must be interpreted as being transparent black at that
point on the timeline, with the same dimensions as the last frame before that position, or, if the position is before all the data for that
track, the same dimensions as the first frame for that track. A track that does not exist at all at the current position must be treated as
if it existed but had no data.

For instance, if a video has a track that is only introduced after one hour of playback, and the user selects that track then goes
back to the start, then the user agent will act as if that track started at the start of the media resourcep415 but was simply
transparent until one hour in.

Example

448

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-color/#transparent-black

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the AudioTrackListp445 and VideoTrackListp445 interfaces:

Event handlerp1136 Event handler event typep1139

onchange changep468

onaddtrack addtrackp468

onremovetrack removetrackp468

The audioTracksp445 and videoTracksp445 attributes allow scripts to select which track should play, but it is also possible to select
specific tracks declaratively, by specifying particular tracks in the fragment of the URL of the media resourcep415. The format of the
fragment depends on the MIME type of the media resourcep415. [RFC2046]p1481 [URL]p1483

A media elementp414 can have a group of associated text tracks, known as the media elementp414 's list of text tracks. The text
tracksp449 are sorted as follows:

1. The text tracksp449 corresponding to trackp411 element children of the media elementp414, in tree order.

2. Any text tracksp449 added using the addTextTrack()p458 method, in the order they were added, oldest first.

3. Any media-resource-specific text tracksp452 (text tracksp449 corresponding to data in the media resourcep415), in the order
defined by the media resourcep415 's format specification.

A text trackp449 consists of:

The kind of text track
This decides how the track is handled by the user agent. The kind is represented by a string. The possible strings are:

• subtitles
• captions
• descriptions
• chapters
• metadata

The kind of trackp449 can change dynamically, in the case of a text trackp449 corresponding to a trackp411 element.

A label
This is a human-readable string intended to identify the track for the user.

The label of a trackp449 can change dynamically, in the case of a text trackp449 corresponding to a trackp411 element.

When a text track labelp449 is the empty string, the user agent should automatically generate an appropriate label from the text
track's other properties (e.g. the kind of text track and the text track's language) for use in its user interface. This automatically-
generated label is not exposed in the API.

An in-band metadata track dispatch type
This is a string extracted from the media resourcep415 specifically for in-band metadata tracks to enable such tracks to be
dispatched to different scripts in the document.

4.8.11.10.2 Selecting specific audio and video tracks declaratively §p44

9

In this example, a video that uses a format that supports media fragment syntax is embedded in such a way that the alternative
angles labeled "Alternative" are enabled instead of the default video track.

<video src="myvideo#track=Alternative"></video>

Example

4.8.11.11 Timed text tracks §p44

9

4.8.11.11.1 Text track model §p44

9

✔ MDN

✔ MDN

✔ MDN

449

https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#mime-type
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://dom.spec.whatwg.org/#concept-tree-order

Other than for in-band metadata text tracks, the in-band metadata track dispatch typep449 is the empty string. How this value is
populated for different media formats is described in steps to expose a media-resource-specific text trackp452.

A language
This is a string (a BCP 47 language tag) representing the language of the text track's cues. [BCP47]p1475

The language of a text trackp450 can change dynamically, in the case of a text trackp449 corresponding to a trackp411 element.

A readiness state
One of the following:

Not loaded
Indicates that the text track's cues have not been obtained.

Loading
Indicates that the text track is loading and there have been no fatal errors encountered so far. Further cues might still be added
to the track by the parser.

Loaded
Indicates that the text track has been loaded with no fatal errors.

Failed to load
Indicates that the text track was enabled, but when the user agent attempted to obtain it, this failed in some way (e.g., URL
could not be parsedp97, network error, unknown text track format). Some or all of the cues are likely missing and will not be
obtained.

The readiness statep450 of a text trackp449 changes dynamically as the track is obtained.

A mode
One of the following:

Disabled
Indicates that the text track is not active. Other than for the purposes of exposing the track in the DOM, the user agent is
ignoring the text track. No cues are active, no events are fired, and the user agent will not attempt to obtain the track's cues.

Hidden
Indicates that the text track is active, but that the user agent is not actively displaying the cues. If no attempt has yet been
made to obtain the track's cues, the user agent will perform such an attempt momentarily. The user agent is maintaining a list of
which cues are active, and events are being fired accordingly.

Showing
Indicates that the text track is active. If no attempt has yet been made to obtain the track's cues, the user agent will perform
such an attempt momentarily. The user agent is maintaining a list of which cues are active, and events are being fired
accordingly. In addition, for text tracks whose kindp449 is subtitlesp449 or captionsp449, the cues are being overlaid on the video
as appropriate; for text tracks whose kindp449 is descriptionsp449, the user agent is making the cues available to the user in a
non-visual fashion; and for text tracks whose kindp449 is chaptersp449, the user agent is making available to the user a
mechanism by which the user can navigate to any point in the media resourcep415 by selecting a cue.

A list of zero or more cues
A list of text track cuesp451, along with rules for updating the text track rendering. For example, for WebVTT, the rules for
updating the display of WebVTT text tracks. [WEBVTT]p1484

The list of cues of a text trackp450 can change dynamically, either because the text trackp449 has not yet been loadedp450 or is still
loadingp450, or due to DOM manipulation.

Each text trackp449 has a corresponding TextTrackp457 object.

For example, a traditional TV station broadcast streamed on the web and augmented with web-specific interactive features
could include text tracks with metadata for ad targeting, trivia game data during game shows, player states during sports
games, recipe information during food programs, and so forth. As each program starts and ends, new tracks might be added or
removed from the stream, and as each one is added, the user agent could bind them to dedicated script modules using the
value of this attribute.

Example

450

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks

Each media elementp414 has a list of pending text tracks, which must initially be empty, a blocked-on-parser flag, which must
initially be false, and a did-perform-automatic-track-selection flag, which must also initially be false.

When the user agent is required to populate the list of pending text tracks of a media elementp414, the user agent must add to the
element's list of pending text tracksp451 each text trackp449 in the element's list of text tracksp449 whose text track modep450 is not
disabledp450 and whose text track readiness statep450 is loadingp450.

Whenever a trackp411 element's parent node changes, the user agent must remove the corresponding text trackp449 from any list of
pending text tracksp451 that it is in.

Whenever a text trackp449 's text track readiness statep450 changes to either loadedp450 or failed to loadp450, the user agent must remove
it from any list of pending text tracksp451 that it is in.

When a media elementp414 is created by an HTML parserp1271 or XML parserp1384, the user agent must set the element's blocked-on-
parserp451 flag to true. When a media elementp414 is popped off the stack of open elementsp1286 of an HTML parserp1271 or XML
parserp1384, the user agent must honor user preferences for automatic text track selectionp454, populate the list of pending text
tracksp451, and set the element's blocked-on-parserp451 flag to false.

The text tracksp449 of a media elementp414 are ready when both the element's list of pending text tracksp451 is empty and the
element's blocked-on-parserp451 flag is false.

Each media elementp414 has a pending text track change notification flag, which must initially be unset.

Whenever a text trackp449 that is in a media elementp414 's list of text tracksp449 has its text track modep450 change value, the user agent
must run the following steps for the media elementp414:

1. If the media elementp414 's pending text track change notification flagp451 is set, return.

2. Set the media elementp414 's pending text track change notification flagp451.

3. Queue a media element taskp415 given the media elementp414 to run these steps:

1. Unset the media elementp414 's pending text track change notification flagp451.

2. Fire an event named changep468 at the media elementp414 's textTracksp457 attribute's TextTrackListp456 object.

4. If the media elementp414 's show poster flagp432 is not set, run the time marches onp441 steps.

The task sourcep1124 for the tasksp1124 listed in this section is the DOM manipulation task sourcep1134.

A text track cue is the unit of time-sensitive data in a text trackp449, corresponding for instance for subtitles and captions to the text
that appears at a particular time and disappears at another time.

Each text track cuep451 consists of:

An identifier
An arbitrary string.

A start time
The time, in seconds and fractions of a second, that describes the beginning of the range of the media datap415 to which the cue
applies.

An end time
The time, in seconds and fractions of a second, that describes the end of the range of the media datap415 to which the cue applies,
or positive Infinity for an unbounded text track cuep452.

A pause-on-exit flag
A boolean indicating whether playback of the media resourcep415 is to pause when the end of the range to which the cue applies is
reached.

Some additional format-specific data
Additional fields, as needed for the format, including the actual data of the cue. For example, WebVTT has a text track cue writing
direction and so forth. [WEBVTT]p1484

451

https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/webvtt/#webvtt-cue-writing-direction
https://w3c.github.io/webvtt/#webvtt-cue-writing-direction

An unbounded text track cue is a text track cue with a text track cue end timep451 set to positive Infinity. An active unbounded text
track cuep452 cannot become inactive through the usual monotonic increase of the current playback positionp432 during normal
playback (e.g. a metadata cue for a chapter in a live event with no announced end time.)

Each text track cuep451 has a corresponding TextTrackCuep461 object (or more specifically, an object that inherits from
TextTrackCuep461 — for example, WebVTT cues use the VTTCue interface). A text track cuep451 's in-memory representation can be
dynamically changed through this TextTrackCuep461 API. [WEBVTT]p1484

A text track cuep451 is associated with rules for updating the text track renderingp450, as defined by the specification for the specific
kind of text track cuep451. These rules are used specifically when the object representing the cue is added to a TextTrackp457 object
using the addCue()p459 method.

In addition, each text track cuep451 has two pieces of dynamic information:

The active flag
This flag must be initially unset. The flag is used to ensure events are fired appropriately when the cue becomes active or inactive,
and to make sure the right cues are rendered.

The user agent must synchronously unset this flag whenever the text track cuep451 is removed from its text trackp449 's text track list
of cuesp450; whenever the text trackp449 itself is removed from its media elementp414 's list of text tracksp449 or has its text track
modep450 changed to disabledp450; and whenever the media elementp414 's readyStatep435 is changed back to HAVE_NOTHINGp433.
When the flag is unset in this way for one or more cues in text tracksp449 that were showingp450 prior to the relevant incident, the
user agent must, after having unset the flag for all the affected cues, apply the rules for updating the text track renderingp450 of
those text tracksp449. For example, for text tracksp449 based on WebVTT, the rules for updating the display of WebVTT text tracks.
[WEBVTT]p1484

The display state
This is used as part of the rendering model, to keep cues in a consistent position. It must initially be empty. Whenever the text track
cue active flagp452 is unset, the user agent must empty the text track cue display statep452.

The text track cuesp451 of a media elementp414 's text tracksp449 are ordered relative to each other in the text track cue order, which is
determined as follows: first group the cuesp451 by their text trackp449, with the groups being sorted in the same order as their text
tracksp449 appear in the media elementp414 's list of text tracksp449; then, within each group, cuesp451 must be sorted by their start
timep451, earliest first; then, any cuesp451 with the same start timep451 must be sorted by their end timep451, latest first; and finally, any
cuesp451 with identical end timesp451 must be sorted in the order they were last added to their respective text track list of cuesp450,
oldest first (so e.g. for cues from a WebVTT file, that would initially be the order in which the cues were listed in the file). [WEBVTT]p1484

A media-resource-specific text track is a text trackp449 that corresponds to data found in the media resourcep415.

Rules for processing and rendering such data are defined by the relevant specifications, e.g. the specification of the video format if the
media resourcep415 is a video. Details for some legacy formats can be found in Sourcing In-band Media Resource Tracks from Media
Containers into HTML. [INBAND]p1479

When a media resourcep415 contains data that the user agent recognizes and supports as being equivalent to a text trackp449, the user
agent runsp429 the steps to expose a media-resource-specific text track with the relevant data, as follows.

1. Associate the relevant data with a new text trackp449 and its corresponding new TextTrackp457 object. The text trackp449 is a
media-resource-specific text trackp452.

2. Set the new text trackp449 's kindp449, labelp449, and languagep450 based on the semantics of the relevant data, as defined by
the relevant specification. If there is no label in that data, then the labelp449 must be set to the empty string.

3. Associate the text track list of cuesp450 with the rules for updating the text track renderingp450 appropriate for the format in
question.

The text track cue start timep451 and text track cue end timep451 can be negative. (The current playback positionp432 can never be
negative, though, so cues entirely before time zero cannot be active.)

Note

4.8.11.11.2 Sourcing in-band text tracks §p45

2

452

https://w3c.github.io/webvtt/#vttcue
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks

4. If the new text trackp449 's kindp449 is chaptersp449 or metadatap449, then set the text track in-band metadata track dispatch
typep449 as follows, based on the type of the media resourcep415:

↪ If the media resourcep415 is an Ogg file
The text track in-band metadata track dispatch typep449 must be set to the value of the Name header field.
[OGGSKELETONHEADERS]p1480

↪ If the media resourcep415 is a WebM file
The text track in-band metadata track dispatch typep449 must be set to the value of the CodecID element.
[WEBMCG]p1484

↪ If the media resourcep415 is an MPEG-2 file
Let stream type be the value of the "stream_type" field describing the text track's type in the file's program map
section, interpreted as an 8-bit unsigned integer. Let length be the value of the "ES_info_length" field for the track in
the same part of the program map section, interpreted as an integer as defined by Generic coding of moving pictures
and associated audio information. Let descriptor bytes be the length bytes following the "ES_info_length" field. The
text track in-band metadata track dispatch typep449 must be set to the concatenation of the stream type byte and the
zero or more descriptor bytes bytes, expressed in hexadecimal using ASCII upper hex digits. [MPEG2]p1480

↪ If the media resourcep415 is an MPEG-4 file
Let the first stsd box of the first stbl box of the first minf box of the first mdia box of the text trackp449 's trak box in
the first moov box of the file be the stsd box, if any. If the file has no stsd box, or if the stsd box has neither a mett box
nor a metx box, then the text track in-band metadata track dispatch typep449 must be set to the empty string.
Otherwise, if the stsd box has a mett box then the text track in-band metadata track dispatch typep449 must be set to
the concatenation of the string "mett", a U+0020 SPACE character, and the value of the first mime_format field of the
first mett box of the stsd box, or the empty string if that field is absent in that box. Otherwise, if the stsd box has no
mett box but has a metx box then the text track in-band metadata track dispatch typep449 must be set to the
concatenation of the string "metx", a U+0020 SPACE character, and the value of the first namespace field of the first
metx box of the stsd box, or the empty string if that field is absent in that box. [MPEG4]p1480

5. Populate the new text trackp449 's list of cuesp450 with the cues parsed so far, following the guidelines for exposing cuesp456,
and begin updating it dynamically as necessary.

6. Set the new text trackp449 's readiness statep450 to loadedp450.

7. Set the new text trackp449 's modep450 to the mode consistent with the user's preferences and the requirements of the
relevant specification for the data.

8. Add the new text trackp449 to the media elementp414 's list of text tracksp449.

9. Fire an event named addtrackp468 at the media elementp414 's textTracksp457 attribute's TextTrackListp456 object, using
TrackEventp467, with the trackp467 attribute initialized to the text trackp449 's TextTrackp457 object.

When a trackp411 element is created, it must be associated with a new text trackp449 (with its value set as defined below) and its
corresponding new TextTrackp457 object.

The text track kindp449 is determined from the state of the element's kindp412 attribute according to the following table; for a state
given in a cell of the first column, the kindp449 is the string given in the second column:

State String

Subtitlesp412 subtitlesp449

Captionsp412 captionsp449

Descriptionsp412 descriptionsp449

Chapters metadatap412 chaptersp449

Metadatap412 metadatap449

For instance, if there are no other active subtitles, and this is a forced subtitle track (a subtitle track giving subtitles in
the audio track's primary language, but only for audio that is actually in another language), then those subtitles might be
activated here.

Note

4.8.11.11.3 Sourcing out-of-band text tracks §p45

3

453

https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://dom.spec.whatwg.org/#concept-event-fire

The text track labelp449 is the element's track labelp413.

The text track languagep450 is the element's track languagep413, if any, or the empty string otherwise.

As the kindp412, labelp413, and srclangp413 attributes are set, changed, or removed, the text trackp449 must update accordingly, as per
the definitions above.

The text track readiness statep450 is initially not loadedp450, and the text track modep450 is initially disabledp450.

The text track list of cuesp450 is initially empty. It is dynamically modified when the referenced file is parsed. Associated with the list are
the rules for updating the text track renderingp450 appropriate for the format in question; for WebVTT, this is the rules for updating the
display of WebVTT text tracks. [WEBVTT]p1484

When a trackp411 element's parent element changes and the new parent is a media elementp414, then the user agent must add the
trackp411 element's corresponding text trackp449 to the media elementp414 's list of text tracksp449, and then queue a media element
taskp415 given the media elementp414 to fire an event named addtrackp468 at the media elementp414 's textTracksp457 attribute's
TextTrackListp456 object, using TrackEventp467, with the trackp467 attribute initialized to the text trackp449 's TextTrackp457 object.

When a trackp411 element's parent element changes and the old parent was a media elementp414, then the user agent must remove
the trackp411 element's corresponding text trackp449 from the media elementp414 's list of text tracksp449, and then queue a media
element taskp415 given the media elementp414 to fire an event named removetrackp468 at the media elementp414 's textTracksp457

attribute's TextTrackListp456 object, using TrackEventp467, with the trackp467 attribute initialized to the text trackp449 's TextTrackp457

object.

When a text trackp449 corresponding to a trackp411 element is added to a media elementp414 's list of text tracksp449, the user agent
must queue a media element taskp415 given the media elementp414 to run the following steps for the media elementp414:

1. If the element's blocked-on-parserp451 flag is true, then return.

2. If the element's did-perform-automatic-track-selectionp451 flag is true, then return.

3. Honor user preferences for automatic text track selectionp454 for this element.

When the user agent is required to honor user preferences for automatic text track selection for a media elementp414, the user
agent must run the following steps:

1. Perform automatic text track selectionp454 for subtitlesp449 and captionsp449.

2. Perform automatic text track selectionp454 for descriptionsp449.

3. If there are any text tracksp449 in the media elementp414 's list of text tracksp449 whose text track kindp449 is chaptersp449 or
metadatap449 that correspond to trackp411 elements with a defaultp413 attribute set whose text track modep450 is set to
disabledp450, then set the text track modep450 of all such tracks to hiddenp450.

4. Set the element's did-perform-automatic-track-selectionp451 flag to true.

When the steps above say to perform automatic text track selection for one or more text track kindsp449, it means to run the
following steps:

1. Let candidates be a list consisting of the text tracksp449 in the media elementp414 's list of text tracksp449 whose text track
kindp449 is one of the kinds that were passed to the algorithm, if any, in the order given in the list of text tracksp449.

2. If candidates is empty, then return.

3. If any of the text tracksp449 in candidates have a text track modep450 set to showingp450, return.

4. If the user has expressed an interest in having a track from candidates enabled based on its text track kindp449, text track
languagep450, and text track labelp449, then set its text track modep450 to showingp450.

Changes to the track URLp412 are handled in the algorithm below.
Note

For example, the user could have set a browser preference to the effect of "I want French captions whenever possible",
Note

454

https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

Otherwise, if there are any text tracksp449 in candidates that correspond to trackp411 elements with a defaultp413 attribute
set whose text track modep450 is set to disabledp450, then set the text track modep450 of the first such track to showingp450.

When a text trackp449 corresponding to a trackp411 element experiences any of the following circumstances, the user agent must start
the track processing modelp455 for that text trackp449 and its trackp411 element:

• The trackp411 element is created.

• The text trackp449 has its text track modep450 changed.

• The trackp411 element's parent element changes and the new parent is a media elementp414.

When a user agent is to start the track processing model for a text trackp449 and its trackp411 element, it must run the following
algorithm. This algorithm interacts closely with the event loopp1123 mechanism; in particular, it has a synchronous sectionp1131 (which is
triggered as part of the event loopp1123 algorithm). The steps in that section are marked with ⌛.

1. If another occurrence of this algorithm is already running for this text trackp449 and its trackp411 element, return, letting that
other algorithm take care of this element.

2. If the text trackp449 's text track modep450 is not set to one of hiddenp450 or showingp450, then return.

3. If the text trackp449 's trackp411 element does not have a media elementp414 as a parent, return.

4. Run the remainder of these steps in parallelp43, allowing whatever caused these steps to run to continue.

5. Top: Await a stable statep1131. The synchronous sectionp1131 consists of the following steps. (The steps in the synchronous
sectionp1131 are marked with ⌛.)

6. ⌛ Set the text track readiness statep450 to loadingp450.

7. ⌛ Let URL be the track URLp412 of the trackp411 element.

8. ⌛ If the trackp411 element's parent is a media elementp414 then let corsAttributeState be the state of the parent media
elementp414 's crossoriginp417 content attribute. Otherwise, let corsAttributeState be No CORSp99.

9. End the synchronous sectionp1131, continuing the remaining steps in parallelp43.

10. If URL is not the empty string, then:

1. Let request be the result of creating a potential-CORS requestp98 given URL, "track", and corsAttributeState, and
with the same-origin fallback flag set.

2. Set request's client to the trackp411 element's node document's relevant settings objectp1083.

3. Set request's initiator type to "track".

4. Fetch request.

The tasksp1124 queuedp1125 by the fetching algorithm on the networking task sourcep1134 to process the data as it is being
fetched must determine the type of the resource. If the type of the resource is not a supported text track format, the load will
fail, as described below. Otherwise, the resource's data must be passed to the appropriate parser (e.g., the WebVTT parser)
as it is received, with the text track list of cuesp450 being used for that parser's output. [WEBVTT]p1484

This specification does not currently say whether or how to check the MIME types of text tracks, or whether or how to
perform file type sniffing using the actual file data. Implementers differ in their intentions on this matter and it is
therefore unclear what the right solution is. In the absence of any requirement here, the HTTP specifications' strict
requirement to follow the Content-Type header prevails ("Content-Type specifies the media type of the underlying data."
... "If and only if the media type is not given by a Content-Type field, the recipient MAY attempt to guess the media type

or "If there is a subtitle track with 'Commentary' in the title, enable it", or "If there are audio description tracks available,
enable one, ideally in Swiss German, but failing that in Standard Swiss German or Standard German".

The appropriate parser will incrementally update the text track list of cuesp450 during these networking task sourcep1134

tasksp1124, as each such task is run with whatever data has been received from the network).

Note

455

https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webvtt/#webvtt-parser

via inspection of its content and/or the name extension(s) of the URI used to identify the resource.").

If fetching fails for any reason (network error, the server returns an error code, CORS fails, etc.), or if URL is the empty string,
then queue an element taskp1125 on the DOM manipulation task sourcep1134 given the media elementp414 to first change the
text track readiness statep450 to failed to loadp450 and then fire an event named errorp469 at the trackp411 element.

If fetching does not fail, but the type of the resource is not a supported text track format, or the file was not successfully
processed (e.g., the format in question is an XML format and the file contained a well-formedness error that XML requires be
detected and reported to the application), then the taskp1124 that is queuedp1125 on the networking task sourcep1134 in which
the aforementioned problem is found must change the text track readiness statep450 to failed to loadp450 and fire an event
named errorp469 at the trackp411 element.

If fetching does not fail, and the file was successfully processed, then the final taskp1124 that is queuedp1125 by the networking
task sourcep1134, after it has finished parsing the data, must change the text track readiness statep450 to loadedp450, and fire
an event named loadp469 at the trackp411 element.

If, while fetching is ongoing, either:

◦ the track URLp412 changes so that it is no longer equal to URL, while the text track modep450 is set to hiddenp450 or
showingp450; or

◦ the text track modep450 changes to hiddenp450 or showingp450, while the track URLp412 is not equal to URL

...then the user agent must abort fetching, discarding any pending tasksp1124 generated by that algorithm (and in particular,
not adding any cues to the text track list of cuesp450 after the moment the URL changed), and then queue an element
taskp1125 on the DOM manipulation task sourcep1134 given the trackp411 element that first changes the text track readiness
statep450 to failed to loadp450 and then fires an event named errorp469 at the trackp411 element.

11. Wait until the text track readiness statep450 is no longer set to loadingp450.

12. Wait until the track URLp412 is no longer equal to URL, at the same time as the text track modep450 is set to hiddenp450 or
showingp450.

13. Jump to the step labeled top.

Whenever a trackp411 element has its srcp412 attribute set, changed, or removed, the user agent must immediatelyp43 empty the
element's text trackp449 's text track list of cuesp450. (This also causes the algorithm above to stop adding cues from the resource being
obtained using the previously given URL, if any.)

How a specific format's text track cues are to be interpreted for the purposes of processing by an HTML user agent is defined by that
format. In the absence of such a specification, this section provides some constraints within which implementations can attempt to
consistently expose such formats.

To support the text trackp449 model of HTML, each unit of timed data is converted to a text track cuep451. Where the mapping of the
format's features to the aspects of a text track cuep451 as defined in this specification are not defined, implementations must ensure
that the mapping is consistent with the definitions of the aspects of a text track cuep451 as defined above, as well as with the following
constraints:

The text track cue identifierp451

Should be set to the empty string if the format has no obvious analogue to a per-cue identifier.

The text track cue pause-on-exit flagp451

Should be set to false.

[Exposed=Window]
interface TextTrackList : EventTarget {

4.8.11.11.4 Guidelines for exposing cues in various formats as text track cuesp451 §p45

6

4.8.11.11.5 Text track API §p45

6

IDL

✔ MDN

456

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#interface-eventtarget

readonly attribute unsigned long length;
getter TextTrack (unsigned long index);
TextTrack? getTrackById(DOMString id);

attribute EventHandler onchange;
attribute EventHandler onaddtrack;
attribute EventHandler onremovetrack;

};

A TextTrackListp456 object represents a dynamically updating list of text tracksp449 in a given order.

The textTracks attribute of media elementsp414 must return a TextTrackListp456 object representing the TextTrackp457 objects of the
text tracksp449 in the media elementp414 's list of text tracksp449, in the same order as in the list of text tracksp449.

The length attribute of a TextTrackListp456 object must return the number of text tracksp449 in the list represented by the
TextTrackListp456 object.

The supported property indices of a TextTrackListp456 object at any instant are the numbers from zero to the number of text
tracksp449 in the list represented by the TextTrackListp456 object minus one, if any. If there are no text tracksp449 in the list, there are
no supported property indices.

To determine the value of an indexed property of a TextTrackListp456 object for a given index index, the user agent must return the
indexth text trackp449 in the list represented by the TextTrackListp456 object.

The getTrackById(id) method must return the first TextTrackp457 in the TextTrackListp456 object whose idp459 IDL attribute would
return a value equal to the value of the id argument. When no tracks match the given argument, the method must return null.

enum TextTrackMode { "disabled", "hidden", "showing" };
enum TextTrackKind { "subtitles", "captions", "descriptions", "chapters", "metadata" };

[Exposed=Window]
interface TextTrack : EventTarget {

readonly attribute TextTrackKind kind;
readonly attribute DOMString label;
readonly attribute DOMString language;

readonly attribute DOMString id;
readonly attribute DOMString inBandMetadataTrackDispatchType;

attribute TextTrackMode mode;

readonly attribute TextTrackCueList? cues;
readonly attribute TextTrackCueList? activeCues;

undefined addCue(TextTrackCue cue);
undefined removeCue(TextTrackCue cue);

attribute EventHandler oncuechange;
};

media.textTracksp457.length
Returns the number of text tracksp449 associated with the media elementp414 (e.g. from trackp411 elements). This is the number
of text tracksp449 in the media elementp414 's list of text tracksp449.

media.textTracks[p457 n]
Returns the TextTrackp457 object representing the nth text trackp449 in the media elementp414 's list of text tracksp449.

textTrack = media.textTracksp457.getTrackByIdp457(id)
Returns the TextTrackp457 object with the given identifier, or null if no track has that identifier.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

457

https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-an-indexed-property
https://dom.spec.whatwg.org/#interface-eventtarget

The addTextTrack(kind, label, language) method of media elementsp414, when invoked, must run the following steps:

1. Create a new TextTrackp457 object.

2. Create a new text trackp449 corresponding to the new object, and set its text track kindp449 to kind, its text track labelp449 to
label, its text track languagep450 to language, its text track readiness statep450 to the text track loadedp450 state, its text track
modep450 to the text track hiddenp450 mode, and its text track list of cuesp450 to an empty list.

Initially, the text track list of cuesp450 is not associated with any rules for updating the text track renderingp450. When a text
track cuep451 is added to it, the text track list of cuesp450 has its rules permanently set accordingly.

3. Add the new text trackp449 to the media elementp414 's list of text tracksp449.

4. Queue a media element taskp415 given the media elementp414 to fire an event named addtrackp468 at the media elementp414 's
textTracksp457 attribute's TextTrackListp456 object, using TrackEventp467, with the trackp467 attribute initialized to the new
text trackp449 's TextTrackp457 object.

5. Return the new TextTrackp457 object.

textTrack = media.addTextTrackp458(kind [, label [, language]])
Creates and returns a new TextTrackp457 object, which is also added to the media elementp414 's list of text tracksp449.

textTrack.kindp459

Returns the text track kindp449 string.

textTrack.labelp459

Returns the text track labelp449, if there is one, or the empty string otherwise (indicating that a custom label probably needs to
be generated from the other attributes of the object if the object is exposed to the user).

textTrack.languagep459

Returns the text track languagep450 string.

textTrack.idp459

Returns the ID of the given track.
For in-band tracks, this is the ID that can be used with a fragment if the format supports media fragment syntax, and that can
be used with the getTrackById()p457 method.
For TextTrackp457 objects corresponding to trackp411 elements, this is the ID of the trackp411 element.

textTrack.inBandMetadataTrackDispatchTypep459

Returns the text track in-band metadata track dispatch typep449 string.

textTrack.modep459 [= value]
Returns the text track modep450, represented by a string from the following list:
"disabledp459"

The text track disabledp450 mode.
"hiddenp459"

The text track hiddenp450 mode.
"showingp459"

The text track showingp450 mode.
Can be set, to change the mode.

textTrack.cuesp459

Returns the text track list of cuesp450, as a TextTrackCueListp460 object.

textTrack.activeCuesp459

Returns the text track cuesp451 from the text track list of cuesp450 that are currently active (i.e. that start before the current
playback positionp432 and end after it), as a TextTrackCueListp460 object.

textTrack.addCuep459(cue)
Adds the given cue to textTrack's text track list of cuesp450.

textTrack.removeCuep460(cue)
Removes the given cue from textTrack's text track list of cuesp450.

For web developers (non-normative)

458

https://url.spec.whatwg.org/#concept-url-fragment
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://dom.spec.whatwg.org/#concept-event-fire

The kind attribute must return the text track kindp449 of the text trackp449 that the TextTrackp457 object represents.

The label attribute must return the text track labelp449 of the text trackp449 that the TextTrackp457 object represents.

The language attribute must return the text track languagep450 of the text trackp449 that the TextTrackp457 object represents.

The id attribute returns the track's identifier, if it has one, or the empty string otherwise. For tracks that correspond to trackp411

elements, the track's identifier is the value of the element's idp154 attribute, if any. For in-band tracks, the track's identifier is specified
by the media resourcep415. If the media resourcep415 is in a format that supports media fragment syntax, the identifier returned for a
particular track must be the same identifier that would enable the track if used as the name of a track in the track dimension of such a
fragment.

The inBandMetadataTrackDispatchType attribute must return the text track in-band metadata track dispatch typep449 of the text
trackp449 that the TextTrackp457 object represents.

The mode attribute, on getting, must return the string corresponding to the text track modep450 of the text trackp449 that the
TextTrackp457 object represents, as defined by the following list:

"disabled"
The text track disabledp450 mode.

"hidden"
The text track hiddenp450 mode.

"showing"
The text track showingp450 mode.

On setting, if the new value isn't equal to what the attribute would currently return, the new value must be processed as follows:

↪ If the new value is "disabledp459"
Set the text track modep450 of the text trackp449 that the TextTrackp457 object represents to the text track disabledp450 mode.

↪ If the new value is "hiddenp459"
Set the text track modep450 of the text trackp449 that the TextTrackp457 object represents to the text track hiddenp450 mode.

↪ If the new value is "showingp459"
Set the text track modep450 of the text trackp449 that the TextTrackp457 object represents to the text track showingp450 mode.

If the text track modep450 of the text trackp449 that the TextTrackp457 object represents is not the text track disabledp450 mode, then the
cues attribute must return a livep47 TextTrackCueListp460 object that represents the subset of the text track list of cuesp450 of the text
trackp449 that the TextTrackp457 object represents whose end timesp451 occur at or after the earliest possible position when the script
startedp459, in text track cue orderp452. Otherwise, it must return null. For each TextTrackp457 object, when an object is returned, the
same TextTrackCueListp460 object must be returned each time.

The earliest possible position when the script started is whatever the earliest possible positionp432 was the last time the event
loopp1123 reached step 1.

If the text track modep450 of the text trackp449 that the TextTrackp457 object represents is not the text track disabledp450 mode, then the
activeCues attribute must return a livep47 TextTrackCueListp460 object that represents the subset of the text track list of cuesp450 of
the text trackp449 that the TextTrackp457 object represents whose active flag was set when the script startedp459, in text track cue
orderp452. Otherwise, it must return null. For each TextTrackp457 object, when an object is returned, the same TextTrackCueListp460

object must be returned each time.

A text track cuep451 's active flag was set when the script started if its text track cue active flagp452 was set the last time the event
loopp1123 reached step 1p1126.

The addCue(cue) method of TextTrackp457 objects, when invoked, must run the following steps:

1. If the text track list of cuesp450 does not yet have any associated rules for updating the text track renderingp450, then
associate the text track list of cuesp450 with the rules for updating the text track renderingp450 appropriate to cue.

2. If text track list of cuesp450 ' associated rules for updating the text track renderingp450 are not the same rules for updating the
text track renderingp450 as appropriate for cue, then throw an "InvalidStateError" DOMException.

459

https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

3. If the given cue is in a text track list of cuesp450, then remove cue from that text track list of cuesp450.

4. Add cue to the TextTrackp457 object's text trackp449 's text track list of cuesp450.

The removeCue(cue) method of TextTrackp457 objects, when invoked, must run the following steps:

1. If the given cue is not in the TextTrackp457 object's text trackp449 's text track list of cuesp450, then throw a "NotFoundError"
DOMException.

2. Remove cue from the TextTrackp457 object's text trackp449 's text track list of cuesp450.

[Exposed=Window]
interface TextTrackCueList {

readonly attribute unsigned long length;
getter TextTrackCue (unsigned long index);
TextTrackCue? getCueById(DOMString id);

};

In this example, an audiop410 element is used to play a specific sound-effect from a sound file containing many sound effects. A cue
is used to pause the audio, so that it ends exactly at the end of the clip, even if the browser is busy running some script. If the
page had relied on script to pause the audio, then the start of the next clip might be heard if the browser was not able to run the
script at the exact time specified.

var sfx = new Audio('sfx.wav');
var sounds = sfx.addTextTrack('metadata');

// add sounds we care about
function addFX(start, end, name) {

var cue = new VTTCue(start, end, '');
cue.id = name;
cue.pauseOnExit = true;
sounds.addCue(cue);

}
addFX(12.783, 13.612, 'dog bark');
addFX(13.612, 15.091, 'kitten mew');

function playSound(id) {
sfx.currentTime = sounds.getCueById(id).startTime;
sfx.play();

}

// play a bark as soon as we can
sfx.oncanplaythrough = function () {

playSound('dog bark');
}
// meow when the user tries to leave,
// and have the browser ask them to stay
window.onbeforeunload = function (e) {

playSound('kitten mew');
e.preventDefault();

}

Example

cuelist.lengthp461

Returns the number of cuesp451 in the list.

cuelist[index]
Returns the text track cuep451 with index index in the list. The cues are sorted in text track cue orderp452.

For web developers (non-normative)

IDL ✔ MDN

460

https://webidl.spec.whatwg.org/#notfounderror
https://webidl.spec.whatwg.org/#dfn-DOMException

A TextTrackCueListp460 object represents a dynamically updating list of text track cuesp451 in a given order.

The length attribute must return the number of cuesp451 in the list represented by the TextTrackCueListp460 object.

The supported property indices of a TextTrackCueListp460 object at any instant are the numbers from zero to the number of cuesp451

in the list represented by the TextTrackCueListp460 object minus one, if any. If there are no cuesp451 in the list, there are no supported
property indices.

To determine the value of an indexed property for a given index index, the user agent must return the indexth text track cuep451 in the
list represented by the TextTrackCueListp460 object.

The getCueById(id) method, when called with an argument other than the empty string, must return the first text track cuep451 in the
list represented by the TextTrackCueListp460 object whose text track cue identifierp451 is id, if any, or null otherwise. If the argument is
the empty string, then the method must return null.

[Exposed=Window]
interface TextTrackCue : EventTarget {

readonly attribute TextTrack? track;

attribute DOMString id;
attribute double startTime;
attribute unrestricted double endTime;
attribute boolean pauseOnExit;

attribute EventHandler onenter;
attribute EventHandler onexit;

};

The track attribute, on getting, must return the TextTrackp457 object of the text trackp449 in whose list of cuesp450 the text track cuep451

that the TextTrackCuep461 object represents finds itself, if any; or null otherwise.

The id attribute, on getting, must return the text track cue identifierp451 of the text track cuep451 that the TextTrackCuep461 object

cuelist.getCueByIdp461(id)
Returns the first text track cuep451 (in text track cue orderp452) with text track cue identifierp451 id.
Returns null if none of the cues have the given identifier or if the argument is the empty string.

cue.trackp461

Returns the TextTrackp457 object to which this text track cuep451 belongs, if any, or null otherwise.

cue.idp461 [= value]
Returns the text track cue identifierp451.
Can be set.

cue.startTimep462 [= value]
Returns the text track cue start timep451, in seconds.
Can be set.

cue.endTimep462 [= value]
Returns the text track cue end timep451, in seconds.
Returns positive Infinity for an unbounded text track cuep452.
Can be set.

cue.pauseOnExitp462 [= value]
Returns true if the text track cue pause-on-exit flagp451 is set, false otherwise.
Can be set.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

✔ MDN

✔ MDN✔ MDN

461

https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-an-indexed-property
https://dom.spec.whatwg.org/#interface-eventtarget

represents. On setting, the text track cue identifierp451 must be set to the new value.

The startTime attribute, on getting, must return the text track cue start timep451 of the text track cuep451 that the TextTrackCuep461

object represents, in seconds. On setting, the text track cue start timep451 must be set to the new value, interpreted in seconds; then, if
the TextTrackCuep461 object's text track cuep451 is in a text trackp449 's list of cuesp450, and that text trackp449 is in a media elementp414 's
list of text tracksp449, and the media elementp414 's show poster flagp432 is not set, then run the time marches onp441 steps for that media
elementp414.

The endTime attribute, on getting, must return the text track cue end timep451 of the text track cuep451 that the TextTrackCuep461

object represents, in seconds or positive Infinity. On setting, if the new value is negative Infinity or a Not-a-Number (NaN) value, then
throw a TypeError exception. Otherwise, the text track cue end timep451 must be set to the new value. Then, if the TextTrackCuep461

object's text track cuep451 is in a text trackp449 's list of cuesp450, and that text trackp449 is in a media elementp414 's list of text tracksp449,
and the media elementp414 's show poster flagp432 is not set, then run the time marches onp441 steps for that media elementp414.

The pauseOnExit attribute, on getting, must return true if the text track cue pause-on-exit flagp451 of the text track cuep451 that the
TextTrackCuep461 object represents is set; or false otherwise. On setting, the text track cue pause-on-exit flagp451 must be set if the
new value is true, and must be unset otherwise.

The following are the event handlersp1136 that (and their corresponding event handler event typesp1139) that must be supported, as
event handler IDL attributesp1137, by all objects implementing the TextTrackListp456 interface:

Event handlerp1136 Event handler event typep1139

onchange changep468

onaddtrack addtrackp468

onremovetrack removetrackp468

The following are the event handlersp1136 that (and their corresponding event handler event typesp1139) that must be supported, as
event handler IDL attributesp1137, by all objects implementing the TextTrackp457 interface:

Event handlerp1136 Event handler event typep1139

oncuechange cuechangep468

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the TextTrackCuep461 interface:

Event handlerp1136 Event handler event typep1139

onenter enterp469

onexit exitp469

This section is non-normative.

Text tracks can be used for storing data relating to the media data, for interactive or augmented views.

For example, a page showing a sports broadcast could include information about the current score. Suppose a robotics competition
was being streamed live. The image could be overlaid with the scores, as follows:

4.8.11.11.6 Event handlers for objects of the text track APIs §p46

2

4.8.11.11.7 Best practices for metadata text tracks §p46

2

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

462

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

In order to make the score display render correctly whenever the user seeks to an arbitrary point in the video, the metadata text track
cues need to be as long as is appropriate for the score. For example, in the frame above, there would be maybe one cue that lasts the
length of the match that gives the match number, one cue that lasts until the blue alliance's score changes, and one cue that lasts
until the red alliance's score changes. If the video is just a stream of the live event, the time in the bottom right would presumably be
automatically derived from the current video time, rather than based on a cue. However, if the video was just the highlights, then that
might be given in cues also.

The following shows what fragments of this could look like in a WebVTT file:

WEBVTT

...

05:10:00.000 --> 05:12:15.000
matchtype:qual
matchnumber:37

...

05:11:02.251 --> 05:11:17.198
red:78

05:11:03.672 --> 05:11:54.198
blue:66

05:11:17.198 --> 05:11:25.912
red:80

05:11:25.912 --> 05:11:26.522
red:83

05:11:26.522 --> 05:11:26.982
red:86

05:11:26.982 --> 05:11:27.499
red:89

463

...

The key here is to notice that the information is given in cues that span the length of time to which the relevant event applies. If,
instead, the scores were given as zero-length (or very brief, nearly zero-length) cues when the score changes, for example saying
"red+2" at 05:11:17.198, "red+3" at 05:11:25.912, etc, problems arise: primarily, seeking is much harder to implement, as the script
has to walk the entire list of cues to make sure that no notifications have been missed; but also, if the cues are short it's possible the
script will never see that they are active unless it listens to them specifically.

When using cues in this manner, authors are encouraged to use the cuechangep468 event to update the current annotations. (In
particular, using the timeupdatep468 event would be less appropriate as it would require doing work even when the cues haven't
changed, and, more importantly, would introduce a higher latency between when the metadata cues become active and when the
display is updated, since timeupdatep468 events are rate-limited.)

Other specifications or formats that need a URL to identify the return values of the AudioTrackp445 kindp447 or VideoTrackp446 kindp447

IDL attributes, or identify the kind of text trackp449, must use the about:html-kindp96 URL.

The controls attribute is a boolean attributep75. If present, it indicates that the author has not provided a scripted controller and would
like the user agent to provide its own set of controls.

If the attribute is present, or if scripting is disabledp1083 for the media elementp414, then the user agent should expose a user
interface to the user. This user interface should include features to begin playback, pause playback, seek to an arbitrary position in
the content (if the content supports arbitrary seeking), change the volume, change the display of closed captions or embedded sign-
language tracks, select different audio tracks or turn on audio descriptions, and show the media content in manners more suitable to
the user (e.g. fullscreen video or in an independent resizable window). Other controls may also be made available.

Even when the attribute is absent, however, user agents may provide controls to affect playback of the media resource (e.g. play,
pause, seeking, track selection, and volume controls), but such features should not interfere with the page's normal rendering. For
example, such features could be exposed in the media elementp414 's context menu, platform media keys, or a remote control. The user
agent may implement this simply by exposing a user interface to the userp464 as described above (as if the controlsp464 attribute was
present).

If the user agent exposes a user interface to the userp464 by displaying controls over the media elementp414, then the user agent should
suppress any user interaction events while the user agent is interacting with this interface. (For example, if the user clicks on a video's
playback control, mousedown events and so forth would not simultaneously be fired at elements on the page.)

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for seeking, for changing the rate of playback, for
fast-forwarding or rewinding, for listing, enabling, and disabling text tracks, and for muting or changing the volume of the audio), user
interface features exposed by the user agent must be implemented in terms of the DOM API described above, so that, e.g., all the
same events fire.

Features such as fast-forward or rewind must be implemented by only changing the playbackRate attribute (and not the
defaultPlaybackRate attribute).

Seeking must be implemented in terms of seekingp443 to the requested position in the media elementp414 's media timelinep430. For
media resources where seeking to an arbitrary position would be slow, user agents are encouraged to use the approximate-for-speed
flag when seeking in response to the user manipulating an approximate position interface such as a seek bar.

The controls IDL attribute must reflectp104 the content attribute of the same name.

4.8.11.12 Identifying a track kind through a URL §p46

4

4.8.11.13 User interface §p46

4

media.volumep465 [= value]
Returns the current playback volume, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and 1.0 the loudest.
Can be set, to change the volume.

For web developers (non-normative)

✔ MDN

464

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/uievents/#event-type-mousedown

A media elementp414 has a playback volume, which is a fraction in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume should
be 1.0, but user agents may remember the last set value across sessions, on a per-site basis or otherwise, so the volume may start at
other values.

The volume IDL attribute must return the playback volumep465 of any audio portions of the media elementp414. On setting, if the new
value is in the range 0.0 to 1.0 inclusive, the media elementp414 's playback volumep465 must be set to the new value. If the new value is
outside the range 0.0 to 1.0 inclusive, then, on setting, an "IndexSizeError" DOMException must be thrown instead.

A media elementp414 can also be muted. If anything is muting the element, then it is muted. (For example, when the direction of
playbackp440 is backwards, the element is muted.)

The muted IDL attribute must return the value to which it was last set. When a media elementp414 is created, if the element has a
mutedp465 content attribute specified, then the mutedp465 IDL attribute should be set to true; otherwise, the user agents may set the
value to the user's preferred value (e.g. remembering the last set value across sessions, on a per-site basis or otherwise). While the
mutedp465 IDL attribute is set to true, the media elementp414 must be mutedp465.

Whenever either of the values that would be returned by the volumep465 and mutedp465 IDL attributes change, the user agent must
queue a media element taskp415 given the media elementp414 to fire an event named volumechangep468 at the media elementp414. Then,
if the media elementp414 is not allowed to playp436, the user agent must run the internal pause stepsp439 for the media elementp414.

A user agent has an associated volume locked (a boolean). Its value is implementation-defined and determines whether the playback
volumep465 takes effect.

An element's effective media volume is determined as follows:

1. If the user has indicated that the user agent is to override the volume of the element, then return the volume desired by the
user.

2. If the user agent's volume lockedp465 is true, then return the system volume.

3. If the element's audio output is mutedp465, then return zero.

4. Let volume be the playback volumep465 of the audio portions of the media elementp414, in range 0.0 (silent) to 1.0 (loudest).

5. Return volume, interpreted relative to the range 0.0 to 1.0, with 0.0 being silent, and 1.0 being the loudest setting, values in
between increasing in loudness. The range need not be linear. The loudest setting may be lower than the system's loudest
possible setting; for example the user could have set a maximum volume.

The muted content attribute on media elementsp414 is a boolean attributep75 that controls the default state of the audio output of the
media resourcep415, potentially overriding user preferences.

The defaultMuted IDL attribute must reflectp104 the mutedp465 content attribute.

Throws an "IndexSizeError" DOMException if the new value is not in the range 0.0 .. 1.0.

media.mutedp465 [= value]
Returns true if audio is muted, overriding the volumep465 attribute, and false if the volumep465 attribute is being honored.
Can be set, to change whether the audio is muted or not.

This attribute has no dynamic effect (it only controls the default state of the element).
Note

This video (an advertisement) autoplays, but to avoid annoying users, it does so without sound, and allows the user to turn the
sound on. The user agent can pause the video if it's unmuted without a user interaction.

<video src="adverts.cgi?kind=video" controls autoplay loop muted></video>

Example

✔ MDN

465

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#implementation-defined

Objects implementing the TimeRangesp466 interface represent a list of ranges (periods) of time.

[Exposed=Window]
interface TimeRanges {

readonly attribute unsigned long length;
double start(unsigned long index);
double end(unsigned long index);

};

The length IDL attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range represented by the object, in seconds measured
from the start of the timeline that the object covers.

The end(index) method must return the position of the end of the indexth range represented by the object, in seconds measured from
the start of the timeline that the object covers.

These methods must throw "IndexSizeError" DOMExceptions if called with an index argument greater than or equal to the number of
ranges represented by the object.

When a TimeRangesp466 object is said to be a normalized TimeRanges object, the ranges it represents must obey the following
criteria:

• The start of a range must be greater than the end of all earlier ranges.

• The start of a range must be less than or equal to the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, and don't touch (adjacent ranges are folded into one bigger
range). A range can be empty (referencing just a single moment in time), e.g. to indicate that only one frame is currently buffered in
the case that the user agent has discarded the entire media resourcep415 except for the current frame, when a media elementp414 is
paused.

Ranges in a TimeRangesp466 object must be inclusive.

The timelines used by the objects returned by the bufferedp430, seekablep444 and playedp438 IDL attributes of media elementsp414 must
be that element's media timelinep430.

[Exposed=Window]

4.8.11.14 Time ranges §p46

6

media.lengthp466

Returns the number of ranges in the object.

time = media.startp466(index)
Returns the time for the start of the range with the given index.
Throws an "IndexSizeError" DOMException if the index is out of range.

time = media.endp466(index)
Returns the time for the end of the range with the given index.
Throws an "IndexSizeError" DOMException if the index is out of range.

For web developers (non-normative)

Thus, the end of a range would be equal to the start of a following adjacent (touching but not overlapping) range. Similarly, a
range covering a whole timeline anchored at zero would have a start equal to zero and an end equal to the duration of the
timeline.

Example

4.8.11.15 The TrackEventp467 interface §p46

6

IDL

IDL

✔ MDN

✔ MDN

466

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

interface TrackEvent : Event {
constructor(DOMString type, optional TrackEventInit eventInitDict = {});

readonly attribute (VideoTrack or AudioTrack or TextTrack)? track;
};

dictionary TrackEventInit : EventInit {
(VideoTrack or AudioTrack or TextTrack)? track = null;

};

The track attribute must return the value it was initialized to. It represents the context information for the event.

This section is non-normative.

The following events fire on media elementsp414 as part of the processing model described above:

Event name Interface Fired when... Preconditions

loadstart Event The user agent begins looking for media
datap415, as part of the resource selection
algorithmp420.

networkStatep418 equals NETWORK_LOADINGp418

progress Event The user agent is fetching media datap415. networkStatep418 equals NETWORK_LOADINGp418

suspend Event The user agent is intentionally not currently
fetching media datap415.

networkStatep418 equals NETWORK_IDLEp418

abort Event The user agent stops fetching the media
datap415 before it is completely downloaded,
but not due to an error.

errorp416 is an object with the code MEDIA_ERR_ABORTEDp416. networkStatep418

equals either NETWORK_EMPTYp418 or NETWORK_IDLEp418, depending on when the
download was aborted.

error Event An error occurs while fetching the media
datap415 or the type of the resource is not a
supported media format.

errorp416 is an object with the code MEDIA_ERR_NETWORKp416 or higher.
networkStatep418 equals either NETWORK_EMPTYp418 or NETWORK_IDLEp418, depending
on when the download was aborted.

emptied Event A media elementp414 whose networkStatep418

was previously not in the NETWORK_EMPTYp418

state has just switched to that state (either
because of a fatal error during load that's
about to be reported, or because the
load()p419 method was invoked while the
resource selection algorithmp420 was already
running).

networkStatep418 is NETWORK_EMPTYp418; all the IDL attributes are in their initial
states.

stalled Event The user agent is trying to fetch media
datap415, but data is unexpectedly not
forthcoming.

networkStatep418 is NETWORK_LOADINGp418.

loadedmetadata Event The user agent has just determined the
duration and dimensions of the media
resourcep415 and the text tracks are readyp451.

readyStatep435 is newly equal to HAVE_METADATAp433 or greater for the first time.

loadeddata Event The user agent can render the media datap415

at the current playback positionp432 for the
first time.

readyStatep435 newly increased to HAVE_CURRENT_DATAp433 or greater for the first
time.

canplay Event The user agent can resume playback of the
media datap415, but estimates that if playback
were to be started now, the media
resourcep415 could not be rendered at the
current playback rate up to its end without
having to stop for further buffering of
content.

readyStatep435 newly increased to HAVE_FUTURE_DATAp433 or greater.

canplaythrough Event The user agent estimates that if playback
were to be started now, the media
resourcep415 could be rendered at the current

readyStatep435 is newly equal to HAVE_ENOUGH_DATAp433.

event.trackp467

Returns the track object (TextTrackp457, AudioTrackp445, or VideoTrackp446) to which the event relates.

For web developers (non-normative)

4.8.11.16 Events summary §p46

7

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

467

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Event name Interface Fired when... Preconditions

playback rate all the way to its end without
having to stop for further buffering.

playing Event Playback is ready to start after having been
paused or delayed due to lack of media
datap415.

readyStatep435 is newly greater than or equal to HAVE_FUTURE_DATAp433 and
pausedp436 is false, or pausedp436 is newly false and readyStatep435 is greater than or
equal to HAVE_FUTURE_DATAp433. Even if this event fires, the element might still not
be potentially playingp436, e.g. if the element is paused for user interactionp437 or
paused for in-band contentp437.

waiting Event Playback has stopped because the next frame
is not available, but the user agent expects
that frame to become available in due course.

readyStatep435 is less than or equal to HAVE_CURRENT_DATAp433, and pausedp436 is
false. Either seekingp443 is true, or the current playback positionp432 is not contained
in any of the ranges in bufferedp430. It is possible for playback to stop for other
reasons without pausedp436 being false, but those reasons do not fire this event (and
when those situations resolve, a separate playingp468 event is not fired either): e.g.,
playback has endedp436, or playback stopped due to errorsp437, or the element has
paused for user interactionp437 or paused for in-band contentp437.

seeking Event The seekingp443 IDL attribute changed to
true, and the user agent has started seeking
to a new position.

seeked Event The seekingp443 IDL attribute changed to
false after the current playback positionp432

was changed.
ended Event Playback has stopped because the end of the

media resourcep415 was reached.
currentTimep432 equals the end of the media resourcep415; endedp437 is true.

durationchange Event The durationp432 attribute has just been
updated.

timeupdate Event The current playback positionp432 changed as
part of normal playback or in an especially
interesting way, for example discontinuously.

play Event The element is no longer paused. Fired after
the play()p438 method has returned, or when
the autoplayp435 attribute has caused
playback to begin.

pausedp436 is newly false.

pause Event The element has been paused. Fired after the
pause()p439 method has returned.

pausedp436 is newly true.

ratechange Event Either the defaultPlaybackRatep438 or the
playbackRatep438 attribute has just been
updated.

resize Event One or both of the videoWidthp409 and
videoHeightp409 attributes have just been
updated.

Media elementp414 is a videop406 element; readyStatep435 is not HAVE_NOTHINGp433

volumechange Event Either the volumep465 attribute or the
mutedp465 attribute has changed. Fired after
the relevant attribute's setter has returned.

The following event fires on sourcep343 elements:

Event name Interface Fired when...

error Event An error occurs while fetching the media datap415 or the type of the resource is not a supported media format.

The following events fire on AudioTrackListp445, VideoTrackListp445, and TextTrackListp456 objects:

Event name Interface Fired when...

change Event One or more tracks in the track list have been enabled or disabled.
addtrack TrackEventp467 A track has been added to the track list.
removetrack TrackEventp467 A track has been removed from the track list.

The following event fires on TextTrackp457 objects and trackp411 elements:

Event name Interface Fired when...

cuechange Event One or more cues in the track have become active or stopped being active.

The following events fire on trackp411 elements:

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

468

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Event name Interface Fired when...

error Event An error occurs while fetching the track data or the type of the resource is not supported text track format.
load Event A track data has been fetched and successfully processed.

The following events fire on TextTrackCuep461 objects:

Event name Interface Fired when...

enter Event The cue has become active.
exit Event The cue has stopped being active.

The main security and privacy implications of the videop406 and audiop410 elements come from the ability to embed media cross-origin.
There are two directions that threats can flow: from hostile content to a victim page, and from a hostile page to victim content.

If a victim page embeds hostile content, the threat is that the content might contain scripted code that attempts to interact with the
Documentp130 that embeds the content. To avoid this, user agents must ensure that there is no access from the content to the
embedding page. In the case of media content that uses DOM concepts, the embedded content must be treated as if it was in its own
unrelated top-level traversablep990.

If a hostile page embeds victim content, the threat is that the embedding page could obtain information from the content that it would
not otherwise have access to. The API does expose some information: the existence of the media, its type, its duration, its size, and the
performance characteristics of its host. Such information is already potentially problematic, but in practice the same information can
more or less be obtained using the imgp346 element, and so it has been deemed acceptable.

However, significantly more sensitive information could be obtained if the user agent further exposes metadata within the content,
such as subtitles. That information is therefore only exposed if the video resource uses CORS. The crossoriginp417 attribute allows
authors to enable CORS. [FETCH]p1478

This section is non-normative.

Playing audio and video resources on small devices such as set-top boxes or mobile phones is often constrained by limited hardware
resources in the device. For example, a device might only support three simultaneous videos. For this reason, it is a good practice to
release resources held by media elementsp414 when they are done playing, either by being very careful about removing all references
to the element and allowing it to be garbage collected, or, even better, by setting the element's srcp416 attribute to an empty string. In
cases where srcObjectp417 was set, instead set the srcObjectp417 to null.

Similarly, when the playback rate is not exactly 1.0, hardware, software, or format limitations can cause video frames to be dropped
and audio to be choppy or muted.

4.8.11.17 Security and privacy considerations §p46

9

For instance, if an SVG animation was embedded in a videop406 element, the user agent would not give it access to the DOM of the
outer page. From the perspective of scripts in the SVG resource, the SVG file would appear to be in a lone top-level traversable
with no parent.

Example

Without this restriction, an attacker could trick a user running within a corporate network into visiting a site that attempts to load a
video from a previously leaked location on the corporation's intranet. If such a video included confidential plans for a new product,
then being able to read the subtitles would present a serious confidentiality breach.

Example

4.8.11.18 Best practices for authors using media elements §p46

9

✔ MDN

✔ MDN

469

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

This section is non-normative.

How accurately various aspects of the media elementp414 API are implemented is considered a quality-of-implementation issue.

For example, when implementing the bufferedp430 attribute, how precise an implementation reports the ranges that have been
buffered depends on how carefully the user agent inspects the data. Since the API reports ranges as times, but the data is obtained in
byte streams, a user agent receiving a variable-bitrate stream might only be able to determine precise times by actually decoding all
of the data. User agents aren't required to do this, however; they can instead return estimates (e.g. based on the average bitrate seen
so far) which get revised as more information becomes available.

As a general rule, user agents are urged to be conservative rather than optimistic. For example, it would be bad to report that
everything had been buffered when it had not.

Another quality-of-implementation issue would be playing a video backwards when the codec is designed only for forward playback
(e.g. there aren't many key frames, and they are far apart, and the intervening frames only have deltas from the previous frame). User
agents could do a poor job, e.g. only showing key frames; however, better implementations would do more work and thus do a better
job, e.g. actually decoding parts of the video forwards, storing the complete frames, and then playing the frames backwards.

Similarly, while implementations are allowed to drop buffered data at any time (there is no requirement that a user agent keep all the
media data obtained for the lifetime of the media element), it is again a quality of implementation issue: user agents with sufficient
resources to keep all the data around are encouraged to do so, as this allows for a better user experience. For example, if the user is
watching a live stream, a user agent could allow the user only to view the live video; however, a better user agent would buffer
everything and allow the user to seek through the earlier material, pause it, play it forwards and backwards, etc.

When a media elementp414 that is paused is removed from a documentp46 and not reinserted before the next time the event loopp1123

reaches step 1p1126, implementations that are resource constrained are encouraged to take that opportunity to release all hardware
resources (like video planes, networking resources, and data buffers) used by the media elementp414. (User agents still have to keep
track of the playback position and so forth, though, in case playback is later restarted.)

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Transparentp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

namep471 — Name of image mapp473 to referencep141 from the usemapp473 attribute

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLMapElement : HTMLElement {

[HTMLConstructor] constructor();

4.8.11.19 Best practices for implementers of media elements §p47

0

IDL

4.8.12 The map element §p47

0

✔ MDN

✔ MDN

470

https://w3c.github.io/html-aria/#el-map
https://w3c.github.io/html-aam/#el-map

[CEReactions] attribute DOMString name;
[SameObject] readonly attribute HTMLCollection areas;

};

The mapp470 element, in conjunction with an imgp346 element and any areap471 element descendants, defines an image mapp473. The
element representsp141 its children.

The name attribute gives the map a name so that it can be referencedp141. The attribute must be present and must have a non-empty
value with no ASCII whitespace. The value of the namep471 attribute must not be equal to the value of the namep471 attribute of another
mapp470 element in the same tree. If the idp154 attribute is also specified, both attributes must have the same value.

The areas attribute must return an HTMLCollection rooted at the mapp470 element, whose filter matches only areap471 elements.

The IDL attribute name must reflectp104 the content attribute of the same name.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected, but only if there is a mapp470 element ancestor.

map.areasp471

Returns an HTMLCollection of the areap471 elements in the mapp470.

For web developers (non-normative)

Image maps can be defined in conjunction with other content on the page, to ease maintenance. This example is of a page with an
image map at the top of the page and a corresponding set of text links at the bottom.

<!DOCTYPE HTML>
<HTML LANG="EN">
<TITLE>Babies™: Toys</TITLE>
<HEADER>
<H1>Toys</H1>
<IMG SRC="/images/menu.gif"

ALT="Babies™ navigation menu. Select a department to go to its page."
USEMAP="#NAV">

</HEADER>
...

<FOOTER>
<MAP NAME="NAV">
<P>
Clothes
<AREA ALT="Clothes" COORDS="0,0,100,50" HREF="/clothes/"> |
Toys
<AREA ALT="Toys" COORDS="100,0,200,50" HREF="/toys/"> |
Food
<AREA ALT="Food" COORDS="200,0,300,50" HREF="/food/"> |
Books
<AREA ALT="Books" COORDS="300,0,400,50" HREF="/books/">

</P>
</MAP>

</FOOTER>

Example

4.8.13 The area element §p47

1

✔ MDN

✔ MDN

471

https://dom.spec.whatwg.org/#interface-htmlcollection
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

altp472 — Replacement text for use when images are not available
coordsp473 — Coordinates for the shape to be created in an image mapp473

shapep472 — The kind of shape to be created in an image mapp473

hrefp303 — Address of the hyperlinkp302

targetp303 — Navigablep989 for hyperlinkp302 navigationp1014

downloadp303 — Whether to download the resource instead of navigating to it, and its filename if so
pingp303 — URLs to ping
relp303 — Relationship between the location in the document containing the hyperlinkp302 and the destination resource
referrerpolicyp303 — Referrer policy for fetches initiated by the element

Accessibility considerationsp146:
If the element has an hrefp303 attribute: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLAreaElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString alt;
[CEReactions] attribute DOMString coords;
[CEReactions] attribute DOMString shape;
[CEReactions] attribute DOMString target;
[CEReactions] attribute DOMString download;
[CEReactions] attribute USVString ping;
[CEReactions] attribute DOMString rel;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;
[CEReactions] attribute DOMString referrerPolicy;

// also has obsolete members
};
HTMLAreaElement includes HTMLHyperlinkElementUtils;

The areap471 element representsp141 either a hyperlink with some text and a corresponding area on an image mapp473, or a dead area
on an image map.

An areap471 element with a parent node must have a mapp470 element ancestor.

If the areap471 element has an hrefp303 attribute, then the areap471 element represents a hyperlinkp302. In this case, the alt attribute
must be present. It specifies the text of the hyperlink. Its value must be text that, when presented with the texts specified for the other
hyperlinks of the image mapp473, and with the alternative text of the image, but without the image itself, provides the user with the
same kind of choice as the hyperlink would when used without its text but with its shape applied to the image. The altp472 attribute
may be left blank if there is another areap471 element in the same image mapp473 that points to the same resource and has a non-blank
altp472 attribute.

If the areap471 element has no hrefp303 attribute, then the area represented by the element cannot be selected, and the altp472

attribute must be omitted.

In both cases, the shapep472 and coordsp473 attributes specify the area.

The shape attribute is an enumerated attributep76 with the following keywords and states:

Keyword Conforming State Brief description

circle Circle statep473 Designates a circle, using exactly three integers in the coordsp473 attribute.

IDL

472

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-area
https://w3c.github.io/html-aam/#el-area
https://w3c.github.io/html-aria/#el-area-no-href
https://w3c.github.io/html-aam/#el-area-no-href
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist

Keyword Conforming State Brief description

circ No
default Default statep473 This area is the whole image. (The coordsp473 attribute is not used.)
poly Polygon statep473 Designates a polygon, using at-least six integers in the coordsp473 attribute.
polygon No
rect Rectangle statep473 Designates a rectangle, using exactly four integers in the coordsp473 attribute.
rectangle No

The attribute's missing value defaultp76 and invalid value defaultp76 are both the rectanglep473 state.

The coords attribute must, if specified, contain a valid list of floating-point numbersp80. This attribute gives the coordinates for the
shape described by the shapep472 attribute. The processing for this attribute is described as part of the image mapp473 processing
model.

In the circle state, areap471 elements must have a coordsp473 attribute present, with three integers, the last of which must be non-
negative. The first integer must be the distance in CSS pixels from the left edge of the image to the center of the circle, the second
integer must be the distance in CSS pixels from the top edge of the image to the center of the circle, and the third integer must be the
radius of the circle, again in CSS pixels.

In the default state, areap471 elements must not have a coordsp473 attribute. (The area is the whole image.)

In the polygon state, areap471 elements must have a coordsp473 attribute with at least six integers, and the number of integers must
be even. Each pair of integers must represent a coordinate given as the distances from the left and the top of the image in CSS pixels
respectively, and all the coordinates together must represent the points of the polygon, in order.

In the rectangle state, areap471 elements must have a coordsp473 attribute with exactly four integers, the first of which must be less
than the third, and the second of which must be less than the fourth. The four points must represent, respectively, the distance from
the left edge of the image to the left side of the rectangle, the distance from the top edge to the top side, the distance from the left
edge to the right side, and the distance from the top edge to the bottom side, all in CSS pixels.

When user agents allow users to follow hyperlinksp309 or download hyperlinksp310 created using the areap471 element, the hrefp303,
targetp303, downloadp303, and pingp303 attributes decide how the link is followed. The relp303 attribute may be used to indicate to the
user the likely nature of the target resource before the user follows the link.

The targetp303, downloadp303, pingp303, relp303, and referrerpolicyp303 attributes must be omitted if the hrefp303 attribute is not
present.

If the itempropp795 attribute is specified on an areap471 element, then the hrefp303 attribute must also be specified.

The IDL attributes alt, coords, shape, target, download, ping, and rel, each must reflectp104 the respective content attributes of the
same name.

The IDL attribute relList must reflectp104 the relp303 content attribute.

The IDL attribute referrerPolicy must reflectp104 the referrerpolicyp303 content attribute, limited to only known valuesp105.

An image map allows geometric areas on an image to be associated with hyperlinksp302.

An image, in the form of an imgp346 element, may be associated with an image map (in the form of a mapp470 element) by specifying a
usemap attribute on the imgp346 element. The usemapp473 attribute, if specified, must be a valid hash-name referencep95 to a mapp470

element.

4.8.14.1 Authoring §p47

3

Consider an image that looks as follows:
Example

4.8.14 Image maps §p47

3

✔ MDN

✔ MDN

✔ MDN

473

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

If an imgp346 element has a usemapp473 attribute specified, user agents must process it as follows:

1. Parse the attribute's value using the rules for parsing a hash-name referencep95 to a mapp470 element, with the element as the
context node. This will return either an element (the map) or null.

2. If that returned null, then return. The image is not associated with an image map after all.

3. Otherwise, the user agent must collect all the areap471 elements that are descendants of the map. Let those be the areas.

Having obtained the list of areap471 elements that form the image map (the areas), interactive user agents must process the list in one
of two ways.

If the user agent intends to show the text that the imgp346 element represents, then it must use the following steps.

1. Remove all the areap471 elements in areas that have no hrefp303 attribute.

2. Remove all the areap471 elements in areas that have no altp472 attribute, or whose altp472 attribute's value is the empty
string, if there is another areap471 element in areas with the same value in the hrefp303 attribute and with a non-empty
altp472 attribute.

3. Each remaining areap471 element in areas represents a hyperlinkp302. Those hyperlinks should all be made available to the
user in a manner associated with the text of the imgp346.

In this context, user agents may represent areap471 and imgp346 elements with no specified alt attributes, or whose alt
attributes are the empty string or some other non-visible text, in an implementation-defined fashion intended to indicate the
lack of suitable author-provided text.

If the user agent intends to show the image and allow interaction with the image to select hyperlinks, then the image must be
associated with a set of layered shapes, taken from the areap471 elements in areas, in reverse tree order (so the last specified areap471

element in the map is the bottom-most shape, and the first element in the map, in tree order, is the top-most shape).

If we wanted just the colored areas to be clickable, we could do it as follows:

<p>
Please select a shape:
<img src="shapes.png" usemap="#shapes"

alt="Four shapes are available: a red hollow box, a green circle, a blue triangle, and a
yellow four-pointed star.">
<map name="shapes">
<area shape=rect coords="50,50,100,100"> <!-- the hole in the red box -->
<area shape=rect coords="25,25,125,125" href="red.html" alt="Red box.">
<area shape=circle coords="200,75,50" href="green.html" alt="Green circle.">
<area shape=poly coords="325,25,262,125,388,125" href="blue.html" alt="Blue triangle.">
<area shape=poly coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60"

href="yellow.html" alt="Yellow star.">
</map>

</p>

4.8.14.2 Processing model §p47

4

474

https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

Each areap471 element in areas must be processed as follows to obtain a shape to layer onto the image:

1. Find the state that the element's shapep472 attribute represents.

2. Use the rules for parsing a list of floating-point numbersp80 to parse the element's coordsp473 attribute, if it is present, and let
the result be the coords list. If the attribute is absent, let the coords list be the empty list.

3. If the number of items in the coords list is less than the minimum number given for the areap471 element's current state, as
per the following table, then the shape is empty; return.

State Minimum number of items

Circle statep473 3
Default statep473 0
Polygon statep473 6
Rectangle statep473 4

4. Check for excess items in the coords list as per the entry in the following list corresponding to the shapep472 attribute's state:

↪ Circle statep473

Drop any items in the list beyond the third.

↪ Default statep473

Drop all items in the list.

↪ Polygon statep473

Drop the last item if there's an odd number of items.

↪ Rectangle statep473

Drop any items in the list beyond the fourth.

5. If the shapep472 attribute represents the rectangle statep473, and the first number in the list is numerically greater than the
third number in the list, then swap those two numbers around.

6. If the shapep472 attribute represents the rectangle statep473, and the second number in the list is numerically greater than the
fourth number in the list, then swap those two numbers around.

7. If the shapep472 attribute represents the circle statep473, and the third number in the list is less than or equal to zero, then the
shape is empty; return.

8. Now, the shape represented by the element is the one described for the entry in the list below corresponding to the state of
the shapep472 attribute:

↪ Circle statep473

Let x be the first number in coords, y be the second number, and r be the third number.

The shape is a circle whose center is x CSS pixels from the left edge of the image and y CSS pixels from the top edge
of the image, and whose radius is r CSS pixels.

↪ Default statep473

The shape is a rectangle that exactly covers the entire image.

↪ Polygon statep473

Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords (the first entry in coords being the one with
index 0).

Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the top left of the image, for all integer values
of i from 0 to (N/2)-1, where N is the number of items in coords.

The shape is a polygon whose vertices are given by the coordinates, and whose interior is established using the even-
odd rule. [GRAPHICS]p1478

↪ Rectangle statep473

Let x1 be the first number in coords, y1 be the second number, x2 be the third number, and y2 be the fourth number.

The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1) and whose bottom right corner is
given by the coordinate (x2, y2), those coordinates being interpreted as CSS pixels from the top left corner of the

475

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

image.

For historical reasons, the coordinates must be interpreted relative to the displayed image after any stretching caused by the
CSS 'width' and 'height' properties (or, for non-CSS browsers, the image element's width and height attributes — CSS
browsers map those attributes to the aforementioned CSS properties).

Pointing device interaction with an image associated with a set of layered shapes per the above algorithm must result in the relevant
user interaction events being first fired to the top-most shape covering the point that the pointing device indicated, if any, or to the
image element itself, if there is no shape covering that point. User agents may also allow individual areap471 elements representing
hyperlinksp302 to be selected and activated (e.g. using a keyboard).

Image maps are livep47; if the DOM is mutated, then the user agent must act as if it had rerun the algorithms for image maps.

The MathML math element falls into the embedded contentp150, phrasing contentp150, flow contentp149, and palpable contentp150

categories for the purposes of the content models in this specification.

When the MathML annotation-xml element contains elements from the HTML namespace, such elements must all be flow contentp149.

When the MathML token elements (mi, mo, mn, ms, and mtext) are descendants of HTML elements, they may contain phrasing
contentp150 elements from the HTML namespace.

User agents must handle text other than inter-element whitespacep147 found in MathML elements whose content models do not allow
straight text by pretending for the purposes of MathML content models, layout, and rendering that the text is actually wrapped in a
MathML mtext element. (Such text is not, however, conforming.)

User agents must act as if any MathML element whose contents does not match the element's content model was replaced, for the
purposes of MathML layout and rendering, by a MathML merror element containing some appropriate error message.

The semantics of MathML elements are defined by MathML and other applicable specificationsp73. [MATHML]p1479

Browser zoom features and transforms applied using CSS or SVG do not affect the coordinates.
Note

Because a mapp470 element (and its areap471 elements) can be associated with multiple imgp346 elements, it is possible for an
areap471 element to correspond to multiple focusable areasp835 of the document.

Note

Here is an example of the use of MathML in an HTML document:

<!DOCTYPE html>
<html lang="en">
<head>
<title>The quadratic formula</title>

</head>
<body>
<h1>The quadratic formula</h1>
<p>
<math>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo form="prefix">−</mo> <mi>b</mi>
<mo>±</mo>
<msqrt>
<msup> <mi>b</mi> <mn>2</mn> </msup>

Example

4.8.15 MathML §p47

6

✔ MDN

476

https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://w3c.github.io/mathml-core/#dfn-annotation-xml
https://infra.spec.whatwg.org/#html-namespace
https://w3c.github.io/mathml-core/#the-mi-element
https://w3c.github.io/mathml-core/#operator-fence-separator-or-accent-mo
https://w3c.github.io/mathml-core/#number-mn
https://w3c.github.io/mathml-core/#string-literal-ms
https://w3c.github.io/mathml-core/#text-mtext
https://infra.spec.whatwg.org/#html-namespace
https://w3c.github.io/mathml-core/#text-mtext
https://w3c.github.io/mathml-core/#error-message-merror

The SVG svg element falls into the embedded contentp150, phrasing contentp150, flow contentp149, and palpable contentp150 categories
for the purposes of the content models in this specification.

When the SVG foreignObject element contains elements from the HTML namespace, such elements must all be flow contentp149.

The content model for the SVG title element inside HTML documents is phrasing contentp150. (This further constrains the
requirements given in SVG 2.)

The semantics of SVG elements are defined by SVG 2 and other applicable specificationsp73. [SVG]p1482

The getSVGDocument() method steps are:

1. Let document be this's content documentp992.

2. If document is non-null and was created by the page load processing model for XML filesp1060 section because the computed
type of the resource in the navigatep1014 algorithm was image/svg+xmlp1473, then return document.

3. Return null.

Author requirements: The width and height attributes on imgp346, iframep390, embedp399, objectp402, videop406, sourcep343 when the
parent is a picturep342 element and, when their typep523 attribute is in the Image Buttonp547 state, inputp520 elements may be
specified to give the dimensions of the visual content of the element (the width and height respectively, relative to the nominal
direction of the output medium), in CSS pixels. The attributes, if specified, must have values that are valid non-negative integersp77.

The specified dimensions given may differ from the dimensions specified in the resource itself, since the resource may have a
resolution that differs from the CSS pixel resolution. (On screens, CSS pixels have a resolution of 96ppi, but in general the CSS pixel
resolution depends on the reading distance.) If both attributes are specified, then one of the following statements must be true:

• specified width - 0.5 ≤ specified height * target ratio ≤ specified width + 0.5

• specified height - 0.5 ≤ specified width / target ratio ≤ specified height + 0.5

• specified height = specified width = 0

<mo>−</mo>
<mn>4</mn> <mo></mo> <mi>a</mi> <mo></mo> <mi>c</mi>

</msqrt>
</mrow>
<mrow>
<mn>2</mn> <mo></mo> <mi>a</mi>

</mrow>
</mfrac>

</math>
</p>

</body>
</html>

doc = iframe.getSVGDocumentp477()
doc = embed.getSVGDocumentp477()
doc = object.getSVGDocumentp477()

Returns the Documentp130 object, in the case of iframep390, embedp399, or objectp402 elements being used to embed SVG.

For web developers (non-normative)

4.8.16 SVG §p47

7

4.8.17 Dimension attributes §p47

7

✔ MDN

477

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://infra.spec.whatwg.org/#html-namespace
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#html-document
https://webidl.spec.whatwg.org/#this
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

The target ratio is the ratio of the natural width to the natural height in the resource. The specified width and specified height are the
values of the widthp477 and heightp477 attributes respectively.

The two attributes must be omitted if the resource in question does not have both a natural width and a natural height.

If the two attributes are both 0, it indicates that the element is not intended for the user (e.g. it might be a part of a service to count
page views).

User agent requirements: User agents are expected to use these attributes as hints for the renderingp1409.

The width and height IDL attributes on the iframep390, embedp399, objectp402, sourcep343, and videop406 elements must reflectp104 the
respective content attributes of the same name.

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
In this order: optionally a captionp486 element, followed by zero or more colgroupp487 elements, followed optionally by a
theadp490 element, followed by either zero or more tbodyp489 elements or one or more trp492 elements, followed optionally by a
tfootp491 element, optionally intermixed with one or more script-supporting elementsp151.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTableElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute HTMLTableCaptionElement? caption;
HTMLTableCaptionElement createCaption();
[CEReactions] undefined deleteCaption();

The dimension attributes are not intended to be used to stretch the image.
Note

For iframep390, embedp399 and objectp402 the IDL attributes are DOMString; for videop406 and sourcep343 the IDL attributes are
unsigned long.

Note

The corresponding IDL attributes for imgp351 and inputp527 elements are defined in those respective elements' sections, as they are
slightly more specific to those elements' other behaviors.

Note

4.9 Tabular data §p47

8

IDL

4.9.1 The table element §p47

8

✔ MDN

✔ MDN

✔ MDN

478

https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-unsigned-long
https://w3c.github.io/html-aria/#el-table
https://w3c.github.io/html-aam/#el-table

[CEReactions] attribute HTMLTableSectionElement? tHead;
HTMLTableSectionElement createTHead();
[CEReactions] undefined deleteTHead();

[CEReactions] attribute HTMLTableSectionElement? tFoot;
HTMLTableSectionElement createTFoot();
[CEReactions] undefined deleteTFoot();

[SameObject] readonly attribute HTMLCollection tBodies;
HTMLTableSectionElement createTBody();

[SameObject] readonly attribute HTMLCollection rows;
HTMLTableRowElement insertRow(optional long index = -1);
[CEReactions] undefined deleteRow(long index);

// also has obsolete members
};

The tablep478 element representsp141 data with more than one dimension, in the form of a tablep497.

The tablep478 element takes part in the table modelp497. Tables have rows, columns, and cells given by their descendants. The rows
and columns form a grid; a table's cells must completely cover that grid without overlap.

Authors are encouraged to provide information describing how to interpret complex tables. Guidance on how to provide such
informationp482 is given below.

Tables must not be used as layout aids. Historically, some web authors have misused tables in HTML as a way to control their page
layout. This usage is non-conforming, because tools attempting to extract tabular data from such documents would obtain very
confusing results. In particular, users of accessibility tools like screen readers are likely to find it very difficult to navigate pages with
tables used for layout.

Tables can be complicated to understand and navigate. To help users with this, user agents should clearly delineate cells in a table
from each other, unless the user agent has classified the table as a (non-conforming) layout table.

User agents, especially those that do table analysis on arbitrary content, are encouraged to find heuristics to determine which tables
actually contain data and which are merely being used for layout. This specification does not define a precise heuristic, but the
following are suggested as possible indicators:

Feature Indication

The use of the rolep68 attribute with the value presentation Probably a layout table
The use of the non-conforming borderp1431 attribute with the non-conforming
value 0

Probably a layout table

The use of the non-conforming cellspacingp1431 and cellpaddingp1431

attributes with the value 0
Probably a layout table

The use of captionp486, theadp490, or thp495 elements Probably a non-layout table
The use of the headersp497 and scopep495 attributes Probably a non-layout table

Precise rules for determining whether this conformance requirement is met are described in the description of the table modelp497.
Note

There are a variety of alternatives to using HTML tables for layout, such as CSS grid layout, CSS flexible box layout ("flexbox"), CSS
multi-column layout, CSS positioning, and the CSS table model. [CSS]p1476

Note

Authors and implementers are encouraged to consider using some of the table design techniquesp486 described below to make
tables easier to navigate for users.

Note

479

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://w3c.github.io/aria/#presentation

Feature Indication

The use of the non-conforming borderp1431 attribute with a value other than 0 Probably a non-layout table
Explicit visible borders set using CSS Probably a non-layout table

The use of the summaryp1429 attribute Not a good indicator (both layout and non-layout tables have historically been
given this attribute)

If a tablep478 element has a (non-conforming) summaryp1429 attribute, and the user agent has not classified the table as a layout table,
the user agent may report the contents of that attribute to the user.

It is quite possible that the above suggestions are wrong. Implementers are urged to provide feedback elaborating on their
experiences with trying to create a layout table detection heuristic.

Note

table.captionp481 [= value]
Returns the table's captionp486 element.
Can be set, to replace the captionp486 element.

caption = table.createCaptionp481()
Ensures the table has a captionp486 element, and returns it.

table.deleteCaptionp481()
Ensures the table does not have a captionp486 element.

table.tHeadp481 [= value]
Returns the table's theadp490 element.
Can be set, to replace the theadp490 element. If the new value is not a theadp490 element, throws a "HierarchyRequestError"
DOMException.

thead = table.createTHeadp481()
Ensures the table has a theadp490 element, and returns it.

table.deleteTHeadp481()
Ensures the table does not have a theadp490 element.

table.tFootp481 [= value]
Returns the table's tfootp491 element.
Can be set, to replace the tfootp491 element. If the new value is not a tfootp491 element, throws a "HierarchyRequestError"
DOMException.

tfoot = table.createTFootp481()
Ensures the table has a tfootp491 element, and returns it.

table.deleteTFootp481()
Ensures the table does not have a tfootp491 element.

table.tBodiesp481

Returns an HTMLCollection of the tbodyp489 elements of the table.

tbody = table.createTBodyp481()
Creates a tbodyp489 element, inserts it into the table, and returns it.

table.rowsp481

Returns an HTMLCollection of the trp492 elements of the table.

tr = table.insertRowp481([index])
Creates a trp492 element, along with a tbodyp489 if required, inserts them into the table at the position given by the argument,
and returns the trp492.
The position is relative to the rows in the table. The index −1, which is the default if the argument is omitted, is equivalent to
inserting at the end of the table.
If the given position is less than −1 or greater than the number of rows, throws an "IndexSizeError" DOMException.

For web developers (non-normative)

480

https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

In all of the following attribute and method definitions, when an element is to be table-created, that means to create an element
given the tablep478 element's node document, the given local name, and the HTML namespace.

The caption IDL attribute must return, on getting, the first captionp486 element child of the tablep478 element, if any, or null
otherwise. On setting, the first captionp486 element child of the tablep478 element, if any, must be removed, and the new value, if not
null, must be inserted as the first node of the tablep478 element.

The createCaption() method must return the first captionp486 element child of the tablep478 element, if any; otherwise a new
captionp486 element must be table-createdp481, inserted as the first node of the tablep478 element, and then returned.

The deleteCaption() method must remove the first captionp486 element child of the tablep478 element, if any.

The tHead IDL attribute must return, on getting, the first theadp490 element child of the tablep478 element, if any, or null otherwise. On
setting, if the new value is null or a theadp490 element, the first theadp490 element child of the tablep478 element, if any, must be
removed, and the new value, if not null, must be inserted immediately before the first element in the tablep478 element that is neither
a captionp486 element nor a colgroupp487 element, if any, or at the end of the table if there are no such elements. If the new value is
neither null nor a theadp490 element, then a "HierarchyRequestError" DOMException must be thrown instead.

The createTHead() method must return the first theadp490 element child of the tablep478 element, if any; otherwise a new theadp490

element must be table-createdp481 and inserted immediately before the first element in the tablep478 element that is neither a
captionp486 element nor a colgroupp487 element, if any, or at the end of the table if there are no such elements, and then that new
element must be returned.

The deleteTHead() method must remove the first theadp490 element child of the tablep478 element, if any.

The tFoot IDL attribute must return, on getting, the first tfootp491 element child of the tablep478 element, if any, or null otherwise. On
setting, if the new value is null or a tfootp491 element, the first tfootp491 element child of the tablep478 element, if any, must be
removed, and the new value, if not null, must be inserted at the end of the table. If the new value is neither null nor a tfootp491

element, then a "HierarchyRequestError" DOMException must be thrown instead.

The createTFoot() method must return the first tfootp491 element child of the tablep478 element, if any; otherwise a new tfootp491

element must be table-createdp481 and inserted at the end of the table, and then that new element must be returned.

The deleteTFoot() method must remove the first tfootp491 element child of the tablep478 element, if any.

The tBodies attribute must return an HTMLCollection rooted at the tablep478 node, whose filter matches only tbodyp489 elements that
are children of the tablep478 element.

The createTBody() method must table-createp481 a new tbodyp489 element, insert it immediately after the last tbodyp489 element child
in the tablep478 element, if any, or at the end of the tablep478 element if the tablep478 element has no tbodyp489 element children, and
then must return the new tbodyp489 element.

The rows attribute must return an HTMLCollection rooted at the tablep478 node, whose filter matches only trp492 elements that are
either children of the tablep478 element, or children of theadp490, tbodyp489, or tfootp491 elements that are themselves children of the
tablep478 element. The elements in the collection must be ordered such that those elements whose parent is a theadp490 are included
first, in tree order, followed by those elements whose parent is either a tablep478 or tbodyp489 element, again in tree order, followed
finally by those elements whose parent is a tfootp491 element, still in tree order.

The behavior of the insertRow(index) method depends on the state of the table. When it is called, the method must act as required
by the first item in the following list of conditions that describes the state of the table and the index argument:

↪ If index is less than −1 or greater than the number of elements in rowsp481 collection:
The method must throw an "IndexSizeError" DOMException.

table.deleteRowp482(index)
Removes the trp492 element with the given position in the table.
The position is relative to the rows in the table. The index −1 is equivalent to deleting the last row of the table.
If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an
"IndexSizeError" DOMException.

481

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

↪ If the rowsp481 collection has zero elements in it, and the tablep478 has no tbodyp489 elements in it:
The method must table-createp481 a tbodyp489 element, then table-createp481 a trp492 element, then append the trp492 element
to the tbodyp489 element, then append the tbodyp489 element to the tablep478 element, and finally return the trp492 element.

↪ If the rowsp481 collection has zero elements in it:
The method must table-createp481 a trp492 element, append it to the last tbodyp489 element in the table, and return the trp492

element.

↪ If index is −1 or equal to the number of items in rowsp481 collection:
The method must table-createp481 a trp492 element, and append it to the parent of the last trp492 element in the rowsp481

collection. Then, the newly created trp492 element must be returned.

↪ Otherwise:
The method must table-createp481 a trp492 element, insert it immediately before the indexth trp492 element in the rowsp481

collection, in the same parent, and finally must return the newly created trp492 element.

When the deleteRow(index) method is called, the user agent must run the following steps:

1. If index is less than −1 or greater than or equal to the number of elements in the rowsp481 collection, then throw an
"IndexSizeError" DOMException.

2. If index is −1, then remove the last element in the rowsp481 collection from its parent, or do nothing if the rowsp481 collection
is empty.

3. Otherwise, remove the indexth element in the rowsp481 collection from its parent.

For tables that consist of more than just a grid of cells with headers in the first row and headers in the first column, and for any table in
general where the reader might have difficulty understanding the content, authors should include explanatory information introducing
the table. This information is useful for all users, but is especially useful for users who cannot see the table, e.g. users of screen
readers.

Here is an example of a table being used to mark up a Sudoku puzzle. Observe the lack of headers, which are not necessary in
such a table.

<style>
#sudoku { border-collapse: collapse; border: solid thick; }
#sudoku colgroup, table#sudoku tbody { border: solid medium; }
#sudoku td { border: solid thin; height: 1.4em; width: 1.4em; text-align: center; padding: 0; }

</style>
<h1>Today's Sudoku</h1>
<table id="sudoku">
<colgroup><col><col><col>
<colgroup><col><col><col>
<colgroup><col><col><col>
<tbody>
<tr> <td> 1 <td> <td> 3 <td> 6 <td> <td> 4 <td> 7 <td> <td> 9
<tr> <td> <td> 2 <td> <td> <td> 9 <td> <td> <td> 1 <td>
<tr> <td> 7 <td> <td> <td> <td> <td> <td> <td> <td> 6

<tbody>
<tr> <td> 2 <td> <td> 4 <td> <td> 3 <td> <td> 9 <td> <td> 8
<tr> <td> <td> <td> <td> <td> <td> <td> <td> <td>
<tr> <td> 5 <td> <td> <td> 9 <td> <td> 7 <td> <td> <td> 1

<tbody>
<tr> <td> 6 <td> <td> <td> <td> 5 <td> <td> <td> <td> 2
<tr> <td> <td> <td> <td> <td> 7 <td> <td> <td> <td>
<tr> <td> 9 <td> <td> <td> 8 <td> <td> 2 <td> <td> <td> 5

</table>

Example

4.9.1.1 Techniques for describing tables §p48

2

482

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-remove

Such explanatory information should introduce the purpose of the table, outline its basic cell structure, highlight any trends or
patterns, and generally teach the user how to use the table.

For instance, the following table:

Characteristics with positive and
negative sides

Negative Characteristic Positive

Sad Mood Happy
Failing Grade Passing

...might benefit from a description explaining the way the table is laid out, something like "Characteristics are given in the second
column, with the negative side in the left column and the positive side in the right column".

There are a variety of ways to include this information, such as:

In prose, surrounding the table

In the table's captionp486

<p>In the following table, characteristics are given in the second
column, with the negative side in the left column and the positive
side in the right column.</p>
<table>
<caption>Characteristics with positive and negative sides</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

Example

<table>
<caption>
Characteristics with positive and negative sides.
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

Example

483

In the table's captionp486, in a detailsp637 element

Next to the table, in the same figurep249

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

<table>
<caption>
Characteristics with positive and negative sides.
<details>
<summary>Help</summary>
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</details>
</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

Example

<figure>
<figcaption>Characteristics with positive and negative sides</figcaption>
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>
<table>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

Example

484

Next to the table, in a figurep249's figcaptionp252

Authors may also use other techniques, or combinations of the above techniques, as appropriate.

The best option, of course, rather than writing a description explaining the way the table is laid out, is to adjust the table such that no
explanation is needed.

</table>
</figure>

<figure>
<figcaption>
Characteristics with positive and negative sides
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</figcaption>
<table>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>
</figure>

Example

In the case of the table used in the examples above, a simple rearrangement of the table so that the headers are on the top and
left sides removes the need for an explanation as well as removing the need for the use of headersp497 attributes:

<table>
<caption>Characteristics with positive and negative sides</caption>
<thead>
<tr>
<th> Characteristic
<th> Negative
<th> Positive

<tbody>
<tr>
<th> Mood
<td> Sad
<td> Happy

<tr>
<th> Grade
<td> Failing
<td> Passing

</table>

Example

485

Good table design is key to making tables more readable and usable.

In visual media, providing column and row borders and alternating row backgrounds can be very effective to make complicated tables
more readable.

For tables with large volumes of numeric content, using monospaced fonts can help users see patterns, especially in situations where a
user agent does not render the borders. (Unfortunately, for historical reasons, not rendering borders on tables is a common default.)

In speech media, table cells can be distinguished by reporting the corresponding headers before reading the cell's contents, and by
allowing users to navigate the table in a grid fashion, rather than serializing the entire contents of the table in source order.

Authors are encouraged to use CSS to achieve these effects.

User agents are encouraged to render tables using these techniques whenever the page does not use CSS and the table is not
classified as a layout table.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As the first element child of a tablep478 element.

Content modelp146:
Flow contentp149, but with no descendant tablep478 elements.

Tag omission in text/htmlp146:
A captionp486 element's end tagp1262 can be omitted if the captionp486 element is not immediately followed by ASCII whitespace
or a commentp1270.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTableCaptionElement : HTMLElement {

[HTMLConstructor] constructor();

// also has obsolete members
};

The captionp486 element representsp141 the title of the tablep478 that is its parent, if it has a parent and that is a tablep478 element.

The captionp486 element takes part in the table modelp497.

When a tablep478 element is the only content in a figurep249 element other than the figcaptionp252, the captionp486 element should
be omitted in favor of the figcaptionp252.

A caption can introduce context for a table, making it significantly easier to understand.

4.9.1.2 Techniques for table design §p48

6

Consider, for instance, the following table:

1 2 3 4 5 6

Example

IDL

4.9.2 The caption element §p48

6

✔ MDN

✔ MDN

486

https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-caption
https://w3c.github.io/html-aam/#el-caption

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a tablep478 element, after any captionp486 elements and before any theadp490, tbodyp489, tfootp491, and trp492

elements.

Content modelp146:
If the spanp488 attribute is present: Nothingp148.
If the spanp488 attribute is absent: Zero or more colp488 and templatep671 elements.

Tag omission in text/htmlp146:
A colgroupp487 element's start tagp1261 can be omitted if the first thing inside the colgroupp487 element is a colp488 element, and
if the element is not immediately preceded by another colgroupp487 element whose end tagp1262 has been omitted. (It can't be
omitted if the element is empty.)
A colgroupp487 element's end tagp1262 can be omitted if the colgroupp487 element is not immediately followed by ASCII
whitespace or a commentp1270.

Content attributesp146:
Global attributesp154

spanp488 — Number of columns spanned by the element

Accessibility considerationsp146:
For authors.

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 1011
6 7 8 9 101112

In the abstract, this table is not clear. However, with a caption giving the table's number (for referencep141 in the main prose) and
explaining its use, it makes more sense:

<caption>
<p>Table 1.
<p>This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first die,
the first column the value of the second die. The total is given in
the cell that corresponds to the values of the two dice.
</caption>

This provides the user with more context:

Table 1.

This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first
die, the first column the value of the second die. The total
is given in the cell that corresponds to the values of the
two dice.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 1011
6 7 8 9 101112

4.9.3 The colgroup element §p48

7

✔ MDN

✔ MDN

487

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://w3c.github.io/html-aria/#el-colgroup

For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTableColElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long span;

// also has obsolete members
};

The colgroupp487 element representsp141 a groupp498 of one or more columnsp498 in the tablep478 that is its parent, if it has a parent and
that is a tablep478 element.

If the colgroupp487 element contains no colp488 elements, then the element may have a span content attribute specified, whose value
must be a valid non-negative integerp77 greater than zero and less than or equal to 1000.

The colgroupp487 element and its spanp488 attribute take part in the table modelp497.

The span IDL attribute must reflectp104 the content attribute of the same name. It is clamped to the rangep107 [1, 1000], and its default
valuep106 is 1.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a colgroupp487 element that doesn't have a spanp488 attribute.

Content modelp146:
Nothingp148.

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

spanp488 — Number of columns spanned by the element

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLTableColElementp488, as defined for colgroupp487 elements.

If a colp488 element has a parent and that is a colgroupp487 element that itself has a parent that is a tablep478 element, then the
colp488 element representsp141 one or more columnsp498 in the column groupp498 represented by that colgroupp487.

The element may have a span content attribute specified, whose value must be a valid non-negative integerp77 greater than zero and
less than or equal to 1000.

The colp488 element and its spanp488 attribute take part in the table modelp497.

IDL

4.9.4 The col element §p48

8

✔ MDN

488

https://w3c.github.io/html-aam/#el-colgroup
https://w3c.github.io/html-aria/#el-col
https://w3c.github.io/html-aam/#el-col

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a tablep478 element, after any captionp486, colgroupp487, and theadp490 elements, but only if there are no trp492

elements that are children of the tablep478 element.

Content modelp146:
Zero or more trp492 and script-supportingp151 elements.

Tag omission in text/htmlp146:
A tbodyp489 element's start tagp1261 can be omitted if the first thing inside the tbodyp489 element is a trp492 element, and if the
element is not immediately preceded by a tbodyp489, theadp490, or tfootp491 element whose end tagp1262 has been omitted. (It
can't be omitted if the element is empty.)
A tbodyp489 element's end tagp1262 can be omitted if the tbodyp489 element is immediately followed by a tbodyp489 or tfootp491

element, or if there is no more content in the parent element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTableSectionElement : HTMLElement {

[HTMLConstructor] constructor();

[SameObject] readonly attribute HTMLCollection rows;
HTMLTableRowElement insertRow(optional long index = -1);
[CEReactions] undefined deleteRow(long index);

// also has obsolete members
};

The HTMLTableSectionElementp489 interface is also used for theadp490 and tfootp491 elements.

The tbodyp489 element representsp141 a blockp498 of rowsp497 that consist of a body of data for the parent tablep478 element, if the
tbodyp489 element has a parent and it is a tablep478.

The tbodyp489 element takes part in the table modelp497.

tbody.rowsp490

Returns an HTMLCollection of the trp492 elements of the table section.

tr = tbody.insertRowp490([index])
Creates a trp492 element, inserts it into the table section at the position given by the argument, and returns the trp492.
The position is relative to the rows in the table section. The index −1, which is the default if the argument is omitted, is
equivalent to inserting at the end of the table section.
If the given position is less than −1 or greater than the number of rows, throws an "IndexSizeError" DOMException.

tbody.deleteRowp490(index)
Removes the trp492 element with the given position in the table section.
The position is relative to the rows in the table section. The index −1 is equivalent to deleting the last row of the table section.
If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an
"IndexSizeError" DOMException.

For web developers (non-normative)

IDL

4.9.5 The tbody element §p48

9

✔ MDN

✔ MDN

489

https://w3c.github.io/html-aria/#el-tbody
https://w3c.github.io/html-aam/#el-tbody
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The rows attribute must return an HTMLCollection rooted at this element, whose filter matches only trp492 elements that are children
of this element.

The insertRow(index) method must act as follows:

1. If index is less than −1 or greater than the number of elements in the rowsp490 collection, throw an "IndexSizeError"
DOMException.

2. Let table row be the result of creating an element given this element's node document, trp492, and the HTML namespace.

3. If index is −1 or equal to the number of items in the rowsp490 collection, then append table row to this element.

4. Otherwise, insert table row as a child of this element, immediately before the indexth trp492 element in the rowsp490

collection.

5. Return table row.

The deleteRow(index) method must, when invoked, act as follows:

1. If index is less than −1 or greater than or equal to the number of elements in the rowsp490 collection, then throw an
"IndexSizeError" DOMException.

2. If index is −1, then remove the last element in the rowsp490 collection from this element, or do nothing if the rowsp490

collection is empty.

3. Otherwise, remove the indexth element in the rowsp490 collection from this element.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a tablep478 element, after any captionp486, and colgroupp487 elements and before any tbodyp489, tfootp491, and
trp492 elements, but only if there are no other theadp490 elements that are children of the tablep478 element.

Content modelp146:
Zero or more trp492 and script-supportingp151 elements.

Tag omission in text/htmlp146:
A theadp490 element's end tagp1262 can be omitted if the theadp490 element is immediately followed by a tbodyp489 or tfootp491

element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLTableSectionElementp489, as defined for tbodyp489 elements.

The theadp490 element representsp141 the blockp498 of rowsp497 that consist of the column labels (headers) and any ancillary non-header
cells for the parent tablep478 element, if the theadp490 element has a parent and it is a tablep478.

The theadp490 element takes part in the table modelp497.

This example shows a theadp490 element being used. Notice the use of both thp495 and tdp493 elements in the theadp490 element:
the first row is the headers, and the second row is an explanation of how to fill in the table.

<table>

Example

4.9.6 The thead element §p49

0

✔ MDN

490

https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-insert
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-remove
https://w3c.github.io/html-aria/#el-thead
https://w3c.github.io/html-aam/#el-thead

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a tablep478 element, after any captionp486, colgroupp487, theadp490, tbodyp489, and trp492 elements, but only if there
are no other tfootp491 elements that are children of the tablep478 element.

Content modelp146:
Zero or more trp492 and script-supportingp151 elements.

Tag omission in text/htmlp146:
A tfootp491 element's end tagp1262 can be omitted if there is no more content in the parent element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLTableSectionElementp489, as defined for tbodyp489 elements.

The tfootp491 element representsp141 the blockp498 of rowsp497 that consist of the column summaries (footers) for the parent tablep478

element, if the tfootp491 element has a parent and it is a tablep478.

The tfootp491 element takes part in the table modelp497.

<caption> School auction sign-up sheet </caption>
<thead>
<tr>
<th><label for=e1>Name</label>
<th><label for=e2>Product</label>
<th><label for=e3>Picture</label>
<th><label for=e4>Price</label>

<tr>
<td>Your name here
<td>What are you selling?
<td>Link to a picture
<td>Your reserve price

<tbody>
<tr>
<td>Ms Danus
<td>Doughnuts
<td>
<td>$45

<tr>
<td><input id=e1 type=text name=who required form=f>
<td><input id=e2 type=text name=what required form=f>
<td><input id=e3 type=url name=pic form=f>
<td><input id=e4 type=number step=0.01 min=0 value=0 required form=f>

</table>
<form id=f action="/auction.cgi">
<input type=button name=add value="Submit">

</form>

4.9.7 The tfoot element §p49

1

✔ MDN

491

https://w3c.github.io/html-aria/#el-tfoot
https://w3c.github.io/html-aam/#el-tfoot

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a theadp490 element.
As a child of a tbodyp489 element.
As a child of a tfootp491 element.
As a child of a tablep478 element, after any captionp486, colgroupp487, and theadp490 elements, but only if there are no tbodyp489

elements that are children of the tablep478 element.

Content modelp146:
Zero or more tdp493, thp495, and script-supportingp151 elements.

Tag omission in text/htmlp146:
A trp492 element's end tagp1262 can be omitted if the trp492 element is immediately followed by another trp492 element, or if
there is no more content in the parent element.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTableRowElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute long rowIndex;
readonly attribute long sectionRowIndex;
[SameObject] readonly attribute HTMLCollection cells;
HTMLTableCellElement insertCell(optional long index = -1);
[CEReactions] undefined deleteCell(long index);

// also has obsolete members
};

The trp492 element representsp141 a rowp497 of cellsp497 in a tablep497.

The trp492 element takes part in the table modelp497.

tr.rowIndexp493

Returns the position of the row in the table's rowsp481 list.
Returns −1 if the element isn't in a table.

tr.sectionRowIndexp493

Returns the position of the row in the table section's rowsp490 list.
Returns −1 if the element isn't in a table section.

tr.cellsp493

Returns an HTMLCollection of the tdp493 and thp495 elements of the row.

cell = tr.insertCellp493([index])
Creates a tdp493 element, inserts it into the table row at the position given by the argument, and returns the tdp493.
The position is relative to the cells in the row. The index −1, which is the default if the argument is omitted, is equivalent to
inserting at the end of the row.
If the given position is less than −1 or greater than the number of cells, throws an "IndexSizeError" DOMException.

For web developers (non-normative)

IDL

4.9.8 The tr element §p49

2

✔ MDN

✔ MDN

492

https://w3c.github.io/html-aria/#el-tr
https://w3c.github.io/html-aam/#el-tr
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The rowIndex attribute must, if this element has a parent tablep478 element, or a parent tbodyp489, theadp490, or tfootp491 element and
a grandparent tablep478 element, return the index of this trp492 element in that tablep478 element's rowsp481 collection. If there is no
such tablep478 element, then the attribute must return −1.

The sectionRowIndex attribute must, if this element has a parent tablep478, tbodyp489, theadp490, or tfootp491 element, return the
index of the trp492 element in the parent element's rows collection (for tables, that's HTMLTableElementp478 's rowsp481 collection; for
table sections, that's HTMLTableSectionElementp489 's rowsp490 collection). If there is no such parent element, then the attribute must
return −1.

The cells attribute must return an HTMLCollection rooted at this trp492 element, whose filter matches only tdp493 and thp495 elements
that are children of the trp492 element.

The insertCell(index) method must act as follows:

1. If index is less than −1 or greater than the number of elements in the cellsp493 collection, then throw an "IndexSizeError"
DOMException.

2. Let table cell be the result of creating an element given this trp492 element's node document, tdp493, and the HTML
namespace.

3. If index is equal to −1 or equal to the number of items in cellsp493 collection, then append table cell to this trp492 element.

4. Otherwise, insert table cell as a child of this trp492 element, immediately before the indexth tdp493 or thp495 element in the
cellsp493 collection.

5. Return table cell.

The deleteCell(index) method must act as follows:

1. If index is less than −1 or greater than or equal to the number of elements in the cellsp493 collection, then throw an
"IndexSizeError" DOMException.

2. If index is −1, then remove the last element in the cellsp493 collection from its parent, or do nothing if the cellsp493

collection is empty.

3. Otherwise, remove the indexth element in the cellsp493 collection from its parent.

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a trp492 element.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
A tdp493 element's end tagp1262 can be omitted if the tdp493 element is immediately followed by a tdp493 or thp495 element, or if
there is no more content in the parent element.

Content attributesp146:
Global attributesp154

colspanp496 — Number of columns that the cell is to span

tr.deleteCellp493(index)
Removes the tdp493 or thp495 element with the given position in the row.
The position is relative to the cells in the row. The index −1 is equivalent to deleting the last cell of the row.
If the given position is less than −1 or greater than the index of the last cell, or if there are no cells, throws an
"IndexSizeError" DOMException.

4.9.9 The td element §p49

3

✔ MDN

✔ MDN

493

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-insert
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-remove
https://dom.spec.whatwg.org/#concept-node-remove

rowspanp497 — Number of rows that the cell is to span
headersp497 — The header cells for this cell

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTableCellElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long colSpan;
[CEReactions] attribute unsigned long rowSpan;
[CEReactions] attribute DOMString headers;
readonly attribute long cellIndex;

[CEReactions] attribute DOMString scope; // only conforming for th elements
[CEReactions] attribute DOMString abbr; // only conforming for th elements

// also has obsolete members
};

The HTMLTableCellElementp494 interface is also used for thp495 elements.

The tdp493 element representsp141 a data cellp497 in a table.

The tdp493 element and its colspanp496, rowspanp497, and headersp497 attributes take part in the table modelp497.

User agents, especially in non-visual environments or where displaying the table as a 2D grid is impractical, may give the user context
for the cell when rendering the contents of a cell; for instance, giving its position in the table modelp497, or listing the cell's header cells
(as determined by the algorithm for assigning header cellsp501). When a cell's header cells are being listed, user agents may use the
value of abbrp495 attributes on those header cells, if any, instead of the contents of the header cells themselves.

In this example, we see a snippet of a web application consisting of a grid of editable cells (essentially a simple spreadsheet). One
of the cells has been configured to show the sum of the cells above it. Three have been marked as headings, which use thp495

elements instead of tdp493 elements. A script would attach event handlers to these elements to maintain the total.

<table>
<tr>
<th><input value="Name">
<th><input value="Paid ($)">

<tr>
<td><input value="Jeff">
<td><input value="14">

<tr>
<td><input value="Britta">
<td><input value="9">

<tr>
<td><input value="Abed">
<td><input value="25">

<tr>
<td><input value="Shirley">
<td><input value="2">

<tr>
<td><input value="Annie">
<td><input value="5">

<tr>
<td><input value="Troy">
<td><input value="5">

Example

IDL

494

https://w3c.github.io/html-aria/#el-td
https://w3c.github.io/html-aam/#el-td

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a trp492 element.

Content modelp146:
Flow contentp149, but with no headerp218, footerp220, sectioning contentp149, or heading contentp149 descendants.

Tag omission in text/htmlp146:
A thp495 element's end tagp1262 can be omitted if the thp495 element is immediately followed by a tdp493 or thp495 element, or if
there is no more content in the parent element.

Content attributesp146:
Global attributesp154

colspanp496 — Number of columns that the cell is to span
rowspanp497 — Number of rows that the cell is to span
headersp497 — The header cells for this cell
scopep495 — Specifies which cells the header cell applies to
abbrp495 — Alternative label to use for the header cell when referencing the cell in other contexts

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLTableCellElementp494, as defined for tdp493 elements.

The thp495 element representsp141 a header cellp497 in a table.

The thp495 element may have a scope content attribute specified.

The scopep495 attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

row row The header cell applies to some of the subsequent cells in the same row(s).
col column The header cell applies to some of the subsequent cells in the same column(s).
rowgroup row group The header cell applies to all the remaining cells in the row group.
colgroup column group The header cell applies to all the remaining cells in the column group.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the auto state. (In this state the header cell applies to a
set of cells selected based on context.)

A thp495 element's scopep495 attribute must not be in the row groupp495 state if the element is not anchored in a row groupp498, nor in
the column groupp495 state if the element is not anchored in a column groupp498.

The thp495 element may have an abbr content attribute specified. Its value must be an alternative label for the header cell, to be used
when referencing the cell in other contexts (e.g. when describing the header cells that apply to a data cell). It is typically an
abbreviated form of the full header cell, but can also be an expansion, or merely a different phrasing.

<tr>
<td><input value="Pierce">
<td><input value="1000">

<tr>
<th><input value="Total">
<td><output value="1060">

</table>

4.9.10 The th element §p49

5

✔ MDN

495

https://w3c.github.io/html-aria/#el-th
https://w3c.github.io/html-aam/#el-th

The thp495 element and its colspanp496, rowspanp497, headersp497, and scopep495 attributes take part in the table modelp497.

The tdp493 and thp495 elements may have a colspan content attribute specified, whose value must be a valid non-negative integerp77

greater than zero and less than or equal to 1000.

The following example shows how the scopep495 attribute's rowgroupp495 value affects which data cells a header cell applies to.

Here is a markup fragment showing a table:

<table>
<thead>
<tr> <th> ID <th> Measurement <th> Average <th> Maximum

<tbody>
<tr> <td> <th scope=rowgroup> Cats <td> <td>
<tr> <td> 93 <th> Legs <td> 3.5 <td> 4
<tr> <td> 10 <th> Tails <td> 1 <td> 1

<tbody>
<tr> <td> <th scope=rowgroup> English speakers <td> <td>
<tr> <td> 32 <th> Legs <td> 2.67 <td> 4
<tr> <td> 35 <th> Tails <td> 0.33 <td> 1

</table>

This would result in the following table:

ID Measurement Average Maximum

Cats
93 Legs 3.5 4
10 Tails 1 1

English speakers
32 Legs 2.67 4
35 Tails 0.33 1

The headers in the first row all apply directly down to the rows in their column.

The headers with a scopep495 attribute in the rowgroupp495 state apply to all the cells in their row group other than the cells in the
first column.

The remaining headers apply just to the cells to the right of them.

Example

4.9.11 Attributes common to tdp493 and thp495 elements §p49

6

496

The tdp493 and thp495 elements may also have a rowspan content attribute specified, whose value must be a valid non-negative
integerp77 less than or equal to 65534. For this attribute, the value zero means that the cell is to span all the remaining rows in the row
group.

These attributes give the number of columns and rows respectively that the cell is to span. These attributes must not be used to
overlap cells, as described in the description of the table modelp497.

The tdp493 and thp495 element may have a headers content attribute specified. The headersp497 attribute, if specified, must contain a
string consisting of an unordered set of unique space-separated tokensp95, none of which are identical to another token and each of
which must have the value of an ID of a thp495 element taking part in the same tablep497 as the tdp493 or thp495 element (as defined by
the table modelp497).

A thp495 element with ID id is said to be directly targeted by all tdp493 and thp495 elements in the same tablep497 that have headersp497

attributes whose values include as one of their tokens the ID id. A thp495 element A is said to be targeted by a thp495 or tdp493 element B
if either A is directly targeted by B or if there exists an element C that is itself targeted by the element B and A is directly targeted by
C.

A thp495 element must not be targeted by itself.

The colspanp496, rowspanp497, and headersp497 attributes take part in the table modelp497.

The colSpan IDL attribute must reflectp104 the colspanp496 content attribute. It is clamped to the rangep107 [1, 1000], and its default
valuep106 is 1.

The rowSpan IDL attribute must reflectp104 the rowspanp497 content attribute. It is clamped to the rangep107 [0, 65534], and its default
valuep106 is 1.

The headers IDL attribute must reflectp104 the content attribute of the same name.

The cellIndex IDL attribute must, if the element has a parent trp492 element, return the index of the cell's element in the parent
element's cellsp493 collection. If there is no such parent element, then the attribute must return −1.

The scope IDL attribute must reflectp104 the content attribute of the same name, limited to only known valuesp105.

The abbr IDL attribute must reflectp104 the content attribute of the same name.

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x, y). The grid is finite, and is either empty or has
one or more slots. If the grid has one or more slots, then the x coordinates are always in the range 0 ≤ x < xwidth, and the y
coordinates are always in the range 0 ≤ y < yheight. If one or both of xwidth and yheight are zero, then the table is empty (has no slots).
Tables correspond to tablep478 elements.

A cell is a set of slots anchored at a slot (cellx, celly), and with a particular width and height such that the cell covers all the slots with
coordinates (x, y) where cellx ≤ x < cellx+width and celly ≤ y < celly+height. Cells can either be data cells or header cells. Data cells
correspond to tdp493 elements, and header cells correspond to thp495 elements. Cells of both types can have zero or more associated
header cells.

It is possible, in certain error cases, for two cells to occupy the same slot.

A row is a complete set of slots from x=0 to x=xwidth-1, for a particular value of y. Rows usually correspond to trp492 elements, though

cell.cellIndexp497

Returns the position of the cell in the row's cellsp493 list. This does not necessarily correspond to the x-position of the cell in the
table, since earlier cells might cover multiple rows or columns.
Returns −1 if the element isn't in a row.

For web developers (non-normative)

4.9.12 Processing model §p49

7

497

https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id

a row groupp498 can have some implied rowsp497 at the end in some cases involving cellsp497 spanning multiple rows.

A column is a complete set of slots from y=0 to y=yheight-1, for a particular value of x. Columns can correspond to colp488 elements.
In the absence of colp488 elements, columns are implied.

A row group is a set of rowsp497 anchored at a slot (0, groupy) with a particular height such that the row group covers all the slots with
coordinates (x, y) where 0 ≤ x < xwidth and groupy ≤ y < groupy+height. Row groups correspond to tbodyp489, theadp490, and tfootp491

elements. Not every row is necessarily in a row group.

A column group is a set of columnsp498 anchored at a slot (groupx, 0) with a particular width such that the column group covers all the
slots with coordinates (x, y) where groupx ≤ x < groupx+width and 0 ≤ y < yheight. Column groups correspond to colgroupp487

elements. Not every column is necessarily in a column group.

Row groupsp498 cannot overlap each other. Similarly, column groupsp498 cannot overlap each other.

A cellp497 cannot cover slots that are from two or more row groupsp498. It is, however, possible for a cell to be in multiple column
groupsp498. All the slots that form part of one cell are part of zero or one row groupsp498 and zero or more column groupsp498.

In addition to cellsp497, columnsp498, rowsp497, row groupsp498, and column groupsp498, tablesp497 can have a captionp486 element
associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by tablep478 elements and their descendants. Documents must not have
table model errors.

To determine which elements correspond to which slots in a tablep497 associated with a tablep478 element, to determine the dimensions
of the table (xwidth and yheight), and to determine if there are any table model errorsp498, user agents must use the following algorithm:

1. Let xwidth be zero.

2. Let yheight be zero.

3. Let pending tfootp491 elements be a list of tfootp491 elements, initially empty.

4. Let the table be the tablep497 represented by the tablep478 element. The xwidth and yheight variables give the table's
dimensions. The table is initially empty.

5. If the tablep478 element has no children elements, then return the table (which will be empty).

6. Associate the first captionp486 element child of the tablep478 element with the table. If there are no such children, then it has
no associated captionp486 element.

7. Let the current element be the first element child of the tablep478 element.

If a step in this algorithm ever requires the current element to be advanced to the next child of the table when there is
no such next child, then the user agent must jump to the step labeled end, near the end of this algorithm.

8. While the current element is not one of the following elements, advancep498 the current element to the next child of the
tablep478:

◦ colgroupp487

◦ theadp490

◦ tbodyp489

◦ tfootp491

◦ trp492

9. If the current element is a colgroupp487, follow these substeps:

1. Column groups: Process the current element according to the appropriate case below:

↪ If the current element has any colp488 element children
Follow these steps:

1. Let xstart have the value of xwidth.

4.9.12.1 Forming a table §p49

8

498

2. Let the current column be the first colp488 element child of the colgroupp487 element.

3. Columns: If the current column colp488 element has a spanp488 attribute, then parse its value using
the rules for parsing non-negative integersp77.

If the result of parsing the value is not an error or zero, then let span be that value.

Otherwise, if the colp488 element has no spanp488 attribute, or if trying to parse the attribute's
value resulted in an error or zero, then let span be 1.

If span is greater than 1000, let it be 1000 instead.

4. Increase xwidth by span.

5. Let the last span columnsp498 in the table correspond to the current column colp488 element.

6. If current column is not the last colp488 element child of the colgroupp487 element, then let the
current column be the next colp488 element child of the colgroupp487 element, and return to the
step labeled columns.

7. Let all the last columnsp498 in the table from x=xstart to x=xwidth-1 form a new column groupp498,
anchored at the slot (xstart, 0), with width xwidth-xstart, corresponding to the colgroupp487 element.

↪ If the current element has no colp488 element children

1. If the colgroupp487 element has a spanp488 attribute, then parse its value using the rules for
parsing non-negative integersp77.

If the result of parsing the value is not an error or zero, then let span be that value.

Otherwise, if the colgroupp487 element has no spanp488 attribute, or if trying to parse the
attribute's value resulted in an error or zero, then let span be 1.

If span is greater than 1000, let it be 1000 instead.

2. Increase xwidth by span.

3. Let the last span columnsp498 in the table form a new column groupp498, anchored at the slot
(xwidth-span, 0), with width span, corresponding to the colgroupp487 element.

2. Advancep498 the current element to the next child of the tablep478.

3. While the current element is not one of the following elements, advancep498 the current element to the next child
of the tablep478:

▪ colgroupp487

▪ theadp490

▪ tbodyp489

▪ tfootp491

▪ trp492

4. If the current element is a colgroupp487 element, jump to the step labeled column groups above.

10. Let ycurrent be zero.

11. Let the list of downward-growing cells be an empty list.

12. Rows: While the current element is not one of the following elements, advancep498 the current element to the next child of
the tablep478:

◦ theadp490

◦ tbodyp489

◦ tfootp491

◦ trp492

13. If the current element is a trp492, then run the algorithm for processing rowsp500, advancep498 the current element to the next
child of the tablep478, and return to the step labeled rows.

14. Run the algorithm for ending a row groupp500.

15. If the current element is a tfootp491, then add that element to the list of pending tfootp491 elements, advancep498 the current
element to the next child of the tablep478, and return to the step labeled rows.

499

16. The current element is either a theadp490 or a tbodyp489.

Run the algorithm for processing row groupsp500.

17. Advancep498 the current element to the next child of the tablep478.

18. Return to the step labeled rows.

19. End: For each tfootp491 element in the list of pending tfootp491 elements, in tree order, run the algorithm for processing row
groupsp500.

20. If there exists a rowp497 or columnp498 in the table containing only slotsp497 that do not have a cellp497 anchored to them, then
this is a table model errorp498.

21. Return the table.

The algorithm for processing row groups, which is invoked by the set of steps above for processing theadp490, tbodyp489, and
tfootp491 elements, is:

1. Let ystart have the value of yheight.

2. For each trp492 element that is a child of the element being processed, in tree order, run the algorithm for processing
rowsp500.

3. If yheight > ystart, then let all the last rowsp497 in the table from y=ystart to y=yheight-1 form a new row groupp498, anchored at
the slot with coordinate (0, ystart), with height yheight-ystart, corresponding to the element being processed.

4. Run the algorithm for ending a row groupp500.

The algorithm for ending a row group, which is invoked by the set of steps above when starting and ending a block of rows, is:

1. While ycurrent is less than yheight, follow these steps:

1. Run the algorithm for growing downward-growing cellsp501.

2. Increase ycurrent by 1.

2. Empty the list of downward-growing cells.

The algorithm for processing rows, which is invoked by the set of steps above for processing trp492 elements, is:

1. If yheight is equal to ycurrent, then increase yheight by 1. (ycurrent is never greater than yheight.)

2. Let xcurrent be 0.

3. Run the algorithm for growing downward-growing cellsp501.

4. If the trp492 element being processed has no tdp493 or thp495 element children, then increase ycurrent by 1, abort this set of
steps, and return to the algorithm above.

5. Let current cell be the first tdp493 or thp495 element child in the trp492 element being processed.

6. Cells: While xcurrent is less than xwidth and the slot with coordinate (xcurrent, ycurrent) already has a cell assigned to it,
increase xcurrent by 1.

7. If xcurrent is equal to xwidth, increase xwidth by 1. (xcurrent is never greater than xwidth.)

8. If the current cell has a colspanp496 attribute, then parse that attribute's valuep77, and let colspan be the result.

If parsing that value failed, or returned zero, or if the attribute is absent, then let colspan be 1, instead.

If colspan is greater than 1000, let it be 1000 instead.

9. If the current cell has a rowspanp497 attribute, then parse that attribute's valuep77, and let rowspan be the result.

If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

If rowspan is greater than 65534, let it be 65534 instead.

10. If rowspan is zero and the tablep478 element's node document is not set to quirks mode, then let cell grows downward be
true, and set rowspan to 1. Otherwise, let cell grows downward be false.

500

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-quirks

11. If xwidth < xcurrent+colspan, then let xwidth be xcurrent+colspan.

12. If yheight < ycurrent+rowspan, then let yheight be ycurrent+rowspan.

13. Let the slots with coordinates (x, y) such that xcurrent ≤ x < xcurrent+colspan and ycurrent ≤ y < ycurrent+rowspan be covered
by a new cellp497 c, anchored at (xcurrent, ycurrent), which has width colspan and height rowspan, corresponding to the current
cell element.

If the current cell element is a thp495 element, let this new cell c be a header cell; otherwise, let it be a data cell.

To establish which header cells apply to the current cell element, use the algorithm for assigning header cellsp501 described in
the next section.

If any of the slots involved already had a cellp497 covering them, then this is a table model errorp498. Those slots now have two
cells overlapping.

14. If cell grows downward is true, then add the tuple {c, xcurrent, colspan} to the list of downward-growing cells.

15. Increase xcurrent by colspan.

16. If current cell is the last tdp493 or thp495 element child in the trp492 element being processed, then increase ycurrent by 1, abort
this set of steps, and return to the algorithm above.

17. Let current cell be the next tdp493 or thp495 element child in the trp492 element being processed.

18. Return to the step labeled cells.

When the algorithms above require the user agent to run the algorithm for growing downward-growing cells, the user agent
must, for each {cell, cellx, width} tuple in the list of downward-growing cells, if any, extend the cellp497 cell so that it also covers the
slots with coordinates (x, ycurrent), where cellx ≤ x < cellx+width.

Each cell can be assigned zero or more header cells. The algorithm for assigning header cells to a cell principal cell is as follows.

1. Let header list be an empty list of cells.

2. Let (principalx, principaly) be the coordinate of the slot to which the principal cell is anchored.

3.↪ If the principal cell has a headersp497 attribute specified

1. Take the value of the principal cell's headersp497 attribute and split it on ASCII whitespace, letting id list be
the list of tokens obtained.

2. For each token in the id list, if the first element in the Documentp130 with an ID equal to the token is a cell in
the same tablep497, and that cell is not the principal cell, then add that cell to header list.

↪ If principal cell does not have a headersp497 attribute specified

1. Let principalwidth be the width of the principal cell.

2. Let principalheight be the height of the principal cell.

3. For each value of y from principaly to principaly+principalheight-1, run the internal algorithm for scanning
and assigning header cellsp502, with the principal cell, the header list, the initial coordinate (principalx, y),
and the increments Δx=−1 and Δy=0.

4. For each value of x from principalx to principalx+principalwidth-1, run the internal algorithm for scanning and
assigning header cellsp502, with the principal cell, the header list, the initial coordinate (x, principaly), and
the increments Δx=0 and Δy=−1.

5. If the principal cell is anchored in a row groupp498, then add all header cells that are row group headersp503

and are anchored in the same row group with an x-coordinate less than or equal to
principalx+principalwidth-1 and a y-coordinate less than or equal to principaly+principalheight-1 to header
list.

6. If the principal cell is anchored in a column groupp498, then add all header cells that are column group

4.9.12.2 Forming relationships between data cells and header cells §p50

1

501

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://dom.spec.whatwg.org/#concept-id

headersp503 and are anchored in the same column group with an x-coordinate less than or equal to
principalx+principalwidth-1 and a y-coordinate less than or equal to principaly+principalheight-1 to header
list.

4. Remove all the empty cellsp503 from the header list.

5. Remove any duplicates from the header list.

6. Remove principal cell from the header list if it is there.

7. Assign the headers in the header list to the principal cell.

The internal algorithm for scanning and assigning header cells, given a principal cell, a header list, an initial coordinate (initialx,
initialy), and Δx and Δy increments, is as follows:

1. Let x equal initialx.

2. Let y equal initialy.

3. Let opaque headers be an empty list of cells.

4.↪ If principal cell is a header cell
Let in header block be true, and let headers from current header block be a list of cells containing just the principal
cell.

↪ Otherwise
Let in header block be false and let headers from current header block be an empty list of cells.

5. Loop: Increment x by Δx; increment y by Δy.

6. If either x or y are less than 0, then abort this internal algorithm.

7. If there is no cell covering slot (x, y), or if there is more than one cell covering slot (x, y), return to the substep labeled loop.

8. Let current cell be the cell covering slot (x, y).

9.↪ If current cell is a header cell

1. Set in header block to true.

2. Add current cell to headers from current header block.

3. Let blocked be false.

4.↪ If Δx is 0
If there are any cells in the opaque headers list anchored with the same x-coordinate as the current
cell, and with the same width as current cell, then let blocked be true.

If the current cell is not a column headerp502, then let blocked be true.

↪ If Δy is 0
If there are any cells in the opaque headers list anchored with the same y-coordinate as the current
cell, and with the same height as current cell, then let blocked be true.

If the current cell is not a row headerp503, then let blocked be true.

5. If blocked is false, then add the current cell to the header list.

↪ If current cell is a data cell and in header block is true
Set in header block to false. Add all the cells in headers from current header block to the opaque headers list, and
empty the headers from current header block list.

10. Return to the step labeled loop.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a column header if any of the

For each invocation of this algorithm, one of Δx and Δy will be −1, and the other will be 0.
Note

502

following are true:

• the cell's scopep495 attribute is in the columnp495 state; or

• the cell's scopep495 attribute is in the autop495 state, and there are no data cells in any of the cells covering slots with
y-coordinates y .. y+height-1.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a row header if any of the
following are true:

• the cell's scopep495 attribute is in the rowp495 state; or

• the cell's scopep495 attribute is in the autop495 state, the cell is not a column headerp502, and there are no data cells in any of
the cells covering slots with x-coordinates x .. x+width-1.

A header cell is said to be a column group header if its scopep495 attribute is in the column groupp495 state.

A header cell is said to be a row group header if its scopep495 attribute is in the row groupp495 state.

A cell is said to be an empty cell if it contains no elements and its child text content, if any, consists only of ASCII whitespace.

This section is non-normative.

The following shows how one might mark up the bottom part of table 45 of the Smithsonian physical tables, Volume 71:

<table>
<caption>Specification values: Steel, Castings,
Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.</caption>
<thead>
<tr>
<th rowspan=2>Grade.</th>
<th rowspan=2>Yield Point.</th>
<th colspan=2>Ultimate tensile strength</th>
<th rowspan=2>Per cent elong. 50.8 mm or 2 in.</th>
<th rowspan=2>Per cent reduct. area.</th>

</tr>
<tr>
<th>kg/mm²</th>
<th>lb/in²</th>

</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>0.45 ultimate</td>
<td>56.2</td>
<td>80,000</td>
<td>15</td>
<td>20</td>

</tr>
<tr>
<td>Medium</td>
<td>0.45 ultimate</td>
<td>49.2</td>
<td>70,000</td>
<td>18</td>
<td>25</td>

</tr>
<tr>
<td>Soft</td>

4.9.13 Examples §p50

3

503

https://dom.spec.whatwg.org/#concept-child-text-content
https://infra.spec.whatwg.org/#ascii-whitespace

<td>0.45 ultimate</td>
<td>42.2</td>
<td>60,000</td>
<td>22</td>
<td>30</td>

</tr>
</tbody>

</table>

This table could look like this:

Specification values: Steel, Castings, Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.

Grade. Yield Point.
Ultimate tensile strength Per cent

elong.
50.8 mm
or 2 in.

Per cent
reduct.
area.kg/mm2 lb/in2

Hard. 0.45 ultimate 56.2 80,000 15 20
Medium . . . 0.45 ultimate 49.2 70,000 18 25
Soft 0.45 ultimate 42.2 60,000 22 30

The following shows how one might mark up the gross margin table on page 46 of Apple, Inc's 10-K filing for fiscal year 2008:

<table>
<thead>
<tr>
<th>
<th>2008
<th>2007
<th>2006

<tbody>
<tr>
<th>Net sales
<td>$ 32,479
<td>$ 24,006
<td>$ 19,315

<tr>
<th>Cost of sales
<td> 21,334
<td> 15,852
<td> 13,717

<tbody>
<tr>
<th>Gross margin
<td>$ 11,145
<td>$ 8,154
<td>$ 5,598

<tfoot>
<tr>
<th>Gross margin percentage
<td>34.3%
<td>34.0%
<td>29.0%

</table>

This table could look like this:

20082008 20072007 20062006

Net sales . $ 32,479 $ 24,006 $ 19,315
Cost of sales . 21,334 15,852 13,717
Gross margin . $ 11,145 $ 8,154 $ 5,598

Gross margin percentage 34.3% 34.0% 29.0%

504

The following shows how one might mark up the operating expenses table from lower on the same page of that document:

<table>
<colgroup> <col>
<colgroup> <col> <col> <col>
<thead>
<tr> <th> <th>2008 <th>2007 <th>2006

<tbody>
<tr> <th scope=rowgroup> Research and development

<td> $ 1,109 <td> $ 782 <td> $ 712
<tr> <th scope=row> Percentage of net sales

<td> 3.4% <td> 3.3% <td> 3.7%
<tbody>
<tr> <th scope=rowgroup> Selling, general, and administrative

<td> $ 3,761 <td> $ 2,963 <td> $ 2,433
<tr> <th scope=row> Percentage of net sales

<td> 11.6% <td> 12.3% <td> 12.6%
</table>

This table could look like this:

20082008 20072007 20062006

Research and development $ 1,109 $ 782 $ 712
Percentage of net sales . 3.4% 3.3% 3.7%

Selling, general, and administrative $ 3,761 $ 2,963 $ 2,433
Percentage of net sales . 11.6% 12.3% 12.6%

This section is non-normative.

A form is a component of a web page that has form controls, such as text, buttons, checkboxes, range, or color picker controls. A user
can interact with such a form, providing data that can then be sent to the server for further processing (e.g. returning the results of a
search or calculation). No client-side scripting is needed in many cases, though an API is available so that scripts can augment the user
experience or use forms for purposes other than submitting data to a server.

Writing a form consists of several steps, which can be performed in any order: writing the user interface, implementing the server-side
processing, and configuring the user interface to communicate with the server.

This section is non-normative.

For the purposes of this brief introduction, we will create a pizza ordering form.

Any form starts with a formp514 element, inside which are placed the controls. Most controls are represented by the inputp520 element,
which by default provides a text control. To label a control, the labelp518 element is used; the label text and the control itself go inside
the labelp518 element. Each part of a form is considered a paragraphp152, and is typically separated from other parts using pp229

elements. Putting this together, here is how one might ask for the customer's name:

<form>
<p><label>Customer name: <input></label></p>

</form>

To let the user select the size of the pizza, we can use a set of radio buttons. Radio buttons also use the inputp520 element, this time

4.10 Forms §p50

5

4.10.1.1 Writing a form's user interface §p50

5

4.10.1 Introduction §p50

5

✔ MDN

505

with a typep523 attribute with the value radiop543. To make the radio buttons work as a group, they are given a common name using the
namep599 attribute. To group a batch of controls together, such as, in this case, the radio buttons, one can use the fieldsetp594 element.
The title of such a group of controls is given by the first element in the fieldsetp594, which has to be a legendp596 element.

<form>
<p><label>Customer name: <input></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
</form>

To pick toppings, we can use checkboxes. These use the inputp520 element with a typep523 attribute with the value checkboxp542:

<form>
<p><label>Customer name: <input></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
</form>

The pizzeria for which this form is being written is always making mistakes, so it needs a way to contact the customer. For this
purpose, we can use form controls specifically for telephone numbers (inputp520 elements with their typep523 attribute set to telp528)
and email addresses (inputp520 elements with their typep523 attribute set to emailp530):

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
</form>

We can use an inputp520 element with its typep523 attribute set to timep535 to ask for a delivery time. Many of these form controls have
attributes to control exactly what values can be specified; in this case, three attributes of particular interest are minp555, maxp555, and

Changes from the previous step are highlighted.
Note

506

stepp556. These set the minimum time, the maximum time, and the interval between allowed values (in seconds). This pizzeria only
delivers between 11am and 9pm, and doesn't promise anything better than 15 minute increments, which we can mark up as follows:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>

</form>

The textareap579 element can be used to provide a multiline text control. In this instance, we are going to use it to provide a space for
the customer to give delivery instructions:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
<p><label>Delivery instructions: <textarea></textarea></label></p>

</form>

Finally, to make the form submittable we use the buttonp566 element:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>Email address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>

507

<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
<p><label>Delivery instructions: <textarea></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

The exact details for writing a server-side processor are out of scope for this specification. For the purposes of this introduction, we will
assume that the script at https://pizza.example.com/order.cgi is configured to accept submissions using the application/x-
www-form-urlencodedp603 format, expecting the following parameters sent in an HTTP POST body:

custname
Customer's name

custtel
Customer's telephone number

custemail
Customer's email address

size
The pizza size, either small, medium, or large

topping
A topping, specified once for each selected topping, with the allowed values being bacon, cheese, onion, and mushroom

delivery
The requested delivery time

comments
The delivery instructions

This section is non-normative.

Form submissions are exposed to servers in a variety of ways, most commonly as HTTP GET or POST requests. To specify the exact
method used, the methodp602 attribute is specified on the formp514 element. This doesn't specify how the form data is encoded, though;
to specify that, you use the enctypep603 attribute. You also have to specify the URL of the service that will handle the submitted data,
using the actionp602 attribute.

For each form control you want submitted, you then have to give a name that will be used to refer to the data in the submission. We
already specified the name for the group of radio buttons; the same attribute (namep599) also specifies the submission name. Radio
buttons can be distinguished from each other in the submission by giving them different values, using the valuep525 attribute.

Multiple controls can have the same name; for example, here we give all the checkboxes the same name, and the server distinguishes
which checkbox was checked by seeing which values are submitted with that name — like the radio buttons, they are also given
unique values with the valuep525 attribute.

Given the settings in the previous section, this all becomes:

<form method="post"
enctype="application/x-www-form-urlencoded"

4.10.1.2 Implementing the server-side processing for a form §p50

8

4.10.1.3 Configuring a form to communicate with a server §p50

8

508

https://url.spec.whatwg.org/#concept-url

action="https://pizza.example.com/order.cgi">
<p><label>Customer name: <input name="custname"></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>Email address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size value="small"> Small </label></p>
<p><label> <input type=radio name=size value="medium"> Medium </label></p>
<p><label> <input type=radio name=size value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery"></label></p>
<p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<p><button>Submit order</button></p>

</form>

For example, if the customer entered "Denise Lawrence" as their name, "555-321-8642" as their telephone number, did not specify an
email address, asked for a medium-sized pizza, selected the Extra Cheese and Mushroom toppings, entered a delivery time of 7pm,
and left the delivery instructions text control blank, the user agent would submit the following to the online web service:

custname=Denise+Lawrence&custtel=555-321-8642&custemail=&size=medium&topping=cheese&topping=mushroom&de
livery=19%3A00&comments=

This section is non-normative.

Forms can be annotated in such a way that the user agent will check the user's input before the form is submitted. The server still has
to verify the input is valid (since hostile users can easily bypass the form validation), but it allows the user to avoid the wait incurred by
having the server be the sole checker of the user's input.

The simplest annotation is the requiredp552 attribute, which can be specified on inputp520 elements to indicate that the form is not to
be submitted until a value is given. By adding this attribute to the customer name, pizza size, and delivery time fields, we allow the
user agent to notify the user when the user submits the form without filling in those fields:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>Email address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>

There is no particular significance to the way some of the attributes have their values quoted and others don't. The HTML syntax
allows a variety of equally valid ways to specify attributes, as discussed in the syntax sectionp1262.

Note

4.10.1.4 Client-side form validation §p50

9

✔ MDN

509

<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<p><button>Submit order</button></p>

</form>

It is also possible to limit the length of the input, using the maxlengthp600 attribute. By adding this to the textareap579 element, we can
limit users to 1000 characters, preventing them from writing huge essays to the busy delivery drivers instead of staying focused and to
the point:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>Email address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

Some browsers attempt to aid the user by automatically filling form controls rather than having the user reenter their information each
time. For example, a field asking for the user's telephone number can be automatically filled with the user's phone number.

To help the user agent with this, the autocompletep604 attribute can be used to describe the field's purpose. In the case of this form, we
have three fields that can be usefully annotated in this way: the information about who the pizza is to be delivered to. Adding this
information looks like this:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

When a form is submitted, invalidp1471 events are fired at each form control that is invalid. This can be useful for displaying a
summary of the problems with the form, since typically the browser itself will only report one problem at a time.

Note

4.10.1.5 Enabling client-side automatic filling of form controls §p51

0

510

<p><label>Customer name: <input name="custname" required autocomplete="shipping name"></label></p>
<p><label>Telephone: <input type=tel name="custtel" autocomplete="shipping tel"></label></p>
<p><label>Email address: <input type=email name="custemail" autocomplete="shipping email"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
<p><button>Submit order</button></p>

</form>

This section is non-normative.

Some devices, in particular those with virtual keyboards can provide the user with multiple input modalities. For example, when typing
in a credit card number the user may wish to only see keys for digits 0-9, while when typing in their name they may wish to see a form
field that by default capitalizes each word.

Using the inputmodep861 attribute we can select appropriate input modalities:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required autocomplete="shipping name"></label></p>
<p><label>Telephone: <input type=tel name="custtel" autocomplete="shipping tel"></label></p>
<p><label>Buzzer code: <input name="custbuzz" inputmode="numeric"></label></p>
<p><label>Email address: <input type=email name="custemail" autocomplete="shipping email"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size required value="small"> Small </label></p>
<p><label> <input type=radio name=size required value="medium"> Medium </label></p>
<p><label> <input type=radio name=size required value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
<p><button>Submit order</button></p>

</form>

4.10.1.6 Improving the user experience on mobile devices §p51

1

511

This section is non-normative.

The typep523, autocompletep604, and inputmodep861 attributes can seem confusingly similar. For instance, in all three cases, the string
"email" is a valid value. This section attempts to illustrate the difference between the three attributes and provides advice suggesting
how to use them.

The typep523 attribute on inputp520 elements decides what kind of control the user agent will use to expose the field. Choosing between
different values of this attribute is the same choice as choosing whether to use an inputp520 element, a textareap579 element, a
selectp568 element, etc.

The autocompletep604 attribute, in contrast, describes what the value that the user will enter actually represents. Choosing between
different values of this attribute is the same choice as choosing what the label for the element will be.

First, consider telephone numbers. If a page is asking for a telephone number from the user, the right form control to use is <input
type=tel>p528. However, which autocompletep604 value to use depends on which phone number the page is asking for, whether they
expect a telephone number in the international format or just the local format, and so forth.

For example, a page that forms part of a checkout process on an e-commerce site for a customer buying a gift to be shipped to a friend
might need both the buyer's telephone number (in case of payment issues) and the friend's telephone number (in case of delivery
issues). If the site expects international phone numbers (with the country code prefix), this could thus look like this:

<p><label>Your phone number: <input type=tel name=custtel autocomplete="billing tel"></label>
<p><label>Recipient's phone number: <input type=tel name=shiptel autocomplete="shipping tel"></label>
<p>Please enter complete phone numbers including the country code prefix, as in "+1 555 123 4567".

But if the site only supports British customers and recipients, it might instead look like this (notice the use of tel-nationalp608 rather
than telp608):

<p><label>Your phone number: <input type=tel name=custtel autocomplete="billing tel-national"></label>
<p><label>Recipient's phone number: <input type=tel name=shiptel autocomplete="shipping tel-
national"></label>
<p>Please enter complete UK phone numbers, as in "(01632) 960 123".

Now, consider a person's preferred languages. The right autocompletep604 value is languagep608. However, there could be a number of
different form controls used for the purpose: a text control (<input type=text>p527), a drop-down list (<select>p568), radio buttons
(<input type=radio>p543), etc. It only depends on what kind of interface is desired.

Finally, consider names. If a page just wants one name from the user, then the relevant control is <input type=text>p527. If the page
is asking for the user's full name, then the relevant autocompletep604 value is namep607.

<p><label>Japanese name: <input name="j" type="text" autocomplete="section-jp name"></label>
<label>Romanized name: <input name="e" type="text" autocomplete="section-en name"></label>

In this example, the "section-*p604" keywords in the autocompletep604 attributes' values tell the user agent that the two fields expect
different names. Without them, the user agent could automatically fill the second field with the value given in the first field when the
user gave a value to the first field.

Separate from the choices regarding typep523 and autocompletep604, the inputmodep861 attribute decides what kind of input modality
(e.g., virtual keyboard) to use, when the control is a text control.

Consider credit card numbers. The appropriate input type is not <input type=number>p537, as explained belowp538; it is instead <input
type=text>p527. To encourage the user agent to use a numeric input modality anyway (e.g., a virtual keyboard displaying only digits),
the page would use

<p><label>Credit card number:

4.10.1.7 The difference between the field type, the autofill field name, and the input modality §p51

2

The "-jp" and "-en" parts of the keywords are opaque to the user agent; the user agent cannot guess, from those, that the two
names are expected to be in Japanese and English respectively.

Note

512

<input name="cc" type="text" inputmode="numeric" pattern="[0-9]{8,19}"
autocomplete="cc-number">
</label></p>

This section is non-normative.

In this pizza delivery example, the times are specified in the format "HH:MM": two digits for the hour, in 24-hour format, and two digits
for the time. (Seconds could also be specified, though they are not necessary in this example.)

In some locales, however, times are often expressed differently when presented to users. For example, in the United States, it is still
common to use the 12-hour clock with an am/pm indicator, as in "2pm". In France, it is common to separate the hours from the
minutes using an "h" character, as in "14h00".

Similar issues exist with dates, with the added complication that even the order of the components is not always consistent — for
example, in Cyprus the first of February 2003 would typically be written "1/2/03", while that same date in Japan would typically be
written as "2003年02月01日" — and even with numbers, where locales differ, for example, in what punctuation is used as the decimal
separator and the thousands separator.

It is therefore important to distinguish the time, date, and number formats used in HTML and in form submissions, which are always
the formats defined in this specification (and based on the well-established ISO 8601 standard for computer-readable date and time
formats), from the time, date, and number formats presented to the user by the browser and accepted as input from the user by the
browser.

The format used "on the wire", i.e., in HTML markup and in form submissions, is intended to be computer-readable and consistent
irrespective of the user's locale. Dates, for instance, are always written in the format "YYYY-MM-DD", as in "2003-02-01". While some
users might see this format, others might see it as "01.02.2003" or "February 1, 2003".

The time, date, or number given by the page in the wire format is then translated to the user's preferred presentation (based on user
preferences or on the locale of the page itself), before being displayed to the user. Similarly, after the user inputs a time, date, or
number using their preferred format, the user agent converts it back to the wire format before putting it in the DOM or submitting it.

This allows scripts in pages and on servers to process times, dates, and numbers in a consistent manner without needing to support
dozens of different formats, while still supporting the users' needs.

Mostly for historical reasons, elements in this section fall into several overlapping (but subtly different) categories in addition to the
usual ones like flow contentp149, phrasing contentp150, and interactive contentp150.

A number of the elements are form-associated elements, which means they can have a form ownerp598.

⇒ buttonp566, fieldsetp594, inputp520, objectp402, outputp584, selectp568, textareap579, imgp346, form-associated custom
elementsp760

The form-associated elementsp513 fall into several subcategories:

Listed elements
Denotes elements that are listed in the form.elementsp516 and fieldset.elementsp595 APIs. These elements also have a formp598

content attribute, and a matching formp599 IDL attribute, that allow authors to specify an explicit form ownerp598.

⇒ buttonp566, fieldsetp594, inputp520, objectp402, outputp584, selectp568, textareap579, form-associated custom
elementsp760

4.10.1.8 Date, time, and number formats §p51

3

See also the implementation notesp550 regarding localization of form controls.
Note

4.10.2 Categories §p51

3

513

Submittable elements
Denotes elements that can be used for constructing the entry listp632 when a formp514 element is submittedp629.

⇒ buttonp566, inputp520, selectp568, textareap579, form-associated custom elementsp760

Some submittable elementsp514 can be, depending on their attributes, buttons. The prose below defines when an element is a
button. Some buttons are specifically submit buttons.

Resettable elements
Denotes elements that can be affected when a formp514 element is resetp637.

⇒ inputp520, outputp584, selectp568, textareap579, form-associated custom elementsp760

Autocapitalize-and-autocorrect-inheriting elements
Denotes elements that inherit the autocapitalizep859 and autocorrectp860 attributes from their form ownerp598.

⇒ buttonp566, fieldsetp594, inputp520, outputp584, selectp568, textareap579

Some elements, not all of them form-associatedp513, are categorized as labelable elements. These are elements that can be
associated with a labelp518 element.

⇒ buttonp566, inputp520 (if the typep523 attribute is not in the Hiddenp527 state), meterp589, outputp584, progressp587,
selectp568, textareap579, form-associated custom elementsp760

Categoriesp146:
Flow contentp149.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149, but with no formp514 element descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

accept-charsetp515 — Character encodings to use for form submissionp628

actionp602 — URL to use for form submissionp628

autocompletep515 — Default setting for autofill feature for controls in the form
enctypep603 — Entry listp632 encoding type to use for form submissionp628

methodp602 — Variant to use for form submissionp628

namep515 — Name of form to use in the document.formsp137 API
novalidatep603 — Bypass form control validation for form submissionp628

targetp603 — Navigablep989 for form submissionp628

relp515

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window,
LegacyOverrideBuiltIns,
LegacyUnenumerableNamedProperties]

interface HTMLFormElement : HTMLElement {
[HTMLConstructor] constructor();

IDL

4.10.3 The form element §p51

4

✔ MDN

✔ MDN

514

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/html-aria/#el-form
https://w3c.github.io/html-aam/#el-form
https://webidl.spec.whatwg.org/#LegacyOverrideBuiltIns
https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties

[CEReactions] attribute DOMString acceptCharset;
[CEReactions] attribute USVString action;
[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute DOMString enctype;
[CEReactions] attribute DOMString encoding;
[CEReactions] attribute DOMString method;
[CEReactions] attribute DOMString name;
[CEReactions] attribute boolean noValidate;
[CEReactions] attribute DOMString target;
[CEReactions] attribute DOMString rel;
[SameObject, PutForwards=value] readonly attribute DOMTokenList relList;

[SameObject] readonly attribute HTMLFormControlsCollection elements;
readonly attribute unsigned long length;
getter Element (unsigned long index);
getter (RadioNodeList or Element) (DOMString name);

undefined submit();
undefined requestSubmit(optional HTMLElement? submitter = null);
[CEReactions] undefined reset();
boolean checkValidity();
boolean reportValidity();

};

The formp514 element representsp141 a hyperlinkp302 that can be manipulated through a collection of form-associated elementsp513,
some of which can represent editable values that can be submitted to a server for processing.

The accept-charset attribute gives the character encodings that are to be used for the submission. If specified, the value must be an
ASCII case-insensitive match for "UTF-8". [ENCODING]p1478

The name attribute represents the formp514 's name within the formsp137 collection. The value must not be the empty string, and the
value must be unique amongst the formp514 elements in the formsp137 collection that it is in, if any.

The autocomplete attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

on on Form controls will have their autofill field namep610 set to "onp606" by default.
off off Form controls will have their autofill field namep610 set to "offp606" by default.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the onp515 state.

The actionp602, enctypep603, methodp602, novalidatep603, and targetp603 attributes are attributes for form submissionp602.

The rel attribute on formp514 elements controls what kinds of links the elements create. The attribute's value must be a unordered set
of unique space-separated tokensp95. The allowed keywords and their meaningsp314 are defined in an earlier section.

relp515 's supported tokens are the keywords defined in HTML link typesp314 which are allowed on formp514 elements, impact the
processing model, and are supported by the user agent. The possible supported tokens are noreferrerp325, noopenerp325, and
openerp325. relp515 's supported tokens must only include the tokens from this list that the user agent implements the processing model
for.

form.elementsp516

Returns an HTMLFormControlsCollectionp112 of the form controls in the form (excluding image buttons for historical reasons).

form.lengthp516

Returns the number of form controls in the form (excluding image buttons for historical reasons).

form[index]
Returns the indexth element in the form (excluding image buttons for historical reasons).

For web developers (non-normative)

515

https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens
https://dom.spec.whatwg.org/#concept-supported-tokens

The autocomplete IDL attribute must reflectp104 the content attribute of the same name, limited to only known valuesp105.

The name and rel IDL attributes must reflectp104 the content attribute of the same name.

The acceptCharset IDL attribute must reflectp104 the accept-charsetp515 content attribute.

The relList IDL attribute must reflectp104 the relp515 content attribute.

The elements IDL attribute must return an HTMLFormControlsCollectionp112 rooted at the formp514 element's root, whose filter
matches listed elementsp513 whose form ownerp598 is the formp514 element, with the exception of inputp520 elements whose typep523

attribute is in the Image Buttonp547 state, which must, for historical reasons, be excluded from this particular collection.

The length IDL attribute must return the number of nodes represented by the elementsp516 collection.

The supported property indices at any instant are the indices supported by the object returned by the elementsp516 attribute at that
instant.

To determine the value of an indexed property for a formp514 element, the user agent must return the value returned by the item
method on the elementsp516 collection, when invoked with the given index as its argument.

Each formp514 element has a mapping of names to elements called the past names map. It is used to persist names of controls even
when they change names.

The supported property names consist of the names obtained from the following algorithm, in the order obtained from this algorithm:

1. Let sourced names be an initially empty ordered list of tuples consisting of a string, an element, a source, where the source
is either id, name, or past, and, if the source is past, an age.

2. For each listed elementp513 candidate whose form ownerp598 is the formp514 element, with the exception of any inputp520

elements whose typep523 attribute is in the Image Buttonp547 state:

1. If candidate has an idp154 attribute, add an entry to sourced names with that idp154 attribute's value as the string,
candidate as the element, and id as the source.

form[name]
Returns the form control (or, if there are several, a RadioNodeListp112 of the form controls) in the form with the given ID or
namep599 (excluding image buttons for historical reasons); or, if there are none, returns the imgp346 element with the given ID.
Once an element has been referenced using a particular name, that name will continue being available as a way to reference
that element in this method, even if the element's actual ID or namep599 changes, for as long as the element remains in the tree.
If there are multiple matching items, then a RadioNodeListp112 object containing all those elements is returned.

form.submitp517()
Submits the form, bypassing interactive constraint validationp624 and without firing a submitp1472 event.

form.requestSubmitp517([submitter])
Requests to submit the form. Unlike submit()p517, this method includes interactive constraint validationp624 and firing a
submitp1472 event, either of which can cancel submission.
The submitter argument can be used to point to a specific submit buttonp514, whose formactionp602, formenctypep603,
formmethodp602, formnovalidatep603, and formtargetp603 attributes can impact submission. Additionally, the submitter will be
included when constructing the entry listp632 for submission; normally, buttons are excluded.

form.resetp517()
Resets the form.

form.checkValidityp518()
Returns true if the form's controls are all valid; otherwise, returns false.

form.reportValidityp518()
Returns true if the form's controls are all valid; otherwise, returns false and informs the user.

✔ MDN

✔ MDN

516

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#represented-by-the-collection
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-an-indexed-property
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://webidl.spec.whatwg.org/#dfn-supported-property-names

2. If candidate has a namep599 attribute, add an entry to sourced names with that namep599 attribute's value as the
string, candidate as the element, and name as the source.

3. For each imgp346 element candidate whose form ownerp598 is the formp514 element:

1. If candidate has an idp154 attribute, add an entry to sourced names with that idp154 attribute's value as the string,
candidate as the element, and id as the source.

2. If candidate has a namep1427 attribute, add an entry to sourced names with that namep1427 attribute's value as the
string, candidate as the element, and name as the source.

4. For each entry past entry in the past names mapp516, add an entry to sourced names with the past entry's name as the
string, past entry's element as the element, past as the source, and the length of time past entry has been in the past names
mapp516 as the age.

5. Sort sourced names by tree order of the element entry of each tuple, sorting entries with the same element by putting
entries whose source is id first, then entries whose source is name, and finally entries whose source is past, and sorting
entries with the same element and source by their age, oldest first.

6. Remove any entries in sourced names that have the empty string as their name.

7. Remove any entries in sourced names that have the same name as an earlier entry in the map.

8. Return the list of names from sourced names, maintaining their relative order.

To determine the value of a named property name for a formp514 element, the user agent must run the following steps:

1. Let candidates be a livep47 RadioNodeListp112 object containing all the listed elementsp513, whose form ownerp598 is the
formp514 element, that have either an idp154 attribute or a namep599 attribute equal to name, with the exception of inputp520

elements whose typep523 attribute is in the Image Buttonp547 state, in tree order.

2. If candidates is empty, let candidates be a livep47 RadioNodeListp112 object containing all the imgp346 elements, whose form
ownerp598 is the formp514 element, that have either an idp154 attribute or a namep1427 attribute equal to name, in tree order.

3. If candidates is empty, name is the name of one of the entries in the formp514 element's past names mapp516: return the
object associated with name in that map.

4. If candidates contains more than one node, return candidates.

5. Otherwise, candidates contains exactly one node. Add a mapping from name to the node in candidates in the formp514

element's past names mapp516, replacing the previous entry with the same name, if any.

6. Return the node in candidates.

If an element listed in a formp514 element's past names mapp516 changes form ownerp598, then its entries must be removed from that
map.

The submit() method steps are to submitp629 this from this, with submitted from submit() methodp629 set to true.

The requestSubmit(submitter) method, when invoked, must run the following steps:

1. If submitter is not null, then:

1. If submitter is not a submit buttonp514, then throw a TypeError.

2. If submitter's form ownerp598 is not this formp514 element, then throw a "NotFoundError" DOMException.

2. Otherwise, set submitter to this formp514 element.

3. Submitp629 this formp514 element, from submitter.

The reset() method, when invoked, must run the following steps:

1. If the formp514 element is marked as locked for resetp517, then return.

2. Mark the formp514 element as locked for reset.

3. Resetp637 the formp514 element.
517

https://dom.spec.whatwg.org/#concept-tree-order
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-a-named-property
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://webidl.spec.whatwg.org/#notfounderror
https://webidl.spec.whatwg.org/#dfn-DOMException

4. Unmark the formp514 element as locked for resetp517.

If the checkValidity() method is invoked, the user agent must statically validate the constraintsp623 of the formp514 element, and
return true if the constraint validation return a positive result, and false if it returned a negative result.

If the reportValidity() method is invoked, the user agent must interactively validate the constraintsp624 of the formp514 element, and
return true if the constraint validation return a positive result, and false if it returned a negative result.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150, but with no descendant labelable elementsp514 unless it is the element's labeled controlp518, and no
descendant labelp518 elements.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

forp519 — Associate the label with form control

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLLabelElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString htmlFor;
readonly attribute HTMLElement? control;

};

The labelp518 element representsp141 a caption in a user interface. The caption can be associated with a specific form control, known as
the labelp518 element's labeled control, either using the forp519 attribute, or by putting the form control inside the labelp518 element
itself.

Except where otherwise specified by the following rules, a labelp518 element has no labeled controlp518.

This example shows two search forms:

<form action="https://www.google.com/search" method="get">
<label>Google: <input type="search" name="q"></label> <input type="submit" value="Search...">

</form>
<form action="https://www.bing.com/search" method="get">
<label>Bing: <input type="search" name="q"></label> <input type="submit" value="Search...">

</form>

Example

IDL

4.10.4 The label element §p51

8

✔ MDN

✔ MDN

✔ MDN

518

https://w3c.github.io/html-aria/#el-label
https://w3c.github.io/html-aam/#el-label

The for attribute may be specified to indicate a form control with which the caption is to be associated. If the attribute is specified, the
attribute's value must be the ID of a labelable elementp514 in the same tree as the labelp518 element. If the attribute is specified and
there is an element in the tree whose ID is equal to the value of the forp519 attribute, and the first such element in tree order is a
labelable elementp514, then that element is the labelp518 element's labeled controlp518.

If the forp519 attribute is not specified, but the labelp518 element has a labelable elementp514 descendant, then the first such
descendant in tree order is the labelp518 element's labeled controlp518.

The labelp518 element's exact default presentation and behavior, in particular what its activation behavior might be, if anything,
should match the platform's label behavior. The activation behavior of a labelp518 element for events targeted at interactive
contentp150 descendants of a labelp518 element, and any descendants of those interactive contentp150 descendants, must be to do
nothing.

The htmlFor IDL attribute must reflectp104 the forp519 content attribute.

The control IDL attribute must return the labelp518 element's labeled controlp518, if any, or null if there isn't one.

The form IDL attribute must run the following steps:

1. If the labelp518 element has no labeled controlp518, then return null.

2. If the labelp518 element's labeled controlp518 is not a form-associated elementp513, then return null.

3. Return the labelp518 element's labeled controlp518 's form ownerp598 (which can still be null).

Form-associated custom elementsp760 are labelable elementsp514, so for user agents where the labelp518 element's activation
behavior impacts the labeled controlp518, both built-in and custom elements will be impacted.

Note

For example, on platforms where clicking a label activates the form control, clicking the labelp518 in the following snippet could
trigger the user agent to fire a click eventp1148 at the inputp520 element, as if the element itself had been triggered by the user:

<label><input type=checkbox name=lost> Lost</label>

Similarly, assuming my-checkbox was declared as a form-associated custom elementp760 (like in this examplep751), then the code

<label><my-checkbox name=lost></my-checkbox> Lost</label>

would have the same behavior, firing a click eventp1148 at the my-checkbox element.

On other platforms, the behavior in both cases might be just to focus the control, or to do nothing.

Example

The following example shows three form controls each with a label, two of which have small text showing the right format for users
to use.

<p><label>Full name: <input name=fn> <small>Format: First Last</small></label></p>
<p><label>Age: <input name=age type=number min=0></label></p>
<p><label>Post code: <input name=pc> <small>Format: AB12 3CD</small></label></p>

Example

label.controlp519

Returns the form control that is associated with this element.

label.formp519

Returns the form ownerp598 of the form control that is associated with this element.
Returns null if there isn't one.

For web developers (non-normative)

✔ MDN

519

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

Labelable elementsp514 and all inputp520 elements have a livep47 NodeList object associated with them that represents the list of
labelp518 elements, in tree order, whose labeled controlp518 is the element in question. The labels IDL attribute of labelable
elementsp514 that are not form-associated custom elementsp760, and the labelsp520 IDL attribute of inputp520 elements, on getting,
must return that NodeList object, and that same value must always be returned, unless this element is an inputp520 element whose
typep523 attribute is in the Hiddenp527 state, in which case it must instead return null.

Form-associated custom elementsp760 don't have a labelsp520 IDL attribute. Instead, their ElementInternalsp771 object has a labels
IDL attribute. On getting, it must throw a "NotSupportedError" DOMException if the target elementp772 is not a form-associated
custom elementp760. Otherwise, it must return that NodeList object, and that same value must always be returned.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
If the typep523 attribute is not in the Hiddenp527 state: Interactive contentp150.
If the typep523 attribute is not in the Hiddenp527 state: Listedp513, labelablep514, submittablep514, resettablep514, and autocapitalize-
and-autocorrect inheritingp514 form-associated elementp513.
If the typep523 attribute is in the Hiddenp527 state: Listedp513, submittablep514, resettablep514, and autocapitalize-and-autocorrect
inheritingp514 form-associated elementp513.
If the typep523 attribute is not in the Hiddenp527 state: Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Nothingp148.

The formp519 IDL attribute on the labelp518 element is different from the formp598 IDL attribute on listedp513 form-associated
elementsp513, and the labelp518 element does not have a formp598 content attribute.

Note

control.labelsp520

Returns a NodeList of all the labelp518 elements that the form control is associated with.

For web developers (non-normative)

This (non-conforming) example shows what happens to the NodeList and what labelsp520 returns when an inputp520 element has
its typep523 attribute changed.

<!doctype html>
<p><label><input></label></p>
<script>
const input = document.querySelector('input');
const labels = input.labels;
console.assert(labels.length === 1);

input.type = 'hidden';
console.assert(labels.length === 0); // the input is no longer the label's labeled control
console.assert(input.labels === null);

input.type = 'checkbox';
console.assert(labels.length === 1); // the input is once again the label's labeled control
console.assert(input.labels === labels); // same value as returned originally

</script>

Example

4.10.5 The input element §p52

0

✔ MDN

✔ MDN

✔ MDN

520

https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-nodelist
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#interface-nodelist

Tag omission in text/htmlp146:
No end tagp1262.

Content attributesp146:
Global attributesp154

acceptp544 — Hint for expected file type in file upload controlsp544

alphap541 — Allow the color's alpha component to be set
altp548 — Replacement text for use when images are not available
autocompletep604 — Hint for form autofill feature
checkedp525 — Whether the control is checked
colorspacep541 — The color space of the serialized color
dirnamep600 — Name of form control to use for sending the element's directionalityp160 in form submissionp628

disabledp601 — Whether the form control is disabled
formp598 — Associates the element with a formp514 element
formactionp602 — URL to use for form submissionp628

formenctypep603 — Entry listp632 encoding type to use for form submissionp628

formmethodp602 — Variant to use for form submissionp628

formnovalidatep603 — Bypass form control validation for form submissionp628

formtargetp603 — Navigablep989 for form submissionp628

heightp477 — Vertical dimension
listp557 — List of autocomplete options
maxp555 — Maximum value
maxlengthp551 — Maximum length of value
minp555 — Minimum value
minlengthp551 — Minimum length of value
multiplep553 — Whether to allow multiple values
namep599 — Name of the element to use for form submissionp628 and in the form.elementsp516 API
patternp554 — Pattern to be matched by the form control's value
placeholderp559 — User-visible label to be placed within the form control
popovertargetp894 — Targets a popover element to toggle, show, or hide
popovertargetactionp894 — Indicates whether a targeted popover element is to be toggled, shown, or hidden
readonlyp551 — Whether to allow the value to be edited by the user
requiredp552 — Whether the control is required for form submissionp628

sizep551 — Size of the control
srcp547 — Address of the resource
stepp556 — Granularity to be matched by the form control's value
typep523 — Type of form control
valuep525 — Value of the form control
widthp477 — Horizontal dimension
Also, the titlep555 attribute has special semanticsp555 on this element: Description of pattern (when used with patternp554

attribute)

Accessibility considerationsp146:
typep523 attribute in the Hiddenp527 state: for authors; for implementers.
typep523 attribute in the Textp527 state: for authors; for implementers.
typep523 attribute in the Searchp527 state: for authors; for implementers.
typep523 attribute in the Telephonep528 state: for authors; for implementers.
typep523 attribute in the URLp529 state: for authors; for implementers.
typep523 attribute in the Emailp530 state: for authors; for implementers.
typep523 attribute in the Passwordp531 state: for authors; for implementers.
typep523 attribute in the Datep532 state: for authors; for implementers.
typep523 attribute in the Monthp533 state: for authors; for implementers.
typep523 attribute in the Weekp534 state: for authors; for implementers.
typep523 attribute in the Timep535 state: for authors; for implementers.
typep523 attribute in the Local Date and Timep536 state: for authors; for implementers.
typep523 attribute in the Numberp537 state: for authors; for implementers.
typep523 attribute in the Rangep538 state: for authors; for implementers.
typep523 attribute in the Colorp541 state: for authors; for implementers.
typep523 attribute in the Checkboxp542 state: for authors; for implementers.
typep523 attribute in the Radio Buttonp543 state: for authors; for implementers.
typep523 attribute in the File Uploadp544 state: for authors; for implementers.
typep523 attribute in the Submit Buttonp546 state: for authors; for implementers.

521

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://w3c.github.io/html-aria/#el-input-hidden
https://w3c.github.io/html-aam/#el-input-hidden
https://w3c.github.io/html-aria/#el-input-text
https://w3c.github.io/html-aam/#el-input-text
https://w3c.github.io/html-aria/#el-input-search
https://w3c.github.io/html-aam/#el-input-search
https://w3c.github.io/html-aria/#el-input-tel
https://w3c.github.io/html-aam/#el-input-tel
https://w3c.github.io/html-aria/#el-input-url
https://w3c.github.io/html-aam/#el-input-url
https://w3c.github.io/html-aria/#el-input-email
https://w3c.github.io/html-aam/#el-input-email
https://w3c.github.io/html-aria/#el-input-password
https://w3c.github.io/html-aam/#el-input-password
https://w3c.github.io/html-aria/#el-input-date
https://w3c.github.io/html-aam/#el-input-date
https://w3c.github.io/html-aria/#el-input-month
https://w3c.github.io/html-aam/#el-input-month
https://w3c.github.io/html-aria/#el-input-week
https://w3c.github.io/html-aam/#el-input-week
https://w3c.github.io/html-aria/#el-input-time
https://w3c.github.io/html-aam/#el-input-time
https://w3c.github.io/html-aria/#el-input-datetime-local
https://w3c.github.io/html-aam/#el-input-datetime-local
https://w3c.github.io/html-aria/#el-input-number
https://w3c.github.io/html-aam/#el-input-number
https://w3c.github.io/html-aria/#el-input-range
https://w3c.github.io/html-aam/#el-input-range
https://w3c.github.io/html-aria/#el-input-color
https://w3c.github.io/html-aam/#el-input-color
https://w3c.github.io/html-aria/#el-input-checkbox
https://w3c.github.io/html-aam/#el-input-checkbox
https://w3c.github.io/html-aria/#el-input-radio
https://w3c.github.io/html-aam/#el-input-radio
https://w3c.github.io/html-aria/#el-input-file
https://w3c.github.io/html-aam/#el-input-file
https://w3c.github.io/html-aria/#el-input-submit
https://w3c.github.io/html-aam/#el-input-submit

typep523 attribute in the Image Buttonp547 state: for authors; for implementers.
typep523 attribute in the Reset Buttonp549 state: for authors; for implementers.
typep523 attribute in the Buttonp550 state: for authors; for implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLInputElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString accept;
[CEReactions] attribute boolean alpha;
[CEReactions] attribute DOMString alt;
[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute boolean defaultChecked;
attribute boolean checked;
[CEReactions] attribute DOMString colorSpace;
[CEReactions] attribute DOMString dirName;
[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
attribute FileList? files;
[CEReactions] attribute USVString formAction;
[CEReactions] attribute DOMString formEnctype;
[CEReactions] attribute DOMString formMethod;
[CEReactions] attribute boolean formNoValidate;
[CEReactions] attribute DOMString formTarget;
[CEReactions] attribute unsigned long height;
attribute boolean indeterminate;
readonly attribute HTMLDataListElement? list;
[CEReactions] attribute DOMString max;
[CEReactions] attribute long maxLength;
[CEReactions] attribute DOMString min;
[CEReactions] attribute long minLength;
[CEReactions] attribute boolean multiple;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString pattern;
[CEReactions] attribute DOMString placeholder;
[CEReactions] attribute boolean readOnly;
[CEReactions] attribute boolean required;
[CEReactions] attribute unsigned long size;
[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString step;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString defaultValue;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString value;
attribute object? valueAsDate;
attribute unrestricted double valueAsNumber;
[CEReactions] attribute unsigned long width;

undefined stepUp(optional long n = 1);
undefined stepDown(optional long n = 1);

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList? labels;

IDL

522

https://w3c.github.io/html-aria/#el-input-image
https://w3c.github.io/html-aam/#el-input-image
https://w3c.github.io/html-aria/#el-input-reset
https://w3c.github.io/html-aam/#el-input-reset
https://w3c.github.io/html-aria/#el-input-button
https://w3c.github.io/html-aam/#el-input-button
https://w3c.github.io/FileAPI/#filelist-section
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#idl-object
https://dom.spec.whatwg.org/#interface-nodelist

undefined select();
attribute unsigned long? selectionStart;
attribute unsigned long? selectionEnd;
attribute DOMString? selectionDirection;
undefined setRangeText(DOMString replacement);
undefined setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional

SelectionMode selectionMode = "preserve");
undefined setSelectionRange(unsigned long start, unsigned long end, optional DOMString

direction);

undefined showPicker();

// also has obsolete members
};
HTMLInputElement includes PopoverInvokerElement;

The inputp520 element representsp141 a typed data field, usually with a form control to allow the user to edit the data.

The type attribute controls the data type (and associated control) of the element. It is an enumerated attributep76 with the following
keywords and states:

Keyword State Data type Control type

hidden Hiddenp527 An arbitrary string n/a
text Textp527 Text with no line breaks A text control
search Searchp527 Text with no line breaks Search control
tel Telephonep528 Text with no line breaks A text control
url URLp529 An absolute URL A text control
email Emailp530 An email address or list of email addresses A text control
password Passwordp531 Text with no line breaks (sensitive information) A text control that

obscures data entry
date Datep532 A date (year, month, day) with no time zone A date control
month Monthp533 A date consisting of a year and a month with no time zone A month control
week Weekp534 A date consisting of a week-year number and a week number with no time zone A week control
time Timep535 A time (hour, minute, seconds, fractional seconds) with no time zone A time control
datetime-
local

Local Date and
Timep536

A date and time (year, month, day, hour, minute, second, fraction of a second) with no time zone A date and time control

number Numberp537 A numerical value A text control or spinner
control

range Rangep538 A numerical value, with the extra semantic that the exact value is not important A slider control or similar
color Colorp541 An sRGB color with 8-bit red, green, and blue components A color picker
checkbox Checkboxp542 A set of zero or more values from a predefined list A checkbox
radio Radio Buttonp543 An enumerated value A radio button
file File Uploadp544 Zero or more files each with a MIME type and optionally a filename A label and a button
submit Submit

Buttonp546
An enumerated value, with the extra semantic that it must be the last value selected and initiates
form submission

A button

image Image
Buttonp547

A coordinate, relative to a particular image's size, with the extra semantic that it must be the last
value selected and initiates form submission

Either a clickable image, or
a button

reset Reset Buttonp549 n/a A button
button Buttonp550 n/a A button

The attribute's missing value defaultp76 and invalid value defaultp76 are both the Textp527 state.

Which of the acceptp544, alphap541, altp548, autocompletep604, checkedp525, colorspacep541, dirnamep600, formactionp602,
formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551, minp555,
minlengthp551, multiplep553, patternp554, placeholderp559, readonlyp551, requiredp552, sizep551, srcp547, stepp556, and widthp477

content attributes, the checkedp562, filesp562, valueAsDatep562, valueAsNumberp562, and listp563 IDL attributes, the select()p619

method, the selectionStartp619, selectionEndp620, and selectionDirectionp620, IDL attributes, the setRangeText()p621 and
setSelectionRange()p620 methods, the stepUp()p562 and stepDown()p562 methods, and the input and changep1471 events apply to an
inputp520 element depends on the state of its typep523 attribute. The subsections that define each type also clearly define in normative

523

https://mimesniff.spec.whatwg.org/#mime-type
https://w3c.github.io/uievents/#event-type-input

"bookkeeping" sections which of these feature apply, and which do not apply, to each type. The behavior of these features depends
on whether they apply or not, as defined in their various sections (q.v. for content attributesp550, for APIsp560, for eventsp564).

The following table is non-normative and summarizes which of those content attributes, IDL attributes, methods, and events applyp523

to each state:

Hiddenp527 Textp527,
Searchp527

Telephonep528,
URLp529

Emailp530 Passwordp531 Datep532,
Monthp533,
Weekp534,
Timep535

Local
Date
and

Timep536

Numberp537 Rangep538 Colorp541 Checkboxp542,
Radio

Buttonp543
Upload

Content attributes
acceptp544 · · · · · · · · · · ·
alphap541 · · · · · · · · · Yes ·
altp548 · · · · · · · · · · ·
autocompletep604 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ·
checkedp525 · · · · · · · · · · Yes
colorspacep541 · · · · · · · · · Yes ·
dirnamep600 Yes Yes Yes Yes Yes · · · · · ·
formactionp602 · · · · · · · · · · ·
formenctypep603 · · · · · · · · · · ·
formmethodp602 · · · · · · · · · · ·
formnovalidatep603 · · · · · · · · · · ·
formtargetp603 · · · · · · · · · · ·
heightp477 · · · · · · · · · · ·
listp557 · Yes Yes Yes · Yes Yes Yes Yes Yes ·
maxp555 · · · · · Yes Yes Yes Yes · ·
maxlengthp551 · Yes Yes Yes Yes · · · · · ·
minp555 · · · · · Yes Yes Yes Yes · ·
minlengthp551 · Yes Yes Yes Yes · · · · · ·
multiplep553 · · · Yes · · · · · · ·
patternp554 · Yes Yes Yes Yes · · · · · ·
placeholderp559 · Yes Yes Yes Yes · · Yes · · ·
popovertargetp894 · · · · · · · · · · ·
popovertargetactionp894 · · · · · · · · · · ·
readonlyp551 · Yes Yes Yes Yes Yes Yes Yes · · ·
requiredp552 · Yes Yes Yes Yes Yes Yes Yes · · Yes
sizep551 · Yes Yes Yes Yes · · · · · ·
srcp547 · · · · · · · · · · ·
stepp556 · · · · · Yes Yes Yes Yes · ·
widthp477 · · · · · · · · · · ·

IDL attributes and methods
checkedp562 · · · · · · · · · · Yes
filesp562 · · · · · · · · · · ·
valuep561 defaultp561 valuep561 valuep561 valuep561 valuep561 valuep561 valuep561 valuep561 valuep561 valuep561 default/onp561 filename
valueAsDatep562 · · · · · Yes · · · · ·
valueAsNumberp562 · · · · · Yes Yes Yes Yes · ·
listp563 · Yes Yes Yes · Yes Yes Yes Yes Yes ·
select()p619 · Yes Yes Yes† Yes Yes† Yes† Yes† · Yes† ·
selectionStartp619 · Yes Yes · Yes · · · · · ·
selectionEndp620 · Yes Yes · Yes · · · · · ·
selectionDirectionp620 · Yes Yes · Yes · · · · · ·
setRangeText()p621 · Yes Yes · Yes · · · · · ·
setSelectionRange()p620 · Yes Yes · Yes · · · · · ·
stepDown()p562 · · · · · Yes Yes Yes Yes · ·
stepUp()p562 · · · · · Yes Yes Yes Yes · ·

Events
input event · Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

524

https://w3c.github.io/uievents/#event-type-input

Hiddenp527 Textp527,
Searchp527

Telephonep528,
URLp529

Emailp530 Passwordp531 Datep532,
Monthp533,
Weekp534,
Timep535

Local
Date
and

Timep536

Numberp537 Rangep538 Colorp541 Checkboxp542,
Radio

Buttonp543
Upload

changep1471 event · Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

† If the control has no selectable text, the select()p619 method results in a no-op, with no "InvalidStateError" DOMException.

Some states of the typep523 attribute define a value sanitization algorithm.

Each inputp520 element has a valuep597, which is exposed by the valuep561 IDL attribute. Some states define an algorithm to convert
a string to a number, an algorithm to convert a number to a string, an algorithm to convert a string to a Date object, and
an algorithm to convert a Date object to a string, which are used by maxp555, minp555, stepp556, valueAsDatep562,
valueAsNumberp562, and stepUp()p562.

An inputp520 element's dirty value flagp597 must be set to true whenever the user interacts with the control in a way that changes the
valuep597. (It is also set to true when the value is programmatically changed, as described in the definition of the valuep561 IDL
attribute.)

The value content attribute gives the default valuep597 of the inputp520 element. When the valuep525 content attribute is added, set, or
removed, if the control's dirty value flagp597 is false, the user agent must set the valuep597 of the element to the value of the valuep525

content attribute, if there is one, or the empty string otherwise, and then run the current value sanitization algorithmp525, if one is
defined.

Each inputp520 element has a checkednessp597, which is exposed by the checkedp562 IDL attribute.

Each inputp520 element has a boolean dirty checkedness flag. When it is true, the element is said to have a dirty checkedness.
The dirty checkedness flagp525 must be initially set to false when the element is created, and must be set to true whenever the user
interacts with the control in a way that changes the checkednessp597.

The checked content attribute is a boolean attributep75 that gives the default checkednessp597 of the inputp520 element. When the
checkedp525 content attribute is added, if the control does not have dirty checkednessp525, the user agent must set the checkednessp597

of the element to true; when the checkedp525 content attribute is removed, if the control does not have dirty checkednessp525, the user
agent must set the checkednessp597 of the element to false.

The reset algorithmp637 for inputp520 elements is to set its user validityp597, dirty value flagp597, and dirty checkedness flagp525 back to
false, set the valuep597 of the element to the value of the valuep525 content attribute, if there is one, or the empty string otherwise, set
the checkednessp597 of the element to true if the element has a checkedp525 content attribute and false if it does not, empty the list of
selected filesp544, and then invoke the value sanitization algorithmp525, if the typep523 attribute's current state defines one.

Each inputp520 element can be mutablep597. Except where otherwise specified, an inputp520 element is always mutablep597. Similarly,
except where otherwise specified, the user agent should not allow the user to modify the element's valuep597 or checkednessp597.

When an inputp520 element is disabledp601, it is not mutablep597.

The cloning steps for inputp520 elements must propagate the valuep597, dirty value flagp597, checkednessp597, and dirty checkedness
flagp525 from the node being cloned to the copy.

The activation behavior for inputp520 elements element, given event, are these steps:

1. If element is not mutablep597 and is not in the Checkboxp542 state and is not in the Radiop543 state, then return.

2. Run element's input activation behavior, if any, and do nothing otherwise.

3. Run the popover target attribute activation behaviorp895 given element and event's target.

The readonlyp551 attribute can also in some cases (e.g. for the Datep532 state, but not the Checkboxp542 state) stop an inputp520

element from being mutablep597.

Note

Recall that an element's activation behavior runs for both user-initiated activations and for synthetic activations (e.g., via
el.click()). User agents might also have behaviors for a given control — not specified here — that are triggered only by true

Note

✔ MDN

525

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-event-target
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

The legacy-pre-activation behavior for inputp520 elements are these steps:

1. If this element's typep523 attribute is in the Checkbox statep542, then set this element's checkednessp597 to its opposite value
(i.e. true if it is false, false if it is true) and set this element's indeterminatep526 IDL attribute to false.

2. If this element's typep523 attribute is in the Radio Button statep543, then get a reference to the element in this element's radio
button groupp543 that has its checkednessp597 set to true, if any, and then set this element's checkednessp597 to true.

The legacy-canceled-activation behavior for inputp520 elements are these steps:

1. If the element's typep523 attribute is in the Checkbox statep542, then set the element's checkednessp597 and the element's
indeterminatep526 IDL attribute back to the values they had before the legacy-pre-activation behavior was run.

2. If this element's typep523 attribute is in the Radio Button statep543, then if the element to which a reference was obtained in
the legacy-pre-activation behavior, if any, is still in what is now this element's radio button groupp543, if it still has one, and if
so, setting that element's checkednessp597 to true; or else, if there was no such element, or that element is no longer in this
element's radio button groupp543, or if this element no longer has a radio button groupp543, setting this element's
checkednessp597 to false.

When an inputp520 element is first created, the element's rendering and behavior must be set to the rendering and behavior defined
for the typep523 attribute's state, and the value sanitization algorithmp525, if one is defined for the typep523 attribute's state, must be
invoked.

When an inputp520 element's typep523 attribute changes state, the user agent must run the following steps:

1. If the previous state of the element's typep523 attribute put the valuep561 IDL attribute in the valuep561 mode, and the
element's valuep597 is not the empty string, and the new state of the element's typep523 attribute puts the valuep561 IDL
attribute in either the defaultp561 mode or the default/onp561 mode, then set the element's valuep525 content attribute to the
element's valuep597.

2. Otherwise, if the previous state of the element's typep523 attribute put the valuep561 IDL attribute in any mode other than the
valuep561 mode, and the new state of the element's typep523 attribute puts the valuep561 IDL attribute in the valuep561 mode,
then set the valuep597 of the element to the value of the valuep525 content attribute, if there is one, or the empty string
otherwise, and then set the control's dirty value flagp597 to false.

3. Otherwise, if the previous state of the element's typep523 attribute put the valuep561 IDL attribute in any mode other than the
filenamep561 mode, and the new state of the element's typep523 attribute puts the valuep561 IDL attribute in the filenamep561

mode, then set the valuep597 of the element to the empty string.

4. Update the element's rendering and behavior to the new state's.

5. Signal a type change for the element. (The Radio Buttonp543 state uses this, in particular.)

6. Invoke the value sanitization algorithmp525, if one is defined for the typep523 attribute's new state.

7. Let previouslySelectable be true if setRangeText()p621 previously appliedp523 to the element, and false otherwise.

8. Let nowSelectable be true if setRangeText()p621 now appliesp523 to the element, and false otherwise.

9. If previouslySelectable is false and nowSelectable is true, set the element's text entry cursor positionp618 to the beginning of
the text control, and set its selection directionp619 to "none".

The namep599 attribute represents the element's name. The dirnamep600 attribute controls how the element's directionalityp160 is
submitted. The disabledp601 attribute is used to make the control non-interactive and to prevent its value from being submitted. The
formp598 attribute is used to explicitly associate the inputp520 element with its form ownerp598. The autocompletep604 attribute controls
how the user agent provides autofill behavior.

The indeterminate IDL attribute must initially be set to false. On getting, it must return the last value it was set to. On setting, it must
be set to the new value. It has no effect except for changing the appearance of checkboxp542 controls.

user-initiated activations. A common choice is to show the picker, if applicablep564, for the control. In contrast, the input activation
behaviorp525 only shows pickers for the special historical cases of the File Uploadp544 and Colorp541 states.

✔ MDN

✔ MDN

526

https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-canceled-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-legacy-pre-activation-behavior

The accept, alpha, alt, max, min, multiple, pattern, placeholder, required, size, src, and step IDL attributes must reflectp104 the
respective content attributes of the same name. The dirName IDL attribute must reflectp104 the dirnamep600 content attribute. The
readOnly IDL attribute must reflectp104 the readonlyp551 content attribute. The defaultChecked IDL attribute must reflectp104 the
checkedp525 content attribute. The defaultValue IDL attribute must reflectp104 the valuep525 content attribute.

The colorSpace IDL attribute must reflectp104 the colorspacep541 content attribute, limited to only known valuesp105. The type IDL
attribute must reflectp104 the respective content attribute of the same name, limited to only known valuesp105. The maxLength IDL
attribute must reflectp104 the maxlengthp551 content attribute, limited to only non-negative numbersp106. The minLength IDL attribute
must reflectp104 the minlengthp551 content attribute, limited to only non-negative numbersp106.

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if an image is being
renderedp1388; or else the natural width and height of the image, in CSS pixels, if an image is availablep548 but not being renderedp1388;
or else 0, if no image is availablep548. When the inputp520 element's typep523 attribute is not in the Image Buttonp547 state, then no
image is availablep548. [CSS]p1476

On setting, they must act as if they reflectedp104 the respective content attributes of the same name.

The willValidatep625, validityp625, and validationMessagep627 IDL attributes, and the checkValidity()p627, reportValidity()p627,
and setCustomValidity()p625 methods, are part of the constraint validation APIp624. The labelsp520 IDL attribute provides a list of the
element's labelp518s. The select()p619, selectionStartp619, selectionEndp620, selectionDirectionp620, setRangeText()p621, and
setSelectionRange()p620 methods and IDL attributes expose the element's text selection. The disabledp602, formp599, and namep600 IDL
attributes are part of the element's forms API.

When an inputp520 element's typep523 attribute is in the Hiddenp527 state, the rules in this section apply.

The inputp520 element representsp141 a value that is not intended to be examined or manipulated by the user.

Constraint validation: If an inputp520 element's typep523 attribute is in the Hiddenp527 state, it is barred from constraint validationp622.

If the namep599 attribute is present and has a value that is an ASCII case-insensitive match for "_charset_p599", then the element's
valuep525 attribute must be omitted.

Bookkeeping details

▪The autocompletep604 and dirnamep600 content attributes applyp523 to this element.
▪The valuep561 IDL attribute appliesp523 to this element and is in mode defaultp561.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551, minp555, minlengthp551,
multiplep553, patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, readonlyp551, requiredp552, sizep551, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, listp563, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562,
and stepUp()p562 methods.

▪The input and changep1471 events do not applyp524.

When an inputp520 element's typep523 attribute is in the Textp527 state or the Searchp527 state, the rules in this section apply.

The inputp520 element representsp141 a one line plain text edit control for the element's valuep597.

If the element is mutablep597, its valuep597 should be editable by the user. User agents must not allow users to insert U+000A LINE
FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the element's valuep597.

4.10.5.1 States of the typep523 attribute §p52

7

4.10.5.1.1 Hidden state (type=hidden) §p52

7

4.10.5.1.2 Text (type=text) state and Search state (type=search) §p52

7

The difference between the Textp527 state and the Searchp527 state is primarily stylistic: on platforms where search controls are
distinguished from regular text controls, the Searchp527 state might result in an appearance consistent with the platform's search
controls rather than appearing like a regular text control.

Note

✔ MDN

✔ MDN

527

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-values/#px
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/uievents/#event-type-input

If the element is mutablep597, the user agent should allow the user to change the writing direction of the element, setting it either to a
left-to-right writing direction or a right-to-left writing direction. If the user does so, the user agent must then run the following steps:

1. Set the element's dirp160 attribute to "ltrp160" if the user selected a left-to-right writing direction, and "rtlp160" if the user
selected a right-to-left writing direction.

2. Queue an element taskp1125 on the user interaction task sourcep1134 given the element to fire an event named input at the
element, with the bubbles and composed attributes initialized to true.

The valuep525 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters.

The value sanitization algorithmp525 is as follows: Strip newlines from the valuep597.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, dirnamep600, listp557,
maxlengthp551, minlengthp551, patternp554, placeholderp559, readonlyp551, requiredp552, and sizep551 content attributes; listp563, selectionStartp619,
selectionEndp620, selectionDirectionp620, and valuep561 IDL attributes; select()p619, setRangeText()p621, and setSelectionRange()p620 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxp555, minp555, multiplep553, popovertargetp894,
popovertargetactionp894, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, valueAsDatep562, and valueAsNumberp562 IDL attributes;
stepDown()p562 and stepUp()p562 methods.

When an inputp520 element's typep523 attribute is in the Telephonep528 state, the rules in this section apply.

The inputp520 element representsp141 a control for editing a telephone number given in the element's valuep597.

If the element is mutablep597, its valuep597 should be editable by the user. User agents may change the spacing and, with care, the
punctuation of valuesp597 that the user enters. User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters into the element's valuep597.

The valuep525 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters.

The value sanitization algorithmp525 is as follows: Strip newlines from the valuep597.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, dirnamep600, listp557,
maxlengthp551, minlengthp551, patternp554, placeholderp559, readonlyp551, requiredp552, and sizep551 content attributes; listp563, selectionStartp619,
selectionEndp620, selectionDirectionp620, and valuep561 IDL attributes; select()p619, setRangeText()p621, and setSelectionRange()p620 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxp555, minp555, multiplep553, popovertargetp894,
popovertargetactionp894, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, valueAsDatep562, and valueAsNumberp562 IDL attributes;
stepDown()p562 and stepUp()p562 methods.

4.10.5.1.3 Telephone state (type=tel) §p52

8

Unlike the URLp529 and Emailp530 types, the Telephonep528 type does not enforce a particular syntax. This is intentional; in practice,
telephone number fields tend to be free-form fields, because there are a wide variety of valid phone numbers. Systems that need
to enforce a particular format are encouraged to use the patternp554 attribute or the setCustomValidity()p625 method to hook
into the client-side validation mechanism.

Note

✔ MDN

528

https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://infra.spec.whatwg.org/#strip-newlines
https://w3c.github.io/uievents/#event-type-input
https://infra.spec.whatwg.org/#strip-newlines
https://w3c.github.io/uievents/#event-type-input

When an inputp520 element's typep523 attribute is in the URLp529 state, the rules in this section apply.

The inputp520 element representsp141 a control for editing a single absolute URL given in the element's valuep597.

If the element is mutablep597, the user agent should allow the user to change the URL represented by its valuep597. User agents may
allow the user to set the valuep597 to a string that is not a valid absolute URL, but may also or instead automatically escape characters
entered by the user so that the valuep597 is always a valid absolute URL (even if that isn't the actual value seen and edited by the user
in the interface). User agents should allow the user to set the valuep597 to the empty string. User agents must not allow users to insert
U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the valuep597.

The valuep525 attribute, if specified and not empty, must have a value that is a valid URL potentially surrounded by spacesp96 that is
also an absolute URL.

The value sanitization algorithmp525 is as follows: Strip newlines from the valuep597, then strip leading and trailing ASCII
whitespace from the valuep597.

Constraint validation: While the valuep597 of the element is neither the empty string nor a valid absolute URL, the element is
suffering from a type mismatchp622.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, dirnamep600, listp557,
maxlengthp551, minlengthp551, patternp554, placeholderp559, readonlyp551, requiredp552, and sizep551 content attributes; listp563, selectionStartp619,
selectionEndp620, selectionDirectionp620, and valuep561 IDL attributes; select()p619, setRangeText()p621, and setSelectionRange()p620 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxp555, minp555, multiplep553, popovertargetp894,
popovertargetactionp894, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, valueAsDatep562, and valueAsNumberp562 IDL attributes;
stepDown()p562 and stepUp()p562 methods.

4.10.5.1.4 URL state (type=url) §p52

9

If a document contained the following markup:

<input type="url" name="location" list="urls">
<datalist id="urls">
<option label="MIME: Format of Internet Message Bodies" value="https://www.rfc-editor.org/rfc/

rfc2045">
<option label="HTML" value="https://html.spec.whatwg.org/">
<option label="DOM" value="https://dom.spec.whatwg.org/">
<option label="Fullscreen" value="https://fullscreen.spec.whatwg.org/">
<option label="Media Session" value="https://mediasession.spec.whatwg.org/">
<option label="The Single UNIX Specification, Version 3" value="http://www.unix.org/version3/">

</datalist>

...and the user had typed "spec.w", and the user agent had also found that the user had visited
https://url.spec.whatwg.org/#url-parsing and https://streams.spec.whatwg.org/ in the recent past, then the rendering
might look like this:

spec.w| ▼
https://html.spec.whatwg.org/
https://mediasession.spec.whatwg.org/
https://fullscreen.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://url.spec.whatwg.org/#url-parsing
https://streams.spec.whatwg.org/

HTML
Media Session

Fullscreen
DOM

Example

✔ MDN

529

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://w3c.github.io/uievents/#event-type-input

When an inputp520 element's typep523 attribute is in the Emailp530 state, the rules in this section apply.

How the Emailp530 state operates depends on whether the multiplep553 attribute is specified or not.

↪ When the multiplep553 attribute is not specified on the element
The inputp520 element representsp141 a control for editing an email address given in the element's valuep597.

If the element is mutablep597, the user agent should allow the user to change the email address represented by its valuep597.
User agents may allow the user to set the valuep597 to a string that is not a valid email addressp531. The user agent should act in
a manner consistent with expecting the user to provide a single email address. User agents should allow the user to set the
valuep597 to the empty string. User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN
(CR) characters into the valuep597. User agents may transform the valuep597 for display and editing; in particular, user agents
should convert punycode in the domain labels of the valuep597 to IDN in the display and vice versa.

Constraint validation: While the user interface is representing input that the user agent cannot convert to punycode, the
control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a single valid email addressp531.

The value sanitization algorithmp525 is as follows: Strip newlines from the valuep597, then strip leading and trailing ASCII
whitespace from the valuep597.

Constraint validation: While the valuep597 of the element is neither the empty string nor a single valid email addressp531, the
element is suffering from a type mismatchp622.

↪ When the multiplep553 attribute is specified on the element
The inputp520 element representsp141 a control for adding, removing, and editing the email addresses given in the element's
valuesp597.

If the element is mutablep597, the user agent should allow the user to add, remove, and edit the email addresses represented by
its valuesp597. User agents may allow the user to set any individual value in the list of valuesp597 to a string that is not a valid
email addressp531, but must not allow users to set any individual value to a string containing U+002C COMMA (,), U+000A LINE
FEED (LF), or U+000D CARRIAGE RETURN (CR) characters. User agents should allow the user to remove all the addresses in the
element's valuesp597. User agents may transform the valuesp597 for display and editing; in particular, user agents should convert
punycode in the domain labels of the valuep597 to IDN in the display and vice versa.

Constraint validation: While the user interface describes a situation where an individual value contains a U+002C COMMA (,)
or is representing input that the user agent cannot convert to punycode, the control is suffering from bad inputp623.

Whenever the user changes the element's valuesp597, the user agent must run the following steps:

1. Let latest values be a copy of the element's valuesp597.

2. Strip leading and trailing ASCII whitespace from each value in latest values.

3. Let the element's valuep597 be the result of concatenating all the values in latest values, separating each value from
the next by a single U+002C COMMA character (,), maintaining the list's order.

The valuep525 attribute, if specified, must have a value that is a valid email address listp531.

The first four URLs in this sample consist of the four URLs in the author-specified list that match the text the user has entered,
sorted in some implementation-defined manner (maybe by how frequently the user refers to those URLs). Note how the UA is using
the knowledge that the values are URLs to allow the user to omit the scheme part and perform intelligent matching on the domain
name.

The last two URLs (and probably many more, given the scrollbar's indications of more values being available) are the matches from
the user agent's session history data. This data is not made available to the page DOM. In this particular case, the UA has no titles
to provide for those values.

4.10.5.1.5 Email state (type=email) §p53

0

✔ MDN

530

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#strip-newlines
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace

The value sanitization algorithmp525 is as follows:

1. Split on commas the element's valuep597, strip leading and trailing ASCII whitespace from each resulting token, if any,
and let the element's valuesp597 be the (possibly empty) resulting list of (possibly empty) tokens, maintaining the
original order.

2. Let the element's valuep597 be the result of concatenating the element's valuesp597, separating each value from the
next by a single U+002C COMMA character (,), maintaining the list's order.

Constraint validation: While the valuep597 of the element is not a valid email address listp531, the element is suffering from a
type mismatchp622.

When the multiplep553 attribute is set or removed, the user agent must run the value sanitization algorithmp525.

A valid email address is a string that matches the email production of the following ABNF, the character set for which is Unicode.
This ABNF implements the extensions described in RFC 1123. [ABNF]p1475 [RFC5322]p1481 [RFC1034]p1481 [RFC1123]p1481

email = 1*(atext / ".") "@" label *("." label)
label = let-dig [[ldh-str] let-dig] ; limited to a length of 63 characters by RFC 1034
section 3.5
atext = < as defined in RFC 5322 section 3.2.3 >
let-dig = < as defined in RFC 1034 section 3.5 >
ldh-str = < as defined in RFC 1034 section 3.5 >

A valid email address list is a set of comma-separated tokensp95, where each token is itself a valid email addressp531. To obtain the
list of tokens from a valid email address listp531, an implementation must split the string on commas.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, dirnamep600, listp557,
maxlengthp551, minlengthp551, multiplep553, patternp554, placeholderp559, readonlyp551, requiredp552, and sizep551 content attributes; listp563 and valuep561

IDL attributes; select()p619 method.
▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxp555, minp555, popovertargetp894,
popovertargetactionp894, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; setRangeText()p621, setSelectionRange()p620, stepDown()p562 and
stepUp()p562 methods.

When an inputp520 element's typep523 attribute is in the Passwordp531 state, the rules in this section apply.

The inputp520 element representsp141 a one line plain text edit control for the element's valuep597. The user agent should obscure the
value so that people other than the user cannot see it.

If the element is mutablep597, its valuep597 should be editable by the user. User agents must not allow users to insert U+000A LINE
FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the valuep597.

This requirement is a willful violationp28 of RFC 5322, which defines a syntax for email addresses that is simultaneously too strict
(before the "@" character), too vague (after the "@" character), and too lax (allowing comments, whitespace characters, and
quoted strings in manners unfamiliar to most users) to be of practical use here.

Note

The following JavaScript- and Perl-compatible regular expression is an implementation of the above definition.

/^[a-zA-Z0-9.!#$%&'*+\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-
zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$/

Note

4.10.5.1.6 Password state (type=password) §p53

1

✔ MDN

531

https://infra.spec.whatwg.org/#split-on-commas
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://www.rfc-editor.org/rfc/rfc1034#section-3.5
https://www.rfc-editor.org/rfc/rfc1034#section-3.5
https://www.rfc-editor.org/rfc/rfc5322#section-3.2.3
https://www.rfc-editor.org/rfc/rfc1034#section-3.5
https://www.rfc-editor.org/rfc/rfc1034#section-3.5
https://infra.spec.whatwg.org/#split-on-commas
https://w3c.github.io/uievents/#event-type-input

The valuep525 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters.

The value sanitization algorithmp525 is as follows: Strip newlines from the valuep597.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, dirnamep600,
maxlengthp551, minlengthp551, patternp554, placeholderp559, readonlyp551, requiredp552, and sizep551 content attributes; selectionStartp619, selectionEndp620,
selectionDirectionp620, and valuep561 IDL attributes; select()p619, setRangeText()p621, and setSelectionRange()p620 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, minp555, multiplep553, popovertargetp894,
popovertargetactionp894, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, listp563, valueAsDatep562, and valueAsNumberp562 IDL
attributes; stepDown()p562 and stepUp()p562 methods.

When an inputp520 element's typep523 attribute is in the Datep532 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a specific datep83.

If the element is mutablep597, the user agent should allow the user to change the datep83 represented by its valuep597, as obtained by
parsing a datep83 from it. User agents must not allow the user to set the valuep597 to a non-empty string that is not a valid date
stringp83. If the user agent provides a user interface for selecting a datep83, then the valuep597 must be set to a valid date stringp83

representing the user's selection. User agents should allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid date stringp83, the
control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a valid date stringp83.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is not a valid date stringp83, then set it to the
empty string instead.

The minp555 attribute, if specified, must have a value that is a valid date stringp83. The maxp555 attribute, if specified, must have a value
that is a valid date stringp83.

The stepp556 attribute is expressed in days. The step scale factorp556 is 86,400,000 (which converts the days to milliseconds, as used in
the other algorithms). The default stepp556 is 1 day.

When the element is suffering from a step mismatchp623, the user agent may round the element's valuep597 to the nearest datep83 for
which the element would not suffer from a step mismatchp623.

The algorithm to convert a string to a numberp525, given a string input, is as follows: If parsing a datep83 from input results in
an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01
(the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the parsed datep83, ignoring leap
seconds.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return a valid date stringp83 that
represents the datep83 that, in UTC, is current input milliseconds after midnight UTC on the morning of 1970-01-01 (the time
represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date objectp525, given a string input, is as follows: If parsing a datep83 from input
results in an error, then return an error; otherwise, return a new Date objectp56 representing midnight UTC on the morning of the
parsed datep83.

4.10.5.1.7 Date state (type=date) §p53

2

See the introduction sectionp513 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp550 regarding localization of form controls.

Note

✔ MDN

532

https://infra.spec.whatwg.org/#strip-newlines
https://w3c.github.io/uievents/#event-type-input

The algorithm to convert a Date object to a stringp525, given a Date object input, is as follows: Return a valid date stringp83

that represents the datep83 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
readonlyp551, requiredp552, and stepp556 content attributes; listp563, valuep561, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619,
stepDown()p562, and stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, selectionStartp619, selectionEndp620, and selectionDirectionp620 IDL
attributes; setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Monthp533 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a specific monthp82.

If the element is mutablep597, the user agent should allow the user to change the monthp82 represented by its valuep597, as obtained by
parsing a monthp82 from it. User agents must not allow the user to set the valuep597 to a non-empty string that is not a valid month
stringp82. If the user agent provides a user interface for selecting a monthp82, then the valuep597 must be set to a valid month stringp82

representing the user's selection. User agents should allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid month stringp82, the
control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a valid month stringp82.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is not a valid month stringp82, then set it to the
empty string instead.

The minp555 attribute, if specified, must have a value that is a valid month stringp82. The maxp555 attribute, if specified, must have a
value that is a valid month stringp82.

The stepp556 attribute is expressed in months. The step scale factorp556 is 1 (there is no conversion needed as the algorithms use
months). The default stepp556 is 1 month.

When the element is suffering from a step mismatchp623, the user agent may round the element's valuep597 to the nearest monthp82 for
which the element would not suffer from a step mismatchp623.

The algorithm to convert a string to a numberp525, given a string input, is as follows: If parsing a monthp82 from input results

The Datep532 state (and other date- and time-related states described in subsequent sections) is not intended for the entry of
values for which a precise date and time relative to the contemporary calendar cannot be established. For example, it would be
inappropriate for the entry of times like "one millisecond after the big bang", "the early part of the Jurassic period", or "a winter
around 250 BCE".

For the input of dates before the introduction of the Gregorian calendar, authors are encouraged to not use the Datep532 state (and
the other date- and time-related states described in subsequent sections), as user agents are not required to support converting
dates and times from earlier periods to the Gregorian calendar, and asking users to do so manually puts an undue burden on users.
(This is complicated by the manner in which the Gregorian calendar was phased in, which occurred at different times in different
countries, ranging from partway through the 16th century all the way to early in the 20th.) Instead, authors are encouraged to
provide fine-grained input controls using the selectp568 element and inputp520 elements with the Numberp537 state.

Note

4.10.5.1.8 Month state (type=month) §p53

3

See the introduction sectionp513 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp550 regarding localization of form controls.

Note

✔ MDN

533

https://tc39.es/ecma262/#sec-date-objects
https://w3c.github.io/uievents/#event-type-input

in an error, then return an error; otherwise, return the number of months between January 1970 and the parsed monthp82.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return a valid month stringp82 that
represents the monthp82 that has input months between it and January 1970.

The algorithm to convert a string to a Date objectp525, given a string input, is as follows: If parsing a monthp82 from input
results in an error, then return an error; otherwise, return a new Date objectp56 representing midnight UTC on the morning of the first
day of the parsed monthp82.

The algorithm to convert a Date object to a stringp525, given a Date object input, is as follows: Return a valid month stringp82

that represents the monthp82 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
readonlyp551, requiredp552, and stepp556 content attributes; listp563, valuep561, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619,
stepDown()p562, and stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620, and
selectionDirectionp620 IDL attributes; setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Weekp534 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a specific weekp89.

If the element is mutablep597, the user agent should allow the user to change the weekp89 represented by its valuep597, as obtained by
parsing a weekp89 from it. User agents must not allow the user to set the valuep597 to a non-empty string that is not a valid week
stringp89. If the user agent provides a user interface for selecting a weekp89, then the valuep597 must be set to a valid week stringp89

representing the user's selection. User agents should allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid week stringp89, the
control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a valid week stringp89.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is not a valid week stringp89, then set it to the
empty string instead.

The minp555 attribute, if specified, must have a value that is a valid week stringp89. The maxp555 attribute, if specified, must have a value
that is a valid week stringp89.

The stepp556 attribute is expressed in weeks. The step scale factorp556 is 604,800,000 (which converts the weeks to milliseconds, as
used in the other algorithms). The default stepp556 is 1 week. The default step basep556 is −259,200,000 (the start of week 1970-W01).

When the element is suffering from a step mismatchp623, the user agent may round the element's valuep597 to the nearest weekp89 for
which the element would not suffer from a step mismatchp623.

The algorithm to convert a string to a numberp525, given a string input, is as follows: If parsing a week stringp89 from input
results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the Monday of the
parsed weekp89, ignoring leap seconds.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return a valid week stringp89 that

4.10.5.1.9 Week state (type=week) §p53

4

See the introduction sectionp513 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp550 regarding localization of form controls.

Note

MDN

534

https://tc39.es/ecma262/#sec-date-objects
https://w3c.github.io/uievents/#event-type-input

represents the weekp89 that, in UTC, is current input milliseconds after midnight UTC on the morning of 1970-01-01 (the time
represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date objectp525, given a string input, is as follows: If parsing a weekp89 from input
results in an error, then return an error; otherwise, return a new Date objectp56 representing midnight UTC on the morning of the
Monday of the parsed weekp89.

The algorithm to convert a Date object to a stringp525, given a Date object input, is as follows: Return a valid week stringp89

that represents the weekp89 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
readonlyp551, requiredp552, and stepp556 content attributes; listp563, valuep561, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619,
stepDown()p562, and stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620, and
selectionDirectionp620 IDL attributes; setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Timep535 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a specific timep84.

If the element is mutablep597, the user agent should allow the user to change the timep84 represented by its valuep597, as obtained by
parsing a timep85 from it. User agents must not allow the user to set the valuep597 to a non-empty string that is not a valid time
stringp84. If the user agent provides a user interface for selecting a timep84, then the valuep597 must be set to a valid time stringp84

representing the user's selection. User agents should allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid time stringp84, the
control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a valid time stringp84.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is not a valid time stringp84, then set it to the
empty string instead.

The form control has a periodic domainp555.

The minp555 attribute, if specified, must have a value that is a valid time stringp84. The maxp555 attribute, if specified, must have a value
that is a valid time stringp84.

The stepp556 attribute is expressed in seconds. The step scale factorp556 is 1000 (which converts the seconds to milliseconds, as used in
the other algorithms). The default stepp556 is 60 seconds.

When the element is suffering from a step mismatchp623, the user agent may round the element's valuep597 to the nearest timep84 for
which the element would not suffer from a step mismatchp623.

The algorithm to convert a string to a numberp525, given a string input, is as follows: If parsing a timep85 from input results in
an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight to the parsed timep84 on a day with
no time changes.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return a valid time stringp84 that
represents the timep84 that is input milliseconds after midnight on a day with no time changes.

4.10.5.1.10 Time state (type=time) §p53

5

See the introduction sectionp513 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp550 regarding localization of form controls.

Note

✔ MDN

535

https://tc39.es/ecma262/#sec-date-objects
https://w3c.github.io/uievents/#event-type-input

The algorithm to convert a string to a Date objectp525, given a string input, is as follows: If parsing a timep85 from input
results in an error, then return an error; otherwise, return a new Date objectp56 representing the parsed timep84 in UTC on 1970-01-01.

The algorithm to convert a Date object to a stringp525, given a Date object input, is as follows: Return a valid time stringp84

that represents the UTC timep84 component that is represented by input.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
readonlyp551, requiredp552, and stepp556 content attributes; listp563, valuep561, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619,
stepDown()p562, and stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620, and
selectionDirectionp620 IDL attributes; setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Local Date and Timep536 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a local date and timep85, with
no time-zone offset information.

If the element is mutablep597, the user agent should allow the user to change the date and timep85 represented by its valuep597, as
obtained by parsing a date and timep86 from it. User agents must not allow the user to set the valuep597 to a non-empty string that is
not a valid normalized local date and time stringp86. If the user agent provides a user interface for selecting a local date and timep85,
then the valuep597 must be set to a valid normalized local date and time stringp86 representing the user's selection. User agents should
allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid normalized local date
and time stringp86, the control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a valid local date and time stringp85.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is a valid local date and time stringp85, then set it
to a valid normalized local date and time stringp86 representing the same date and time; otherwise, set it to the empty string instead.

The minp555 attribute, if specified, must have a value that is a valid local date and time stringp85. The maxp555 attribute, if specified, must
have a value that is a valid local date and time stringp85.

The stepp556 attribute is expressed in seconds. The step scale factorp556 is 1000 (which converts the seconds to milliseconds, as used in
the other algorithms). The default stepp556 is 60 seconds.

When the element is suffering from a step mismatchp623, the user agent may round the element's valuep597 to the nearest local date
and timep85 for which the element would not suffer from a step mismatchp623.

The algorithm to convert a string to a numberp525, given a string input, is as follows: If parsing a date and timep86 from input
results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0") to the parsed local date and timep85, ignoring leap
seconds.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return a valid normalized local date
and time stringp86 that represents the date and time that is input milliseconds after midnight on the morning of 1970-01-01 (the time
represented by the value "1970-01-01T00:00:00.0").

4.10.5.1.11 Local Date and Time state (type=datetime-local) §p53

6

See the introduction sectionp513 for a discussion of the difference between the input format and submission format for date, time,
and number form controls, and the implementation notesp550 regarding localization of form controls.

Note

✔ MDN

536

https://tc39.es/ecma262/#sec-date-objects
https://w3c.github.io/uievents/#event-type-input

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
readonlyp551, requiredp552, and stepp556 content attributes; listp563, valuep561, and valueAsNumberp562 IDL attributes; select()p619, stepDown()p562, and
stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620,
selectionDirectionp620, and valueAsDatep562 IDL attributes; setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Numberp537 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a number.

If the element is mutablep597, the user agent should allow the user to change the number represented by its valuep597, as obtained from
applying the rules for parsing floating-point number valuesp78 to it. User agents must not allow the user to set the valuep597 to a non-
empty string that is not a valid floating-point numberp77. If the user agent provides a user interface for selecting a number, then the
valuep597 must be set to the best representation of the number representing the user's selection as a floating-point numberp78. User
agents should allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid floating-point
numberp77, the control is suffering from bad inputp623.

The valuep525 attribute, if specified and not empty, must have a value that is a valid floating-point numberp77.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is not a valid floating-point numberp77, then set it
to the empty string instead.

See the note on historical datesp533 in the Datep532 state section.
Note

The following example shows part of a flight booking application. The application uses an inputp520 element with its typep523

attribute set to datetime-localp536, and it then interprets the given date and time in the time zone of the selected airport.

<fieldset>
<legend>Destination</legend>
<p><label>Airport: <input type=text name=to list=airports></label></p>
<p><label>Departure time: <input type=datetime-local name=totime step=3600></label></p>

</fieldset>
<datalist id=airports>
<option value=ATL label="Atlanta">
<option value=MEM label="Memphis">
<option value=LHR label="London Heathrow">
<option value=LAX label="Los Angeles">
<option value=FRA label="Frankfurt">

</datalist>

Example

4.10.5.1.12 Number state (type=number) §p53

7

This specification does not define what user interface user agents are to use; user agent vendors are encouraged to consider what
would best serve their users' needs. For example, a user agent in Persian or Arabic markets might support Persian and Arabic
numeric input (converting it to the format required for submission as described above). Similarly, a user agent designed for
Romans might display the value in Roman numerals rather than in decimal; or (more realistically) a user agent designed for the
French market might display the value with apostrophes between thousands and commas before the decimals, and allow the user
to enter a value in that manner, internally converting it to the submission format described above.

Note

✔ MDN

537

https://w3c.github.io/uievents/#event-type-input

The minp555 attribute, if specified, must have a value that is a valid floating-point numberp77. The maxp555 attribute, if specified, must
have a value that is a valid floating-point numberp77.

The step scale factorp556 is 1. The default stepp556 is 1 (allowing only integers to be selected by the user, unless the step basep556 has a
non-integer value).

When the element is suffering from a step mismatchp623, the user agent may round the element's valuep597 to the nearest number for
which the element would not suffer from a step mismatchp623. If there are two such numbers, user agents are encouraged to pick the
one nearest positive infinity.

The algorithm to convert a string to a numberp525, given a string input, is as follows: If applying the rules for parsing
floating-point number valuesp78 to input results in an error, then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return a valid floating-point
numberp77 that represents input.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
placeholderp559, readonlyp551, requiredp552, and stepp556 content attributes; listp563, valuep561, and valueAsNumberp562 IDL attributes; select()p619,
stepDown()p562, and stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, popovertargetp894, popovertargetactionp894, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620,
selectionDirectionp620, and valueAsDatep562 IDL attributes; setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Rangep538 state, the rules in this section apply.

The inputp520 element representsp141 a control for setting the element's valuep597 to a string representing a number, but with the
caveat that the exact value is not important, letting UAs provide a simpler interface than they do for the Numberp537 state.

If the element is mutablep597, the user agent should allow the user to change the number represented by its valuep597, as obtained from
applying the rules for parsing floating-point number valuesp78 to it. User agents must not allow the user to set the valuep597 to a string
that is not a valid floating-point numberp77. If the user agent provides a user interface for selecting a number, then the valuep597 must
be set to a best representation of the number representing the user's selection as a floating-point numberp78. User agents must not
allow the user to set the valuep597 to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid floating-point
numberp77, the control is suffering from bad inputp623.

Here is an example of using a numeric input control:

<label>How much do you want to charge? $<input type=number min=0 step=0.01 name=price></label>

As described above, a user agent might support numeric input in the user's local format, converting it to the format required for
submission as described above. This might include handling grouping separators (as in "872,000,000,000") and various decimal
separators (such as "3,99" vs "3.99") or using local digits (such as those in Arabic, Devanagari, Persian, and Thai).

Example

The type=number state is not appropriate for input that happens to only consist of numbers but isn't strictly speaking a number.
For example, it would be inappropriate for credit card numbers or US postal codes. A simple way of determining whether to use
type=number is to consider whether it would make sense for the input control to have a spinbox interface (e.g. with "up" and
"down" arrows). Getting a credit card number wrong by 1 in the last digit isn't a minor mistake, it's as wrong as getting every digit
incorrect. So it would not make sense for the user to select a credit card number using "up" and "down" buttons. When a spinbox
interface is not appropriate, type=text is probably the right choice (possibly with an inputmodep861 or patternp554 attribute).

Note

4.10.5.1.13 Range state (type=range) §p53

8

✔ MDN

538

https://w3c.github.io/uievents/#event-type-input

The valuep525 attribute, if specified, must have a value that is a valid floating-point numberp77.

The value sanitization algorithmp525 is as follows: If the valuep597 of the element is not a valid floating-point numberp77, then set it
to the best representation, as a floating-point numberp78, of the default valuep539.

The default value is the minimump555 plus half the difference between the minimump555 and the maximump555, unless the
maximump555 is less than the minimump555, in which case the default valuep539 is the minimump555.

When the element is suffering from an underflowp623, the user agent must set the element's valuep597 to the best representation, as a
floating-point numberp78, of the minimump555.

When the element is suffering from an overflowp623, if the maximump555 is not less than the minimump555, the user agent must set the
element's valuep597 to a valid floating-point numberp77 that represents the maximump555.

When the element is suffering from a step mismatchp623, the user agent must round the element's valuep597 to the nearest number for
which the element would not suffer from a step mismatchp623, and which is greater than or equal to the minimump555, and, if the
maximump555 is not less than the minimump555, which is less than or equal to the maximump555, if there is a number that matches
these constraints. If two numbers match these constraints, then user agents must use the one nearest to positive infinity.

For example, the markup <input type="range" min=0 max=100 step=20 value=50> results in a range control whose initial value
is 60.

Example

Here is an example of a range control using an autocomplete list with the listp557 attribute. This could be useful if there are values
along the full range of the control that are especially important, such as preconfigured light levels or typical speed limits in a range
control used as a speed control. The following markup fragment:

<input type="range" min="-100" max="100" value="0" step="10" name="power" list="powers">
<datalist id="powers">
<option value="0">
<option value="-30">
<option value="30">
<option value="++50">

</datalist>

...with the following style sheet applied:

input { writing-mode: vertical-lr; height: 75px; width: 49px; background: #D5CCBB; color: black; }

...might render as:

Note how the UA determined the orientation of the control from the ratio of the style-sheet-specified height and width properties.
The colors were similarly derived from the style sheet. The tick marks, however, were derived from the markup. In particular, the
stepp556 attribute has not affected the placement of tick marks, the UA deciding to only use the author-specified completion values
and then adding longer tick marks at the extremes.

Note also how the invalid value ++50 was ignored.

Example

CSS

For another example, consider the following markup fragment:

<input name=x type=range min=100 max=700 step=9.09090909 value=509.090909>

Example

539

The minp555 attribute, if specified, must have a value that is a valid floating-point numberp77. The default minimump555 is 0. The maxp555

attribute, if specified, must have a value that is a valid floating-point numberp77. The default maximump555 is 100.

The step scale factorp556 is 1. The default stepp556 is 1 (allowing only integers, unless the minp555 attribute has a non-integer value).

The algorithm to convert a string to a numberp525, given a string input, is as follows: If applying the rules for parsing
floating-point number valuesp78 to input results in an error, then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a stringp525, given a number input, is as follows: Return the best representation, as a
floating-point numberp78, of input.

Bookkeeping details

▪The following common inputp520 element content attributes, IDL attributes, and methods applyp523 to the element: autocompletep604, listp557, maxp555, minp555,
and stepp556 content attributes; listp563, valuep561, and valueAsNumberp562 IDL attributes; stepDown()p562 and stepUp()p562 methods.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.

A user agent could display in a variety of ways, for instance:

Or, alternatively, for instance:

The user agent could pick which one to display based on the dimensions given in the style sheet. This would allow it to maintain
the same resolution for the tick marks, despite the differences in width.

Finally, here is an example of a range control with two labeled values:

<input type="range" name="a" list="a-values">
<datalist id="a-values">
<option value="10" label="Low">
<option value="90" label="High">
</datalist>

With styles that make the control draw vertically, it might look as follows:

Example

In this state, the range and step constraints are enforced even during user input, and there is no way to set the value to the empty
string.

Note

540

https://w3c.github.io/uievents/#event-type-input

▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxlengthp551, minlengthp551, multiplep553,
patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, readonlyp551, requiredp552, sizep551, srcp547, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620,
selectionDirectionp620, and valueAsDatep562 IDL attributes; select()p619, setRangeText()p621, and setSelectionRange()p620 methods.

When an inputp520 element's typep523 attribute is in the Colorp541 state, the rules in this section apply.

The inputp520 element representsp141 a color well control, for setting the element's valuep597 to a string representing the serialization of
a CSS color.

The alpha attribute is a boolean attributep75. If present, it indicates the CSS color's alpha component can be manipulated by the end
user and does not have to be fully opaque.

The colorspace attribute indicates the color space of the serialized CSS color. It also hints at the desired user interface for selecting a
CSS color. It is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

limited-
srgb

Limited
sRGB

The CSS color is converted to the 'srgb' color space and limited to 8-bits per component, e.g., "#123456" or "color(srgb 0 1 0 /
0.5)".

display-p3 Display P3 The CSS color is converted to the 'display-p3' color space, e.g., "color(display-p3 1.84 -0.19 0.72 / 0.6)".

The attribute's missing value defaultp76 and invalid value defaultp76 are both the Limited sRGBp541 state.

Whenever the element's alphap541 or colorspacep541 attributes are changed, the user agent must run update a color well control
colorp541 given the element.

If the element is mutablep597, the user agent should allow the user to change the color represented by its valuep597, as obtained from
parsing it. User agents must not allow the user to set the valuep597 to a string that running update a color well control colorp541 for the
element would not set it to. If the user agent provides a user interface for selecting a CSS color, then the valuep597 must be set to the
result of serializing a color well control colorp541 given the element and the end user's selection.

The input activation behaviorp525 for such an element element is to show the picker, if applicablep564, for element.

Constraint validation: While the element's valuep597 is not the empty string and parsing it returns failure, the control is suffering
from bad inputp623.

The valuep525 attribute, if specified and not the empty string, must have a value that is a CSS color.

The value sanitization algorithmp525 is as follows: Run update a color well control colorp541 for the element.

To update a color well control color, given an element element:

1. Assert: element is an inputp520 element whose typep523 attribute is in the Colorp541 state.

2. Let color be the result of parsing element's valuep597.

3. If color is failure, then set color to opaque black.

4. Set element's valuep597 to the result of serializing a color well control colorp541 given element and color.

To serialize a color well control color, given an element element and a CSS color color:

1. Assert: element is an inputp520 element whose typep523 attribute is in the Colorp541 state.

2. Let htmlCompatible be false.

3. If element's alphap541 attribute is not specified, then set color's alpha component to be fully opaque.

4.10.5.1.14 Color state (type=color) §p54

1

In this state, there is always a CSS color picked, and there is no way for the end user to set the value to the empty string.
Note

✔ MDN

541

https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-color/#valdef-color-display-p3
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://infra.spec.whatwg.org/#assert
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://drafts.csswg.org/css-color/#opaque-black
https://infra.spec.whatwg.org/#assert

4. If element's colorspacep541 attribute is in the Limited sRGBp541 state:

1. Set color to color converted to the 'srgb' color space.

2. Round each of color's components so they are in the range 0 to 255, inclusive. Components are to be rounded
towards +∞.

3. If element's alphap541 attribute is not specified, then set htmlCompatible to true.

4. Otherwise, set color to color converted to using the 'color()' function.

5. Otherwise:

1. Assert: element's colorspacep541 attribute is in the Display P3p541 state.

2. Set color to color converted to the 'display-p3' color space.

6. Return the result of serializing color. If htmlCompatible is true, then do so with HTML-compatible serialization requested.

Bookkeeping details

▪The following common inputp520 element content attributes and IDL attributes applyp523 to the element: alphap541, autocompletep604, colorspacep541, and
listp557 content attributes; listp563 and valuep561 IDL attributes; select()p619 method.

▪The valuep561 IDL attribute is in mode valuep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, altp548, checkedp525, dirnamep600, formactionp602,
formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, maxp555, maxlengthp551, minp555, minlengthp551, multiplep553, patternp554,
placeholderp559, popovertargetp894, popovertargetactionp894, readonlyp551, requiredp552, sizep551, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562 and, valueAsNumberp562 IDL attributes; setRangeText()p621, setSelectionRange()p620, stepDown()p562, and
stepUp()p562 methods.

When an inputp520 element's typep523 attribute is in the Checkboxp542 state, the rules in this section apply.

The inputp520 element representsp141 a two-state control that represents the element's checkednessp597 state. If the element's
checkednessp597 state is true, the control represents a positive selection, and if it is false, a negative selection. If the element's
indeterminatep526 IDL attribute is set to true, then the control's selection should be obscured as if the control was in a third,
indeterminate, state.

The input activation behaviorp525 is to run the following steps:

1. If the element is not connected, then return.

2. Fire an event named input at the element with the bubbles and composed attributes initialized to true.

3. Fire an event named changep1471 at the element with the bubbles attribute initialized to true.

Constraint validation: If the element is requiredp552 and its checkednessp597 is false, then the element is suffering from being
missingp622.

This intentionally uses a different serialization path for compatibility with an earlier version of the color well
control.

Note

4.10.5.1.15 Checkbox state (type=checkbox) §p54

2

The control is never a true tri-state control, even if the element's indeterminatep526 IDL attribute is set to true. The
indeterminatep526 IDL attribute only gives the appearance of a third state.

Note

input.indeterminatep526 [= value]
When set, overrides the rendering of checkboxp542 controls so that the current value is not visible.

For web developers (non-normative)

✔ MDN

542

https://drafts.csswg.org/css-color/#color-conversion
https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-values-4/#combine-integers
https://drafts.csswg.org/css-values-4/#combine-integers
https://drafts.csswg.org/css-color/#color-function
https://infra.spec.whatwg.org/#assert
https://drafts.csswg.org/css-color/#color-conversion
https://drafts.csswg.org/css-color/#valdef-color-display-p3
https://drafts.csswg.org/css-color/#serializing-color-values
https://drafts.csswg.org/css-color/#color-serialization-html-compatible-serialization-is-requested
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

Bookkeeping details

▪The following common inputp520 element content attributes and IDL attributes applyp523 to the element: checkedp525, and requiredp552 content attributes;
checkedp562 and valuep561 IDL attributes.

▪The valuep561 IDL attribute is in mode default/onp561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, autocompletep604, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551, minp555,
minlengthp551, multiplep553, patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, readonlyp551, sizep551, srcp547, stepp556, and
widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: filesp562, listp563, selectionStartp619, selectionEndp620, selectionDirectionp620,
valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562, and stepUp()p562

methods.

When an inputp520 element's typep523 attribute is in the Radio Buttonp543 state, the rules in this section apply.

The inputp520 element representsp141 a control that, when used in conjunction with other inputp520 elements, forms a radio button
groupp543 in which only one control can have its checkednessp597 state set to true. If the element's checkednessp597 state is true, the
control represents the selected control in the group, and if it is false, it indicates a control in the group that is not selected.

The radio button group that contains an inputp520 element a also contains all the other inputp520 elements b that fulfill all of the
following conditions:

• The inputp520 element b's typep523 attribute is in the Radio Buttonp543 state.

• Either a and b have the same form ownerp598, or they both have no form ownerp598.

• Both a and b are in the same tree.

• They both have a namep599 attribute, their namep599 attributes are not empty, and the value of a's namep599 attribute equals the
value of b's namep599 attribute.

A tree must not contain an inputp520 element whose radio button groupp543 contains only that element.

When any of the following phenomena occur, if the element's checkednessp597 state is true after the occurrence, the checkednessp597

state of all the other elements in the same radio button groupp543 must be set to false:

• The element's checkednessp597 state is set to true (for whatever reason).

• The element's namep599 attribute is set, changed, or removed.

• The element's form ownerp598 changes.

• A type change is signalledp526 for the element.

The input activation behaviorp525 is to run the following steps:

1. If the element is not connected, then return.

2. Fire an event named input at the element with the bubbles and composed attributes initialized to true.

3. Fire an event named changep1471 at the element with the bubbles attribute initialized to true.

Constraint validation: If an element in the radio button groupp543 is requiredp552, and all of the inputp520 elements in the radio button
groupp543 have a checkednessp597 that is false, then the element is suffering from being missingp622.

4.10.5.1.16 Radio Button state (type=radio) §p54

3

The following example, for some reason, has specified that puppers are both requiredp552 and disabledp601:

<form>
<p><label><input type="radio" name="dog-type" value="pupper" required disabled> Pupper</label>
<p><label><input type="radio" name="dog-type" value="doggo"> Doggo</label>
<p><button>Make your choice</button>

Example

✔ MDN

543

https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

Bookkeeping details

▪The following common inputp520 element content attributes and IDL attributes applyp523 to the element: checkedp525 and requiredp552 content attributes;
checkedp562 and valuep561 IDL attributes.

▪The valuep561 IDL attribute is in mode default/onp561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, autocompletep604, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551, minp555,
minlengthp551, multiplep553, patternp554, placeholderp559, popovertargetp894, popovertargetactionp894, readonlyp551, sizep551, srcp547, stepp556, and
widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: filesp562, listp563, selectionStartp619, selectionEndp620, selectionDirectionp620,
valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562, and stepUp()p562

methods.

When an inputp520 element's typep523 attribute is in the File Uploadp544 state, the rules in this section apply.

The inputp520 element representsp141 a list of selected files, each file consisting of a filename, a file type, and a file body (the
contents of the file).

Filenames must not contain path componentsp544, even in the case that a user has selected an entire directory hierarchy or multiple
files with the same name from different directories. Path components, for the purposes of the File Uploadp544 state, are those parts of
filenames that are separated by U+005C REVERSE SOLIDUS character (\) characters.

Unless the multiplep553 attribute is set, there must be no more than one file in the list of selected filesp544.

The input activation behaviorp525 for such an element element is to show the picker, if applicablep564, for element.

If the element is mutablep597, the user agent should allow the user to change the files on the list in other ways also, e.g., adding or
removing files by drag-and-drop. When the user does so, the user agent must update the file selectionp544 for the element.

If the element is not mutablep597, the user agent must not allow the user to change the element's selection.

To update the file selection for an element element:

1. Queue an element taskp1125 on the user interaction task sourcep1134 given element and the following steps:

1. Update element's selected filesp544 so that it represents the user's selection.

2. Fire an event named input at the inputp520 element, with the bubbles and composed attributes initialized to true.

3. Fire an event named changep1471 at the inputp520 element, with the bubbles attribute initialized to true.

Constraint validation: If the element is requiredp552 and the list of selected filesp544 is empty, then the element is suffering from
being missingp622.

The accept attribute may be specified to provide user agents with a hint of what file types will be accepted.

</form>

If the user tries to submit this form without first selecting "Doggo", then both inputp520 elements will be suffering from being
missingp622, since an element in the radio button groupp543 is requiredp552 (viz. the first element), and both of the elements in the
radio button group have a false checkednessp597.

On the other hand, if the user selects "Doggo" and then submits the form, then neither inputp520 element will be suffering from
being missingp622, since while one of them is requiredp552, not all of them have a false checkednessp597.

If none of the radio buttons in a radio button groupp543 are checked, then they will all be initially unchecked in the interface, until
such time as one of them is checked (either by the user or by script).

Note

4.10.5.1.17 File Upload state (type=file) §p54

4

✔ MDN

✔ MDN
544

https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

If specified, the attribute must consist of a set of comma-separated tokensp95, each of which must be an ASCII case-insensitive match
for one of the following:

The string "audio/*"
Indicates that sound files are accepted.

The string "video/*"
Indicates that video files are accepted.

The string "image/*"
Indicates that image files are accepted.

A valid MIME type string with no parameters
Indicates that files of the specified type are accepted.

A string whose first character is a U+002E FULL STOP character (.)
Indicates that files with the specified file extension are accepted.

The tokens must not be ASCII case-insensitive matches for any of the other tokens (i.e. duplicates are not allowed). To obtain the list of
tokens from the attribute, the user agent must split the attribute value on commas.

User agents may use the value of this attribute to display a more appropriate user interface than a generic file picker. For instance,
given the value image/*, a user agent could offer the user the option of using a local camera or selecting a photograph from their
photo collection; given the value audio/*, a user agent could offer the user the option of recording a clip using a headset microphone.

User agents should prevent the user from selecting files that are not accepted by one (or more) of these tokens.

Authors are encouraged to specify both any MIME types and any corresponding extensions when looking for data in a specific
format.

Note

For example, consider an application that converts Microsoft Word documents to Open Document Format files. Since Microsoft
Word documents are described with a wide variety of MIME types and extensions, the site can list several, as follows:

<input type="file" accept=".doc,.docx,.xml,application/msword,application/vnd.openxmlformats-
officedocument.wordprocessingml.document">

On platforms that only use file extensions to describe file types, the extensions listed here can be used to filter the allowed
documents, while the MIME types can be used with the system's type registration table (mapping MIME types to extensions used
by the system), if any, to determine any other extensions to allow. Similarly, on a system that does not have filenames or
extensions but labels documents with MIME types internally, the MIME types can be used to pick the allowed files, while the
extensions can be used if the system has an extension registration table that maps known extensions to MIME types used by the
system.

Example

Extensions tend to be ambiguous (e.g. there are an untold number of formats that use the ".dat" extension, and
users can typically quite easily rename their files to have a ".doc" extension even if they are not Microsoft Word
documents), and MIME types tend to be unreliable (e.g. many formats have no formally registered types, and many
formats are in practice labeled using a number of different MIME types). Authors are reminded that, as usual, data
received from a client should be treated with caution, as it may not be in an expected format even if the user is not
hostile and the user agent fully obeyed the acceptp544 attribute's requirements.

⚠Warning!

For historical reasons, the valuep561 IDL attribute prefixes the filename with the string "C:\fakepath\". Some legacy user agents
actually included the full path (which was a security vulnerability). As a result of this, obtaining the filename from the valuep561 IDL
attribute in a backwards-compatible way is non-trivial. The following function extracts the filename in a suitably compatible
manner:

function extractFilename(path) {

Example

MDN

545

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#split-on-commas

Bookkeeping details

▪The following common inputp520 element content attributes and IDL attributes applyp523 to the element: acceptp544, multiplep553, and requiredp552 content
attributes; filesp562 and valuep561 IDL attributes; select()p619 method.

▪The valuep561 IDL attribute is in mode filenamep561.
▪The input and changep1471 events applyp523.
▪The following content attributes must not be specified and do not applyp524 to the element: alphap541, altp548, autocompletep604, checkedp525, colorspacep541,
dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551, minp555,
minlengthp551, patternp554, popovertargetp894, popovertargetactionp894, placeholderp559, readonlyp551, sizep551, srcp547, stepp556, and widthp477.

▪The element's valuep525 attribute must be omitted.
▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, listp563, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; setRangeText()p621, setSelectionRange()p620, stepDown()p562, and
stepUp()p562 methods.

When an inputp520 element's typep523 attribute is in the Submit Buttonp546 state, the rules in this section apply.

The inputp520 element representsp141 a button that, when activated, submits the form. If the element has a valuep525 attribute,
the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string that means
"Submit" or some such. The element is a buttonp514, specifically a submit buttonp514.

The element's input activation behaviorp525 given event is as follows:

1. If the element does not have a form ownerp598, then return.

2. If the element's node document is not fully activep1003, then return.

3. Submitp629 the element's form ownerp598 from the element with userInvolvementp629 set to event's user navigation
involvementp1014.

if (path.substr(0, 12) == "C:\\fakepath\\")
return path.substr(12); // modern browser

var x;
x = path.lastIndexOf('/');
if (x >= 0) // Unix-based path

return path.substr(x+1);
x = path.lastIndexOf('\\');
if (x >= 0) // Windows-based path

return path.substr(x+1);
return path; // just the filename

}

This can be used as follows:

<p><input type=file name=image onchange="updateFilename(this.value)"></p>
<p>The name of the file you picked is: (none)</p>
<script>
function updateFilename(path) {

var name = extractFilename(path);
document.getElementById('filename').textContent = name;

}
</script>

4.10.5.1.18 Submit Button state (type=submit) §p54

6

Since the default label is implementation-defined, and the width of the button typically depends on the button's label, the button's
width can leak a few bits of fingerprintable information. These bits are likely to be strongly correlated to the identity of the user
agent and the user's locale.

Note

✔ MDN

546

https://w3c.github.io/uievents/#event-type-input
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-node-document

The formactionp602, formenctypep603, formmethodp602, formnovalidatep603, and formtargetp603 attributes are attributes for form
submissionp602.

Bookkeeping details

▪The following common inputp520 element content attributes and IDL attributes applyp523 to the element: dirnamep600, formactionp602, formenctypep603,
formmethodp602, formnovalidatep603, formtargetp603, popovertargetp894, and popovertargetactionp894 content attributes; valuep561 IDL attribute.

▪The valuep561 IDL attribute is in mode defaultp561.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, autocompletep604, checkedp525,
colorspacep541, heightp477, listp557, maxp555, maxlengthp551, minp555, minlengthp551, multiplep553, patternp554, placeholderp559, readonlyp551, requiredp552,
sizep551, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, listp563, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562,
and stepUp()p562 methods.

▪The input and changep1471 events do not applyp524.

When an inputp520 element's typep523 attribute is in the Image Buttonp547 state, the rules in this section apply.

The inputp520 element representsp141 either an image from which a user can select a coordinate and submit the form, or alternatively a
button from which the user can submit the form. The element is a buttonp514, specifically a submit buttonp514.

The image is given by the src attribute. The srcp547 attribute must be present, and must contain a valid non-empty URL potentially
surrounded by spacesp96 referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted.

When any of the these events occur

• the inputp520 element's typep523 attribute is first set to the Image Buttonp547 state (possibly when the element is first
created), and the srcp547 attribute is present

• the inputp520 element's typep523 attribute is changed back to the Image Buttonp547 state, and the srcp547 attribute is present,
and its value has changed since the last time the typep523 attribute was in the Image Buttonp547 state

• the inputp520 element's typep523 attribute is in the Image Buttonp547 state, and the srcp547 attribute is set or changed

then unless the user agent cannot support images, or its support for images has been disabled, or the user agent only fetches images
on demand, or the srcp547 attribute's value is the empty string, run these steps:

1. Let url be the result of encoding-parsing a URLp97 given the srcp547 attribute's value, relative to the element's node
document.

2. If url is failure, then return.

3. Let request be a new request whose URL is url, client is the element's node document's relevant settings objectp1083,
destination is "image", initiator type is "input", credentials mode is "include", and whose use-URL-credentials flag is set.

4. Fetch request, with processResponseEndOfBody set to the following step given response response:

1. If the download was successful and the image is availablep548, queue an element taskp1125 on the user interaction
task sourcep1134 given the inputp520 element to fire an event named loadp1471 at the inputp520 element.

2. Otherwise, if the fetching process fails without a response from the remote server, or completes but the image is
not a valid or supported image, then queue an element taskp1125 on the user interaction task sourcep1134 given the
inputp520 element to fire an event named errorp1471 on the inputp520 element.

The formnovalidatep603 attribute can be used to make submit buttons that do not trigger the constraint validation.
Note

4.10.5.1.19 Image Button state (type=image) §p54

7

The coordinate is sent to the server during form submissionp632 by sending two entries for the element, derived from the name of
the control but with ".x" and ".y" appended to the name with the x and y components of the coordinate respectively.

Note

✔ MDN

✔ MDN

547

https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://dom.spec.whatwg.org/#concept-node-document
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#fetch-processresponseendofbody
https://fetch.spec.whatwg.org/#concept-response
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

Fetching the image must delay the load eventp1359 of the element's node document until the taskp1124 that is queuedp1125 by the
networking task sourcep1134 once the resource has been fetched (defined below) has been run.

If the image was successfully obtained, with no network errors, and the image's type is a supported image type, and the image is a
valid image of that type, then the image is said to be available. If this is true before the image is completely downloaded, each
taskp1124 that is queuedp1125 by the networking task sourcep1134 while the image is being fetched must update the presentation of the
image appropriately.

The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type
headersp98 giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's
associated Content-Type headersp98.

User agents must not support non-image resources with the inputp520 element. User agents must not run executable code embedded
in the image resource. User agents must only display the first page of a multipage resource. User agents must not allow the resource
to act in an interactive fashion, but should honor any animation in the resource.

The alt attribute provides the textual label for the button for users and user agents who cannot use the image. The altp548 attribute
must be present, and must contain a non-empty string giving the label that would be appropriate for an equivalent button if the image
was unavailable.

The inputp520 element supports dimension attributesp477.

If the srcp547 attribute is set, and the image is availablep548 and the user agent is configured to display that image, then the element
representsp141 a control for selecting a coordinatep548 from the image specified by the srcp547 attribute. In that case, if the element is
mutablep597, the user agent should allow the user to select this coordinatep548.

Otherwise, the element representsp141 a submit button whose label is given by the value of the altp548 attribute.

The element's input activation behaviorp525 given event is as follows:

1. If the element does not have a form ownerp598, then return.

2. If the element's node document is not fully activep1003, then return.

3. If the user activated the control while explicitly selecting a coordinate, then set the element's selected coordinatep548 to that
coordinate.

4. Submitp629 the element's form ownerp598 from the element with userInvolvementp629 set to event's user navigation
involvementp1014.

The element's selected coordinate consists of an x-component and a y-component. It is initially (0, 0). The coordinates represent the
position relative to the edge of the element's image, with the coordinate space having the positive x direction to the right, and the
positive y direction downwards.

The x-component must be a valid integerp76 representing a number x in the range −(borderleft+paddingleft) ≤ x ≤
width+borderright+paddingright, where width is the rendered width of the image, borderleft is the width of the border on the left of the
image, paddingleft is the width of the padding on the left of the image, borderright is the width of the border on the right of the image,
and paddingright is the width of the padding on the right of the image, with all dimensions given in CSS pixels.

The y-component must be a valid integerp76 representing a number y in the range −(bordertop+paddingtop) ≤ y ≤
height+borderbottom+paddingbottom, where height is the rendered height of the image, bordertop is the width of the border above the
image, paddingtop is the width of the padding above the image, borderbottom is the width of the border below the image, and
paddingbottom is the width of the padding below the image, with all dimensions given in CSS pixels.

Where a border or padding is missing, its width is zero CSS pixels.

The formactionp602, formenctypep603, formmethodp602, formnovalidatep603, and formtargetp603 attributes are attributes for form

This is only possible under the conditions outlined above, when the element representsp141 a control for selecting such a
coordinate. Even then, the user might activate the control without explicitly selecting a coordinate.

Note

✔ MDN

548

https://dom.spec.whatwg.org/#concept-node-document
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

submissionp602.

Bookkeeping details

▪The following common inputp520 element content attributes and IDL attributes applyp523 to the element: altp548, formactionp602, formenctypep603,
formmethodp602, formnovalidatep603, formtargetp603, heightp477, popovertargetp894, popovertargetactionp894, srcp547, and widthp477 content attributes;
valuep561 IDL attribute.

▪The valuep561 IDL attribute is in mode defaultp561.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, autocompletep604, checkedp525, colorspacep541,
dirnamep600, listp557, maxp555, maxlengthp551, minp555, minlengthp551, multiplep553, patternp554, placeholderp559, readonlyp551, requiredp552, sizep551, and
stepp556.

▪The element's valuep525 attribute must be omitted.
▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, listp563, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562,
and stepUp()p562 methods.

▪The input and changep1471 events do not applyp524.

When an inputp520 element's typep523 attribute is in the Reset Buttonp549 state, the rules in this section apply.

The inputp520 element representsp141 a button that, when activated, resets the form. If the element has a valuep525 attribute,
the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string that means
"Reset" or some such. The element is a buttonp514.

The element's input activation behaviorp525 is as follows:

1. If the element does not have a form ownerp598, then return.

2. If the element's node document is not fully activep1003, then return.

image.widthp527 [= value]
image.heightp527 [= value]

These attributes return the actual rendered dimensions of the image, or 0 if the dimensions are not known.
They can be set, to change the corresponding content attributes.

For web developers (non-normative)

Many aspects of this state's behavior are similar to the behavior of the imgp346 element. Readers are encouraged to read that
section, where many of the same requirements are described in more detail.

Note

Take the following form:

<form action="process.cgi">
<input type=image src=map.png name=where alt="Show location list">

</form>

If the user clicked on the image at coordinate (127,40) then the URL used to submit the form would be
"process.cgi?where.x=127&where.y=40".

(In this example, it's assumed that for users who don't see the map, and who instead just see a button labeled "Show location list",
clicking the button will cause the server to show a list of locations to pick from instead of the map.)

Example

4.10.5.1.20 Reset Button state (type=reset) §p54

9

Since the default label is implementation-defined, and the width of the button typically depends on the button's label, the button's
width can leak a few bits of fingerprintable information. These bits are likely to be strongly correlated to the identity of the user
agent and the user's locale.

Note

✔ MDN

549

https://w3c.github.io/uievents/#event-type-input
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-node-document

3. Resetp637 the form ownerp598 from the element.

Constraint validation: The element is barred from constraint validationp622.

Bookkeeping details

▪The valuep561 IDL attribute appliesp523 to this element and is in mode defaultp561.
▪The following common inputp520 element content attributes applyp523 to the element: popovertargetp894 and popovertargetactionp894.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, autocompletep604, checkedp525,
colorspacep541, dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551,
minp555, minlengthp551, multiplep553, patternp554, placeholderp559, readonlyp551, requiredp552, sizep551, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, listp563, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562,
and stepUp()p562 methods.

▪The input and changep1471 events do not applyp524.

When an inputp520 element's typep523 attribute is in the Buttonp550 state, the rules in this section apply.

The inputp520 element representsp141 a button with no default behavior. A label for the button must be provided in the valuep525

attribute, though it may be the empty string. If the element has a valuep525 attribute, the button's label must be the value of that
attribute; otherwise, it must be the empty string. The element is a buttonp514.

The element has no input activation behaviorp525.

Constraint validation: The element is barred from constraint validationp622.

Bookkeeping details

▪The valuep561 IDL attribute appliesp523 to this element and is in mode defaultp561.
▪The following common inputp520 element content attributes applyp523 to the element: popovertargetp894 and popovertargetactionp894.
▪The following content attributes must not be specified and do not applyp524 to the element: acceptp544, alphap541, altp548, autocompletep604, checkedp525,
colorspacep541, dirnamep600, formactionp602, formenctypep603, formmethodp602, formnovalidatep603, formtargetp603, heightp477, listp557, maxp555, maxlengthp551,
minp555, minlengthp551, multiplep553, patternp554, placeholderp559, readonlyp551, requiredp552, sizep551, srcp547, stepp556, and widthp477.

▪The following IDL attributes and methods do not applyp524 to the element: checkedp562, filesp562, listp563, selectionStartp619, selectionEndp620,
selectionDirectionp620, valueAsDatep562, and valueAsNumberp562 IDL attributes; select()p619, setRangeText()p621, setSelectionRange()p620, stepDown()p562,
and stepUp()p562 methods.

▪The input and changep1471 events do not applyp524.

This section is non-normative.

The formats shown to the user in date, time, and number controls is independent of the format used for form submission.

Browsers are encouraged to use user interfaces that present dates, times, and numbers according to the conventions of either the
locale implied by the inputp520 element's languagep158 or the user's preferred locale. Using the page's locale will ensure consistency
with page-provided data.

These attributes only applyp523 to an inputp520 element if its typep523 attribute is in a state whose definition declares that the attribute

4.10.5.1.21 Button state (type=button) §p55

0

4.10.5.2 Implementation notes regarding localization of form controls §p55

0

For example, it would be confusing to users if an American English page claimed that a Cirque De Soleil show was going to be
showing on 02/03, but their browser, configured to use the British English locale, only showed the date 03/02 in the ticket purchase
date picker. Using the page's locale would at least ensure that the date was presented in the same format everywhere. (There's
still a risk that the user would end up arriving a month late, of course, but there's only so much that can be done about such
cultural differences...)

Example

4.10.5.3 Common inputp520 element attributes §p55

0

✔ MDN

550

https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-input

appliesp523. When an attribute doesn't applyp524 to an inputp520 element, user agents must ignorep45 the attribute, regardless of the
requirements and definitions below.

The maxlength attribute, when it appliesp523, is a form control maxlength attributep600.

The minlength attribute, when it appliesp523, is a form control minlength attributep601.

If the inputp520 element has a maximum allowed value lengthp600, then the length of the value of the element's valuep525 attribute
must be less than or equal to the element's maximum allowed value lengthp600.

The size attribute gives the number of characters that, in a visual rendering, the user agent is to allow the user to see while editing
the element's valuep597.

The sizep551 attribute, if specified, must have a value that is a valid non-negative integerp77 greater than zero.

If the attribute is present, then its value must be parsed using the rules for parsing non-negative integersp77, and if the result is a
number greater than zero, then the user agent should ensure that at least that many characters are visible.

The sizep527 IDL attribute is limited to only positive numbersp107 and has a default valuep106 of 20.

The readonly attribute is a boolean attributep75 that controls whether or not the user can edit the form control. When specified, the
element is not mutablep597.

Constraint validation: If the readonlyp551 attribute is specified on an inputp520 element, the element is barred from constraint
validationp622.

4.10.5.3.1 The maxlengthp551 and minlengthp551 attributes §p55

1

The following extract shows how a messaging client's text entry could be arbitrarily restricted to a fixed number of characters, thus
forcing any conversation through this medium to be terse and discouraging intelligent discourse.

<label>What are you doing? <input name=status maxlength=140></label>

Example

Here, a password is given a minimum length:

<p><label>Username: <input name=u required></label>
<p><label>Password: <input name=p required minlength=12></label>

Example

4.10.5.3.2 The sizep551 attribute §p55

1

4.10.5.3.3 The readonlyp551 attribute §p55

1

The difference between disabledp601 and readonlyp551 is that read-only controls can still function, whereas disabled controls
generally do not function as controls until they are enabled. This is spelled out in more detail elsewhere in this specification with
normative requirements that refer to the disabledp601 concept (for example, the element's activation behavior, whether or not it is
a focusable areap835, or when constructing the entry listp632). Any other behavior related to user interaction with disabled controls,
such as whether text can be selected or copied, is not defined in this standard.

Only text controls can be made read-only, since for other controls (such as checkboxes and buttons) there is no useful distinction
between being read-only and being disabled, so the readonlyp551 attribute does not applyp524.

Note

✔ MDN

✔ MDN
✔ MDN

✔ MDN

551

https://infra.spec.whatwg.org/#string-length
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

The required attribute is a boolean attributep75. When specified, the element is required.

Constraint validation: If the element is requiredp552, and its valuep561 IDL attribute appliesp523 and is in the mode valuep561, and the
element is mutablep597, and the element's valuep597 is the empty string, then the element is suffering from being missingp622.

In the following example, the existing product identifiers cannot be modified, but they are still displayed as part of the form, for
consistency with the row representing a new product (where the identifier is not yet filled in).

<form action="products.cgi" method="post" enctype="multipart/form-data">
<table>
<tr> <th> Product ID <th> Product name <th> Price <th> Action
<tr>
<td> <input readonly="readonly" name="1.pid" value="H412">
<td> <input required="required" name="1.pname" value="Floor lamp Ulke">
<td> $<input required="required" type="number" min="0" step="0.01" name="1.pprice"

value="49.99">
<td> <button formnovalidate="formnovalidate" name="action" value="delete:1">Delete</button>

<tr>
<td> <input readonly="readonly" name="2.pid" value="FG28">
<td> <input required="required" name="2.pname" value="Table lamp Ulke">
<td> $<input required="required" type="number" min="0" step="0.01" name="2.pprice"

value="24.99">
<td> <button formnovalidate="formnovalidate" name="action" value="delete:2">Delete</button>

<tr>
<td> <input required="required" name="3.pid" value="" pattern="[A-Z0-9]+">
<td> <input required="required" name="3.pname" value="">
<td> $<input required="required" type="number" min="0" step="0.01" name="3.pprice" value="">
<td> <button formnovalidate="formnovalidate" name="action" value="delete:3">Delete</button>

</table>
<p> <button formnovalidate="formnovalidate" name="action" value="add">Add</button> </p>
<p> <button name="action" value="update">Save</button> </p>

</form>

Example

4.10.5.3.4 The requiredp552 attribute §p55

2

The following form has two required fields, one for an email address and one for a password. It also has a third field that is only
considered valid if the user types the same password in the password field and this third field.

<h1>Create new account</h1>
<form action="/newaccount" method=post

oninput="up2.setCustomValidity(up2.value != up.value ? 'Passwords do not match.' : '')">
<p>
<label for="username">Email address:</label>
<input id="username" type=email required name=un>

<p>
<label for="password1">Password:</label>
<input id="password1" type=password required name=up>

<p>
<label for="password2">Confirm password:</label>
<input id="password2" type=password name=up2>

<p>
<input type=submit value="Create account">

</form>

Example

Example

552

The multiple attribute is a boolean attributep75 that indicates whether the user is to be allowed to specify more than one value.

For radio buttons, the requiredp552 attribute is satisfied if any of the radio buttons in the groupp543 is selected. Thus, in the
following example, any of the radio buttons can be checked, not just the one marked as required:

<fieldset>
<legend>Did the movie pass the Bechdel test?</legend>
<p><label><input type="radio" name="bechdel" value="no-characters"> No, there are not even two

female characters in the movie. </label>
<p><label><input type="radio" name="bechdel" value="no-names"> No, the female characters never

talk to each other. </label>
<p><label><input type="radio" name="bechdel" value="no-topic"> No, when female characters talk to

each other it's always about a male character. </label>
<p><label><input type="radio" name="bechdel" value="yes" required> Yes. </label>
<p><label><input type="radio" name="bechdel" value="unknown"> I don't know. </label>

</fieldset>

To avoid confusion as to whether a radio button groupp543 is required or not, authors are encouraged to specify the attribute on all
the radio buttons in a group. Indeed, in general, authors are encouraged to avoid having radio button groups that do not have any
initially checked controls in the first place, as this is a state that the user cannot return to, and is therefore generally considered a
poor user interface.

4.10.5.3.5 The multiplep553 attribute §p55

3

The following extract shows how an email client's "To" field could accept multiple email addresses.

<label>To: <input type=email multiple name=to></label>

If the user had, amongst many friends in their user contacts database, two friends "Spider-Man" (with address
"spider@parker.example.net") and "Scarlet Witch" (with address "scarlet@avengers.example.net"), then, after the user has typed
"s", the user agent might suggest these two email addresses to the user.

Send Save Now Discard

To: s| ▼
spider@parker.example.net
scarlet@avengers.example.net

Spider-Man
Scarlet Witch

The page could also link in the user's contacts database from the site:

<label>To: <input type=email multiple name=to list=contacts></label>
...
<datalist id="contacts">
<option value="hedral@damowmow.com">
<option value="pillar@example.com">
<option value="astrophy@cute.example">
<option value="astronomy@science.example.org">

</datalist>

Suppose the user had entered "bob@example.net" into this text control, and then started typing a second email address starting
with "s". The user agent might show both the two friends mentioned earlier, as well as the "astrophy" and "astronomy" values
given in the datalistp574 element.

Example

✔ MDN

553

The pattern attribute specifies a regular expression against which the control's valuep597, or, when the multiplep553 attribute
appliesp523 and is set, the control's valuesp597, are to be checked.

If specified, the attribute's value must match the JavaScript Pattern[+UnicodeSetsMode, +N] production.

The compiled pattern regular expression of an inputp520 element, if it exists, is a JavaScript RegExp object. It is determined as
follows:

1. If the element does not have a patternp554 attribute specified, then return nothing. The element has no compiled pattern
regular expressionp554.

2. Let pattern be the value of the patternp554 attribute of the element.

3. Let regexpCompletion be RegExpCreate(pattern, "v").

4. If regexpCompletion is an abrupt completion, then return nothing. The element has no compiled pattern regular
expressionp554.

5. Let anchoredPattern be the string "^(?:", followed by pattern, followed by ")$".

6. Return ! RegExpCreate(anchoredPattern, "v").

A RegExp object regexp matches a string input, if ! RegExpBuiltinExec(regexp, input) is not null.

Constraint validation: If the element's valuep597 is not the empty string, and either the element's multiplep553 attribute is not
specified or it does not applyp524 to the inputp520 element given its typep523 attribute's current state, and the element has a compiled
pattern regular expressionp554 but that regular expression does not matchp554 the element's valuep597, then the element is suffering
from a pattern mismatchp622.

Constraint validation: If the element's valuep597 is not the empty string, and the element's multiplep553 attribute is specified and
appliesp523 to the inputp520 element, and the element has a compiled pattern regular expressionp554 but that regular expression does
not matchp554 each of the element's valuesp597, then the element is suffering from a pattern mismatchp622.

Send Save Now Discard

To: bob@example.net, s| ▼
spider@parker.example.net
scarlet@avengers.example.net
astronomy@science.example.org
astrophy@cute.example

Spider-Man
Scarlet Witch

The following extract shows how an email client's "Attachments" field could accept multiple files for upload.

<label>Attachments: <input type=file multiple name=att></label>

Example

4.10.5.3.6 The patternp554 attribute §p55

4

User agents are encouraged to log this error in a developer console, to aid debugging.
Note

The reasoning behind these steps, instead of just using the value of the patternp554 attribute directly, is twofold. First, we want to
ensure that when matched against a string, the regular expression's start is anchored to the start of the string and its end to the
end of the string. Second, we want to ensure that the regular expression is valid in standalone form, instead of only becoming valid
after being surrounded by the "^(?:" and ")$" anchors.

Note

✔ MDN

✔ MDN

554

https://tc39.es/ecma262/#prod-Pattern
https://tc39.es/ecma262/#sec-regexp-regular-expression-objects
https://tc39.es/ecma262/#sec-regexpcreate
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-regexpcreate
https://tc39.es/ecma262/#sec-regexp-regular-expression-objects
https://tc39.es/ecma262/#sec-regexpbuiltinexec

When an inputp520 element has a patternp554 attribute specified, authors should include a title attribute to give a description of the
pattern. User agents may use the contents of this attribute, if it is present, when informing the user that the pattern is not matched, or
at any other suitable time, such as in a tooltip or read out by assistive technology when the control gains focusp836.

When a control has a patternp554 attribute, the titlep555 attribute, if used, must describe the pattern. Additional information could also
be included, so long as it assists the user in filling in the control. Otherwise, assistive technology would be impaired.

UAs may still show the titlep157 in non-error situations (for example, as a tooltip when hovering over the control), so authors should
be careful not to word titlep555s as if an error has necessarily occurred.

Some form controls can have explicit constraints applied limiting the allowed range of values that the user can provide. Normally, such
a range would be linear and continuous. A form control can have a periodic domain, however, in which case the form control's
broadest possible range is finite, and authors can specify explicit ranges within it that span the boundaries.

The min and max attributes indicate the allowed range of values for the element.

Their syntax is defined by the section that defines the typep523 attribute's current state.

If the element has a minp555 attribute, and the result of applying the algorithm to convert a string to a numberp525 to the value of the
minp555 attribute is a number, then that number is the element's minimum; otherwise, if the typep523 attribute's current state defines a
default minimum, then that is the minimump555; otherwise, the element has no minimump555.

The minp555 attribute also defines the step basep556.

If the element has a maxp555 attribute, and the result of applying the algorithm to convert a string to a numberp525 to the value of the
maxp555 attribute is a number, then that number is the element's maximum; otherwise, if the typep523 attribute's current state defines
a default maximum, then that is the maximump555; otherwise, the element has no maximump555.

If the element does not have a periodic domainp555, the maxp555 attribute's value (the maximump555) must not be less than the minp555

attribute's value (its minimump555).

For example, the following snippet:

<label> Part number:
<input pattern="[0-9][A-Z]{3}" name="part"

title="A part number is a digit followed by three uppercase letters."/>
</label>

...could cause the UA to display an alert such as:

A part number is a digit followed by three uppercase letters.
You cannot submit this form when the field is incorrect.

Example

For instance, if the title attribute contained the caption of the control, assistive technology could end up saying something like The
text you have entered does not match the required pattern. Birthday, which is not useful.

Example

4.10.5.3.7 The minp555 and maxp555 attributes §p55

5

Specifically, the broadest range of a type=timep535 control is midnight to midnight (24 hours), and authors can set both continuous
linear ranges (such as 9pm to 11pm) and discontinuous ranges spanning midnight (such as 11pm to 1am).

Example

If an element that does not have a periodic domainp555 has a maximump555 that is less than its minimump555, then so long as the
element has a valuep597, it will either be suffering from an underflowp623 or suffering from an overflowp623.

Note

✔ MDN

555

An element has a reversed range if it has a periodic domainp555 and its maximump555 is less than its minimump555.

An element has range limitations if it has a defined minimump555 or a defined maximump555.

Constraint validation: When the element has a minimump555 and does not have a reversed rangep556, and the result of applying the
algorithm to convert a string to a numberp525 to the string given by the element's valuep597 is a number, and the number obtained from
that algorithm is less than the minimump555, the element is suffering from an underflowp623.

Constraint validation: When the element has a maximump555 and does not have a reversed rangep556, and the result of applying the
algorithm to convert a string to a numberp525 to the string given by the element's valuep597 is a number, and the number obtained from
that algorithm is more than the maximump555, the element is suffering from an overflowp623.

Constraint validation: When an element has a reversed rangep556, and the result of applying the algorithm to convert a string to a
numberp525 to the string given by the element's valuep597 is a number, and the number obtained from that algorithm is more than the
maximump555 and less than the minimump555, the element is simultaneously suffering from an underflowp623 and suffering from an
overflowp623.

The step attribute indicates the granularity that is expected (and required) of the valuep597 or valuesp597, by limiting the allowed
values. The section that defines the typep523 attribute's current state also defines the default step, the step scale factor, and in
some cases the default step base, which are used in processing the attribute as described below.

The stepp556 attribute, if specified, must either have a value that is a valid floating-point numberp77 that parsesp78 to a number that is
greater than zero, or must have a value that is an ASCII case-insensitive match for the string "any".

The attribute provides the allowed value step for the element, as follows:

1. If the attribute does not applyp523, then there is no allowed value stepp556.

2. Otherwise, if the attribute is absent, then the allowed value stepp556 is the default stepp556 multiplied by the step scale
factorp556.

3. Otherwise, if the attribute's value is an ASCII case-insensitive match for the string "any", then there is no allowed value
stepp556.

4. Otherwise, if the rules for parsing floating-point number valuesp78, when they are applied to the attribute's value, return an
error, zero, or a number less than zero, then the allowed value stepp556 is the default stepp556 multiplied by the step scale
factorp556.

5. Otherwise, the allowed value stepp556 is the number returned by the rules for parsing floating-point number valuesp78 when
they are applied to the attribute's value, multiplied by the step scale factorp556.

The step base is the value returned by the following algorithm:

The following date control limits input to dates that are before the 1980s:

<input name=bday type=date max="1979-12-31">

Example

The following number control limits input to whole numbers greater than zero:

<input name=quantity required="" type="number" min="1" value="1">

Example

The following time control limits input to those minutes that occur between 9pm and 6am, defaulting to midnight:

<input name="sleepStart" type=time min="21:00" max="06:00" step="60" value="00:00">

Example

4.10.5.3.8 The stepp556 attribute §p55

6

✔ MDN

556

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

1. If the element has a minp555 content attribute, and the result of applying the algorithm to convert a string to a numberp525 to
the value of the minp555 content attribute is not an error, then return that result.

2. If the element has a valuep525 content attribute, and the result of applying the algorithm to convert a string to a numberp525

to the value of the valuep525 content attribute is not an error, then return that result.

3. If a default step basep556 is defined for this element given its typep523 attribute's state, then return it.

4. Return zero.

Constraint validation: When the element has an allowed value stepp556, and the result of applying the algorithm to convert a string
to a numberp525 to the string given by the element's valuep597 is a number, and that number subtracted from the step basep556 is not an
integral multiple of the allowed value stepp556, the element is suffering from a step mismatchp623.

The list attribute is used to identify an element that lists predefined options suggested to the user.

If present, its value must be the ID of a datalistp574 element in the same tree.

The suggestions source element is the first element in the tree in tree order to have an ID equal to the value of the listp557

attribute, if that element is a datalistp574 element. If there is no listp557 attribute, or if there is no element with that ID, or if the first
element with that ID is not a datalistp574 element, then there is no suggestions source elementp557.

If there is a suggestions source elementp557, then, when the user agent is allowing the user to edit the inputp520 element's valuep597,
the user agent should offer the suggestions represented by the suggestions source elementp557 to the user in a manner suitable for the
type of control used. If appropriate, the user agent should use the suggestion's labelp578 and valuep578 to identify the suggestion to the
user.

User agents are encouraged to filter the suggestions represented by the suggestions source elementp557 when the number of
suggestions is large, including only the most relevant ones (e.g. based on the user's input so far). No precise threshold is defined, but
capping the list at four to seven values is reasonable. If filtering based on the user's input, user agents should search within both the
labelp578 and valuep578 of the suggestions for matches. User agents should consider how input variations affect the matching process.
Unicode normalization should be applied so that different underlying Unicode code point sequences, caused by different keyboard- or
input-specific mechanisms, do not interfere with the matching process. Case variations should be ignored, which may require
language-specific case mapping. For examples of these, see Character Model for the World Wide Web: String Matching. User agents
may also provide other matching features: for illustration, a few examples include matching different forms of kana to each other (or to
kanji), ignoring accents, or applying spelling correction. [CHARMODNORM]p1475

The following range control only accepts values in the range 0..1, and allows 256 steps in that range:

<input name=opacity type=range min=0 max=1 step=0.00392156863>

Example

The following control allows any time in the day to be selected, with any accuracy (e.g. thousandth-of-a-second accuracy or more):

<input name=favtime type=time step=any>

Normally, time controls are limited to an accuracy of one minute.

Example

4.10.5.3.9 The listp557 attribute §p55

7

This text field allows you to choose a type of JavaScript function.

<input type="text" list="function-types">
<datalist id="function-types">

<option value="function">function</option>
<option value="async function">async function</option>

Example

✔ MDN

557

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id

How user selections of suggestions are handled depends on whether the element is a control accepting a single value only, or whether
it accepts multiple values:

↪ If the element does not have a multiplep553 attribute specified or if the multiplep553 attribute does not applyp524

When the user selects a suggestion, the inputp520 element's valuep597 must be set to the selected suggestion's valuep578, as if
the user had written that value themself.

↪ If the element's typep523 attribute is in the Emailp530 state and the element has a multiplep553 attribute specified
When the user selects a suggestion, the user agent must either add a new entry to the inputp520 element's valuesp597, whose
value is the selected suggestion's valuep578, or change an existing entry in the inputp520 element's valuesp597 to have the value
given by the selected suggestion's valuep578, as if the user had themself added an entry with that value, or edited an existing
entry to be that value. Which behavior is to be applied depends on the user interface in an implementation-defined manner.

If the listp557 attribute does not applyp524, there is no suggestions source elementp557.

<option value="function*">generator function</option>
<option value="=>">arrow function</option>
<option value="async =>">async arrow function</option>
<option value="async function*">async generator function</option>

</datalist>

For user agents that follow the above suggestions, both the labelp578 and valuep578 would be shown:

▼
function
async function
function*
=>
async =>
async function*

function
async function

generator function
arrow function

async arrow function
async generator function

Then, typing "arrow" or "=>" would filter the list to the entries with labels "arrow function" and "async arrow function". Typing
"generator" or "*" would filter the list to the entries with labels "generator function" and "async generator function".

As always, user agents are free to make user interface decisions which are appropriate for their particular requirements and for the
user's particular circumstances. However, this has historically been an area of confusion for implementers, web developers, and
users alike, so we've given some "should" suggestions above.

Note

This URL field offers some suggestions.

<label>Homepage: <input name=hp type=url list=hpurls></label>
<datalist id=hpurls>
<option value="https://www.google.com/" label="Google">
<option value="https://www.reddit.com/" label="Reddit">

</datalist>

Other URLs from the user's history might show also; this is up to the user agent.

Example

This example demonstrates how to design a form that uses the autocompletion list feature while still degrading usefully in legacy
user agents.

Example

558

https://infra.spec.whatwg.org/#implementation-defined

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry when the control
has no value. A hint could be a sample value or a brief description of the expected format. The attribute, if specified, must have a
value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters.

The placeholderp559 attribute should not be used as an alternative to a labelp518. For a longer hint or other advisory text, the
titlep157 attribute is more appropriate.

If the autocompletion list is merely an aid, and is not important to the content, then simply using a datalistp574 element with
children optionp577 elements is enough. To prevent the values from being rendered in legacy user agents, they need to be placed
inside the valuep578 attribute instead of inline.

<p>
<label>
Enter a breed:
<input type="text" name="breed" list="breeds">
<datalist id="breeds">
<option value="Abyssinian">
<option value="Alpaca">
<!-- ... -->

</datalist>
</label>

</p>

However, if the values need to be shown in legacy UAs, then fallback content can be placed inside the datalistp574 element, as
follows:

<p>
<label>
Enter a breed:
<input type="text" name="breed" list="breeds">

</label>
<datalist id="breeds">
<label>
or select one from the list:
<select name="breed">
<option value=""> (none selected)
<option>Abyssinian
<option>Alpaca
<!-- ... -->

</select>
</label>

</datalist>
</p>

The fallback content will only be shown in UAs that don't support datalistp574. The options, on the other hand, will be detected by
all UAs, even though they are not children of the datalistp574 element.

Note that if an optionp577 element used in a datalistp574 is selectedp578, it will be selected by default by legacy UAs (because it
affects the selectp568 element), but it will not have any effect on the inputp520 element in UAs that support datalistp574.

4.10.5.3.10 The placeholderp559 attribute §p55

9

These mechanisms are very similar but subtly different: the hint given by the control's labelp518 is shown at all times; the short
hint given in the placeholderp559 attribute is shown before the user enters a value; and the hint in the titlep157 attribute is shown
when the user requests further help.

Note

✔ MDN

559

User agents should present this hint to the user, after having stripped newlines from it, when the element's valuep597 is the empty
string, especially if the control is not focusedp836.

If a user agent normally doesn't show this hint to the user when the control is focusedp836, then the user agent should nonetheless
show the hint for the control if it was focused as a result of the autofocusp848 attribute, since in that case the user will not have had an
opportunity to examine the control before focusing it.

Here is an example of a mail configuration user interface that uses the placeholderp559 attribute:

<fieldset>
<legend>Mail Account</legend>
<p><label>Name: <input type="text" name="fullname" placeholder="John Ratzenberger"></label></p>
<p><label>Address: <input type="email" name="address" placeholder="john@example.net"></label></p>
<p><label>Password: <input type="password" name="password"></label></p>
<p><label>Description: <input type="text" name="desc" placeholder="My Email Account"></label></p>

</fieldset>

Example

In situations where the control's content has one directionality but the placeholder needs to have a different directionality,
Unicode's bidirectional-algorithm formatting characters can be used in the attribute value:

<input name=t1 type=tel placeholder="‫ 1الهاتفرقم ‮">
<input name=t2 type=tel placeholder="‫ 2الهاتفرقم ‮">

For slightly more clarity, here's the same example using numeric character references instead of inline Arabic:

<input name=t1 type=tel
placeholder="‫رقم الهاتف 1‮">
<input name=t2 type=tel
placeholder="‫رقم الهاتف 2‮">

Example

4.10.5.4 Common inputp520 element APIs §p56

0

input.valuep561 [= value]
Returns the current valuep597 of the form control.
Can be set, to change the value.
Throws an "InvalidStateError" DOMException if it is set to any value other than the empty string when the control is a file
upload control.

input.checkedp562 [= value]
Returns the current checkednessp597 of the form control.
Can be set, to change the checkednessp597.

input.filesp562 [= files]
Returns a FileList object listing the selected filesp544 of the form control.
Returns null if the control isn't a file control.
Can be set to a FileList object to change the selected filesp544 of the form control. For instance, as the result of a drag-and-
drop operation.

input.valueAsDatep562 [= value]
Returns a Date object representing the form control's valuep597, if applicable; otherwise, returns null.
Can be set, to change the value.
Throws an "InvalidStateError" DOMException if the control isn't date- or time-based.

For web developers (non-normative)

560

https://infra.spec.whatwg.org/#strip-newlines
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#filelist-section
https://tc39.es/ecma262/#sec-date-objects
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The value IDL attribute allows scripts to manipulate the valuep597 of an inputp520 element. The attribute is in one of the following
modes, which define its behavior:

value
On getting, return the current valuep597 of the element.

On setting:

1. Let oldValue be the element's valuep597.

2. Set the element's valuep597 to the new value.

3. Set the element's dirty value flagp597 to true.

4. Invoke the value sanitization algorithmp525, if the element's typep523 attribute's current state defines one.

5. If the element's valuep597 (after applying the value sanitization algorithmp525) is different from oldValue, and the element
has a text entry cursor positionp618, move the text entry cursor positionp618 to the end of the text control, unselecting any
selected text and resetting the selection directionp619 to "none".

default
On getting, if the element has a valuep525 content attribute, return that attribute's value; otherwise, return the empty string.

On setting, set the value of the element's valuep525 content attribute to the new value.

default/on
On getting, if the element has a valuep525 content attribute, return that attribute's value; otherwise, return the string "on".

On setting, set the value of the element's valuep525 content attribute to the new value.

filename
On getting, return the string "C:\fakepath\" followed by the name of the first file in the list of selected filesp544, if any, or the empty
string if the list is empty.

On setting, if the new value is the empty string, empty the list of selected filesp544; otherwise, throw an "InvalidStateError"
DOMException.

input.valueAsNumberp562 [= value]
Returns a number representing the form control's valuep597, if applicable; otherwise, returns NaN.
Can be set, to change the value. Setting this to NaN will set the underlying value to the empty string.
Throws an "InvalidStateError" DOMException if the control is neither date- or time-based nor numeric.

input.stepUpp562([n])
input.stepDownp562([n])

Changes the form control's valuep597 by the value given in the stepp556 attribute, multiplied by n. The default value for n is 1.
Throws "InvalidStateError" DOMException if the control is neither date- or time-based nor numeric, or if the stepp556

attribute's value is "any".

input.listp563

Returns the datalistp574 element indicated by the listp557 attribute.

input.showPickerp563()
Shows any applicable picker UI for input, so that the user can select a value. (If no picker UI is implemented for the given
control, then this method does nothing.)
Throws an "InvalidStateError" DOMException if input is not mutablep597.
Throws a "NotAllowedError" DOMException if called without transient user activationp830.
Throws a "SecurityError" DOMException if input is inside a cross-origin iframep390, unless input is in the File Uploadp544 or
Colorp541 states.

561

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The checked IDL attribute allows scripts to manipulate the checkednessp597 of an inputp520 element. On getting, it must return the
current checkednessp597 of the element; and on setting, it must set the element's checkednessp597 to the new value and set the
element's dirty checkedness flagp525 to true.

The files IDL attribute allows scripts to access the element's selected filesp544.

On getting, if the IDL attribute appliesp523, it must return a FileList object that represents the current selected filesp544. The same
object must be returned until the list of selected filesp544 changes. If the IDL attribute does not applyp524, then it must instead return
null. [FILEAPI]p1478

On setting, it must run these steps:

1. If the IDL attribute does not applyp524 or the given value is null, then return.

2. Replace the element's selected filesp544 with the given value.

The valueAsDate IDL attribute represents the valuep597 of the element, interpreted as a date.

On getting, if the valueAsDatep562 attribute does not applyp524, as defined for the inputp520 element's typep523 attribute's current state,
then return null. Otherwise, run the algorithm to convert a string to a Date objectp525 defined for that state to the element's valuep597; if
the algorithm returned a Date object, then return it, otherwise, return null.

On setting, if the valueAsDatep562 attribute does not applyp524, as defined for the inputp520 element's typep523 attribute's current state,
then throw an "InvalidStateError" DOMException; otherwise, if the new value is not null and not a Date object throw a TypeError
exception; otherwise, if the new value is null or a Date object representing the NaN time value, then set the valuep597 of the element to
the empty string; otherwise, run the algorithm to convert a Date object to a stringp525, as defined for that state, on the new value, and
set the valuep597 of the element to the resulting string.

The valueAsNumber IDL attribute represents the valuep597 of the element, interpreted as a number.

On getting, if the valueAsNumberp562 attribute does not applyp524, as defined for the inputp520 element's typep523 attribute's current
state, then return a Not-a-Number (NaN) value. Otherwise, run the algorithm to convert a string to a numberp525 defined for that state
to the element's valuep597; if the algorithm returned a number, then return it, otherwise, return a Not-a-Number (NaN) value.

On setting, if the new value is infinite, then throw a TypeError exception. Otherwise, if the valueAsNumberp562 attribute does not
applyp524, as defined for the inputp520 element's typep523 attribute's current state, then throw an "InvalidStateError" DOMException.
Otherwise, if the new value is a Not-a-Number (NaN) value, then set the valuep597 of the element to the empty string. Otherwise, run
the algorithm to convert a number to a stringp525, as defined for that state, on the new value, and set the valuep597 of the element to
the resulting string.

The stepDown(n) and stepUp(n) methods, when invoked, must run the following algorithm:

1. If the stepDown()p562 and stepUp()p562 methods do not applyp524, as defined for the inputp520 element's typep523 attribute's
current state, then throw an "InvalidStateError" DOMException.

2. If the element has no allowed value stepp556, then throw an "InvalidStateError" DOMException.

3. If the element has a minimump555 and a maximump555 and the minimump555 is greater than the maximump555, then return.

4. If the element has a minimump555 and a maximump555 and there is no value greater than or equal to the element's

This "fakepath" requirement is a sad accident of history. See the example in the File Upload state sectionp545 for more
information.

Note

Since path componentsp544 are not permitted in filenames in the list of selected filesp544, the "\fakepath\" cannot be mistaken for
a path component.

Note

562

https://w3c.github.io/FileAPI/#filelist-section
https://tc39.es/ecma262/#sec-date-objects
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-date-objects
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

minimump555 and less than or equal to the element's maximump555 that, when subtracted from the step basep556, is an
integral multiple of the allowed value stepp556, then return.

5. If applying the algorithm to convert a string to a numberp525 to the string given by the element's valuep597 does not result in
an error, then let value be the result of that algorithm. Otherwise, let value be zero.

6. Let valueBeforeStepping be value.

7. If value subtracted from the step basep556 is not an integral multiple of the allowed value stepp556, then set value to the
nearest value that, when subtracted from the step basep556, is an integral multiple of the allowed value stepp556, and that is
less than value if the method invoked was the stepDown()p562 method, and more than value otherwise.

Otherwise (value subtracted from the step basep556 is an integral multiple of the allowed value stepp556):

1. Let n be the argument.

2. Let delta be the allowed value stepp556 multiplied by n.

3. If the method invoked was the stepDown()p562 method, negate delta.

4. Let value be the result of adding delta to value.

8. If the element has a minimump555, and value is less than that minimump555, then set value to the smallest value that, when
subtracted from the step basep556, is an integral multiple of the allowed value stepp556, and that is more than or equal to
minimum.

9. If the element has a maximump555, and value is greater than that maximump555, then set value to the largest value that,
when subtracted from the step basep556, is an integral multiple of the allowed value stepp556, and that is less than or equal to
maximum.

10. If either the method invoked was the stepDown()p562 method and value is greater than valueBeforeStepping, or the method
invoked was the stepUp()p562 method and value is less than valueBeforeStepping, then return.

11. Let value as string be the result of running the algorithm to convert a number to a stringp525, as defined for the inputp520

element's typep523 attribute's current state, on value.

12. Set the valuep597 of the element to value as string.

The list IDL attribute must return the current suggestions source elementp557, if any, or null otherwise.

The HTMLInputElementp522 showPicker() and HTMLSelectElementp569 showPicker() method steps are:

1. If this is not mutablep597, then throw an "InvalidStateError" DOMException.

2. If this's relevant settings objectp1083 's originp1076 is not same originp899 with this's relevant settings objectp1083 's top-level
originp1076, and this is a selectp568 element, or this's typep523 attribute is not in the File Uploadp544 state or Colorp541 state,
then throw a "SecurityError" DOMException.

3. If this's relevant global objectp1083 does not have transient activationp830, then throw a "NotAllowedError" DOMException.

4. If this is a selectp568 element, and this is not being renderedp1388, then throw a "NotSupportedError" DOMException.

5. Show the picker, if applicablep564, for this.

This ensures that invoking the stepUp()p562 method on the inputp520 element in the following example does not change
the valuep597 of that element:

<input type=number value=1 max=0>

Example

Filep544 and Colorp541 inputs are exempted from this check for historical reason: their input activation behaviorp525 also
shows their pickers, and has never been guarded by an origin check.

Note

✔ MDN

563

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

To show the picker, if applicable for an inputp520 or selectp568 element element:

1. If element's relevant global objectp1083 does not have transient activationp830, then return.

2. If element is not mutablep597, then return.

3. Consume user activationp831 given element's relevant global objectp1083.

4. If element is an inputp520 element and element's typep523 attribute is in the File Uploadp544 state, then run these steps in
parallelp43:

1. Optionally, wait until any prior execution of this algorithm has terminated.

2. Display a prompt to the user requesting that the user specify some files. If the multiplep553 attribute is not set on
element, there must be no more than one file selected; otherwise, any number may be selected. Files can be from
the filesystem or created on the fly, e.g., a picture taken from a camera connected to the user's device.

3. Wait for the user to have made their selection.

4. If the user dismissed the prompt without changing their selection, then queue an element taskp1125 on the user
interaction task sourcep1134 given element to fire an event named cancelp1471 at element, with the bubbles
attribute initialized to true.

5. Otherwise, update the file selectionp544 for element.

5. Otherwise, the user agent should show any relevant user interface for selecting a value for element, in the way it normally
would when the user interacts with the control. (If no such UI applies to element, then this step does nothing.)

If such a user interface is shown, it must respect the requirements stated in the relevant parts of the specification for how
element behaves given its typep523 attribute state. (For example, various sections describe restrictions on the resulting
valuep597 string.)

This step can have side effects, such as closing other pickers that were previously shown by this algorithm. (If this closes a
file selection picker, then per the above that will lead to firing either input and changep1471 events, or a cancelp1471 event.)

When the input and changep1471 events applyp523 (which is the case for all inputp520 controls other than buttonsp514 and those with the

As with all user interface specifications, user agents have a good deal of freedom in how they interpret these
requirements. The above text implies that a user either dismisses the prompt or changes their selection; exactly one of
these will be true. But the mapping of these possibilities to specific user interface elements is not mandated by the
standard. For example, a user agent might interpret clicking the "Cancel" button when files were previously selected as a
change of selection to select zero files, thus firing input and changep1471. Or it might interpret such a click as a dismissal
that leaves the selection unchanged, thus firing cancelp1471. Similarly, it's up to the user agent whether re-selecting the
same files as were previously selected counts as a dismissal, or as a change of selection.

Note

As of the time of this writing, typical browser implementations show such picker UI for:

◦ inputp520 elements whose typep523 attributes are in the Datep532, Monthp533, Weekp534, Timep535, Local Date and
Timep536, and Colorp541 states;

◦ inputp520 elements in various states that have a suggestions source elementp557;

◦ inputp520 elements whose typep523 attribute is in the File Uploadp544 state (although those are handled via the
special case above, instead of by this step); and

◦ selectp568 elements.

However, the intent of this step is to trigger any picker UI implementation. So for example, if a user agent implemented a
password picker UI for the Passwordp531 state, then this method would be expected to show that picker UI when called on
a password input.

Note

4.10.5.5 Common event behaviors §p56

4

564

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-input

typep523 attribute in the Hiddenp527 state), the events are fired to indicate that the user has interacted with the control. The input
event fires whenever the user has modified the data of the control. The changep1471 event fires when the value is committed, if that
makes sense for the control, or else when the control loses focusp843. In all cases, the input event comes before the corresponding
changep1471 event (if any).

When an inputp520 element has a defined input activation behaviorp525, the rules for dispatching these events, if they applyp523, are
given in the section above that defines the typep523 attribute's state. (This is the case for all inputp520 controls with the typep523

attribute in the Checkboxp542 state, the Radio Buttonp543 state, or the File Uploadp544 state.)

For inputp520 elements without a defined input activation behaviorp525, but to which these events applyp523, and for which the user
interface involves both interactive manipulation and an explicit commit action, then when the user changes the element's valuep597,
the user agent must queue an element taskp1125 on the user interaction task sourcep1134 given the inputp520 element to fire an event
named input at the inputp520 element, with the bubbles and composed attributes initialized to true, and any time the user commits
the change, the user agent must queue an element taskp1125 on the user interaction task sourcep1134 given the inputp520 element to set
its user validityp597 to true and fire an event named changep1471 at the inputp520 element, with the bubbles attribute initialized to true.

For inputp520 elements without a defined input activation behaviorp525, but to which these events applyp523, and for which the user
interface involves an explicit commit action but no intermediate manipulation, then any time the user commits a change to the
element's valuep597, the user agent must queue an element taskp1125 on the user interaction task sourcep1134 given the inputp520

element to first fire an event named input at the inputp520 element, with the bubbles and composed attributes initialized to true, and
then fire an event named changep1471 at the inputp520 element, with the bubbles attribute initialized to true.

For inputp520 elements without a defined input activation behaviorp525, but to which these events applyp523, any time the user causes
the element's valuep597 to change without an explicit commit action, the user agent must queue an element taskp1125 on the user
interaction task sourcep1134 given the inputp520 element to fire an event named input at the inputp520 element, with the bubbles and
composed attributes initialized to true. The corresponding changep1471 event, if any, will be fired when the control loses focusp843.

In the case of tasksp1124 that just fire an input event, user agents may wait for a suitable break in the user's interaction before
queuingp1125 the tasks; for example, a user agent could wait for the user to have not hit a key for 100ms, so as to only fire the event
when the user pauses, instead of continuously for each keystroke.

When the user agent is to change an inputp520 element's valuep597 on behalf of the user (e.g. as part of a form prefilling feature), the
user agent must queue an element taskp1125 on the user interaction task sourcep1134 given the inputp520 element to first update the

An example of a user interface involving both interactive manipulation and a commit action would be a Rangep538 controls that use
a slider, when manipulated using a pointing device. While the user is dragging the control's knob, input events would fire
whenever the position changed, whereas the changep1471 event would only fire when the user let go of the knob, committing to a
specific value.

Example

An example of a user interface with a commit action would be a Colorp541 control that consists of a single button that brings up a
color wheel: if the valuep597 only changes when the dialog is closed, then that would be the explicit commit action. On the other
hand, if manipulating the control changes the color interactively, then there might be no commit action.

Example

Another example of a user interface with a commit action would be a Datep532 control that allows both text-based user input and
user selection from a drop-down calendar: while text input might not have an explicit commit step, selecting a date from the drop
down calendar and then dismissing the drop down would be a commit action.

Example

Examples of a user changing the element's valuep597 would include the user typing into a text control, pasting a new value into the
control, or undoing an edit in that control. Some user interactions do not cause changes to the value, e.g., hitting the "delete" key
in an empty text control, or replacing some text in the control with text from the clipboard that happens to be exactly the same
text.

Example

A Rangep538 control in the form of a slider that the user has focusedp836 and is interacting with using a keyboard would be another
example of the user changing the element's valuep597 without a commit step.

Example

565

https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://w3c.github.io/uievents/#event-type-input

valuep597 accordingly, then fire an event named input at the inputp520 element, with the bubbles and composed attributes initialized to
true, then fire an event named changep1471 at the inputp520 element, with the bubbles attribute initialized to true.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Interactive contentp150.
Listedp513, labelablep514, submittablep514, and autocapitalize-and-autocorrect inheritingp514 form-associated elementp513.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150, but there must be no interactive contentp150 descendant and no descendant with the tabindexp838

attribute specified.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

disabledp601 — Whether the form control is disabled
formp598 — Associates the element with a formp514 element
formactionp602 — URL to use for form submissionp628

formenctypep603 — Entry listp632 encoding type to use for form submissionp628

formmethodp602 — Variant to use for form submissionp628

formnovalidatep603 — Bypass form control validation for form submissionp628

formtargetp603 — Navigablep989 for form submissionp628

namep599 — Name of the element to use for form submissionp628 and in the form.elementsp516 API
popovertargetp894 — Targets a popover element to toggle, show, or hide
popovertargetactionp894 — Indicates whether a targeted popover element is to be toggled, shown, or hidden
typep567 — Type of button
valuep568 — Value to be used for form submissionp628

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLButtonElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute USVString formAction;
[CEReactions] attribute DOMString formEnctype;

These events are not fired in response to changes made to the values of form controls by scripts. (This is to make it easier to
update the values of form controls in response to the user manipulating the controls, without having to then filter out the script's
own changes to avoid an infinite loop.)

Note

These events are also not fired when the browser changes the values of form controls as part of state restoration during
navigationp1055.

Note

IDL

4.10.6 The button element §p56

6

✔ MDN

✔ MDN

566

https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/html-aria/#el-button
https://w3c.github.io/html-aam/#el-button

[CEReactions] attribute DOMString formMethod;
[CEReactions] attribute boolean formNoValidate;
[CEReactions] attribute DOMString formTarget;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList labels;
};
HTMLButtonElement includes PopoverInvokerElement;

The buttonp566 element representsp141 a button labeled by its contents.

The element is a buttonp514.

The type attribute controls the behavior of the button when it is activated. It is an enumerated attributep76 with the following keywords
and states:

Keyword State Brief description

submit Submit Buttonp567 Submits the form.
reset Reset Buttonp567 Resets the form.
button Buttonp567 Does nothing.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the Submit Buttonp567 state.

If the typep567 attribute is in the Submit Buttonp567 state, the element is specifically a submit buttonp514.

Constraint validation: If the typep567 attribute is in the Reset Buttonp567 state or the Buttonp567 state, the element is barred from
constraint validationp622.

A buttonp566 element element's activation behavior given event is:

1. If element is disabledp601, then return.

2. If element's node document is not fully activep1003, then return.

3. If element has a form ownerp598 then switch on element's typep567 attribute's state, then:

Submit Button
Submitp629 element's form ownerp598 from element with userInvolvementp629 set to event's user navigation
involvementp1014.

Reset Button
Resetp637 element's form ownerp598.

Button
Do nothing.

4. Run the popover target attribute activation behaviorp895 given element and event's target.

The formp598 attribute is used to explicitly associate the buttonp566 element with its form ownerp598. The namep599 attribute represents
the element's name. The disabledp601 attribute is used to make the control non-interactive and to prevent its value from being
submitted. The formactionp602, formenctypep603, formmethodp602, formnovalidatep603, and formtargetp603 attributes are attributes for
form submissionp602.

567

https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-target

The formactionp602, formenctypep603, formmethodp602, formnovalidatep603, and formtargetp603 must not be specified if the element's
typep567 attribute is not in the Submit Buttonp567 state.

The value attribute gives the element's value for the purposes of form submission. The element's valuep597 is the value of the
element's valuep568 attribute, if there is one, or the empty string otherwise.

The value IDL attribute must reflectp104 the content attribute of the same name.

The type IDL attribute must reflectp104 the content attribute of the same name, limited to only known valuesp105.

The willValidatep625, validityp625, and validationMessagep627 IDL attributes, and the checkValidity()p627, reportValidity()p627,
and setCustomValidity()p625 methods, are part of the constraint validation APIp624. The labelsp520 IDL attribute provides a list of the
element's labelp518s. The disabledp602, formp599, and namep600 IDL attributes are part of the element's forms API.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Interactive contentp150.
Listedp513, labelablep514, submittablep514, resettablep514, and autocapitalize-and-autocorrect inheritingp514 form-associated
elementp513.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Zero or more optionp577, optgroupp576, hrp231, and script-supportingp151 elements.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

autocompletep604 — Hint for form autofill feature
disabledp601 — Whether the form control is disabled
formp598 — Associates the element with a formp514 element
multiplep569 — Whether to allow multiple values
namep599 — Name of the element to use for form submissionp628 and in the form.elementsp516 API
requiredp570 — Whether the control is required for form submissionp628

sizep569 — Size of the control

The formnovalidatep603 attribute can be used to make submit buttons that do not trigger the constraint validation.
Note

A button (and its value) is only included in the form submission if the button itself was used to initiate the form submission.
Note

The following button is labeled "Show hint" and pops up a dialog box when activated:

<button type=button
onclick="alert('This 15-20 minute piece was composed by George Gershwin.')">

Show hint
</button>

Example

4.10.7 The select element §p56

8

✔ MDN

✔ MDN

568

Accessibility considerationsp146:
If the element has a multiplep569 attribute or a sizep569 attribute with a value > 1: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLSelectElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute boolean multiple;
[CEReactions] attribute DOMString name;
[CEReactions] attribute boolean required;
[CEReactions] attribute unsigned long size;

readonly attribute DOMString type;

[SameObject] readonly attribute HTMLOptionsCollection options;
[CEReactions] attribute unsigned long length;
getter HTMLOptionElement? item(unsigned long index);
HTMLOptionElement? namedItem(DOMString name);
[CEReactions] undefined add((HTMLOptionElement or HTMLOptGroupElement) element, optional

(HTMLElement or long)? before = null);
[CEReactions] undefined remove(); // ChildNode overload
[CEReactions] undefined remove(long index);
[CEReactions] setter undefined (unsigned long index, HTMLOptionElement? option);

[SameObject] readonly attribute HTMLCollection selectedOptions;
attribute long selectedIndex;
attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

undefined showPicker();

readonly attribute NodeList labels;
};

The selectp568 element represents a control for selecting amongst a set of options.

The multiple attribute is a boolean attributep75. If the attribute is present, then the selectp568 element representsp141 a control for
selecting zero or more options from the list of optionsp569. If the attribute is absent, then the selectp568 element representsp141 a
control for selecting a single option from the list of optionsp569.

The size attribute gives the number of options to show to the user. The sizep569 attribute, if specified, must have a value that is a
valid non-negative integerp77 greater than zero.

The display size of a selectp568 element is the result of applying the rules for parsing non-negative integersp77 to the value of
element's sizep569 attribute, if it has one and parsing it is successful. If applying those rules to the attribute's value is not successful, or
if the sizep569 attribute is absent, then the element's display sizep569 is 4 if the element's multiplep569 content attribute is present, and
1 otherwise.

The list of options for a selectp568 element consists of all the optionp577 element children of the selectp568 element, and all the
optionp577 element children of all the optgroupp576 element children of the selectp568 element, in tree order.

IDL

✔ MDN

✔ MDN

✔ MDN

569

https://w3c.github.io/html-aria/#el-select-multiple-or-size-greater-1
https://w3c.github.io/html-aam/#el-select-listbox
https://w3c.github.io/html-aria/#el-select
https://w3c.github.io/html-aam/#el-select-combobox
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#concept-tree-order

The required attribute is a boolean attributep75. When specified, the user will be required to select a value before submitting the form.

If a selectp568 element has a requiredp570 attribute specified, does not have a multiplep569 attribute specified, and has a display
sizep569 of 1; and if the valuep578 of the first optionp577 element in the selectp568 element's list of optionsp569 (if any) is the empty
string, and that optionp577 element's parent node is the selectp568 element (and not an optgroupp576 element), then that optionp577 is
the selectp568 element's placeholder label option.

If a selectp568 element has a requiredp570 attribute specified, does not have a multiplep569 attribute specified, and has a display
sizep569 of 1, then the selectp568 element must have a placeholder label optionp570.

Constraint validation: If the element has its requiredp570 attribute specified, and either none of the optionp577 elements in the
selectp568 element's list of optionsp569 have their selectednessp578 set to true, or the only optionp577 element in the selectp568

element's list of optionsp569 with its selectednessp578 set to true is the placeholder label optionp570, then the element is suffering from
being missingp622.

If the multiplep569 attribute is absent, and the element is not disabledp601, then the user agent should allow the user to pick an
optionp577 element in its list of optionsp569 that is itself not disabledp578. Upon this optionp577 element being picked (either through a
click, or through unfocusing the element after changing its value, or through a menu commandp645, or through any other mechanism),
and before the relevant user interaction event is queued (e.g. before the click event), the user agent must set the selectednessp578 of
the picked optionp577 element to true, set its dirtinessp578 to true, and then send select update notificationsp571.

If the multiplep569 attribute is absent, whenever an optionp577 element in the selectp568 element's list of optionsp569 has its
selectednessp578 set to true, and whenever an optionp577 element with its selectednessp578 set to true is added to the selectp568

element's list of optionsp569, the user agent must set the selectednessp578 of all the other optionp577 elements in its list of optionsp569 to
false.

If the multiplep569 attribute is absent and the element's display sizep569 is greater than 1, then the user agent should also allow the
user to request that the optionp577 whose selectednessp578 is true, if any, be unselected. Upon this request being conveyed to the user
agent, and before the relevant user interaction event is queued (e.g. before the click event), the user agent must set the
selectednessp578 of that optionp577 element to false, set its dirtinessp578 to true, and then send select update notificationsp571.

The selectedness setting algorithm, given a selectp568 element element, is to run the following steps:

1. If element's multiplep569 attribute is absent, and element's display sizep569 is 1, and no optionp577 elements in the element's
list of optionsp569 have their selectednessp578 set to true, then set the selectednessp578 of the first optionp577 element in the
list of optionsp569 in tree order that is not disabledp578, if any, to true, and return.

2. If element's multiplep569 attribute is absent, and two or more optionp577 elements in element's list of optionsp569 have their
selectednessp578 set to true, then set the selectednessp578 of all but the last optionp577 element with its selectednessp578 set
to true in the list of optionsp569 in tree order to false.

The optionp577 HTML element insertion stepsp45, given insertedNode, are:

1. If insertedNode's parent is a selectp568 element, or insertedNode's parent is an optgroupp576 element whose parent is a
selectp568 element, then run that selectp568 element's selectedness setting algorithmp570.

The optionp577 HTML element removing stepsp45, given removedNode and oldParent, are:

1. If oldParent is a selectp568 element, or oldParent is an optgroupp576 element whose parent is a selectp568 element, then run
that selectp568 element's selectedness setting algorithmp570.

The optgroupp576 HTML element removing stepsp45, given removedNode and oldParent, are:

1. If oldParent is a selectp568 element and removedNode has an option child, then run oldParent's selectedness setting
algorithmp570.

If an optionp577 element in the list of optionsp569 asks for a reset, then run that selectp568 element's selectedness setting
algorithmp570.

In practice, the requirement stated in the paragraph above can only apply when a selectp568 element does not have a sizep569

attribute with a value greater than 1.

Note

570

https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

If the multiplep569 attribute is present, and the element is not disabledp601, then the user agent should allow the user to toggle the
selectednessp578 of the optionp577 elements in its list of optionsp569 that are themselves not disabledp578. Upon such an element being
toggledp571 (either through a click, or through a menu commandp645, or any other mechanism), and before the relevant user interaction
event is queued (e.g. before a related click event), the selectednessp578 of the optionp577 element must be changed (from true to
false or false to true), the dirtinessp578 of the element must be set to true, and the user agent must send select update
notificationsp571.

When the user agent is to send select update notifications, queue an element taskp1125 on the user interaction task sourcep1134

given the selectp568 element to run these steps:

1. Set the selectp568 element's user validityp597 to true.

2. Fire an event named input at the selectp568 element, with the bubbles and composed attributes initialized to true.

3. Fire an event named changep1471 at the selectp568 element, with the bubbles attribute initialized to true.

The reset algorithmp637 for a selectp568 element selectElement is:

1. Set selectElement's user validityp597 to false.

2. For each optionElement of selectElement's list of optionsp569:

1. If optionElement has a selectedp578 attribute, then set optionElement's selectednessp578 to true; otherwise set it to
false.

2. Set optionElement's dirtinessp578 to false.

3. Run the selectedness setting algorithmp570 given selectElement.

The formp598 attribute is used to explicitly associate the selectp568 element with its form ownerp598. The namep599 attribute represents
the element's name. The disabledp601 attribute is used to make the control non-interactive and to prevent its value from being
submitted. The autocompletep604 attribute controls how the user agent provides autofill behavior.

A selectp568 element that is not disabledp601 is mutablep597.

select.typep572

Returns "select-multiple" if the element has a multiplep569 attribute, and "select-one" otherwise.

select.optionsp572

Returns an HTMLOptionsCollectionp114 of the list of optionsp569.

select.lengthp572 [= value]
Returns the number of elements in the list of optionsp569.
When set to a smaller number, truncates the number of optionp577 elements in the selectp568.
When set to a greater number, adds new blank optionp577 elements to the selectp568.

element = select.itemp572(index)
select[index]

Returns the item with index index from the list of optionsp569. The items are sorted in tree order.

element = select.namedItemp572(name)
Returns the first item with ID or namep1427 name from the list of optionsp569.
Returns null if no element with that ID could be found.

select.addp572(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that number, or an element from
the list of optionsp569, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.
This method will throw a "HierarchyRequestError" DOMException if element is an ancestor of the element into which it is to be
inserted.

For web developers (non-normative)

571

https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException

The type IDL attribute, on getting, must return the string "select-one" if the multiplep569 attribute is absent, and the string "select-
multiple" if the multiplep569 attribute is present.

The options IDL attribute must return an HTMLOptionsCollectionp114 rooted at the selectp568 node, whose filter matches the
elements in the list of optionsp569.

The optionsp572 collection is also mirrored on the HTMLSelectElementp569 object. The supported property indices at any instant are the
indices supported by the object returned by the optionsp572 attribute at that instant.

The length IDL attribute must return the number of nodes represented by the optionsp572 collection. On setting, it must act like the
attribute of the same name on the optionsp572 collection.

The item(index) method must return the value returned by the method of the same name on the optionsp572 collection, when
invoked with the same argument.

The namedItem(name) method must return the value returned by the method of the same name on the optionsp572 collection, when
invoked with the same argument.

When the user agent is to set the value of a new indexed property or set the value of an existing indexed property for a selectp568

element, it must instead run the corresponding algorithmp115 on the selectp568 element's optionsp572 collection.

Similarly, the add(element, before) method must act like its namesake method on that same optionsp572 collection.

The remove() method must act like its namesake method on that same optionsp572 collection when it has arguments, and like its
namesake method on the ChildNode interface implemented by the HTMLSelectElementp569 ancestor interface Element when it has no
arguments.

The selectedOptions IDL attribute must return an HTMLCollection rooted at the selectp568 node, whose filter matches the elements
in the list of optionsp569 that have their selectednessp578 set to true.

The selectedIndex IDL attribute, on getting, must return the indexp578 of the first optionp577 element in the list of optionsp569 in tree
order that has its selectednessp578 set to true, if any. If there isn't one, then it must return −1.

On setting, the selectedIndexp572 attribute must set the selectednessp578 of all the optionp577 elements in the list of optionsp569 to
false, and then the optionp577 element in the list of optionsp569 whose indexp578 is the given new value, if any, must have its
selectednessp578 set to true and its dirtinessp578 set to true.

The value IDL attribute, on getting, must return the valuep578 of the first optionp577 element in the list of optionsp569 in tree order that

select.selectedOptionsp572

Returns an HTMLCollection of the list of optionsp569 that are selected.

select.selectedIndexp572 [= value]
Returns the index of the first selected item, if any, or −1 if there is no selected item.
Can be set, to change the selection.

select.valuep572 [= value]
Returns the valuep578 of the first selected item, if any, or the empty string if there is no selected item.
Can be set, to change the selection.

select.showPickerp563()
Shows any applicable picker UI for select, so that the user can select a value.
Throws an "InvalidStateError" DOMException if select is not mutablep597.
Throws a "NotAllowedError" DOMException if called without transient user activationp830.
Throws a "SecurityError" DOMException if select is inside a cross-origin iframep390.
Throws a "NotSupportedError" DOMException if select is not being renderedp1388.

This can result in no element having a selectednessp578 set to true even in the case of the selectp568 element having no
multiplep569 attribute and a display sizep569 of 1.

Note

✔ MDN

572

https://dom.spec.whatwg.org/#interface-htmlcollection
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://dom.spec.whatwg.org/#represented-by-the-collection
https://dom.spec.whatwg.org/#dom-htmlcollection-item
https://dom.spec.whatwg.org/#dom-htmlcollection-nameditem
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-a-new-indexed-property
https://webidl.spec.whatwg.org/#dfn-set-the-value-of-an-existing-indexed-property
https://dom.spec.whatwg.org/#interface-childnode
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

has its selectednessp578 set to true, if any. If there isn't one, then it must return the empty string.

On setting, the valuep572 attribute must set the selectednessp578 of all the optionp577 elements in the list of optionsp569 to false, and
then the first optionp577 element in the list of optionsp569, in tree order, whose valuep578 is equal to the given new value, if any, must
have its selectednessp578 set to true and its dirtinessp578 set to true.

The multiple, required, and size IDL attributes must reflectp104 the respective content attributes of the same name. The sizep573 IDL
attribute has a default valuep106 of 0.

The willValidatep625, validityp625, and validationMessagep627 IDL attributes, and the checkValidity()p627, reportValidity()p627,
and setCustomValidity()p625 methods, are part of the constraint validation APIp624. The labelsp520 IDL attribute provides a list of the
element's labelp518s. The disabledp602, formp599, and namep600 IDL attributes are part of the element's forms API.

This can result in no element having a selectednessp578 set to true even in the case of the selectp568 element having no
multiplep569 attribute and a display sizep569 of 1.

Note

For historical reasons, the default value of the sizep573 IDL attribute does not return the actual size used, which, in the absence of
the sizep569 content attribute, is either 1 or 4 depending on the presence of the multiplep569 attribute.

Note

The following example shows how a selectp568 element can be used to offer the user with a set of options from which the user can
select a single option. The default option is preselected.

<p>
<label for="unittype">Select unit type:</label>
<select id="unittype" name="unittype">
<option value="1"> Miner </option>
<option value="2"> Puffer </option>
<option value="3" selected> Snipey </option>
<option value="4"> Max </option>
<option value="5"> Firebot </option>

</select>
</p>

When there is no default option, a placeholder can be used instead:

<select name="unittype" required>
<option value=""> Select unit type </option>
<option value="1"> Miner </option>
<option value="2"> Puffer </option>
<option value="3"> Snipey </option>
<option value="4"> Max </option>
<option value="5"> Firebot </option>

</select>

Example

Here, the user is offered a set of options from which they can select any number. By default, all five options are selected.

<p>
<label for="allowedunits">Select unit types to enable on this map:</label>
<select id="allowedunits" name="allowedunits" multiple>
<option value="1" selected> Miner </option>
<option value="2" selected> Puffer </option>
<option value="3" selected> Snipey </option>
<option value="4" selected> Max </option>
<option value="5" selected> Firebot </option>

Example

573

https://dom.spec.whatwg.org/#concept-tree-order

Categoriesp146:
Flow contentp149.
Phrasing contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Either: phrasing contentp150.
Or: Zero or more optionp577 and script-supportingp151 elements.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

</select>
</p>

Sometimes, a user has to select one or more items. This example shows such an interface.

<label>
Select the songs from that you would like on your Act II Mix Tape:
<select multiple required name="act2">
<option value="s1">It Sucks to Be Me (Reprise)
<option value="s2">There is Life Outside Your Apartment
<option value="s3">The More You Ruv Someone
<option value="s4">Schadenfreude
<option value="s5">I Wish I Could Go Back to College
<option value="s6">The Money Song
<option value="s7">School for Monsters
<option value="s8">The Money Song (Reprise)
<option value="s9">There's a Fine, Fine Line (Reprise)
<option value="s10">What Do You Do With a B.A. in English? (Reprise)
<option value="s11">For Now

</select>
</label>

Example

Occasionally it can be useful to have a separator:

<label>
Select the song to play next:
<select required name="next">
<option value="sr">Random
<hr>
<option value="s1">It Sucks to Be Me (Reprise)
<option value="s2">There is Life Outside Your Apartment
…

Example

4.10.8 The datalist element §p57

4

MDN

✔ MDN

574

https://w3c.github.io/html-aria/#el-datalist
https://w3c.github.io/html-aam/#el-datalist

DOM interfacep147:

[Exposed=Window]
interface HTMLDataListElement : HTMLElement {

[HTMLConstructor] constructor();

[SameObject] readonly attribute HTMLCollection options;
};

The datalistp574 element represents a set of optionp577 elements that represent predefined options for other controls. In the
rendering, the datalistp574 element representsp141 nothing and it, along with its children, should be hidden.

The datalistp574 element can be used in two ways. In the simplest case, the datalistp574 element has just optionp577 element
children.

In the more elaborate case, the datalistp574 element can be given contents that are to be displayed for down-level clients that don't
support datalistp574. In this case, the optionp577 elements are provided inside a selectp568 element inside the datalistp574 element.

The datalistp574 element is hooked up to an inputp520 element using the listp557 attribute on the inputp520 element.

Each optionp577 element that is a descendant of the datalistp574 element, that is not disabledp578, and whose valuep578 is a string that
isn't the empty string, represents a suggestion. Each suggestion has a valuep578 and a labelp578.

The options IDL attribute must return an HTMLCollection rooted at the datalistp574 node, whose filter matches optionp577 elements.

Constraint validation: If an element has a datalistp574 element ancestor, it is barred from constraint validationp622.

<label>
Animal:
<input name=animal list=animals>
<datalist id=animals>
<option value="Cat">
<option value="Dog">

</datalist>
</label>

Example

<label>
Animal:
<input name=animal list=animals>

</label>
<datalist id=animals>
<label>
or select from the list:
<select name=animal>
<option value="">
<option>Cat
<option>Dog

</select>
</label>

</datalist>

Example

datalist.optionsp575

Returns an HTMLCollection of the optionp577 elements of the datalistp574 element.

For web developers (non-normative)

IDL

575

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a selectp568 element.

Content modelp146:
Zero or more optionp577 and script-supportingp151 elements.

Tag omission in text/htmlp146:
An optgroupp576 element's end tagp1262 can be omitted if the optgroupp576 element is immediately followed by another
optgroupp576 element, if it is immediately followed by an hrp231 element, or if there is no more content in the parent element.

Content attributesp146:
Global attributesp154

disabledp576 — Whether the form control is disabled
labelp576 — User-visible label

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLOptGroupElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
[CEReactions] attribute DOMString label;

};

The optgroupp576 element representsp141 a group of optionp577 elements with a common label.

The element's group of optionp577 elements consists of the optionp577 elements that are children of the optgroupp576 element.

When showing optionp577 elements in selectp568 elements, user agents should show the optionp577 elements of such groups as being
related to each other and separate from other optionp577 elements.

The disabled attribute is a boolean attributep75 and can be used to disablep578 a group of optionp577 elements together.

The label attribute must be specified. Its value gives the name of the group, for the purposes of the user interface. User agents should
use this attribute's value when labeling the group of optionp577 elements in a selectp568 element.

The disabled and label attributes must reflectp104 the respective content attributes of the same name.

There is no way to select an optgroupp576 element. Only optionp577 elements can be selected. An optgroupp576 element merely
provides a label for a group of optionp577 elements.

Note

The following snippet shows how a set of lessons from three courses could be offered in a selectp568 drop-down widget:

<form action="courseselector.dll" method="get">
<p>Which course would you like to watch today?
<p><label>Course:
<select name="c">
<optgroup label="8.01 Physics I: Classical Mechanics">
<option value="8.01.1">Lecture 01: Powers of Ten
<option value="8.01.2">Lecture 02: 1D Kinematics
<option value="8.01.3">Lecture 03: Vectors

Example

IDL

4.10.9 The optgroup element §p57

6

✔ MDN

✔ MDN

✔ MDN

576

https://w3c.github.io/html-aria/#el-optgroup
https://w3c.github.io/html-aam/#el-optgroup

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As a child of a selectp568 element.
As a child of a datalistp574 element.
As a child of an optgroupp576 element.

Content modelp146:
If the element has a labelp578 attribute and a valuep578 attribute: Nothingp148.
If the element has a labelp578 attribute but no valuep578 attribute: Textp150.
If the element has no labelp578 attribute and is not a child of a datalistp574 element: Textp150 that is not inter-element
whitespacep147.
If the element has no labelp578 attribute and is a child of a datalistp574 element: Textp150.

Tag omission in text/htmlp146:
An optionp577 element's end tagp1262 can be omitted if the optionp577 element is immediately followed by another optionp577

element, if it is immediately followed by an optgroupp576 element, if it is immediately followed by an hrp231 element, or if there is
no more content in the parent element.

Content attributesp146:
Global attributesp154

disabledp578 — Whether the form control is disabled
labelp578 — User-visible label
selectedp578 — Whether the option is selected by default
valuep578 — Value to be used for form submissionp628

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window,
LegacyFactoryFunction=Option(optional DOMString text = "", optional DOMString value, optional

boolean defaultSelected = false, optional boolean selected = false)]
interface HTMLOptionElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString label;
[CEReactions] attribute boolean defaultSelected;
attribute boolean selected;

<optgroup label="8.02 Electricity and Magnetism">
<option value="8.02.1">Lecture 01: What holds our world together?
<option value="8.02.2">Lecture 02: Electric Field
<option value="8.02.3">Lecture 03: Electric Flux

<optgroup label="8.03 Physics III: Vibrations and Waves">
<option value="8.03.1">Lecture 01: Periodic Phenomenon
<option value="8.03.2">Lecture 02: Beats
<option value="8.03.3">Lecture 03: Forced Oscillations with Damping

</select>
</label>
<p><input type=submit value="▶ Play">

</form>

IDL

4.10.10 The option element §p57

7

✔ MDN

✔ MDN

577

https://w3c.github.io/html-aria/#el-option
https://w3c.github.io/html-aam/#el-option
https://webidl.spec.whatwg.org/#LegacyFactoryFunction

[CEReactions] attribute DOMString value;

[CEReactions] attribute DOMString text;
readonly attribute long index;

};

The optionp577 element representsp141 an option in a selectp568 element or as part of a list of suggestions in a datalistp574 element.

In certain circumstances described in the definition of the selectp568 element, an optionp577 element can be a selectp568 element's
placeholder label optionp570. A placeholder label optionp570 does not represent an actual option, but instead represents a label for the
selectp568 control.

The disabled attribute is a boolean attributep75. An optionp577 element is disabled if its disabledp578 attribute is present or if it is a
child of an optgroupp576 element whose disabledp576 attribute is present.

An optionp577 element that is disabledp578 must prevent any click events that are queuedp1125 on the user interaction task sourcep1134

from being dispatched on the element.

The label attribute provides a label for element. The label of an optionp577 element is the value of the labelp578 content attribute, if
there is one and its value is not the empty string, or, otherwise, the value of the element's textp579 IDL attribute.

The labelp578 content attribute, if specified, must not be empty.

The value attribute provides a value for element. The value of an optionp577 element is the value of the valuep578 content attribute, if
there is one, or, if there is not, the value of the element's textp579 IDL attribute.

The selected attribute is a boolean attributep75. It represents the default selectednessp578 of the element.

The dirtiness of an optionp577 element is a boolean state, initially false. It controls whether adding or removing the selectedp578

content attribute has any effect.

The selectedness of an optionp577 element is a boolean state, initially false. Except where otherwise specified, when the element is
created, its selectednessp578 must be set to true if the element has a selectedp578 attribute. Whenever an optionp577 element's
selectedp578 attribute is added, if its dirtinessp578 is false, its selectednessp578 must be set to true. Whenever an optionp577 element's
selectedp578 attribute is removed, if its dirtinessp578 is false, its selectednessp578 must be set to false.

A selectp568 element whose multiplep569 attribute is not specified must not have more than one descendant optionp577 element with
its selectedp578 attribute set.

An optionp577 element's index is the number of optionp577 elements that are in the same list of optionsp569 but that come before it in
tree order. If the optionp577 element is not in a list of optionsp569, then the optionp577 element's indexp578 is zero.

The Option()p579 constructor, when called with three or fewer arguments, overrides the initial state of the selectednessp578 state to
always be false even if the third argument is true (implying that a selectedp578 attribute is to be set). The fourth argument can be
used to explicitly set the initial selectednessp578 state when using the constructor.

Note

option.selectedp579

Returns true if the element is selected, and false otherwise.
Can be set, to override the current state of the element.

option.indexp579

Returns the index of the element in its selectp568 element's optionsp572 list.

option.formp579

Returns the element's formp514 element, if any, or null otherwise.

option.textp579

Same as textContent, except that spaces are collapsed and scriptp652 elements are skipped.

For web developers (non-normative)

✔ MDN

578

https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#dom-node-textcontent

The disabled IDL attribute must reflectp104 the content attribute of the same name. The defaultSelected IDL attribute must
reflectp104 the selectedp578 content attribute.

The label IDL attribute, on getting, if there is a labelp578 content attribute, must return that attribute's value; otherwise, it must return
the element's labelp578. On setting, the element's labelp578 content attribute must be set to the new value.

The value IDL attribute, on getting, must return the element's valuep578. On setting, the element's valuep578 content attribute must be
set to the new value.

The selected IDL attribute, on getting, must return true if the element's selectednessp578 is true, and false otherwise. On setting, it
must set the element's selectednessp578 to the new value, set its dirtinessp578 to true, and then cause the element to ask for a resetp570.

The index IDL attribute must return the element's indexp578.

The text IDL attribute, on getting, must return the result of stripping and collapsing ASCII whitespace from the concatenation of data
of all the Text node descendants of the optionp577 element, in tree order, excluding any that are descendants of descendants of the
optionp577 element that are themselves scriptp652 or SVG script elements.

The textp579 attribute's setter must string replace all with the given value within this element.

The form IDL attribute's behavior depends on whether the optionp577 element is in a selectp568 element or not. If the optionp577 has a
selectp568 element as its parent, or has an optgroupp576 element as its parent and that optgroupp576 element has a selectp568 element
as its parent, then the formp579 IDL attribute must return the same value as the formp599 IDL attribute on that selectp568 element.
Otherwise, it must return null.

A legacy factory function is provided for creating HTMLOptionElementp577 objects (in addition to the factory methods from DOM such as
createElement()): Option(text, value, defaultSelected, selected). When invoked, the legacy factory function must perform
the following steps:

1. Let document be the current global objectp1083 's associated Documentp923.

2. Let option be the result of creating an element given document, optionp577, and the HTML namespace.

3. If text is not the empty string, then append to option a new Text node whose data is text.

4. If value is given, then set an attribute value for option using "valuep578" and value.

5. If defaultSelected is true, then set an attribute value for option using "selectedp578" and the empty string.

6. If selected is true, then set option's selectednessp578 to true; otherwise set its selectednessp578 to false (even if
defaultSelected is true).

7. Return option.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Interactive contentp150.
Listedp513, labelablep514, submittablep514, resettablep514, and autocapitalize-and-autocorrect inheritingp514 form-associated

option = new Optionp579([text [, value [, defaultSelected [, selected]]]])
Returns a new optionp577 element.
The text argument sets the contents of the element.
The value argument sets the valuep578 attribute.
The defaultSelected argument sets the selectedp578 attribute.
The selected argument sets whether or not the element is selected. If it is omitted, even if the defaultSelected argument is true,
the element is not selected.

4.10.11 The textarea element §p57

9

✔ MDN

✔ MDN

579

https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-tree-order
https://svgwg.org/svg2-draft/interact.html#ScriptElement
https://dom.spec.whatwg.org/#string-replace-all
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

elementp513.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Textp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

autocompletep604 — Hint for form autofill feature
colsp582 — Maximum number of characters per line
dirnamep600 — Name of form control to use for sending the element's directionalityp160 in form submissionp628

disabledp601 — Whether the form control is disabled
formp598 — Associates the element with a formp514 element
maxlengthp582 — Maximum length of value
minlengthp582 — Minimum length of value
namep599 — Name of the element to use for form submissionp628 and in the form.elementsp516 API
placeholderp583 — User-visible label to be placed within the form control
readonlyp581 — Whether to allow the value to be edited by the user
requiredp582 — Whether the control is required for form submissionp628

rowsp582 — Number of lines to show
wrapp582 — How the value of the form control is to be wrapped for form submissionp628

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTextAreaElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString autocomplete;
[CEReactions] attribute unsigned long cols;
[CEReactions] attribute DOMString dirName;
[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute long maxLength;
[CEReactions] attribute long minLength;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString placeholder;
[CEReactions] attribute boolean readOnly;
[CEReactions] attribute boolean required;
[CEReactions] attribute unsigned long rows;
[CEReactions] attribute DOMString wrap;

readonly attribute DOMString type;
[CEReactions] attribute DOMString defaultValue;
attribute [LegacyNullToEmptyString] DOMString value;
readonly attribute unsigned long textLength;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

IDL

580

https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://w3c.github.io/html-aria/#el-textarea
https://w3c.github.io/html-aam/#el-textarea
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString

readonly attribute NodeList labels;

undefined select();
attribute unsigned long selectionStart;
attribute unsigned long selectionEnd;
attribute DOMString selectionDirection;
undefined setRangeText(DOMString replacement);
undefined setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional

SelectionMode selectionMode = "preserve");
undefined setSelectionRange(unsigned long start, unsigned long end, optional DOMString

direction);
};

The textareap579 element representsp141 a multiline plain text edit control for the element's raw value. The contents of the control
represent the control's default value.

The raw valuep581 of a textareap579 control must be initially the empty string.

The readonly attribute is a boolean attributep75 used to control whether the text can be edited by the user or not.

Constraint validation: If the readonlyp581 attribute is specified on a textareap579 element, the element is barred from constraint
validationp622.

A textareap579 element is mutablep597 if it is neither disabledp601 nor has a readonlyp581 attribute specified.

When a textareap579 is mutablep597, its raw valuep581 should be editable by the user: the user agent should allow the user to edit,
insert, and remove text, and to insert and remove line breaks in the form of U+000A LINE FEED (LF) characters. Any time the user
causes the element's raw valuep581 to change, the user agent must queue an element taskp1125 on the user interaction task sourcep1134

given the textareap579 element to fire an event named input at the textareap579 element, with the bubbles and composed attributes
initialized to true. User agents may wait for a suitable break in the user's interaction before queuing the task; for example, a user
agent could wait for the user to have not hit a key for 100ms, so as to only fire the event when the user pauses, instead of
continuously for each keystroke.

A textareap579 element's dirty value flagp597 must be set to true whenever the user interacts with the control in a way that changes the
raw valuep581.

The cloning steps for textareap579 elements must propagate the raw valuep581 and dirty value flagp597 from the node being cloned to
the copy.

The children changed steps for textareap579 elements must, if the element's dirty value flagp597 is false, set the element's raw
valuep581 to its child text content.

This element has rendering requirements involving the bidirectional algorithmp170.
Note

In this example, a text control is marked read-only because it represents a read-only file:

Filename: <code>/etc/bash.bashrc</code>
<textarea name="buffer" readonly>
System-wide .bashrc file for interactive bash(1) shells.

To enable the settings / commands in this file for login shells as well,
this file has to be sourced in /etc/profile.

If not running interactively, don't do anything
[-z "$PS1"] && return

...</textarea>

Example

581

https://dom.spec.whatwg.org/#interface-nodelist
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://dom.spec.whatwg.org/#concept-child-text-content

The reset algorithmp637 for textareap579 elements is to set the user validityp597 to false, dirty value flagp597 back to false, and set the
raw valuep581 of element to its child text content.

When a textareap579 element is popped off the stack of open elementsp1286 of an HTML parserp1271 or XML parserp1384, then the user
agent must invoke the element's reset algorithmp637.

If the element is mutablep597, the user agent should allow the user to change the writing direction of the element, setting it either to a
left-to-right writing direction or a right-to-left writing direction. If the user does so, the user agent must then run the following steps:

1. Set the element's dirp160 attribute to "ltrp160" if the user selected a left-to-right writing direction, and "rtlp160" if the user
selected a right-to-left writing direction.

2. Queue an element taskp1125 on the user interaction task sourcep1134 given the textareap579 element to fire an event named
input at the textareap579 element, with the bubbles and composed attributes initialized to true.

The cols attribute specifies the expected maximum number of characters per line. If the colsp582 attribute is specified, its value must
be a valid non-negative integerp77 greater than zero. If applying the rules for parsing non-negative integersp77 to the attribute's value
results in a number greater than zero, then the element's character width is that value; otherwise, it is 20.

The user agent may use the textareap579 element's character widthp582 as a hint to the user as to how many characters the server
prefers per line (e.g. for visual user agents by making the width of the control be that many characters). In visual renderings, the user
agent should wrap the user's input in the rendering so that each line is no wider than this number of characters.

The rows attribute specifies the number of lines to show. If the rowsp582 attribute is specified, its value must be a valid non-negative
integerp77 greater than zero. If applying the rules for parsing non-negative integersp77 to the attribute's value results in a number
greater than zero, then the element's character height is that value; otherwise, it is 2.

Visual user agents should set the height of the control to the number of lines given by character heightp582.

The wrap attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

soft Soft Text is not to be wrapped when submitted (though can still be wrapped in the rendering).
hard Hard Text is to have newlines added by the user agent so that the text is wrapped when it is submitted.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the Softp582 state.

If the element's wrapp582 attribute is in the Hardp582 state, the colsp582 attribute must be specified.

For historical reasons, the element's value is normalized in three different ways for three different purposes. The raw valuep581 is the
value as it was originally set. It is not normalized. The API valuep597 is the value used in the valuep583 IDL attribute, textLengthp583 IDL
attribute, and by the maxlengthp600 and minlengthp601 content attributes. It is normalized so that line breaks use U+000A LINE FEED
(LF) characters. Finally, there is the valuep597, as used in form submission and other processing models in this specification. It is
normalized as for the API valuep597, and in addition, if necessary given the element's wrapp582 attribute, additional line breaks are
inserted to wrap the text at the given width.

The algorithm for obtaining the element's API valuep597 is to return the element's raw valuep581, with newlines normalized.

The element's valuep597 is defined to be the element's API valuep581 with the textarea wrapping transformationp582 applied. The
textarea wrapping transformation is the following algorithm, as applied to a string:

1. If the element's wrapp582 attribute is in the Hardp582 state, insert U+000A LINE FEED (LF) characters into the string using an
implementation-defined algorithm so that each line has no more than character widthp582 characters. For the purposes of this
requirement, lines are delimited by the start of the string, the end of the string, and U+000A LINE FEED (LF) characters.

The maxlength attribute is a form control maxlength attributep600.

If the textareap579 element has a maximum allowed value lengthp600, then the element's children must be such that the length of the
value of the element's descendant text content with newlines normalized is less than or equal to the element's maximum allowed
value lengthp600.

The minlength attribute is a form control minlength attributep601.

The required attribute is a boolean attributep75. When specified, the user will be required to enter a value before submitting the form.

582

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-composed
https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#string-length
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://infra.spec.whatwg.org/#normalize-newlines

Constraint validation: If the element has its requiredp582 attribute specified, and the element is mutablep597, and the element's
valuep597 is the empty string, then the element is suffering from being missingp622.

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry when the control
has no value. A hint could be a sample value or a brief description of the expected format.

The placeholderp583 attribute should not be used as an alternative to a labelp518. For a longer hint or other advisory text, the
titlep157 attribute is more appropriate.

User agents should present this hint to the user when the element's valuep597 is the empty string and the control is not focusedp836

(e.g. by displaying it inside a blank unfocused control). All U+000D CARRIAGE RETURN U+000A LINE FEED character pairs (CRLF) in the
hint, as well as all other U+000D CARRIAGE RETURN (CR) and U+000A LINE FEED (LF) characters in the hint, must be treated as line
breaks when rendering the hint.

If a user agent normally doesn't show this hint to the user when the control is focusedp836, then the user agent should nonetheless
show the hint for the control if it was focused as a result of the autofocusp848 attribute, since in that case the user will not have had an
opportunity to examine the control before focusing it.

The namep599 attribute represents the element's name. The dirnamep600 attribute controls how the element's directionalityp160 is
submitted. The disabledp601 attribute is used to make the control non-interactive and to prevent its value from being submitted. The
formp598 attribute is used to explicitly associate the textareap579 element with its form ownerp598. The autocompletep604 attribute
controls how the user agent provides autofill behavior.

The cols, placeholder, required, rows, and wrap IDL attributes must reflectp104 the respective content attributes of the same name.
The colsp583 and rowsp583 attributes are limited to only positive numbers with fallbackp107. The colsp583 IDL attribute's default valuep106

is 20. The rowsp583 IDL attribute's default valuep106 is 2. The dirName IDL attribute must reflectp104 the dirnamep600 content attribute.
The maxLength IDL attribute must reflectp104 the maxlengthp582 content attribute, limited to only non-negative numbersp106. The
minLength IDL attribute must reflectp104 the minlengthp582 content attribute, limited to only non-negative numbersp106. The readOnly
IDL attribute must reflectp104 the readonlyp581 content attribute.

The type IDL attribute must return the value "textarea".

The defaultValue attribute's getter must return the element's child text content.

The defaultValuep583 attribute's setter must string replace all with the given value within this element.

The value IDL attribute must, on getting, return the element's API valuep597. On setting, it must perform the following steps:

1. Let oldAPIValue be this element's API valuep597.

2. Set this element's raw valuep581 to the new value.

3. Set this element's dirty value flagp597 to true.

4. If the new API valuep597 is different from oldAPIValue, then move the text entry cursor positionp618 to the end of the text
control, unselecting any selected text and resetting the selection directionp619 to "none".

The textLength IDL attribute must return the length of the element's API valuep597.

The willValidatep625, validityp625, and validationMessagep627 IDL attributes, and the checkValidity()p627, reportValidity()p627,

These mechanisms are very similar but subtly different: the hint given by the control's labelp518 is shown at all times; the short
hint given in the placeholderp583 attribute is shown before the user enters a value; and the hint in the titlep157 attribute is shown
when the user requests further help.

Note

textarea.typep583

Returns the string "textarea".

textarea.valuep583

Returns the current value of the element.
Can be set, to change the value.

For web developers (non-normative)

583

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#string-replace-all
https://infra.spec.whatwg.org/#string-length

and setCustomValidity()p625 methods, are part of the constraint validation APIp624. The labelsp520 IDL attribute provides a list of the
element's labelp518s. The select()p619, selectionStartp619, selectionEndp620, selectionDirectionp620, setRangeText()p621, and
setSelectionRange()p620 methods and IDL attributes expose the element's text selection. The disabledp602, formp599, and namep600 IDL
attributes are part of the element's forms API.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Listedp513, labelablep514, resettablep514, and autocapitalize-and-autocorrect inheritingp514 form-associated elementp513.
Palpable contentp150.

Here is an example of a textareap579 being used for unrestricted free-form text input in a form:

<p>If you have any comments, please let us know: <textarea cols=80 name=comments></textarea></p>

To specify a maximum length for the comments, one can use the maxlengthp582 attribute:

<p>If you have any short comments, please let us know: <textarea cols=80 name=comments
maxlength=200></textarea></p>

To give a default value, text can be included inside the element:

<p>If you have any comments, please let us know: <textarea cols=80 name=comments>You
rock!</textarea></p>

You can also give a minimum length. Here, a letter needs to be filled out by the user; a template (which is shorter than the
minimum length) is provided, but is insufficient to submit the form:

<textarea required minlength="500">Dear Madam Speaker,

Regarding your letter dated ...

...

Yours Sincerely,

...</textarea>

A placeholder can be given as well, to suggest the basic form to the user, without providing an explicit template:

<textarea placeholder="Dear Francine,

They closed the parks this week, so we won't be able to
meet your there. Should we just have dinner?

Love,
Daddy"></textarea>

To have the browser submit the directionalityp160 of the element along with the value, the dirnamep600 attribute can be specified:

<p>If you have any comments, please let us know (you may use either English or Hebrew for your
comments):
<textarea cols=80 name=comments dirname=comments.dir></textarea></p>

Example

4.10.12 The output element §p58

4

✔ MDN

✔ MDN

584

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

forp585 — Specifies controls from which the output was calculated
formp598 — Associates the element with a formp514 element
namep599 — Name of the element to use in the form.elementsp516 API.

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLOutputElement : HTMLElement {

[HTMLConstructor] constructor();

[SameObject, PutForwards=value] readonly attribute DOMTokenList htmlFor;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString name;

readonly attribute DOMString type;
[CEReactions] attribute DOMString defaultValue;
[CEReactions] attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

readonly attribute NodeList labels;
};

The outputp584 element representsp141 the result of a calculation performed by the application, or the result of a user action.

The for content attribute allows an explicit relationship to be made between the result of a calculation and the elements that
represent the values that went into the calculation or that otherwise influenced the calculation. The forp585 attribute, if specified, must
contain a string consisting of an unordered set of unique space-separated tokensp95, none of which are identical to another token and
each of which must have the value of an ID of an element in the same tree.

The formp598 attribute is used to explicitly associate the outputp584 element with its form ownerp598. The namep599 attribute represents
the element's name. The outputp584 element is associated with a form so that it can be easily referencedp141 from the event handlers of
form controls; the element's value itself is not submitted when the form is submitted.

The element has a default value override (null or a string). Initially it must be null.

The element's default value is determined by the following steps:

1. If this element's default value overridep585 is non-null, then return it.

This element can be contrasted with the sampp288 element, which is the appropriate element for quoting the output of other
programs run previously.

Note

IDL

✔ MDN

585

https://w3c.github.io/html-aria/#el-output
https://w3c.github.io/html-aam/#el-output
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#interface-nodelist
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree

2. Return this element's descendant text content.

The reset algorithmp637 for outputp584 elements is to run these steps:

1. String replace all with this element's default valuep585 within this element.

2. Set this element's default value overridep585 to null.

The value getter steps are to return this's descendant text content.

The valuep586 setter steps are:

1. Set this's default value overridep585 to its default valuep585.

2. String replace all with the given value within this.

The defaultValue getter steps are to return the result of running this's default valuep585.

The defaultValuep586 setter steps are:

1. If this's default value overridep585 is null, then string replace all with the given value within this and return.

2. Set this's default value overridep585 to the given value.

The type getter steps are to return "output".

The htmlFor IDL attribute must reflectp104 the forp585 content attribute.

The willValidatep625, validityp625, and validationMessagep627 IDL attributes, and the checkValidity()p627, reportValidity()p627,
and setCustomValidity()p625 methods, are part of the constraint validation APIp624. The labelsp520 IDL attribute provides a list of the
element's labelp518s. The formp599 and namep600 IDL attributes are part of the element's forms API.

output.valuep586 [= value]
Returns the element's current value.
Can be set, to change the value.

output.defaultValuep586 [= value]
Returns the element's current default value.
Can be set, to change the default value.

output.typep586

Returns the string "output".

For web developers (non-normative)

A simple calculator could use outputp584 for its display of calculated results:

<form onsubmit="return false" oninput="o.value = a.valueAsNumber + b.valueAsNumber">
<input id=a type=number step=any> +
<input id=b type=number step=any> =
<output id=o for="a b"></output>

</form>

Example

In this example, an outputp584 element is used to report the results of a calculation performed by a remote server, as they come in:

<output id="result"></output>
<script>
var primeSource = new WebSocket('ws://primes.example.net/');
primeSource.onmessage = function (event) {

document.getElementById('result').value = event.data;

Example

586

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#string-replace-all
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#string-replace-all
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#string-replace-all
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Labelable elementp514.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150, but there must be no progressp587 element descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

valuep587 — Current value of the element
maxp587 — Upper bound of range

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLProgressElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute double value;
[CEReactions] attribute double max;
readonly attribute double position;
readonly attribute NodeList labels;

};

The progressp587 element representsp141 the completion progress of a task. The progress is either indeterminate, indicating that
progress is being made but that it is not clear how much more work remains to be done before the task is complete (e.g. because the
task is waiting for a remote host to respond), or the progress is a number in the range zero to a maximum, giving the fraction of work
that has so far been completed.

There are two attributes that determine the current task completion represented by the element. The value attribute specifies how
much of the task has been completed, and the max attribute specifies how much work the task requires in total. The units are arbitrary
and not specified.

Authors are encouraged to also include the current value and the maximum value inline as text inside the element, so that the
progress is made available to users of legacy user agents.

}
</script>

To make a determinate progress bar, add a valuep587 attribute with the current progress (either a number from 0.0 to 1.0, or, if the
maxp587 attribute is specified, a number from 0 to the value of the maxp587 attribute). To make an indeterminate progress bar,
remove the valuep587 attribute.

Note

IDL

4.10.13 The progress element §p58

7

✔ MDN

✔ MDN

✔ MDN

587

https://w3c.github.io/html-aria/#el-progress
https://w3c.github.io/html-aam/#el-progress
https://dom.spec.whatwg.org/#interface-nodelist

The valuep587 and maxp587 attributes, when present, must have values that are valid floating-point numbersp77. The valuep587 attribute,
if present, must have a value greater than or equal to zero, and less than or equal to the value of the maxp587 attribute, if present, or
1.0, otherwise. The maxp587 attribute, if present, must have a value greater than zero.

User agent requirements: If the valuep587 attribute is omitted, then the progress bar is an indeterminate progress bar. Otherwise, it
is a determinate progress bar.

If the progress bar is a determinate progress bar and the element has a maxp587 attribute, the user agent must parse the maxp587

attribute's value according to the rules for parsing floating-point number valuesp78. If this does not result in an error, and if the parsed
value is greater than zero, then the maximum value of the progress bar is that value. Otherwise, if the element has no maxp587

attribute, or if it has one but parsing it resulted in an error, or if the parsed value was less than or equal to zero, then the maximum
valuep588 of the progress bar is 1.0.

If the progress bar is a determinate progress bar, user agents must parse the valuep587 attribute's value according to the rules for
parsing floating-point number valuesp78. If this does not result in an error and the parsed value is greater than zero, then the value of
the progress bar is that parsed value. Otherwise, if parsing the valuep587 attribute's value resulted in an error or a number less than or
equal to zero, then the valuep588 of the progress bar is zero.

If the progress bar is a determinate progress bar, then the current value is the maximum valuep588, if valuep588 is greater than the
maximum valuep588, and valuep588 otherwise.

UA requirements for showing the progress bar: When representing a progressp587 element to the user, the UA should indicate
whether it is a determinate or indeterminate progress bar, and in the former case, should indicate the relative position of the current
valuep588 relative to the maximum valuep588.

If the progress bar is an indeterminate progress bar, then the position IDL attribute must return −1. Otherwise, it must return the
result of dividing the current valuep588 by the maximum valuep588.

If the progress bar is an indeterminate progress bar, then the value IDL attribute, on getting, must return 0. Otherwise, it must return
the current valuep588. On setting, the given value must be converted to the best representation of the number as a floating-point
numberp78 and then the valuep588 content attribute must be set to that string.

Here is a snippet of a web application that shows the progress of some automated task:

<section>
<h2>Task Progress</h2>
<p>Progress: <progress id=p max=100>0%</progress></p>
<script>
var progressBar = document.getElementById('p');
function updateProgress(newValue) {

progressBar.value = newValue;
progressBar.getElementsByTagName('span')[0].textContent = newValue;

}
</script>

</section>

(The updateProgress() method in this example would be called by some other code on the page to update the actual progress
bar as the task progressed.)

Example

The progressp587 element is the wrong element to use for something that is just a gauge, as opposed to task progress. For
instance, indicating disk space usage using progressp587 would be inappropriate. Instead, the meterp589 element is available for
such use cases.

Note

progress.positionp588

For a determinate progress bar (one with known current and maximum values), returns the result of dividing the current value
by the maximum value.
For an indeterminate progress bar, returns −1.

For web developers (non-normative)

588

The max IDL attribute must reflectp104 the content attribute of the same name, limited to only positive numbersp107. The default
valuep106 for maxp589 is 1.0.

The labelsp520 IDL attribute provides a list of the element's labelp518s.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Labelable elementp514.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Phrasing contentp150, but there must be no meterp589 element descendants.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

valuep590 — Current value of the element
minp590 — Lower bound of range
maxp590 — Upper bound of range
lowp590 — High limit of low range
highp590 — Low limit of high range
optimump590 — Optimum value in gauge

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLMeterElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute double value;
[CEReactions] attribute double min;
[CEReactions] attribute double max;
[CEReactions] attribute double low;
[CEReactions] attribute double high;
[CEReactions] attribute double optimum;
readonly attribute NodeList labels;

};

The meterp589 element representsp141 a scalar measurement within a known range, or a fractional value; for example disk usage, the
relevance of a query result, or the fraction of a voting population to have selected a particular candidate.

This is also known as a gauge.

The meterp589 element should not be used to indicate progress (as in a progress bar). For that role, HTML provides a separate
progressp587 element.

Setting the valuep588 IDL attribute to itself when the corresponding content attribute is absent would change the progress bar from
an indeterminate progress bar to a determinate progress bar with no progress.

Note

IDL

4.10.14 The meter element §p58

9

✔ MDN

✔ MDN

589

https://w3c.github.io/html-aria/#el-meter
https://w3c.github.io/html-aam/#el-meter
https://dom.spec.whatwg.org/#interface-nodelist

There are six attributes that determine the semantics of the gauge represented by the element.

The min attribute specifies the lower bound of the range, and the max attribute specifies the upper bound. The value attribute specifies
the value to have the gauge indicate as the "measured" value.

The other three attributes can be used to segment the gauge's range into "low", "medium", and "high" parts, and to indicate which
part of the gauge is the "optimum" part. The low attribute specifies the range that is considered to be the "low" part, and the high
attribute specifies the range that is considered to be the "high" part. The optimum attribute gives the position that is "optimum"; if that
is higher than the "high" value then this indicates that the higher the value, the better; if it's lower than the "low" mark then it
indicates that lower values are better, and naturally if it is in between then it indicates that neither high nor low values are good.

Authoring requirements: The valuep590 attribute must be specified. The valuep590, minp590, lowp590, highp590, maxp590, and optimump590

attributes, when present, must have values that are valid floating-point numbersp77.

In addition, the attributes' values are further constrained:

Let value be the valuep590 attribute's number.

If the minp590 attribute is specified, then let minimum be that attribute's value; otherwise, let it be zero.

If the maxp590 attribute is specified, then let maximum be that attribute's value; otherwise, let it be 1.0.

The following inequalities must hold, as applicable:

• minimum ≤ value ≤ maximum

• minimum ≤ lowp590 ≤ maximum (if lowp590 is specified)

• minimum ≤ highp590 ≤ maximum (if highp590 is specified)

• minimum ≤ optimump590 ≤ maximum (if optimump590 is specified)

• lowp590 ≤ highp590 (if both lowp590 and highp590 are specified)

Authors are encouraged to include a textual representation of the gauge's state in the element's contents, for users of user agents that
do not support the meterp589 element.

When used with microdatap788, the meterp589 element's valuep590 attribute provides the element's machine-readable value.

The meterp589 element also does not represent a scalar value of arbitrary range — for example, it would be wrong to use this to
report a weight, or height, unless there is a known maximum value.

Note

If no minimum or maximum is specified, then the range is assumed to be 0..1, and the value thus has to be within that range.
Note

The following examples show three gauges that would all be three-quarters full:

Storage space usage: <meter value=6 max=8>6 blocks used (out of 8 total)</meter>

Voter turnout: <meter value=0.75></meter>

Tickets sold: <meter min="0" max="100" value="75"></meter>

The following example is incorrect use of the element, because it doesn't give a range (and since the default maximum is 1, both
of the gauges would end up looking maxed out):

<p>The grapefruit pie had a radius of <meter value=12>12cm</meter>
and a height of <meter value=2>2cm</meter>.</p> <!-- BAD! -->

Example

✔ MDN

590

There is no explicit way to specify units in the meterp589 element, but the units may be specified in the titlep157 attribute in free-form
text.

User agent requirements: User agents must parse the minp590, maxp590, valuep590, lowp590, highp590, and optimump590 attributes using
the rules for parsing floating-point number valuesp78.

User agents must then use all these numbers to obtain values for six points on the gauge, as follows. (The order in which these are
evaluated is important, as some of the values refer to earlier ones.)

The minimum value
If the minp590 attribute is specified and a value could be parsed out of it, then the minimum value is that value. Otherwise, the
minimum value is zero.

The maximum value
If the maxp590 attribute is specified and a value could be parsed out of it, then the candidate maximum value is that value.
Otherwise, the candidate maximum value is 1.0.

If the candidate maximum value is greater than or equal to the minimum value, then the maximum value is the candidate
maximum value. Otherwise, the maximum value is the same as the minimum value.

The actual value
If the valuep590 attribute is specified and a value could be parsed out of it, then that value is the candidate actual value. Otherwise,
the candidate actual value is zero.

If the candidate actual value is less than the minimum value, then the actual value is the minimum value.

Otherwise, if the candidate actual value is greater than the maximum value, then the actual value is the maximum value.

Otherwise, the actual value is the candidate actual value.

The low boundary
If the lowp590 attribute is specified and a value could be parsed out of it, then the candidate low boundary is that value. Otherwise,
the candidate low boundary is the same as the minimum value.

If the candidate low boundary is less than the minimum value, then the low boundary is the minimum value.

Otherwise, if the candidate low boundary is greater than the maximum value, then the low boundary is the maximum value.

Otherwise, the low boundary is the candidate low boundary.

Instead, one would either not include the meter element, or use the meter element with a defined range to give the dimensions in
context compared to other pies:

<p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
<dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
<dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>

</dl>

The example above could be extended to mention the units:

<dl>
<dt>Radius: <dd> <meter min=0 max=20 value=12 title="centimeters">12cm</meter>
<dt>Height: <dd> <meter min=0 max=10 value=2 title="centimeters">2cm</meter>

</dl>

Example

591

The high boundary
If the highp590 attribute is specified and a value could be parsed out of it, then the candidate high boundary is that value. Otherwise,
the candidate high boundary is the same as the maximum value.

If the candidate high boundary is less than the low boundary, then the high boundary is the low boundary.

Otherwise, if the candidate high boundary is greater than the maximum value, then the high boundary is the maximum value.

Otherwise, the high boundary is the candidate high boundary.

The optimum point
If the optimump590 attribute is specified and a value could be parsed out of it, then the candidate optimum point is that value.
Otherwise, the candidate optimum point is the midpoint between the minimum value and the maximum value.

If the candidate optimum point is less than the minimum value, then the optimum point is the minimum value.

Otherwise, if the candidate optimum point is greater than the maximum value, then the optimum point is the maximum value.

Otherwise, the optimum point is the candidate optimum point.

All of which will result in the following inequalities all being true:

• minimum value ≤ actual value ≤ maximum value

• minimum value ≤ low boundary ≤ high boundary ≤ maximum value

• minimum value ≤ optimum point ≤ maximum value

UA requirements for regions of the gauge: If the optimum point is equal to the low boundary or the high boundary, or anywhere in
between them, then the region between the low and high boundaries of the gauge must be treated as the optimum region, and the low
and high parts, if any, must be treated as suboptimal. Otherwise, if the optimum point is less than the low boundary, then the region
between the minimum value and the low boundary must be treated as the optimum region, the region from the low boundary up to the
high boundary must be treated as a suboptimal region, and the remaining region must be treated as an even less good region. Finally,
if the optimum point is higher than the high boundary, then the situation is reversed; the region between the high boundary and the
maximum value must be treated as the optimum region, the region from the high boundary down to the low boundary must be treated
as a suboptimal region, and the remaining region must be treated as an even less good region.

UA requirements for showing the gauge: When representing a meterp589 element to the user, the UA should indicate the relative
position of the actual value to the minimum and maximum values, and the relationship between the actual value and the three regions
of the gauge.

The following markup:

<h3>Suggested groups</h3>
<menu>
Hide suggested groups

</menu>

<p><a href="/group/comp.infosystems.www.authoring.stylesheets/

view">comp.infosystems.www.authoring.stylesheets -
join</p>

<p>Group description: Layout/presentation on the WWW.</p>
<p><meter value="0.5">Moderate activity,</meter> Usenet, 618 subscribers</p>

<p>netscape.public.mozilla.xpinstall

-
join</p>

<p>Group description: Mozilla XPInstall discussion.</p>
<p><meter value="0.25">Low activity,</meter> Usenet, 22 subscribers</p>

Example

592

User agents may combine the value of the titlep157 attribute and the other attributes to provide context-sensitive help or inline text
detailing the actual values.

The value IDL attribute, on getting, must return the actual valuep591. On setting, the given value must be converted to the best
representation of the number as a floating-point numberp78 and then the valuep590 content attribute must be set to that string.

The min IDL attribute, on getting, must return the minimum valuep591. On setting, the given value must be converted to the best
representation of the number as a floating-point numberp78 and then the minp590 content attribute must be set to that string.

The max IDL attribute, on getting, must return the maximum valuep591. On setting, the given value must be converted to the best
representation of the number as a floating-point numberp78 and then the maxp590 content attribute must be set to that string.

The low IDL attribute, on getting, must return the low boundaryp591. On setting, the given value must be converted to the best
representation of the number as a floating-point numberp78 and then the lowp590 content attribute must be set to that string.

The high IDL attribute, on getting, must return the high boundaryp592. On setting, the given value must be converted to the best
representation of the number as a floating-point numberp78 and then the highp590 content attribute must be set to that string.

The optimum IDL attribute, on getting, must return the optimum valuep592. On setting, the given value must be converted to the best
representation of the number as a floating-point numberp78 and then the optimump590 content attribute must be set to that string.

The labelsp520 IDL attribute provides a list of the element's labelp518s.

<p>mozilla.dev.general -

join</p>
<p><meter value="0.25">Low activity,</meter> Usenet, 66 subscribers</p>

Might be rendered as follows:

For example, the following snippet:

<meter min=0 max=60 value=23.2 title=seconds></meter>

...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of 60." on one line and "seconds" on a
second line.

Example

The following example shows how a gauge could fall back to localized or pretty-printed text.

<p>Disk usage: <meter min=0 value=170261928 max=233257824>170 261 928 bytes used
out of 233 257 824 bytes available</meter></p>

Example

593

Categoriesp146:
Flow contentp149.
Listedp513 and autocapitalize-and-autocorrect inheritingp514 form-associated elementp513.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Optionally a legendp596 element, followed by flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

disabledp594 — Whether the descendant form controls, except any inside legendp596, are disabled
formp598 — Associates the element with a formp514 element
namep599 — Name of the element to use in the form.elementsp516 API.

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLFieldSetElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean disabled;
readonly attribute HTMLFormElement? form;
[CEReactions] attribute DOMString name;

readonly attribute DOMString type;

[SameObject] readonly attribute HTMLCollection elements;

readonly attribute boolean willValidate;
[SameObject] readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();
undefined setCustomValidity(DOMString error);

};

The fieldsetp594 element representsp141 a set of form controls (or other content) grouped together, optionally with a caption. The
caption is given by the first legendp596 element that is a child of the fieldsetp594 element, if any. The remainder of the descendants
form the group.

The disabled attribute, when specified, causes all the form control descendants of the fieldsetp594 element, excluding those that are
descendants of the fieldsetp594 element's first legendp596 element child, if any, to be disabledp601.

A fieldsetp594 element is a disabled fieldset if it matches any of the following conditions:

• Its disabledp594 attribute is specified

• It is a descendant of another fieldsetp594 element whose disabledp594 attribute is specified, and is not a descendant of that
fieldsetp594 element's first legendp596 element child, if any.

The formp598 attribute is used to explicitly associate the fieldsetp594 element with its form ownerp598. The namep599 attribute represents
the element's name.

IDL

4.10.15 The fieldset element §p59

4

✔ MDN

✔ MDN

✔ MDN

594

https://w3c.github.io/html-aria/#el-fieldset
https://w3c.github.io/html-aam/#el-fieldset
https://dom.spec.whatwg.org/#interface-htmlcollection

The disabled IDL attribute must reflectp104 the content attribute of the same name.

The type IDL attribute must return the string "fieldset".

The elements IDL attribute must return an HTMLCollection rooted at the fieldsetp594 element, whose filter matches listed
elementsp513.

The willValidatep625, validityp625, and validationMessagep627 attributes, and the checkValidity()p627, reportValidity()p627, and
setCustomValidity()p625 methods, are part of the constraint validation APIp624. The formp599 and namep600 IDL attributes are part of the
element's forms API.

fieldset.typep595

Returns the string "fieldset".

fieldset.elementsp595

Returns an HTMLCollection of the form controls in the element.

For web developers (non-normative)

This example shows a fieldsetp594 element being used to group a set of related controls:

<fieldset>
<legend>Display</legend>
<p><label><input type=radio name=c value=0 checked> Black on White</label>
<p><label><input type=radio name=c value=1> White on Black</label>
<p><label><input type=checkbox name=g> Use grayscale</label>
<p><label>Enhance contrast <input type=range name=e list=contrast min=0 max=100 value=0

step=1></label>
<datalist id=contrast>
<option label=Normal value=0>
<option label=Maximum value=100>

</datalist>
</fieldset>

Example

The following snippet shows a fieldset with a checkbox in the legend that controls whether or not the fieldset is enabled. The
contents of the fieldset consist of two required text controls and an optional year/month control.

<fieldset name="clubfields" disabled>
<legend> <label>
<input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
Use Club Card

</label> </legend>
<p><label>Name on card: <input name=clubname required></label></p>
<p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>
<p><label>Expiry date: <input name=clubexp type=month></label></p>

</fieldset>

Example

You can also nest fieldsetp594 elements. Here is an example expanding on the previous one that does so:

<fieldset name="clubfields" disabled>
<legend> <label>
<input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
Use Club Card

</label> </legend>
<p><label>Name on card: <input name=clubname required></label></p>
<fieldset name="numfields">
<legend> <label>

Example

595

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As the first child of a fieldsetp594 element.

Content modelp146:
Phrasing contentp150, optionally intermixed with heading contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

<input type=radio checked name=clubtype onchange="form.numfields.disabled = !checked">
My card has numbers on it

</label> </legend>
<p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>

</fieldset>
<fieldset name="letfields" disabled>
<legend> <label>
<input type=radio name=clubtype onchange="form.letfields.disabled = !checked">
My card has letters on it

</label> </legend>
<p><label>Card code: <input name=clublet required pattern="[A-Za-z]+"></label></p>

</fieldset>
</fieldset>

In this example, if the outer "Use Club Card" checkbox is not checked, everything inside the outer fieldsetp594, including the two
radio buttons in the legends of the two nested fieldsetp594s, will be disabled. However, if the checkbox is checked, then the radio
buttons will both be enabled and will let you select which of the two inner fieldsetp594s is to be enabled.

This example shows a grouping of controls where the legendp596 element both labels the grouping, and the nested heading
element surfaces the grouping in the document outline:

<fieldset>
<legend> <h2>
How can we best reach you?

</h2> </legend>
<p> <label>
<input type=radio checked name=contact_pref>
Phone

</label> </p>
<p> <label>
<input type=radio name=contact_pref>
Text

</label> </p>
<p> <label>
<input type=radio name=contact_pref>
Email

</label> </p>
</fieldset>

Example

4.10.16 The legend element §p59

6

✔ MDN

✔ MDN

596

https://dom.spec.whatwg.org/#concept-tree-first-child

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLLegendElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute HTMLFormElement? form;

// also has obsolete members
};

The legendp596 element representsp141 a caption for the rest of the contents of the legendp596 element's parent fieldsetp594 element, if
any.

The form IDL attribute's behavior depends on whether the legendp596 element is in a fieldsetp594 element or not. If the legendp596 has
a fieldsetp594 element as its parent, then the formp597 IDL attribute must return the same value as the formp599 IDL attribute on that
fieldsetp594 element. Otherwise, it must return null.

Most form controls have a value and a checkedness. (The latter is only used by inputp520 elements.) These are used to describe how
the user interacts with the control.

A control's valuep597 is its internal state. As such, it might not match the user's current input.

inputp520 and textareap579 elements have a dirty value flag. This is used to track the interaction between the valuep597 and default
value. If it is false, valuep597 mirrors the default value. If it is true, the default value is ignored.

inputp520, textareap579 and selectp568 elements have a user validity boolean. It is initially set to false.

To define the behavior of constraint validation in the face of the inputp520 element's multiplep553 attribute, inputp520 elements can
also have separately defined values.

To define the behavior of the maxlengthp600 and minlengthp601 attributes, as well as other APIs specific to the textareap579 element, all
form control with a valuep597 also have an algorithm for obtaining an API value. By default this algorithm is to simply return the
control's valuep597.

The selectp568 element does not have a valuep597; the selectednessp578 of its optionp577 elements is what is used instead.

A form control can be designated as mutable.

legend.formp597

Returns the element's formp514 element, if any, or null otherwise.

For web developers (non-normative)

4.10.17.1 A form control's value §p59

7

For instance, if a user enters the word "three" into a numeric fieldp537 that expects digits, the user's input would be the string
"three" but the control's valuep597 would remain unchanged. Or, if a user enters the email address " awesome@example.com" (with
leading whitespace) into an email fieldp530, the user's input would be the string " awesome@example.com" but the browser's UI for
email fields might translate that into a valuep597 of "awesome@example.com" (without the leading whitespace).

Example

4.10.17.2 Mutability §p59

7

IDL

4.10.17 Form control infrastructure §p59

7

597

https://w3c.github.io/html-aria/#el-legend
https://w3c.github.io/html-aam/#el-legend

A form-associated elementp513 can have a relationship with a formp514 element, which is called the element's form owner. If a form-
associated elementp513 is not associated with a formp514 element, its form ownerp598 is said to be null.

A form-associated elementp513 has an associated parser inserted flag.

A form-associated elementp513 is, by default, associated with its nearest ancestor formp514 element (as described below), but, if it is
listedp513, may have a form attribute specified to override this.

If a listedp513 form-associated elementp513 has a formp598 attribute specified, then that attribute's value must be the ID of a formp514

element in the element's tree.

When a form-associated elementp513 is created, its form ownerp598 must be initialized to null (no owner).

When a form-associated elementp513 is to be associated with a form, its form ownerp598 must be set to that form.

When a listedp513 form-associated elementp513 's formp598 attribute is set, changed, or removed, then the user agent must reset the form
ownerp598 of that element.

When a listedp513 form-associated elementp513 has a formp598 attribute and the ID of any of the elements in the tree changes, then the
user agent must reset the form ownerp598 of that form-associated elementp513.

When a listedp513 form-associated elementp513 has a formp598 attribute and an element with an ID is inserted intop46 or removed fromp46

the Documentp130, then the user agent must reset the form ownerp598 of that form-associated elementp513.

To reset the form owner of a form-associated elementp513 element:

1. Unset element's parser inserted flagp598.

2. If all of the following are true:

◦ element's form ownerp598 is not null;

◦ element is not listedp513 or its formp598 content attribute is not present; and

◦ element's form ownerp598 is its nearest formp514 element ancestor after the change to the ancestor chain,

then return.

3. Set element's form ownerp598 to null.

4. If element is listedp513, has a formp598 content attribute, and is connected, then:

This determines (by means of definitions and requirements in this specification that rely on whether an element is so designated)
whether or not the user can modify the valuep597 or checkednessp597 of a form control, or whether or not a control can be
automatically prefilled.

Note

4.10.17.3 Association of controls and forms §p59

8

This feature allows authors to work around the lack of support for nested formp514 elements.
Note

The rules in this section are complicated by the fact that although conforming documents or trees will never contain nested
formp514 elements, it is quite possible (e.g., using a script that performs DOM manipulation) to generate trees that have such
nested elements. They are also complicated by rules in the HTML parser that, for historical reasons, can result in a form-associated
elementp513 being associated with a formp514 element that is not its ancestor.

Note

The form owner is also reset by the HTML Standard's insertion steps and removing steps.
Note

✔ MDN

598

https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-node-insert-ext
https://dom.spec.whatwg.org/#concept-node-remove-ext
https://dom.spec.whatwg.org/#connected

1. If the first element in element's tree, in tree order, to have an ID that is identical to element's formp598 content
attribute's value, is a formp514 element, then associatep598 the element with that formp514 element.

5. Otherwise, if element has an ancestor formp514 element, then associatep598 element with the nearest such ancestor formp514

element.

Listedp513 form-associated elementsp513 except for form-associated custom elementsp760 have a form IDL attribute, which, on getting,
must return the element's form ownerp598, or null if there isn't one.

Form-associated custom elementsp760 don't have formp599 IDL attribute. Instead, their ElementInternalsp771 object has a form IDL
attribute. On getting, it must throw a "NotSupportedError" DOMException if the target elementp772 is not a form-associated custom
elementp760. Otherwise, it must return the element's form ownerp598, or null if there isn't one.

The name content attribute gives the name of the form control, as used in form submissionp628 and in the formp514 element's
elementsp516 object. If the attribute is specified, its value must not be the empty string or isindex.

Other than isindex, any non-empty value for namep515 is allowed. An ASCII case-insensitive match for the name _charset_ is special: if
used as the name of a Hiddenp527 control with no valuep525 attribute, then during submission the valuep525 attribute is automatically
given a value consisting of the submission character encoding.

In the following non-conforming snippet

...
<form id="a">
<div id="b"></div>

</form>
<script>
document.getElementById('b').innerHTML =

'<table><tr><td></form><form id="c"><input id="d"></table>' +
'<input id="e">';

</script>
...

the form ownerp598 of "d" would be the inner nested form "c", while the form ownerp598 of "e" would be the outer form "a".

This happens as follows: First, the "e" node gets associated with "c" in the HTML parserp1271. Then, the innerHTMLp1158 algorithm
moves the nodes from the temporary document to the "b" element. At this point, the nodes see their ancestor chain change, and
thus all the "magic" associations done by the parser are reset to normal ancestor associations.

This example is a non-conforming document, though, as it is a violation of the content models to nest formp514 elements, and there
is a parse errorp1273 for the </form> tag.

Example

element.formp599

Returns the element's form ownerp598.
Returns null if there isn't one.

For web developers (non-normative)

4.10.18.1 Naming form controls: the namep599 attribute §p59

9

A number of user agents historically implemented special support for first-in-form text controls with the name isindex, and this
specification previously defined related user agent requirements for it. However, some user agents subsequently dropped that
special support, and the related requirements were removed from this specification. So, to avoid problematic reinterpretations in
legacy user agents, the name isindex is no longer allowed.

Note

4.10.18 Attributes common to form controls §p59

9

✔ MDN

✔ MDN

599

https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-id
https://infra.spec.whatwg.org/#string-is
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-case-insensitive

The name IDL attribute must reflectp104 the namep599 content attribute.

The dirname attribute on a form control element enables the submission of the directionalityp160 of the element, and gives the name of
the control that contains this value during form submissionp628. If such an attribute is specified, its value must not be the empty string.

A form control maxlength attribute, controlled by the dirty value flagp597, declares a limit on the number of characters a user can
input. The number of characters is measured using length and, in the case of textareap579 elements, with all newlines normalized to a
single character (as opposed to CRLF pairs).

If an element has its form control maxlength attributep600 specified, the attribute's value must be a valid non-negative integerp77. If the
attribute is specified and applying the rules for parsing non-negative integersp77 to its value results in a number, then that number is
the element's maximum allowed value length. If the attribute is omitted or parsing its value results in an error, then there is no
maximum allowed value lengthp600.

Constraint validation: If an element has a maximum allowed value lengthp600, its dirty value flagp597 is true, its valuep597 was last
changed by a user edit (as opposed to a change made by a script), and the length of the element's API valuep597 is greater than the
element's maximum allowed value lengthp600, then the element is suffering from being too longp623.

User agents may prevent the user from causing the element's API valuep597 to be set to a value whose length is greater than the

DOM clobbering is a common cause of security issues. Avoid using the names of built-in form properties with the namep599 content
attribute.

In this example, the inputp520 element overrides the built-in methodp602 property:

let form = document.createElement("form");
let input = document.createElement("input");
form.appendChild(input);

form.method; // => "get"
input.name = "method"; // DOM clobbering occurs here
form.method === input; // => true

Since the input name takes precedence over built-in form properties, the JavaScript reference form.method will point to the
inputp520 element named "method" instead of the built-in methodp602 property.

Note

4.10.18.2 Submitting element directionality: the dirnamep600 attribute §p60

0

In this example, a form contains a text control and a submission button:

<form action="addcomment.cgi" method=post>
<p><label>Comment: <input type=text name="comment" dirname="comment.dir" required></label></p>
<p><button name="mode" type=submit value="add">Post Comment</button></p>

</form>

When the user submits the form, the user agent includes three fields, one called "comment", one called "comment.dir", and one
called "mode"; so if the user types "Hello", the submission body might be something like:

comment=Hello&comment.dir=ltr&mode=add

If the user manually switches to a right-to-left writing direction and enters "مرحبا", the submission body might be something like:

comment=%D9%85%D8%B1%D8%AD%D8%A8%D8%A7&comment.dir=rtl&mode=add

Example

4.10.18.3 Limiting user input length: the maxlengthp600 attribute §p60

0

✔ MDN

600

https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

element's maximum allowed value lengthp600.

A form control minlength attribute, controlled by the dirty value flagp597, declares a lower bound on the number of characters a
user can input. The "number of characters" is measured using length and, in the case of textareap579 elements, with all newlines
normalized to a single character (as opposed to CRLF pairs).

If an element has its form control minlength attributep601 specified, the attribute's value must be a valid non-negative integerp77. If the
attribute is specified and applying the rules for parsing non-negative integersp77 to its value results in a number, then that number is
the element's minimum allowed value length. If the attribute is omitted or parsing its value results in an error, then there is no
minimum allowed value lengthp601.

If an element has both a maximum allowed value lengthp600 and a minimum allowed value lengthp601, the minimum allowed value
lengthp601 must be smaller than or equal to the maximum allowed value lengthp600.

Constraint validation: If an element has a minimum allowed value lengthp601, its dirty value flagp597 is true, its valuep597 was last
changed by a user edit (as opposed to a change made by a script), its valuep597 is not the empty string, and the length of the element's
API valuep597 is less than the element's minimum allowed value lengthp601, then the element is suffering from being too shortp623.

The disabled content attribute is a boolean attributep75.

A form control is disabled if any of the following are true:

• the element is a buttonp566, inputp520, selectp568, textareap579, or form-associated custom elementp760, and the
disabledp601 attribute is specified on this element (regardless of its value); or

In the case of textareap579 elements, the API valuep597 and valuep597 differ. In particular, newline normalization is applied before
the maximum allowed value lengthp600 is checked (whereas the textarea wrapping transformationp582 is not applied).

Note

4.10.18.4 Setting minimum input length requirements: the minlengthp601 attribute §p60

1

The minlengthp601 attribute does not imply the required attribute. If the form control has no required attribute, then the value
can still be omitted; the minlengthp601 attribute only kicks in once the user has entered a value at all. If the empty string is not
allowed, then the required attribute also needs to be set.

Note

In this example, there are four text controls. The first is required, and has to be at least 5 characters long. The other three are
optional, but if the user fills one in, the user has to enter at least 10 characters.

<form action="/events/menu.cgi" method="post">
<p><label>Name of Event: <input required minlength=5 maxlength=50 name=event></label></p>
<p><label>Describe what you would like for breakfast, if anything:

<textarea name="breakfast" minlength="10"></textarea></label></p>
<p><label>Describe what you would like for lunch, if anything:

<textarea name="lunch" minlength="10"></textarea></label></p>
<p><label>Describe what you would like for dinner, if anything:

<textarea name="dinner" minlength="10"></textarea></label></p>
<p><input type=submit value="Submit Request"></p>

</form>

Example

4.10.18.5 Enabling and disabling form controls: the disabledp601 attribute §p60

1

The disabledp578 attribute for optionp577 elements and the disabledp576 attribute for optgroupp576 elements are defined
separately.

Note

✔ MDN

601

https://infra.spec.whatwg.org/#normalize-newlines
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

• the element is a descendant of a fieldsetp594 element whose disabledp594 attribute is specified, and is not a descendant of
that fieldsetp594 element's first legendp596 element child, if any.

A form control that is disabledp601 must prevent any click events that are queuedp1125 on the user interaction task sourcep1134 from
being dispatched on the element.

Constraint validation: If an element is disabledp601, it is barred from constraint validationp622.

The disabled IDL attribute must reflectp104 the disabledp601 content attribute.

Attributes for form submission can be specified both on formp514 elements and on submit buttonsp514 (elements that represent
buttons that submit forms, e.g. an inputp520 element whose typep523 attribute is in the Submit Buttonp546 state).

The attributes for form submissionp602 that may be specified on formp514 elements are actionp602, enctypep603, methodp602,
novalidatep603, and targetp603.

The corresponding attributes for form submissionp602 that may be specified on submit buttonsp514 are formactionp602, formenctypep603,
formmethodp602, formnovalidatep603, and formtargetp603. When omitted, they default to the values given on the corresponding
attributes on the formp514 element.

The action and formaction content attributes, if specified, must have a value that is a valid non-empty URL potentially surrounded by
spacesp96.

The action of an element is the value of the element's formactionp602 attribute, if the element is a submit buttonp514 and has such an
attribute, or the value of its form ownerp598 's actionp602 attribute, if it has one, or else the empty string.

The method and formmethod content attributes are enumerated attributesp76 with the following keywords and states:

Keyword State Brief description

get GET Indicates the formp514 will use the HTTP GET method.
post POST Indicates the formp514 will use the HTTP POST method.
dialog Dialog Indicates the formp514 is intended to close the dialogp646 box in which the form finds itself, if any, and otherwise not submit.

The methodp602 attribute's missing value defaultp76 and invalid value defaultp76 are both the GETp602 state.

The formmethodp602 attribute has no missing value defaultp76, and its invalid value defaultp76 is the GETp602 state.

The method of an element is one of those states. If the element is a submit buttonp514 and has a formmethodp602 attribute, then the
element's methodp602 is that attribute's state; otherwise, it is the form ownerp598 's methodp602 attribute's state.

4.10.18.6 Form submission attributes §p60

2

Here the methodp602 attribute is used to explicitly specify the default value, "getp602", so that the search query is submitted in the
URL:

<form method="get" action="/search.cgi">
<p><label>Search terms: <input type=search name=q></label></p>
<p><input type=submit></p>

</form>

Example

On the other hand, here the methodp602 attribute is used to specify the value "postp602", so that the user's message is submitted in
the HTTP request's body:

<form method="post" action="/post-message.cgi">

Example

✔ MDN

✔ MDN

✔ MDN

✔ MDN

602

https://w3c.github.io/uievents/#event-type-click

The enctype and formenctype content attributes are enumerated attributesp76 with the following keywords and states:

• The "application/x-www-form-urlencoded" keyword and corresponding state.

• The "multipart/form-data" keyword and corresponding state.

• The "text/plain" keyword and corresponding state.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the application/x-www-form-urlencodedp603 state.

The formenctypep603 attribute has no missing value defaultp76, and its invalid value defaultp76 is the application/x-www-form-
urlencodedp603 state.

The enctype of an element is one of those three states. If the element is a submit buttonp514 and has a formenctypep603 attribute, then
the element's enctypep603 is that attribute's state; otherwise, it is the form ownerp598 's enctypep603 attribute's state.

The target and formtarget content attributes, if specified, must have values that are valid navigable target names or keywordsp996.

The novalidate and formnovalidate content attributes are boolean attributesp75. If present, they indicate that the form is not to be
validated during submission.

The no-validate state of an element is true if the element is a submit buttonp514 and the element's formnovalidatep603 attribute is
present, or if the element's form ownerp598 's novalidatep603 attribute is present, and false otherwise.

<p><label>Message: <input type=text name=m></label></p>
<p><input type=submit value="Submit message"></p>

</form>

In this example, a formp514 is used with a dialogp646. The methodp602 attribute's "dialogp602" keyword is used to have the dialog
automatically close when the form is submitted.

<dialog id="ship">
<form method=dialog>
<p>A ship has arrived in the harbour.</p>
<button type=submit value="board">Board the ship</button>
<button type=submit value="call">Call to the captain</button>

</form>
</dialog>
<script>
var ship = document.getElementById('ship');
ship.showModal();
ship.onclose = function (event) {

if (ship.returnValue == 'board') {
// ...

} else {
// ...

}
};

</script>

Example

This attribute is useful to include "save" buttons on forms that have validation constraints, to allow users to save their progress
even though they haven't fully entered the data in the form. The following example shows a simple form that has two required
fields. There are three buttons: one to submit the form, which requires both fields to be filled in; one to save the form so that the

Example

✔ MDN

✔ MDN

✔ MDN

603

The action IDL attribute must reflectp104 the content attribute of the same name, except that on getting, when the content attribute is
missing or its value is the empty string, the element's node document's URL must be returned instead. The target IDL attribute must
reflectp104 the content attribute of the same name. The method and enctype IDL attributes must reflectp104 the respective content
attributes of the same name, limited to only known valuesp105. The encoding IDL attribute must reflectp104 the enctypep603 content
attribute, limited to only known valuesp105. The noValidate IDL attribute must reflectp104 the novalidatep603 content attribute. The
formAction IDL attribute must reflectp104 the formactionp602 content attribute, except that on getting, when the content attribute is
missing or its value is the empty string, the element's node document's URL must be returned instead. The formEnctype IDL attribute
must reflectp104 the formenctypep603 content attribute, limited to only known valuesp105. The formMethod IDL attribute must reflectp104

the formmethodp602 content attribute, limited to only known valuesp105. The formNoValidate IDL attribute must reflectp104 the
formnovalidatep603 content attribute. The formTarget IDL attribute must reflectp104 the formtargetp603 content attribute.

User agents sometimes have features for helping users fill forms in, for example prefilling the user's address based on earlier user
input. The autocomplete content attribute can be used to hint to the user agent how to, or indeed whether to, provide such a feature.

There are two ways this attribute is used. When wearing the autofill expectation mantle, the autocompletep604 attribute describes
what input is expected from users. When wearing the autofill anchor mantle, the autocompletep604 attribute describes the meaning
of the given value.

On an inputp520 element whose typep523 attribute is in the Hiddenp527 state, the autocompletep604 attribute wears the autofill anchor
mantlep604. In all other cases, it wears the autofill expectation mantlep604.

When wearing the autofill expectation mantlep604, the autocompletep604 attribute, if specified, must have a value that is an ordered set
of space-separated tokensp94 consisting of either a single token that is an ASCII case-insensitive match for the string "offp606", or a
single token that is an ASCII case-insensitive match for the string "onp606", or autofill detail tokensp604.

When wearing the autofill anchor mantlep604, the autocompletep604 attribute, if specified, must have a value that is an ordered set of
space-separated tokensp94 consisting of just autofill detail tokensp604 (i.e. the "onp606" and "offp606" keywords are not allowed).

Autofill detail tokens are the following, in the order given below:

1. Optionally, a token whose first eight characters are an ASCII case-insensitive match for the string "section-", meaning that
the field belongs to the named group.

user can come back and fill it in later; and one to cancel the form altogether.

<form action="editor.cgi" method="post">
<p><label>Name: <input required name=fn></label></p>
<p><label>Essay: <textarea required name=essay></textarea></label></p>
<p><input type=submit name=submit value="Submit essay"></p>
<p><input type=submit formnovalidate name=save value="Save essay"></p>
<p><input type=submit formnovalidate name=cancel value="Cancel"></p>

</form>

4.10.18.7 Autofill §p60

4

4.10.18.7.1 Autofilling form controls: the autocompletep604 attribute §p60

4

For example, if there are two shipping addresses in the form, then they could be marked up as:

<fieldset>
<legend>Ship the blue gift to...</legend>
<p> <label> Address: <textarea name=ba autocomplete="section-blue shipping street-

address"></textarea> </label>
<p> <label> City: <input name=bc autocomplete="section-blue shipping address-

level2"> </label>
<p> <label> Postal Code: <input name=bp autocomplete="section-blue shipping postal-code">

</label>

Example

✔ MDN

✔ MDN

604

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

2. Optionally, a token that is an ASCII case-insensitive match for one of the following strings:

◦ "shipping", meaning the field is part of the shipping address or contact information
◦ "billing", meaning the field is part of the billing address or contact information

3. Either of the following two options:

◦ A token that is an ASCII case-insensitive match for one of the following autofill fieldp606 names, excluding those that
are inappropriate for the controlp607:

▪ "namep607"
▪ "honorific-prefixp607"
▪ "given-namep607"
▪ "additional-namep607"
▪ "family-namep607"
▪ "honorific-suffixp607"
▪ "nicknamep607"
▪ "usernamep607"
▪ "new-passwordp607"
▪ "current-passwordp607"
▪ "one-time-codep607"
▪ "organization-titlep607"
▪ "organizationp607"
▪ "street-addressp607"
▪ "address-line1p607"
▪ "address-line2p607"
▪ "address-line3p607"
▪ "address-level4p607"
▪ "address-level3p607"
▪ "address-level2p607"
▪ "address-level1p607"
▪ "countryp607"
▪ "country-namep608"
▪ "postal-codep608"
▪ "cc-namep608"
▪ "cc-given-namep608"
▪ "cc-additional-namep608"
▪ "cc-family-namep608"
▪ "cc-numberp608"
▪ "cc-expp608"
▪ "cc-exp-monthp608"
▪ "cc-exp-yearp608"
▪ "cc-cscp608"
▪ "cc-typep608"
▪ "transaction-currencyp608"
▪ "transaction-amountp608"
▪ "languagep608"
▪ "bdayp608"
▪ "bday-dayp608"
▪ "bday-monthp608"
▪ "bday-yearp608"
▪ "sexp608"
▪ "urlp608"
▪ "photop608"

(See the table below for descriptions of these values.)

◦ The following, in the given order:

1. Optionally, a token that is an ASCII case-insensitive match for one of the following strings:

</fieldset>
<fieldset>
<legend>Ship the red gift to...</legend>
<p> <label> Address: <textarea name=ra autocomplete="section-red shipping street-

address"></textarea> </label>
<p> <label> City: <input name=rc autocomplete="section-red shipping address-

level2"> </label>
<p> <label> Postal Code: <input name=rp autocomplete="section-red shipping postal-code">

</label>
</fieldset>

605

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

▪ "home", meaning the field is for contacting someone at their residence
▪ "work", meaning the field is for contacting someone at their workplace
▪ "mobile", meaning the field is for contacting someone regardless of location
▪ "fax", meaning the field describes a fax machine's contact details
▪ "pager", meaning the field describes a pager's or beeper's contact details

2. A token that is an ASCII case-insensitive match for one of the following autofill fieldp606 names, excluding
those that are inappropriate for the controlp607:

▪ "telp608"
▪ "tel-country-codep608"
▪ "tel-nationalp608"
▪ "tel-area-codep608"
▪ "tel-localp608"
▪ "tel-local-prefixp608"
▪ "tel-local-suffixp609"
▪ "tel-extensionp609"
▪ "emailp609"
▪ "imppp609"

(See the table below for descriptions of these values.)

4. Optionally, a token that is an ASCII case-insensitive match for the string "webauthn", meaning the user agent should show
public key credentials available via conditional mediation when the user interacts with the form control. webauthnp606 is
only valid for inputp520 and textareap579 elements.

As noted earlier, the meaning of the attribute and its keywords depends on the mantle that the attribute is wearing.

↪ When wearing the autofill expectation mantlep604...
The "off" keyword indicates either that the control's input data is particularly sensitive (for example the activation code for a
nuclear weapon); or that it is a value that will never be reused (for example a one-time-key for a bank login) and the user will
therefore have to explicitly enter the data each time, instead of being able to rely on the UA to prefill the value for them; or that
the document provides its own autocomplete mechanism and does not want the user agent to provide autocompletion values.

The "on" keyword indicates that the user agent is allowed to provide the user with autocompletion values, but does not provide
any further information about what kind of data the user might be expected to enter. User agents would have to use heuristics
to decide what autocompletion values to suggest.

The autofill fieldp606 listed above indicate that the user agent is allowed to provide the user with autocompletion values, and
specifies what kind of value is expected. The meaning of each such keyword is described in the table below.

If the autocompletep604 attribute is omitted, the default value corresponding to the state of the element's form ownerp598 's
autocompletep515 attribute is used instead (either "onp606" or "offp606"). If there is no form ownerp598, then the value "onp606" is
used.

↪ When wearing the autofill anchor mantlep604...
The autofill fieldp606 listed above indicate that the value of the particular kind of value specified is that value provided for this
element. The meaning of each such keyword is described in the table below.

The autofill field keywords relate to each other as described in the table below. Each field name listed on a row of this table
corresponds to the meaning given in the cell for that row in the column labeled "Meaning". Some fields correspond to subparts of other
fields; for example, a credit card expiry date can be expressed as one field giving both the month and year of expiry ("cc-expp608"), or

In this example the page has explicitly specified the currency and amount of the transaction. The form requests a credit
card and other billing details. The user agent could use this information to suggest a credit card that it knows has sufficient
balance and that supports the relevant currency.

<form method=post action="step2.cgi">
<input type=hidden autocomplete=transaction-currency value="CHF">
<input type=hidden autocomplete=transaction-amount value="15.00">
<p><label>Credit card number: <input type=text inputmode=numeric autocomplete=cc-

number></label>
<p><label>Expiry Date: <input type=month autocomplete=cc-exp></label>
<p><input type=submit value="Continue...">

</form>

Example

606

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/webauthn/#public-key-credential
https://w3c.github.io/webappsec-credential-management/#dom-credentialmediationrequirement-conditional

as two fields, one giving the month ("cc-exp-monthp608") and one the year ("cc-exp-yearp608"). In such cases, the names of the
broader fields cover multiple rows, in which the narrower fields are defined.

Some fields are only appropriate for certain form controls. An autofill fieldp606 name is inappropriate for a control if the control does
not belong to the group listed for that autofill fieldp606 in the fifth column of the first row describing that autofill fieldp606 in the table
below. What controls fall into each group is described below the table.

Field name Meaning Canonical Format Canonical Format
Example

Control
group

"name" Full name Free-form text, no
newlines

Sir Timothy John
Berners-Lee, OM,
KBE, FRS, FREng,
FRSA

Textp609

"honorific-
prefix"

Prefix or title (e.g. "Mr.", "Ms.", "Dr.", "Mlle") Free-form text, no
newlines

Sir Textp609

"given-name" Given name (in some Western cultures, also known as the first name) Free-form text, no
newlines

Timothy Textp609

"additional-
name"

Additional names (in some Western cultures, also known as middle names,
forenames other than the first name)

Free-form text, no
newlines

John Textp609

"family-name" Family name (in some Western cultures, also known as the last name or
surname)

Free-form text, no
newlines

Berners-Lee Textp609

"honorific-
suffix"

Suffix (e.g. "Jr.", "B.Sc.", "MBASW", "II") Free-form text, no
newlines

OM, KBE, FRS,
FREng, FRSA

Textp609

"nickname" Nickname, screen name, handle: a typically short name used instead of
the full name

Free-form text, no
newlines

Tim Textp609

"organization-
title"

Job title (e.g. "Software Engineer", "Senior Vice President", "Deputy
Managing Director")

Free-form text, no
newlines

Professor Textp609

"username" A username Free-form text, no
newlines

timbl Usernamep609

"new-password" A new password (e.g. when creating an account or changing a password) Free-form text, no
newlines

GUMFXbadyrS3 Passwordp609

"current-
password"

The current password for the account identified by the usernamep607 field
(e.g. when logging in)

Free-form text, no
newlines

qwerty Passwordp609

"one-time-code" One-time code used for verifying user identity Free-form text, no
newlines

123456 Passwordp609

"organization" Company name corresponding to the person, address, or contact
information in the other fields associated with this field

Free-form text, no
newlines

World Wide Web
Consortium

Textp609

"street-address" Street address (multiple lines, newlines preserved) Free-form text 32 Vassar Street
MIT Room 32-G524

Multilinep609

"address-
line1"

Street address (one line per field) Free-form text, no
newlines

32 Vassar Street Textp609

"address-
line2"

Free-form text, no
newlines

MIT Room 32-G524 Textp609

"address-
line3"

Free-form text, no
newlines

Textp609

"address-level4" The most fine-grained administrative levelp610, in addresses with four
administrative levels

Free-form text, no
newlines

Textp609

"address-level3" The third administrative levelp610, in addresses with three or more
administrative levels

Free-form text, no
newlines

Textp609

"address-level2" The second administrative levelp610, in addresses with two or more
administrative levels; in the countries with two administrative levels, this
would typically be the city, town, village, or other locality within which the
relevant street address is found

Free-form text, no
newlines

Cambridge Textp609

"address-level1" The broadest administrative levelp610 in the address, i.e. the province
within which the locality is found; for example, in the US, this would be the
state; in Switzerland it would be the canton; in the UK, the post town

Free-form text, no
newlines

MA Textp609

"country" Country code Valid ISO 3166-1-alpha-2
country code

US Textp609

Generally, authors are encouraged to use the broader fields rather than the narrower fields, as the narrower fields tend to expose
Western biases. For example, while it is common in some Western cultures to have a given name and a family name, in that order
(and thus often referred to as a first name and a surname), many cultures put the family name first and the given name second,
and many others simply have one name (a mononym). Having a single field is therefore more flexible.

Note

607

https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-3166-country-codes.html

Field name Meaning Canonical Format Canonical Format
Example

Control
group

[ISO3166]p1479

"country-name" Country name Free-form text, no
newlines; derived from
country in some casesp615

US Textp609

"postal-code" Postal code, post code, ZIP code, CEDEX code (if CEDEX, append "CEDEX",
and the arrondissement, if relevant, to the address-level2p607 field)

Free-form text, no
newlines

02139 Textp609

"cc-name" Full name as given on the payment instrument Free-form text, no
newlines

Tim Berners-Lee Textp609

"cc-given-
name"

Given name as given on the payment instrument (in some Western
cultures, also known as the first name)

Free-form text, no
newlines

Tim Textp609

"cc-
additional-
name"

Additional names given on the payment instrument (in some Western
cultures, also known as middle names, forenames other than the first
name)

Free-form text, no
newlines

Textp609

"cc-family-
name"

Family name given on the payment instrument (in some Western cultures,
also known as the last name or surname)

Free-form text, no
newlines

Berners-Lee Textp609

"cc-number" Code identifying the payment instrument (e.g. the credit card number) ASCII digits 4114360123456785 Textp609

"cc-exp" Expiration date of the payment instrument Valid month stringp82 2014-12 Monthp610

"cc-exp-
month"

Month component of the expiration date of the payment instrument Valid integerp76 in the
range 1..12

12 Numericp609

"cc-exp-year" Year component of the expiration date of the payment instrument Valid integerp76 greater
than zero

2014 Numericp609

"cc-csc" Security code for the payment instrument (also known as the card
security code (CSC), card validation code (CVC), card verification value
(CVV), signature panel code (SPC), credit card ID (CCID), etc.)

ASCII digits 419 Textp609

"cc-type" Type of payment instrument Free-form text, no
newlines

Visa Textp609

"transaction-
currency"

The currency that the user would prefer the transaction to use ISO 4217 currency code
[ISO4217]p1479

GBP Textp609

"transaction-
amount"

The amount that the user would like for the transaction (e.g. when
entering a bid or sale price)

Valid floating-point
numberp77

401.00 Numericp609

"language" Preferred language Valid BCP 47 language tag
[BCP47]p1475

en Textp609

"bday" Birthday Valid date stringp83 1955-06-08 Datep610

"bday-day" Day component of birthday Valid integerp76 in the
range 1..31

8 Numericp609

"bday-month" Month component of birthday Valid integerp76 in the
range 1..12

6 Numericp609

"bday-year" Year component of birthday Valid integerp76 greater
than zero

1955 Numericp609

"sex" Gender identity (e.g. Female, Fa'afafine) Free-form text, no
newlines

Male Textp609

"url" Home page or other web page corresponding to the company, person,
address, or contact information in the other fields associated with this
field

Valid URL string https://www.w3.org/
People/Berners-Lee/

URLp609

"photo" Photograph, icon, or other image corresponding to the company, person,
address, or contact information in the other fields associated with this
field

Valid URL string https://www.w3.org/
Press/Stock/Berners-
Lee/
2001-europaeum-
eighth.jpg

URLp609

"tel" Full telephone number, including country code ASCII digits and U+0020
SPACE characters, prefixed
by a U+002B PLUS SIGN
character (+)

+1 617 253 5702 Telp609

"tel-country-
code"

Country code component of the telephone number ASCII digits prefixed by a
U+002B PLUS SIGN
character (+)

+1 Textp609

"tel-
national"

Telephone number without the county code component, with a country-
internal prefix applied if applicable

ASCII digits and U+0020
SPACE characters

617 253 5702 Textp609

"tel-area-
code"

Area code component of the telephone number, with a country-internal
prefix applied if applicable

ASCII digits 617 Textp609

"tel-
local"

Telephone number without the country code and area code components ASCII digits 2535702 Textp609

"tel- First part of the component of the telephone number that follows the area ASCII digits 253 Textp609

608

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

Field name Meaning Canonical Format Canonical Format
Example

Control
group

local-
prefix"

code, when that component is split into two components

"tel-
local-
suffix"

Second part of the component of the telephone number that follows the
area code, when that component is split into two components

ASCII digits 5702 Textp609

"tel-extension" Telephone number internal extension code ASCII digits 1000 Textp609

"email" Email address Valid email addressp531 timbl@w3.org Usernamep609

"impp" URL representing an instant messaging protocol endpoint (for example,
"aim:goim?screenname=example" or "xmpp:fred@example.net")

Valid URL string irc://example.org/
timbl,isuser

URLp609

The groups correspond to controls as follows:

Text
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
textareap579 elements
selectp568 elements

Multiline
inputp520 elements with a typep523 attribute in the Hiddenp527 state
textareap579 elements
selectp568 elements

Password
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the Passwordp531 state
textareap579 elements
selectp568 elements

URL
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the URLp529 state
textareap579 elements
selectp568 elements

Username
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the Emailp530 state
textareap579 elements
selectp568 elements

Tel
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the Telephonep528 state
textareap579 elements
selectp568 elements

Numeric
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the Numberp537 state
textareap579 elements

609

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://url.spec.whatwg.org/#valid-url-string

selectp568 elements

Month
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the Monthp533 state
textareap579 elements
selectp568 elements

Date
inputp520 elements with a typep523 attribute in the Hiddenp527 state
inputp520 elements with a typep523 attribute in the Textp527 state
inputp520 elements with a typep523 attribute in the Searchp527 state
inputp520 elements with a typep523 attribute in the Datep532 state
textareap579 elements
selectp568 elements

Address levels: The "address-level1p607" – "address-level4p607" fields are used to describe the locality of the street address.
Different locales have different numbers of levels. For example, the US uses two levels (state and town), the UK uses one or two
depending on the address (the post town, and in some cases the locality), and China can use three (province, city, district). The
"address-level1p607" field represents the widest administrative division. Different locales order the fields in different ways; for
example, in the US the town (level 2) precedes the state (level 1); while in Japan the prefecture (level 1) precedes the city (level 2)
which precedes the district (level 3). Authors are encouraged to provide forms that are presented in a way that matches the country's
conventions (hiding, showing, and rearranging fields accordingly as the user changes the country).

Each inputp520 element to which the autocompletep604 attribute appliesp523, each selectp568 element, and each textareap579 element,
has an autofill hint set, an autofill scope, an autofill field name, a non-autofill credential type, and an IDL-exposed autofill
value.

The autofill field namep610 specifies the specific kind of data expected in the field, e.g. "street-addressp607" or "cc-expp608".

The autofill hint setp610 identifies what address or contact information type the user agent is to look at, e.g. "shippingp605 faxp606" or
"billingp605".

The non-autofill credential typep610 identifies a type of credential that may be offered by the user agent when the user interacts with
the field alongside other autofill fieldp606 values. If this value is "webauthn" instead of null, selecting a credential of that type will
resolve a pending conditional mediation navigator.credentials.get() request, instead of autofilling the field.

The autofill scopep610 identifies the group of fields whose information concerns the same subject, and consists of the autofill hint setp610

with, if applicable, the "section-*" prefix, e.g. "billing", "section-parent shipping", or "section-child shipping home".

These values are defined as the result of running the following algorithm:

1. If the element has no autocompletep604 attribute, then jump to the step labeled default.

2. Let tokens be the result of splitting the attribute's value on ASCII whitespace.

3. If tokens is empty, then jump to the step labeled default.

4. Let index be the index of the last token in tokens.

5. Let field be the indexth token in tokens.

4.10.18.7.2 Processing model §p61

0

For example, a sign-in page could instruct the user agent to either autofill a saved password, or show a public key credential that
will resolve a pending navigator.credentials.get() request. A user can select either to sign-in.

<input name=password type=password autocomplete="current-password webauthn">

Example

610

https://w3c.github.io/webappsec-credential-management/#credential
https://w3c.github.io/webappsec-credential-management/#dom-credentialmediationrequirement-conditional
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://w3c.github.io/webauthn/#public-key-credential
https://w3c.github.io/webappsec-credential-management/#dom-credentialscontainer-get
https://infra.spec.whatwg.org/#split-on-ascii-whitespace

6. Set the category, maximum tokens pair to the result of determining a field's categoryp612 given field.

7. If category is null, then jump to the step labeled default.

8. If the number of tokens in tokens is greater than maximum tokens, then jump to the step labeled default.

9. If category is Off or Automatic but the element's autocompletep604 attribute is wearing the autofill anchor mantlep604, then
jump to the step labeled default.

10. If category is Off, let the element's autofill field namep610 be the string "off", let its autofill hint setp610 be empty, and let its
IDL-exposed autofill valuep610 be the string "off". Then, return.

11. If category is Automatic, let the element's autofill field namep610 be the string "on", let its autofill hint setp610 be empty, and
let its IDL-exposed autofill valuep610 be the string "on". Then, return.

12. Let scope tokens be an empty list.

13. Let hint tokens be an empty set.

14. Let credential type be null.

15. Let IDL value have the same value as field.

16. If category is Credential and the indexth token in tokens is an ASCII case-insensitive match for "webauthnp606", then run the
substeps that follow:

1. Set credential type to "webauthn".

2. If the indexth token in tokens is the first entry, then skip to the step labeled done.

3. Decrement index by one.

4. Set the category, maximum tokens pair to the result of determining a field's categoryp612 given the indexth token
in tokens.

5. If category is not Normal and category is not Contact, then jump to the step labeled default.

6. If index is greater than maximum tokens minus one (i.e. if the number of remaining tokens is greater than
maximum tokens), then jump to the step labeled default.

7. Set IDL value to the concatenation of the indexth token in tokens, a U+0020 SPACE character, and the previous
value of IDL value.

17. If the indexth token in tokens is the first entry, then skip to the step labeled done.

18. Decrement index by one.

19. If category is Contact and the indexth token in tokens is an ASCII case-insensitive match for one of the strings in the
following list, then run the substeps that follow:

◦ "homep606"
◦ "workp606"
◦ "mobilep606"
◦ "faxp606"
◦ "pagerp606"

The substeps are:

1. Let contact be the matching string from the list above.

2. Insert contact at the start of scope tokens.

3. Add contact to hint tokens.

4. Let IDL value be the concatenation of contact, a U+0020 SPACE character, and the previous value of IDL value.

5. If the indexth entry in tokens is the first entry, then skip to the step labeled done.

6. Decrement index by one.

20. If the indexth token in tokens is an ASCII case-insensitive match for one of the strings in the following list, then run the
substeps that follow:

611

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

◦ "shippingp605"
◦ "billingp605"

The substeps are:

1. Let mode be the matching string from the list above.

2. Insert mode at the start of scope tokens.

3. Add mode to hint tokens.

4. Let IDL value be the concatenation of mode, a U+0020 SPACE character, and the previous value of IDL value.

5. If the indexth entry in tokens is the first entry, then skip to the step labeled done.

6. Decrement index by one.

21. If the indexth entry in tokens is not the first entry, then jump to the step labeled default.

22. If the first eight characters of the indexth token in tokens are not an ASCII case-insensitive match for the string
"section-p604", then jump to the step labeled default.

23. Let section be the indexth token in tokens, converted to ASCII lowercase.

24. Insert section at the start of scope tokens.

25. Let IDL value be the concatenation of section, a U+0020 SPACE character, and the previous value of IDL value.

26. Done: Let the element's autofill hint setp610 be hint tokens.

27. Let the element's non-autofill credential typep610 be credential type.

28. Let the element's autofill scopep610 be scope tokens.

29. Let the element's autofill field namep610 be field.

30. Let the element's IDL-exposed autofill valuep610 be IDL value.

31. Return.

32. Default: Let the element's IDL-exposed autofill valuep610 be the empty string, and its autofill hint setp610 and autofill scopep610

be empty.

33. If the element's autocompletep604 attribute is wearing the autofill anchor mantlep604, then let the element's autofill field
namep610 be the empty string and return.

34. Let form be the element's form ownerp598, if any, or null otherwise.

35. If form is not null and form's autocompletep515 attribute is in the offp515 state, then let the element's autofill field namep610 be
"offp606".

Otherwise, let the element's autofill field namep610 be "onp606".

To determine a field's category, given field:

1. If the field is not an ASCII case-insensitive match for one of the tokens given in the first column of the following table, return
the pair (null, null).

Token Maximum number of tokens Category

"offp606" 1 Off
"onp606" 1 Automatic

"namep607" 3 Normal
"honorific-prefixp607" 3 Normal
"given-namep607" 3 Normal
"additional-namep607" 3 Normal
"family-namep607" 3 Normal
"honorific-suffixp607" 3 Normal
"nicknamep607" 3 Normal
"organization-titlep607" 3 Normal

612

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-case-insensitive

Token Maximum number of tokens Category

"usernamep607" 3 Normal
"new-passwordp607" 3 Normal
"current-passwordp607" 3 Normal
"one-time-codep607" 3 Normal
"organizationp607" 3 Normal
"street-addressp607" 3 Normal
"address-line1p607" 3 Normal
"address-line2p607" 3 Normal
"address-line3p607" 3 Normal
"address-level4p607" 3 Normal
"address-level3p607" 3 Normal
"address-level2p607" 3 Normal
"address-level1p607" 3 Normal
"countryp607" 3 Normal
"country-namep608" 3 Normal
"postal-codep608" 3 Normal
"cc-namep608" 3 Normal
"cc-given-namep608" 3 Normal
"cc-additional-namep608" 3 Normal
"cc-family-namep608" 3 Normal
"cc-numberp608" 3 Normal
"cc-expp608" 3 Normal
"cc-exp-monthp608" 3 Normal
"cc-exp-yearp608" 3 Normal
"cc-cscp608" 3 Normal
"cc-typep608" 3 Normal
"transaction-currencyp608" 3 Normal
"transaction-amountp608" 3 Normal
"languagep608" 3 Normal
"bdayp608" 3 Normal
"bday-dayp608" 3 Normal
"bday-monthp608" 3 Normal
"bday-yearp608" 3 Normal
"sexp608" 3 Normal
"urlp608" 3 Normal
"photop608" 3 Normal

"telp608" 4 Contact
"tel-country-codep608" 4 Contact
"tel-nationalp608" 4 Contact
"tel-area-codep608" 4 Contact
"tel-localp608" 4 Contact
"tel-local-prefixp608" 4 Contact
"tel-local-suffixp609" 4 Contact
"tel-extensionp609" 4 Contact
"emailp609" 4 Contact
"imppp609" 4 Contact

"webauthnp606" 5 Credential

2. Otherwise, let maximum tokens and category be the values of the cells in the second and third columns of that row
respectively.

3. Return the pair (category, maximum tokens).

For the purposes of autofill, a control's data depends on the kind of control:

613

An inputp520 element with its typep523 attribute in the Emailp530 state and with the multiplep553 attribute specified
The element's valuesp597.

Any other inputp520 element
A textareap579 element

The element's valuep597.

A selectp568 element with its multiplep569 attribute specified
The optionp577 elements in the selectp568 element's list of optionsp569 that have their selectednessp578 set to true.

Any other selectp568 element
The optionp577 element in the selectp568 element's list of optionsp569 that has its selectednessp578 set to true.

How to process the autofill hint setp610, autofill scopep610, and autofill field namep610 depends on the mantle that the autocompletep604

attribute is wearing.

↪ When wearing the autofill expectation mantlep604...
When an element's autofill field namep610 is "offp606", the user agent should not remember the control's datap613, and should not
offer past values to the user.

When an element's autofill field namep610 is not "offp606", the user agent may store the control's datap613, and may offer
previously stored values to the user.

In addition, when an element's autofill field namep610 is "offp606", values are resetp1051 when reactivating a documentp1051.
Note

Banks frequently do not want UAs to prefill login information:

<p><label>Account: <input type="text" name="ac" autocomplete="off"></label></p>
<p><label>PIN: <input type="password" name="pin" autocomplete="off"></label></p>

Example

For example, suppose a user visits a page with this control:

<select name="country">
<option>Afghanistan
<option>Albania
<option>Algeria
<option>Andorra
<option>Angola
<option>Antigua and Barbuda
<option>Argentina
<option>Armenia
<!-- ... -->
<option>Yemen
<option>Zambia
<option>Zimbabwe

</select>

This might render as follows:

Example

614

When the autofill field namep610 is "onp606", the user agent should attempt to use heuristics to determine the most appropriate
values to offer the user, e.g. based on the element's namep599 value, the position of the element in its tree, what other fields
exist in the form, and so forth.

When the autofill field namep610 is one of the names of the autofill fieldsp606 described above, the user agent should provide
suggestions that match the meaning of the field name as given in the table earlier in this section. The autofill hint setp610 should
be used to select amongst multiple possible suggestions.

↪ When wearing the autofill anchor mantlep604...
When the autofill field namep610 is not the empty string, then the user agent must act as if the user had specified the control's
datap613 for the given autofill hint setp610, autofill scopep610, and autofill field namep610 combination.

When the user agent autofills form controls, elements with the same form ownerp598 and the same autofill scopep610 must use data
relating to the same person, address, payment instrument, and contact details. When a user agent autofills "countryp607" and
"country-namep608" fields with the same form ownerp598 and autofill scopep610, and the user agent has a value for the countryp607"
field(s), then the "country-namep608" field(s) must be filled using a human-readable name for the same country. When a user agent fills
in multiple fields at once, all fields with the same autofill field namep610, form ownerp598 and autofill scopep610 must be filled with the
same value.

Suppose that on the first visit to this page, the user selects "Zambia". On the second visit, the user agent could duplicate
the entry for Zambia at the top of the list, so that the interface instead looks like this:

For example, if a user once entered one address into fields that used the "shippingp605" keyword, and another address into
fields that used the "billingp605" keyword, then in subsequent forms only the first address would be suggested for form
controls whose autofill hint setp610 contains the keyword "shippingp605". Both addresses might be suggested, however, for
address-related form controls whose autofill hint setp610 does not contain either keyword.

Example

Suppose a user agent knows of two phone numbers, +1 555 123 1234 and +1 555 666 7777. It would not be conforming for the
user agent to fill a field with autocomplete="shipping tel-local-prefix" with the value "123" and another field in the same
form with autocomplete="shipping tel-local-suffix" with the value "7777". The only valid prefilled values given the
aforementioned information would be "123" and "1234", or "666" and "7777", respectively.

Example

615

https://dom.spec.whatwg.org/#concept-tree

The "section-*" tokens in the autofill scopep610 are opaque; user agents must not attempt to derive meaning from the precise values
of these tokens.

The autocompletion mechanism must be implemented by the user agent acting as if the user had modified the control's datap613, and
must be done at a time where the element is mutablep597 (e.g. just after the element has been inserted into the document, or when the
user agent stops parsingp1358). User agents must only prefill controls using values that the user could have entered.

A user agent prefilling a form control must not discriminate between form controls that are in a document tree and those that are
connected; that is, it is not conforming to make the decision on whether or not to autofill based on whether the element's root is a
shadow root versus a Documentp130.

A user agent prefilling a form control's valuep597 must not cause that control to suffer from a type mismatchp622, suffer from being too
longp623, suffer from being too shortp623, suffer from an underflowp623, suffer from an overflowp623, or suffer from a step mismatchp623. A
user agent prefilling a form control's valuep597 must not cause that control to suffer from a pattern mismatchp622 either. Where possible
given the control's constraints, user agents must use the format given as canonical in the aforementioned table. Where it's not
possible for the canonical format to be used, user agents should use heuristics to attempt to convert values so that they can be used.

Similarly, if a form for some reason contained both a "cc-expp608" field and a "cc-exp-monthp608" field, and the user agent prefilled
the form, then the month component of the former would have to match the latter.

Example

This requirement interacts with the autofill anchor mantlep604 also. Consider the following markup snippet:

<form>
<input type=hidden autocomplete="nickname" value="TreePlate">
<input type=text autocomplete="nickname">

</form>

The only value that a conforming user agent could suggest in the text control is "TreePlate", the value given by the hidden
inputp520 element.

Example

For example, it would not be conforming if the user agent decided that it should offer the address it knows to be the user's
daughter's address for "section-child" and the addresses it knows to be the user's spouses' addresses for "section-spouse".

Example

For example, if a selectp568 element only has optionp577 elements with values "Steve" and "Rebecca", "Jay", and "Bob", and has an
autofill field namep610 "given-namep607", but the user agent's only idea for what to prefill the field with is "Evan", then the user
agent cannot prefill the field. It would not be conforming to somehow set the selectp568 element to the value "Evan", since the
user could not have done so themselves.

Example

For example, if the user agent knows that the user's middle name is "Ines", and attempts to prefill a form control that looks like
this:

<input name=middle-initial maxlength=1 autocomplete="additional-name">

...then the user agent could convert "Ines" to "I" and prefill it that way.

Example

A more elaborate example would be with month values. If the user agent knows that the user's birthday is the 27th of July 2012,
then it might try to prefill all of the following controls with slightly different values, all driven from this information:

<input name=b
type=month
autocomplete="bday">

2012-07 The day is dropped since the Monthp533 state only accepts a month/year combination. (Note that this example
is non-conforming, because the autofill field namep610 bdayp608 is not allowed with the Monthp533 state.)

Example

616

https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root

A user agent may allow the user to override an element's autofill field namep610, e.g. to change it from "offp606" to "onp606" to allow
values to be remembered and prefilled despite the page author's objections, or to always "offp606", never remembering values.

More specifically, user agents may in particular consider replacing the autofill field namep610 of form controls that match the
description given in the first column of the following table, when their autofill field namep610 is either "onp606" or "offp606", with the
value given in the second cell of that row. If this table is used, the replacements must be done in tree order, since all but the first row
references the autofill field namep610 of earlier elements. When the descriptions below refer to form controls being preceded or
followed by others, they mean in the list of listed elementsp513 that share the same form ownerp598.

Form control New autofill field
namep610

an inputp520 element whose typep523 attribute is in the Textp527 state that is followed by an inputp520 element whose typep523 attribute is
in the Passwordp531 state

"usernamep607"

an inputp520 element whose typep523 attribute is in the Passwordp531 state that is preceded by an inputp520 element whose autofill field
namep610 is "usernamep607"

"current-
passwordp607"

an inputp520 element whose typep523 attribute is in the Passwordp531 state that is preceded by an inputp520 element whose autofill field
namep610 is "current-passwordp607"

"new-passwordp607"

an inputp520 element whose typep523 attribute is in the Passwordp531 state that is preceded by an inputp520 element whose autofill field
namep610 is "new-passwordp607"

"new-passwordp607"

The autocomplete IDL attribute, on getting, must return the element's IDL-exposed autofill valuep610, and on setting, must reflectp104

the content attribute of the same name.

The inputp520 and textareap579 elements define several attributes and methods for handling their selection. Their shared algorithms
are defined here.

<select name=c
autocomplete="bday">
<option>Jan
<option>Feb
...
<option>Jul
<option>Aug
...

</select>

July The user agent picks the month from the listed options, either by noticing there are twelve options and
picking the 7th, or by recognizing that one of the strings (three characters "Jul" followed by a newline and a
space) is a close match for the name of the month (July) in one of the user agent's supported languages, or
through some other similar mechanism.

<input name=a
type=number min=1
max=12
autocomplete="bday-
month">

7 User agent converts "July" to a month number in the range 1..12, like the field.

<input name=a
type=number min=0
max=11
autocomplete="bday-
month">

6 User agent converts "July" to a month number in the range 0..11, like the field.

<input name=a
type=number min=1
max=11
autocomplete="bday-
month">

User agent doesn't fill in the field, since it can't make a good guess as to what the form expects.

element.selectp619()
Selects everything in the text control.

For web developers (non-normative)

4.10.19 APIs for the text control selections §p61

7

617

https://dom.spec.whatwg.org/#concept-tree-order

All inputp520 elements to which these APIs applyp523, and all textareap579 elements, have either a selection or a text entry cursor
position at all times (even for elements that are not being renderedp1388), measured in offsets into the code units of the control's
relevant valuep618. The initial state must consist of a text entry cursorp618 at the beginning of the control.

For inputp520 elements, these APIs must operate on the element's valuep597. For textareap579 elements, these APIs must operate on
the element's API valuep597. In the below algorithms, we call the value string being operated on the relevant value.

Whenever the relevant valuep618 changes for an element to which these APIs apply, run these steps:

element.selectionStartp619 [= value]
Returns the offset to the start of the selection.
Can be set, to change the start of the selection.

element.selectionEndp620 [= value]
Returns the offset to the end of the selection.
Can be set, to change the end of the selection.

element.selectionDirectionp620 [= value]
Returns the current direction of the selection.
Can be set, to change the direction of the selection.
The possible values are "forward", "backward", and "none".

element.setSelectionRangep620(start, end [, direction])
Changes the selection to cover the given substring in the given direction. If the direction is omitted, it will be reset to be the
platform default (none or forward).

element.setRangeTextp621(replacement [, start, end [, selectionMode]])
Replaces a range of text with the new text. If the start and end arguments are not provided, the range is assumed to be the
selection.
The final argument determines how the selection will be set after the text has been replaced. The possible values are:
"selectp621"

Selects the newly inserted text.
"startp621"

Moves the selection to just before the inserted text.
"endp621"

Moves the selection to just after the selected text.
"preservep621"

Attempts to preserve the selection. This is the default.

The use of API valuep597 instead of raw valuep581 for textareap579 elements means that U+000D (CR) characters are normalized
away. For example,

<textarea id="demo"></textarea>
<script>
demo.value = "A\r\nB";
demo.setRangeText("replaced", 0, 2);
assert(demo.value === "replacedB");

</script>

If we had operated on the raw valuep581 of "A\r\nB", then we would have replaced the characters "A\r", ending up with a result of
"replaced\nB". But since we used the API valuep597 of "A\nB", we replaced the characters "A\n", giving "replacedB".

Example

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count as characters. Thus, for instance, the
selection can include just an invisible character, and the text insertion cursor can be placed to one side or another of such a
character.

Note

618

https://infra.spec.whatwg.org/#code-unit

1. If the element has a selectionp618:

1. If the start of the selection is now past the end of the relevant valuep618, set it to the end of the relevant valuep618.

2. If the end of the selection is now past the end of the relevant valuep618, set it to the end of the relevant valuep618.

3. If the user agent does not support empty selection, and both the start and end of the selection are now pointing to
the end of the relevant valuep618, then instead set the element's text entry cursor positionp618 to the end of the
relevant valuep618, removing any selection.

2. Otherwise, the element must have a text entry cursor positionp618 position. If it is now past the end of the relevant valuep618,
set it to the end of the relevant valuep618.

Where possible, user interface features for changing the text selectionp618 in inputp520 and textareap579 elements must be
implemented using the set the selection rangep620 algorithm so that, e.g., all the same events fire.

The selectionsp618 of inputp520 and textareap579 elements have a selection direction, which is either "forward", "backward", or
"none". The exact meaning of the selection direction depends on the platform. This direction is set when the user manipulates the
selection. The initial selection directionp619 must be "none" if the platform supports that direction, or "forward" otherwise.

To set the selection direction of an element to a given direction, update the element's selection directionp619 to the given direction,
unless the direction is "none" and the platform does not support that direction; in that case, update the element's selection
directionp619 to "forward".

The select() method, when invoked, must run the following steps:

1. If this element is an inputp520 element, and either select()p619 does not applyp524 to this element or the corresponding
control has no selectable text, return.

2. Set the selection rangep620 with 0 and infinity.

The selectionStart attribute's getter must run the following steps:

1. If this element is an inputp520 element, and selectionStartp619 does not applyp524 to this element, return null.

2. If there is no selectionp618, return the code unit offset within the relevant valuep618 to the character that immediately follows
the text entry cursorp618.

3. Return the code unit offset within the relevant valuep618 to the character that immediately follows the start of the
selectionp618.

The selectionStartp619 attribute's setter must run the following steps:

1. If this element is an inputp520 element, and selectionStartp619 does not applyp524 to this element, throw an
"InvalidStateError" DOMException.

In some cases where the relevant valuep618 changes, other parts of the specification will also modify the text entry cursor
positionp618, beyond just the clamping steps above. For example, see the valuep583 setter for textareap579.

Note

On Windows, the direction indicates the position of the caret relative to the selection: a "forward" selection has the caret at the
end of the selection and a "backward" selection has the caret at the start of the selection. Windows has no "none" direction.

On Mac, the direction indicates which end of the selection is affected when the user adjusts the size of the selection using the
arrow keys with the Shift modifier: the "forward" direction means the end of the selection is modified, and the "backward"
direction means the start of the selection is modified. The "none" direction is the default on Mac, it indicates that no particular
direction has yet been selected. The user sets the direction implicitly when first adjusting the selection, based on which directional
arrow key was used.

Note

For instance, in a user agent where <input type=color>p541 is rendered as a color well with a picker, as opposed to a
text control accepting a hexadecimal color code, there would be no selectable text, and thus calls to the method are
ignored.

Example

✔ MDN

619

https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

2. Let end be the value of this element's selectionEndp620 attribute.

3. If end is less than the given value, set end to the given value.

4. Set the selection rangep620 with the given value, end, and the value of this element's selectionDirectionp620 attribute.

The selectionEnd attribute's getter must run the following steps:

1. If this element is an inputp520 element, and selectionEndp620 does not applyp524 to this element, return null.

2. If there is no selectionp618, return the code unit offset within the relevant valuep618 to the character that immediately follows
the text entry cursorp618.

3. Return the code unit offset within the relevant valuep618 to the character that immediately follows the end of the
selectionp618.

The selectionEndp620 attribute's setter must run the following steps:

1. If this element is an inputp520 element, and selectionEndp620 does not applyp524 to this element, throw an
"InvalidStateError" DOMException.

2. Set the selection rangep620 with the value of this element's selectionStartp619 attribute, the given value, and the value of
this element's selectionDirectionp620 attribute.

The selectionDirection attribute's getter must run the following steps:

1. If this element is an inputp520 element, and selectionDirectionp620 does not applyp524 to this element, return null.

2. Return this element's selection directionp619.

The selectionDirectionp620 attribute's setter must run the following steps:

1. If this element is an inputp520 element, and selectionDirectionp620 does not applyp524 to this element, throw an
"InvalidStateError" DOMException.

2. Set the selection rangep620 with the value of this element's selectionStartp619 attribute, the value of this element's
selectionEndp620 attribute, and the given value.

The setSelectionRange(start, end, direction) method, when invoked, must run the following steps:

1. If this element is an inputp520 element, and setSelectionRange()p620 does not applyp524 to this element, throw an
"InvalidStateError" DOMException.

2. Set the selection rangep620 with start, end, and direction.

To set the selection range with an integer or null start, an integer or null or the special value infinity end, and optionally a string
direction, run the following steps:

1. If start is null, let start be zero.

2. If end is null, let end be zero.

3. Set the selectionp618 of the text control to the sequence of code units within the relevant valuep618 starting with the code unit
at the startth position (in logical order) and ending with the code unit at the (end-1)th position. Arguments greater than the
length of the relevant valuep618 of the text control (including the special value infinity) must be treated as pointing at the end
of the text control. If end is less than or equal to start then the start of the selection and the end of the selection must both
be placed immediately before the character with offset end. In UAs where there is no concept of an empty selection, this
must set the cursor to be just before the character with offset end.

4. If direction is not identical to either "backward" or "forward", or if the direction argument was not given, set direction to
"none".

5. Set the selection directionp619 of the text control to direction.

6. If the previous steps caused the selectionp618 of the text control to be modified (in either extent or directionp619), then queue
an element taskp1125 on the user interaction task sourcep1134 given the element to fire an event named selectp1472 at the
element, with the bubbles attribute initialized to true.

620

https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles

The setRangeText(replacement, start, end, selectMode) method, when invoked, must run the following steps:

1. If this element is an inputp520 element, and setRangeText()p621 does not applyp524 to this element, throw an
"InvalidStateError" DOMException.

2. Set this element's dirty value flagp597 to true.

3. If the method has only one argument, then let start and end have the values of the selectionStartp619 attribute and the
selectionEndp620 attribute respectively.

Otherwise, let start, end have the values of the second and third arguments respectively.

4. If start is greater than end, then throw an "IndexSizeError" DOMException.

5. If start is greater than the length of the relevant valuep618 of the text control, then set it to the length of the relevant
valuep618 of the text control.

6. If end is greater than the length of the relevant valuep618 of the text control, then set it to the length of the relevant valuep618

of the text control.

7. Let selection start be the current value of the selectionStartp619 attribute.

8. Let selection end be the current value of the selectionEndp620 attribute.

9. If start is less than end, delete the sequence of code units within the element's relevant valuep618 starting with the code unit
at the startth position and ending with the code unit at the (end-1)th position.

10. Insert the value of the first argument into the text of the relevant valuep618 of the text control, immediately before the startth
code unit.

11. Let new length be the length of the value of the first argument.

12. Let new end be the sum of start and new length.

13. Run the appropriate set of substeps from the following list:

↪ If the fourth argument's value is "select"
Let selection start be start.

Let selection end be new end.

↪ If the fourth argument's value is "start"
Let selection start and selection end be start.

↪ If the fourth argument's value is "end"
Let selection start and selection end be new end.

↪ If the fourth argument's value is "preserve"
↪ If the method has only one argument

1. Let old length be end minus start.

2. Let delta be new length minus old length.

3. If selection start is greater than end, then increment it by delta. (If delta is negative, i.e. the new text is
shorter than the old text, then this will decrease the value of selection start.)

Otherwise: if selection start is greater than start, then set it to start. (This snaps the start of the selection to
the start of the new text if it was in the middle of the text that it replaced.)

4. If selection end is greater than end, then increment it by delta in the same way.

Otherwise: if selection end is greater than start, then set it to new end. (This snaps the end of the selection
to the end of the new text if it was in the middle of the text that it replaced.)

14. Set the selection rangep620 with selection start and selection end.

The setRangeText()p621 method uses the following enumeration:

621

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#string-length

enum SelectionMode {
"select",
"start",
"end",
"preserve" // default

};

A submittable elementp514 is a candidate for constraint validation except when a condition has barred the element from
constraint validation. (For example, an element is barred from constraint validationp622 if it has a datalistp574 element ancestor.)

An element can have a custom validity error message defined. Initially, an element must have its custom validity error messagep622

set to the empty string. When its value is not the empty string, the element is suffering from a custom errorp623. It can be set using the
setCustomValidity()p625 method, except for form-associated custom elementsp760. Form-associated custom elementsp760 can have a
custom validity error messagep622 set via their ElementInternalsp771 object's setValidity()p773 method. The user agent should use
the custom validity error messagep622 when alerting the user to the problem with the control.

An element can be constrained in various ways. The following is the list of validity states that a form control can be in, making the
control invalid for the purposes of constraint validation. (The definitions below are non-normative; other parts of this specification
define more precisely when each state applies or does not.)

Suffering from being missing
When a control has no valuep597 but has a required attribute (inputp520 requiredp552, textareap579 requiredp582); or, more
complicated rules for selectp568 elements and controls in radio button groupsp543, as specified in their sections.

When the setValidity()p773 method sets valueMissing flag to true for a form-associated custom elementp760.

Suffering from a type mismatch
When a control that allows arbitrary user input has a valuep597 that is not in the correct syntax (Emailp530, URLp529).

When the setValidity()p773 method sets typeMismatch flag to true for a form-associated custom elementp760.

Suffering from a pattern mismatch
When a control has a valuep597 that doesn't satisfy the patternp554 attribute.

To obtain the currently selected text, the following JavaScript suffices:

var selectionText = control.value.substring(control.selectionStart, control.selectionEnd);

...where control is the inputp520 or textareap579 element.

Example

To add some text at the start of a text control, while maintaining the text selection, the three attributes must be preserved:

var oldStart = control.selectionStart;
var oldEnd = control.selectionEnd;
var oldDirection = control.selectionDirection;
var prefix = "http://";
control.value = prefix + control.value;
control.setSelectionRange(oldStart + prefix.length, oldEnd + prefix.length, oldDirection);

...where control is the inputp520 or textareap579 element.

Example

4.10.20.1 Definitions §p62

2

IDL

4.10.20 Constraints §p62

2

622

When the setValidity()p773 method sets patternMismatch flag to true for a form-associated custom elementp760.

Suffering from being too long
When a control has a valuep597 that is too long for the form control maxlength attributep600 (inputp520 maxlengthp551, textareap579

maxlengthp582).

When the setValidity()p773 method sets tooLong flag to true for a form-associated custom elementp760.

Suffering from being too short
When a control has a valuep597 that is too short for the form control minlength attributep601 (inputp520 minlengthp551, textareap579

minlengthp582).

When the setValidity()p773 method sets tooShort flag to true for a form-associated custom elementp760.

Suffering from an underflow
When a control has a valuep597 that is not the empty string and is too low for the minp555 attribute.

When the setValidity()p773 method sets rangeUnderflow flag to true for a form-associated custom elementp760.

Suffering from an overflow
When a control has a valuep597 that is not the empty string and is too high for the maxp555 attribute.

When the setValidity()p773 method sets rangeOverflow flag to true for a form-associated custom elementp760.

Suffering from a step mismatch
When a control has a valuep597 that doesn't fit the rules given by the stepp556 attribute.

When the setValidity()p773 method sets stepMismatch flag to true for a form-associated custom elementp760.

Suffering from bad input
When a control has incomplete input and the user agent does not think the user ought to be able to submit the form in its current
state.

When the setValidity()p773 method sets badInput flag to true for a form-associated custom elementp760.

Suffering from a custom error
When a control's custom validity error messagep622 (as set by the element's setCustomValidity()p625 method or
ElementInternalsp771 's setValidity()p773 method) is not the empty string.

An element satisfies its constraints if it is not suffering from any of the above validity statesp622.

When the user agent is required to statically validate the constraints of formp514 element form, it must run the following steps,
which return either a positive result (all the controls in the form are valid) or a negative result (there are invalid controls) along with a
(possibly empty) list of elements that are invalid and for which no script has claimed responsibility:

1. Let controls be a list of all the submittable elementsp514 whose form ownerp598 is form, in tree order.

2. Let invalid controls be an initially empty list of elements.

3. For each element field in controls, in tree order:

1. If field is not a candidate for constraint validationp622, then move on to the next element.

2. Otherwise, if field satisfies its constraintsp623, then move on to the next element.

3. Otherwise, add field to invalid controls.

An element can still suffer from these states even when the element is disabledp601; thus these states can be represented in the
DOM even if validating the form during submission wouldn't indicate a problem to the user.

Note

4.10.20.2 Constraint validation §p62

3

623

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

4. If invalid controls is empty, then return a positive result.

5. Let unhandled invalid controls be an initially empty list of elements.

6. For each element field in invalid controls, if any, in tree order:

1. Let notCanceled be the result of firing an event named invalidp1471 at field, with the cancelable attribute
initialized to true.

2. If notCanceled is true, then add field to unhandled invalid controls.

7. Return a negative result with the list of elements in the unhandled invalid controls list.

If a user agent is to interactively validate the constraints of formp514 element form, then the user agent must run the following
steps:

1. Statically validate the constraintsp623 of form, and let unhandled invalid controls be the list of elements returned if the result
was negative.

2. If the result was positive, then return that result.

3. Report the problems with the constraints of at least one of the elements given in unhandled invalid controls to the user.

◦ User agents may focus one of those elements in the process, by running the focusing stepsp842 for that element,
and may change the scrolling position of the document, or perform some other action that brings the element to
the user's attention. For elements that are form-associated custom elementsp760, user agents should use their
validation anchorp773 instead, for the purposes of these actions.

◦ User agents may report more than one constraint violation.

◦ User agents may coalesce related constraint violation reports if appropriate (e.g. if multiple radio buttons in a
groupp543 are marked as required, only one error need be reported).

◦ If one of the controls is not being renderedp1388 (e.g. it has the hiddenp824 attribute set) then user agents may
report a script error.

4. Return a negative result.

4.10.20.3 The constraint validation API §p62

4

element.willValidatep625

Returns true if the element will be validated when the form is submitted; false otherwise.

element.setCustomValidityp625(message)
Sets a custom error, so that the element would fail to validate. The given message is the message to be shown to the user when
reporting the problem to the user.
If the argument is the empty string, clears the custom error.

element.validityp625.valueMissingp626

Returns true if the element has no value but is a required field; false otherwise.

element.validityp625.typeMismatchp626

Returns true if the element's value is not in the correct syntax; false otherwise.

element.validityp625.patternMismatchp626

Returns true if the element's value doesn't match the provided pattern; false otherwise.

element.validityp625.tooLongp626

Returns true if the element's value is longer than the provided maximum length; false otherwise.

element.validityp625.tooShortp626

Returns true if the element's value, if it is not the empty string, is shorter than the provided minimum length; false otherwise.

For web developers (non-normative)

624

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

The willValidate attribute's getter must return true, if this element is a candidate for constraint validationp622, and false otherwise
(i.e., false if any conditions are barring it from constraint validationp622).

The willValidate attribute of ElementInternalsp771 interface, on getting, must throw a "NotSupportedError" DOMException if the
target elementp772 is not a form-associated custom elementp760. Otherwise, it must return true if the target elementp772 is a candidate
for constraint validationp622, and false otherwise.

The setCustomValidity(error) method steps are:

1. Set error to the result of normalizing newlines given error.

2. Set the custom validity error messagep622 to error.

The validity attribute's getter must return a ValidityStatep626 object that represents the validity statesp622 of this element. This

element.validityp625.rangeUnderflowp626

Returns true if the element's value is lower than the provided minimum; false otherwise.

element.validityp625.rangeOverflowp626

Returns true if the element's value is higher than the provided maximum; false otherwise.

element.validityp625.stepMismatchp626

Returns true if the element's value doesn't fit the rules given by the stepp556 attribute; false otherwise.

element.validityp625.badInputp626

Returns true if the user has provided input in the user interface that the user agent is unable to convert to a value; false
otherwise.

element.validityp625.customErrorp626

Returns true if the element has a custom error; false otherwise.

element.validityp625.validp626

Returns true if the element's value has no validity problems; false otherwise.

valid = element.checkValidityp627()
Returns true if the element's value has no validity problems; false otherwise. Fires an invalidp1471 event at the element in the
latter case.

valid = element.reportValidityp627()
Returns true if the element's value has no validity problems; otherwise, returns false, fires an invalidp1471 event at the element,
and (if the event isn't canceled) reports the problem to the user.

element.validationMessagep627

Returns the error message that would be shown to the user if the element was to be checked for validity.

In the following example, a script checks the value of a form control each time it is edited, and whenever it is not a valid value,
uses the setCustomValidity()p625 method to set an appropriate message.

<label>Feeling: <input name=f type="text" oninput="check(this)"></label>
<script>
function check(input) {

if (input.value == "good" ||
input.value == "fine" ||
input.value == "tired") {

input.setCustomValidity('"' + input.value + '" is not a feeling.');
} else {

// input is fine -- reset the error message
input.setCustomValidity('');

}
}

</script>

Example

✔ MDN

✔ MDN

✔ MDN

625

https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#normalize-newlines

object is livep47.

The validity attribute of ElementInternalsp771 interface, on getting, must throw a "NotSupportedError" DOMException if the target
elementp772 is not a form-associated custom elementp760. Otherwise, it must return a ValidityStatep626 object that represents the
validity statesp622 of the target elementp772. This object is livep47.

[Exposed=Window]
interface ValidityState {

readonly attribute boolean valueMissing;
readonly attribute boolean typeMismatch;
readonly attribute boolean patternMismatch;
readonly attribute boolean tooLong;
readonly attribute boolean tooShort;
readonly attribute boolean rangeUnderflow;
readonly attribute boolean rangeOverflow;
readonly attribute boolean stepMismatch;
readonly attribute boolean badInput;
readonly attribute boolean customError;
readonly attribute boolean valid;

};

A ValidityStatep626 object has the following attributes. On getting, they must return true if the corresponding condition given in the
following list is true, and false otherwise.

valueMissing
The control is suffering from being missingp622.

typeMismatch
The control is suffering from a type mismatchp622.

patternMismatch
The control is suffering from a pattern mismatchp622.

tooLong
The control is suffering from being too longp623.

tooShort
The control is suffering from being too shortp623.

rangeUnderflow
The control is suffering from an underflowp623.

rangeOverflow
The control is suffering from an overflowp623.

stepMismatch
The control is suffering from a step mismatchp623.

badInput
The control is suffering from bad inputp623.

customError
The control is suffering from a custom errorp623.

valid
None of the other conditions are true.

The check validity steps for an element element are:

1. If element is a candidate for constraint validationp622 and does not satisfy its constraintsp623, then:

1. Fire an event named invalidp1471 at element, with the cancelable attribute initialized to true (though canceling

IDL

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

626

https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

has no effect).

2. Return false.

2. Return true.

The checkValidity() method, when invoked, must run the check validity stepsp626 on this element.

The checkValidity() method of the ElementInternalsp771 interface must run these steps:

1. Let element be this ElementInternalsp771 's target elementp772.

2. If element is not a form-associated custom elementp760, then throw a "NotSupportedError" DOMException.

3. Run the check validity stepsp626 on element.

The report validity steps for an element element are:

1. If element is a candidate for constraint validationp622 and does not satisfy its constraintsp623, then:

1. Let report be the result of firing an event named invalidp1471 at element, with the cancelable attribute initialized
to true.

2. If report is true, then report the problems with the constraints of this element to the user. When reporting the
problem with the constraints to the user, the user agent may run the focusing stepsp842 for element, and may
change the scrolling position of the document, or perform some other action that brings element to the user's
attention. User agents may report more than one constraint violation, if element suffers from multiple problems at
once.

3. Return false.

2. Return true.

The reportValidity() method, when invoked, must run the report validity stepsp627 on this element.

The reportValidity() method of the ElementInternalsp771 interface must run these steps:

1. Let element be this ElementInternalsp771 's target elementp772.

2. If element is not a form-associated custom elementp760, then throw a "NotSupportedError" DOMException.

3. Run the report validity stepsp627 on element.

The validationMessage attribute's getter must run these steps:

1. If this element is not a candidate for constraint validationp622 or if this element satisfies its constraintsp623, then return the
empty string.

2. Return a suitably localized message that the user agent would show the user if this were the only form control with a validity
constraint problem. If the user agent would not actually show a textual message in such a situation (e.g., it would show a
graphical cue instead), then return a suitably localized message that expresses (one or more of) the validity constraint(s)
that the control does not satisfy. If the element is a candidate for constraint validationp622 and is suffering from a custom
errorp623, then the custom validity error messagep622 should be present in the return value.

Servers should not rely on client-side validation. Client-side validation can be intentionally bypassed by hostile users, and
unintentionally bypassed by users of older user agents or automated tools that do not implement these features. The constraint
validation features are only intended to improve the user experience, not to provide any kind of security mechanism.

4.10.20.4 Security §p62

7

✔ MDN

✔ MDN

627

https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException

This section is non-normative.

When a form is submitted, the data in the form is converted into the structure specified by the enctypep603, and then sent to the
destination specified by the actionp602 using the given methodp602.

For example, take the following form:

<form action="/find.cgi" method=get>
<input type=text name=t>
<input type=search name=q>
<input type=submit>

</form>

If the user types in "cats" in the first field and "fur" in the second, and then hits the submit button, then the user agent will load
/find.cgi?t=cats&q=fur.

On the other hand, consider this form:

<form action="/find.cgi" method=post enctype="multipart/form-data">
<input type=text name=t>
<input type=search name=q>
<input type=submit>

</form>

Given the same user input, the result on submission is quite different: the user agent instead does an HTTP POST to the given URL,
with as the entity body something like the following text:

------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="t"

cats
------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="q"

fur
------kYFrd4jNJEgCervE--

A formp514 element's default button is the first submit buttonp514 in tree order whose form ownerp598 is that formp514 element.

If the user agent supports letting the user submit a form implicitly (for example, on some platforms hitting the "enter" key while a text
control is focusedp836 implicitly submits the form), then doing so for a form, whose default buttonp628 has activation behavior and is not
disabledp601, must cause the user agent to fire a click eventp1148 at that default buttonp628.

If the form has no submit buttonp514, then the implicit submission mechanism must perform the following steps:

1. If the form has more than one field that blocks implicit submissionp628, then return.

2. Submitp629 the formp514 element from the formp514 element itself with userInvolvementp629 set to "activationp1014".

For the purpose of the previous paragraph, an element is a field that blocks implicit submission of a formp514 element if it is an
inputp520 element whose form ownerp598 is that formp514 element and whose typep523 attribute is in one of the following states: Textp527,

4.10.21.1 Introduction §p62

8

4.10.21.2 Implicit submission §p62

8

There are pages on the web that are only usable if there is a way to implicitly submit forms, so user agents are strongly
encouraged to support this.

Note

4.10.21 Form submission §p62

8

628

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

Searchp527, Telephonep528, URLp529, Emailp530, Passwordp531, Datep532, Monthp533, Weekp534, Timep535, Local Date and Timep536, Numberp537

Each formp514 element has a constructing entry list boolean, initially false.

Each formp514 element has a firing submission events boolean, initially false.

To submit a formp514 element form from an element submitter (typically a button), given an optional boolean submitted from
submit() method (default false) and an optional user navigation involvementp1014 userInvolvement (default "nonep1014"):

1. If form cannot navigatep309, then return.

2. If form's constructing entry listp629 is true, then return.

3. Let form document be form's node document.

4. If form document's active sandboxing flag setp917 has its sandboxed forms browsing context flagp915 set, then return.

5. If submitted from submit()p517 method is false, then:

1. If form's firing submission eventsp629 is true, then return.

2. Set form's firing submission eventsp629 to true.

3. For each element field in the list of submittable elementsp514 whose form ownerp598 is form, set field's user
validityp597 to true.

4. If the submitter element's no-validate statep603 is false, then interactively validate the constraintsp624 of form and
examine the result. If the result is negative (i.e., the constraint validation concluded that there were invalid fields
and probably informed the user of this), then:

1. Set form's firing submission eventsp629 to false.

2. Return.

5. Let submitterButton be null if submitter is form. Otherwise, let submitterButton be submitter.

6. Let shouldContinue be the result of firing an event named submitp1472 at form using SubmitEventp636, with the
submitterp636 attribute initialized to submitterButton, the bubbles attribute initialized to true, and the cancelable
attribute initialized to true.

7. Set form's firing submission eventsp629 to false.

8. If shouldContinue is false, then return.

9. If form cannot navigatep309, then return.

6. Let encoding be the result of picking an encoding for the formp634.

7. Let entry list be the result of constructing the entry listp632 with form, submitter, and encoding.

8. Assert: entry list is not null.

9. If form cannot navigatep309, then return.

10. Let method be the submitter element's methodp602.

11. If method is dialogp602, then:

4.10.21.3 Form submission algorithm §p62

9

Cannot navigatep309 is run again as dispatching the submitp1472 event could have changed the outcome.
Note

Cannot navigatep309 is run again as dispatching the formdatap1471 event in constructing the entry listp632 could have
changed the outcome.

Note

629

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://infra.spec.whatwg.org/#assert

1. If form does not have an ancestor dialogp646 element, then return.

2. Let subject be form's nearest ancestor dialogp646 element.

3. Let result be null.

4. If submitter is an inputp520 element whose typep523 attribute is in the Image Buttonp547 state, then:

1. Let (x, y) be the selected coordinatep548.

2. Set result to the concatenation of x, ",", and y.

5. Otherwise, if submitter has a valuep597, then set result to that valuep597.

6. Close the dialogp651 subject with result.

7. Return.

12. Let action be the submitter element's actionp602.

13. If action is the empty string, let action be the URL of the form document.

14. Let parsed action be the result of encoding-parsing a URLp97 given action, relative to submitter's node document.

15. If parsed action is failure, then return.

16. Let scheme be the scheme of parsed action.

17. Let enctype be the submitter element's enctypep603.

18. Let formTarget be null.

19. If the submitter element is a submit buttonp514 and it has a formtargetp603 attribute, then set formTarget to the
formtargetp603 attribute value.

20. Let target be the result of getting an element's targetp176 given submitter's form ownerp598 and formTarget.

21. Let noopener be the result of getting an element's noopenerp309 with form, parsed action, and target.

22. Let targetNavigable be the first return value of applying the rules for choosing a navigablep997 given target, form's node
navigablep989, and noopener.

23. If targetNavigable is null, then return.

24. Let historyHandling be "autop1014".

25. If form document equals targetNavigable's active documentp989, and form document has not yet completely loadedp1063, then
set historyHandling to "replacep1014".

26. Select the appropriate row in the table below based on scheme as given by the first cell of each row. Then, select the
appropriate cell on that row based on method as given in the first cell of each column. Then, jump to the steps named in that
cell and defined below the table.

GETp602 POSTp602

http Mutate action URLp631 Submit as entity bodyp631

https Mutate action URLp631 Submit as entity bodyp631

ftp Get action URLp631 Get action URLp631

javascript Get action URLp631 Get action URLp631

data Mutate action URLp631 Get action URLp631

mailto Mail with headersp632 Mail as bodyp632

If scheme is not one of those listed in this table, then the behavior is not defined by this specification. User agents should, in
the absence of another specification defining this, act in a manner analogous to that defined in this specification for similar
schemes.

Each formp514 element has a planned navigation, which is either null or a taskp1124; when the formp514 is first created, its
planned navigationp630 must be set to null. In the behaviors described below, when the user agent is required to plan to
navigate to a URL url given an optional POST resourcep1007-or-null postResource (default null), it must run the following
steps:

630

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url

1. Let referrerPolicy be the empty string.

2. If the formp514 element's link typesp314 include the noreferrerp325 keyword, then set referrerPolicy to "no-
referrer".

3. If the formp514 has a non-null planned navigationp630, remove it from its task queuep1123.

4. Queue an element taskp1125 on the DOM manipulation task sourcep1134 given the formp514 element and the following
steps:

1. Set the formp514 's planned navigationp630 to null.

2. Navigatep1014 targetNavigable to url using the formp514 element's node document, with
historyHandlingp1014 set to historyHandling, userInvolvementp1014 set to userInvolvement,
referrerPolicyp1014 set to referrerPolicy, documentResourcep1014 set to postResource, and
formDataEntryListp1014 set to entry list.

5. Set the formp514 's planned navigationp630 to the just-queued taskp1124.

The behaviors are as follows:

Mutate action URL
Let pairs be the result of converting to a list of name-value pairsp634 with entry list.

Let query be the result of running the application/x-www-form-urlencoded serializer with pairs and encoding.

Set parsed action's query component to query.

Plan to navigatep630 to parsed action.

Submit as entity body
Assert: method is POSTp602.

Switch on enctype:

↪ application/x-www-form-urlencodedp603

Let pairs be the result of converting to a list of name-value pairsp634 with entry list.

Let body be the result of running the application/x-www-form-urlencoded serializer with pairs and encoding.

Set body to the result of encoding body.

Let mimeType be `application/x-www-form-urlencoded`.

↪ multipart/form-datap603

Let body be the result of running the multipart/form-data encoding algorithmp635 with entry list and encoding.

Let mimeType be the isomorphic encoding of the concatenation of "multipart/form-data; boundary=" and the
multipart/form-data boundary stringp635 generated by the multipart/form-data encoding algorithmp635.

↪ text/plainp603

Let pairs be the result of converting to a list of name-value pairsp634 with entry list.

Let body be the result of running the text/plain encoding algorithmp635 with pairs.

Set body to the result of encoding body using encoding.

Let mimeType be `text/plain`.

Plan to navigatep630 to parsed action given a POST resourcep1007 whose request bodyp1007 is body and request content-
typep1007 is mimeType.

Get action URL
Plan to navigatep630 to parsed action.

631

https://dom.spec.whatwg.org/#concept-node-document
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#concept-url-query
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://encoding.spec.whatwg.org/#utf-8-encode
https://url.spec.whatwg.org/#concept-urlencoded
https://infra.spec.whatwg.org/#isomorphic-encode
https://encoding.spec.whatwg.org/#encode
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3

Mail with headers
Let pairs be the result of converting to a list of name-value pairsp634 with entry list.

Let headers be the result of running the application/x-www-form-urlencoded serializer with pairs and encoding.

Replace occurrences of U+002B PLUS SIGN characters (+) in headers with the string "%20".

Set parsed action's query to headers.

Plan to navigatep630 to parsed action.

Mail as body
Let pairs be the result of converting to a list of name-value pairsp634 with entry list.

Switch on enctype:

↪ text/plainp603

Let body be the result of running the text/plain encoding algorithmp635 with pairs.

Set body to the result of running UTF-8 percent-encode on body using the default encode set. [URL]p1483

↪ Otherwise
Let body be the result of running the application/x-www-form-urlencoded serializer with pairs and encoding.

If parsed action's query is null, then set it to the empty string.

If parsed action's query is not the empty string, then append a single U+0026 AMPERSAND character (&) to it.

Append "body=" to parsed action's query.

Append body to parsed action's query.

Plan to navigatep630 to parsed action.

An entry list is a list of entriesp632, typically representing the contents of a form. An entry is a tuple consisting of a name (a scalar
value string) and a value (either a scalar value string or a File object).

To create an entry given a string name, a string or Blob object value, and optionally a scalar value string filename:

1. Set name to the result of converting name into a scalar value string.

2. If value is a string, then set value to the result of converting value into a scalar value string.

3. Otherwise:

1. If value is not a File object, then set value to a new File object, representing the same bytes, whose name
attribute value is "blob".

2. If filename is given, then set value to a new File object, representing the same bytes, whose name attribute is
filename.

4. Return an entryp632 whose namep632 is name and whose valuep632 is value.

To construct the entry list given a form, an optional submitter (default null), and an optional encoding (default UTF-8):

entry list is discarded.
Note

4.10.21.4 Constructing the entry list §p63

2

These operations will create a new File object if either filename is given or the passed Blob is not a File object. In
those cases, the identity of the passed Blob object is not kept.

Note

632

https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#string-utf-8-percent-encode
https://url.spec.whatwg.org/#default-encode-set
https://url.spec.whatwg.org/#concept-urlencoded-serializer
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#scalar-value-string
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-Blob
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#javascript-string-convert
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#javascript-string-convert
https://infra.spec.whatwg.org/#scalar-value-string
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-name
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-name
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-Blob
https://encoding.spec.whatwg.org/#utf-8

1. If form's constructing entry listp629 is true, then return null.

2. Set form's constructing entry listp629 to true.

3. Let controls be a list of all the submittable elementsp514 whose form ownerp598 is form, in tree order.

4. Let entry list be a new empty entry listp632.

5. For each element field in controls, in tree order:

1. If any of the following are true:

▪ field has a datalistp574 element ancestor;

▪ field is disabledp601;

▪ field is a buttonp514 but it is not submitter;

▪ field is an inputp520 element whose typep523 attribute is in the Checkboxp542 state and whose
checkednessp597 is false; or

▪ field is an inputp520 element whose typep523 attribute is in the Radio Buttonp543 state and whose
checkednessp597 is false,

then continue.

2. If the field element is an inputp520 element whose typep523 attribute is in the Image Buttonp547 state, then:

1. If the field element is not submitter, then continue.

2. If the field element has a namep599 attribute specified and its value is not the empty string, let name be
that value followed by U+002E (.). Otherwise, let name be the empty string.

3. Let namex be the concatenation of name and U+0078 (x).

4. Let namey be the concatenation of name and U+0079 (y).

5. Let (x, y) be the selected coordinatep548.

6. Create an entryp632 with namex and x, and append it to entry list.

7. Create an entryp632 with namey and y, and append it to entry list.

8. Continue.

3. If the field is a form-associated custom elementp760, then perform the entry construction algorithmp774 given field
and entry list, then continue.

4. If either the field element does not have a namep599 attribute specified, or its namep599 attribute's value is the empty
string, then continue.

5. Let name be the value of the field element's namep599 attribute.

6. If the field element is a selectp568 element, then for each optionp577 element in the selectp568 element's list of
optionsp569 whose selectednessp578 is true and that is not disabledp578, create an entryp632 with name and the
valuep578 of the optionp577 element, and append it to entry list.

7. Otherwise, if the field element is an inputp520 element whose typep523 attribute is in the Checkboxp542 state or the
Radio Buttonp543 state, then:

1. If the field element has a valuep525 attribute specified, then let value be the value of that attribute;
otherwise, let value be the string "on".

2. Create an entryp632 with name and value, and append it to entry list.

8. Otherwise, if the field element is an inputp520 element whose typep523 attribute is in the File Uploadp544 state, then:

1. If there are no selected filesp544, then create an entryp632 with name and a new File object with an empty
name, application/octet-stream as type, and an empty body, and append it to entry list.

2. Otherwise, for each file in selected filesp544, create an entryp632 with name and a File object representing

633

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://w3c.github.io/FileAPI/#dfn-file
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://infra.spec.whatwg.org/#list-append
https://w3c.github.io/FileAPI/#dfn-file

the file, and append it to entry list.

9. Otherwise, if the field element is an inputp520 element whose typep523 attribute is in the Hiddenp527 state and name
is an ASCII case-insensitive match for "_charset_p599":

1. Let charset be the name of encoding.

2. Create an entryp632 with name and charset, and append it to entry list.

10. Otherwise, create an entryp632 with name and the valuep597 of the field element, and append it to entry list.

11. If the element has a dirnamep600 attribute, that attribute's value is not the empty string, and the element is an
auto-directionality form-associated elementp161:

1. Let dirname be the value of the element's dirnamep600 attribute.

2. Let dir be the string "ltr" if the directionalityp160 of the element is 'ltrp160 ', and "rtl" otherwise (i.e.,
when the directionalityp160 of the element is 'rtlp160 ').

3. Create an entryp632 with dirname and dir, and append it to entry list.

6. Let form data be a new FormData object associated with entry list.

7. Fire an event named formdatap1471 at form using FormDataEventp636, with the formDatap636 attribute initialized to form data
and the bubbles attribute initialized to true.

8. Set form's constructing entry listp629 to false.

9. Return a clone of entry list.

If the user agent is to pick an encoding for a form, it must run the following steps:

1. Let encoding be the document's character encoding.

2. If the formp514 element has an accept-charsetp515 attribute, set encoding to the return value of running these substeps:

1. Let input be the value of the formp514 element's accept-charsetp515 attribute.

2. Let candidate encoding labels be the result of splitting input on ASCII whitespace.

3. Let candidate encodings be an empty list of character encodings.

4. For each token in candidate encoding labels in turn (in the order in which they were found in input), get an
encoding for the token and, if this does not result in failure, append the encoding to candidate encodings.

5. If candidate encodings is empty, return UTF-8.

6. Return the first encoding in candidate encodings.

3. Return the result of getting an output encoding from encoding.

The application/x-www-form-urlencoded and text/plainp635 encoding algorithms take a list of name-value pairs, where the values
must be strings, rather than an entry listp632 where the value can be a File. The following algorithm performs the conversion.

To convert to a list of name-value pairs an entry listp632 entry list, run these steps:

1. Let list be an empty list of name-value pairs.

2. For each entry of entry list:

1. Let name be entry's namep632, with every occurrence of U+000D (CR) not followed by U+000A (LF), and every
occurrence of U+000A (LF) not preceded by U+000D (CR), replaced by a string consisting of U+000D (CR) and

4.10.21.5 Selecting a form submission encoding §p63

4

4.10.21.6 Converting an entry list to a list of name-value pairs §p63

4

634

https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#name
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://xhr.spec.whatwg.org/#formdata
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://infra.spec.whatwg.org/#list-clone
https://dom.spec.whatwg.org/#concept-document-encoding
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#encoding
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#get-an-output-encoding
https://url.spec.whatwg.org/#concept-urlencoded
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate

U+000A (LF).

2. If entry's valuep632 is a File object, then let value be entry's valuep632 's name. Otherwise, let value be entry's
valuep632.

3. Replace every occurrence of U+000D (CR) not followed by U+000A (LF), and every occurrence of U+000A (LF) not
preceded by U+000D (CR), in value, by a string consisting of U+000D (CR) and U+000A (LF).

4. Append to list a new name-value pair whose name is name and whose value is value.

3. Return list.

See URL for details on application/x-www-form-urlencoded. [URL]p1483

The multipart/form-data encoding algorithm, given an entry listp632 entry list and an encoding encoding, is as follows:

1. For each entry of entry list:

1. Replace every occurrence of U+000D (CR) not followed by U+000A (LF), and every occurrence of U+000A (LF) not
preceded by U+000D (CR), in entry's namep632, by a string consisting of a U+000D (CR) and U+000A (LF).

2. If entry's valuep632 is not a File object, then replace every occurrence of U+000D (CR) not followed by U+000A
(LF), and every occurrence of U+000A (LF) not preceded by U+000D (CR), in entry's valuep632, by a string
consisting of a U+000D (CR) and U+000A (LF).

2. Return the byte sequence resulting from encoding the entry list using the rules described by RFC 7578, Returning Values
from Forms: multipart/form-data, given the following conditions: [RFC7578]p1482

◦ Each entryp632 in entry list is a field, the namep632 of the entry is the field name and the valuep632 of the entry is the
field value.

◦ The order of parts must be the same as the order of fields in entry list. Multiple entries with the same name must
be treated as distinct fields.

◦ Field names, field values for non-file fields, and filenames for file fields, in the generated multipart/form-datap1474

resource must be set to the result of encoding the corresponding entry's name or value with encoding, converted
to a byte sequence.

◦ For field names and filenames for file fields, the result of the encoding in the previous bullet point must be escaped
by replacing any 0x0A (LF) bytes with the byte sequence `%0A`, 0x0D (CR) with `%0D` and 0x22 (") with `%22`. The
user agent must not perform any other escapes.

◦ The parts of the generated multipart/form-datap1474 resource that correspond to non-file fields must not have a
`Content-Typep98` header specified.

◦ The boundary used by the user agent in generating the return value of this algorithm is the multipart/form-data
boundary string. (This value is used to generate the MIME type of the form submission payload generated by this
algorithm.)

For details on how to interpret multipart/form-datap1474 payloads, see RFC 7578. [RFC7578]p1482

The text/plain encoding algorithm, given a list of name-value pairs pairs, is as follows:

1. Let result be the empty string.

2. For each pair in pairs:

4.10.21.7 URL-encoded form data §p63

5

4.10.21.8 Multipart form data §p63

5

4.10.21.9 Plain text form data §p63

5

635

https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-name
https://infra.spec.whatwg.org/#list-append
https://url.spec.whatwg.org/#concept-urlencoded
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#list-iterate
https://w3c.github.io/FileAPI/#dfn-file
https://encoding.spec.whatwg.org/#encode

1. Append pair's name to result.

2. Append a single U+003D EQUALS SIGN character (=) to result.

3. Append pair's value to result.

4. Append a U+000D CARRIAGE RETURN (CR) U+000A LINE FEED (LF) character pair to result.

3. Return result.

Payloads using the text/plain format are intended to be human readable. They are not reliably interpretable by computer, as the
format is ambiguous (for example, there is no way to distinguish a literal newline in a value from the newline at the end of the value).

[Exposed=Window]
interface SubmitEvent : Event {

constructor(DOMString type, optional SubmitEventInit eventInitDict = {});

readonly attribute HTMLElement? submitter;
};

dictionary SubmitEventInit : EventInit {
HTMLElement? submitter = null;

};

The submitter attribute must return the value it was initialized to.

[Exposed=Window]
interface FormDataEvent : Event {

constructor(DOMString type, FormDataEventInit eventInitDict);

readonly attribute FormData formData;
};

dictionary FormDataEventInit : EventInit {
required FormData formData;

};

The formData attribute must return the value it was initialized to. It represents a FormData object associated to the entry listp632 that is
constructedp632 when the formp514 is submitted.

4.10.21.10 The SubmitEventp636 interface §p63

6

event.submitterp636

Returns the element representing the submit buttonp514 that triggered the form submissionp628, or null if the submission was not
triggered by a button.

For web developers (non-normative)

4.10.21.11 The FormDataEventp636 interface §p63

6

event.formDatap636

Returns a FormData object representing names and values of elements associated to the target formp514. Operations on the
FormData object will affect form data to be submitted.

For web developers (non-normative)

IDL

IDL

✔ MDN

✔ MDN

✔ MDN

636

https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#interface-event
https://xhr.spec.whatwg.org/#formdata
https://dom.spec.whatwg.org/#dictdef-eventinit
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdata
https://xhr.spec.whatwg.org/#formdata

When a formp514 element form is reset, run these steps:

1. Let reset be the result of firing an event named resetp1472 at form, with the bubbles and cancelable attributes initialized to
true.

2. If reset is true, then invoke the reset algorithmp637 of each resettable elementp514 whose form ownerp598 is form.

Each resettable elementp514 defines its own reset algorithm. Changes made to form controls as part of these algorithms do not count
as changes caused by the user (and thus, e.g., do not cause input events to fire).

Categoriesp146:
Flow contentp149.
Interactive contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
One summaryp643 element followed by flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

namep638 — Name of group of mutually-exclusive detailsp637 elements
openp638 — Whether the details are visible

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLDetailsElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute boolean open;

};

The detailsp637 element representsp141 a disclosure widget from which the user can obtain additional information or controls.

4.11 Interactive elements §p63

7

As with all HTML elements, it is not conforming to use the detailsp637 element when attempting to represent another type of
control. For example, tab widgets and menu widgets are not disclosure widgets, so abusing the detailsp637 element to implement
these patterns is incorrect.

Note

The detailsp637 element is not appropriate for footnotes. Please see the section on footnotesp779 for details on how to mark up
footnotes.

Note

IDL

4.10.22 Resetting a form §p63

7

4.11.1 The details element §p63

7

✔ MDN

✔ MDN

637

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/html-aria/#el-details
https://w3c.github.io/html-aam/#el-details

The first summaryp643 element child of the element, if any, representsp141 the summary or legend of the details. If there is no child
summaryp643 element, the user agent should provide its own legend (e.g. "Details").

The rest of the element's contents representsp141 the additional information or controls.

The name content attribute gives the name of the group of related detailsp637 elements that the element is a member of. Opening one
member of this group causes other members of the group to close. If the attribute is specified, its value must not be the empty string.

Before using this feature, authors should consider whether this grouping of related detailsp637 elements into an exclusive accordion is
helpful or harmful to users. While using an exclusive accordion can reduce the maximum amount of space that a set of content can
occupy, it can also frustrate users who have to open many items to find what they want or users who want to look at the contents of
multiple items at the same time.

A document must not contain more than one detailsp637 element in the same details name groupp638 that has the openp638 attribute
present. Authors must not use script to add detailsp637 elements to a document in a way that would cause a details name groupp638 to
have more than one detailsp637 element with the openp638 attribute present.

A document must not contain a detailsp637 element that is a descendant of another detailsp637 element in the same details name
groupp638.

Documents that use the namep638 attribute to group multiple related detailsp637 elements should keep those related elements together
in a containing element (such as a sectionp209 element or articlep206 element). When it makes sense for the group to be introduced
with a heading, authors should put that heading in a headingp224 element at the start of the containing element.

The open content attribute is a boolean attributep75. If present, it indicates that both the summary and the additional information is to
be shown to the user. If the attribute is absent, only the summary is to be shown.

When the element is created, if the attribute is absent, the additional information should be hidden; if the attribute is present, that
information should be shown. Subsequently, if the attribute is removed, then the information should be hidden; if the attribute is
added, the information should be shown.

The user agent should allow the user to request that the additional information be shown or hidden. To honor a request for the details
to be shown, the user agent must set the openp638 attribute on the element to the empty string. To honor a request for the information
to be hidden, the user agent must remove the openp638 attribute from the element.

The details name group that contains a detailsp637 element a also contains all the other detailsp637 elements b that fulfill all of the
following conditions:

• Both a and b are in the same tree.

• They both have a namep638 attribute, their namep638 attributes are not the empty string, and the value of a's namep638 attribute
equals the value of b's namep638 attribute.

Every detailsp637 element has a details toggle task tracker, which is a toggle task trackerp833 or null, initially null.

The following attribute change steps, given element, localName, oldValue, value, and namespace, are used for all detailsp637

elements:

The group of elements that is created by a common namep638 attribute is exclusive, meaning that at most one of the detailsp637

elements can be open at once. While this exclusivity is enforced by user agents, the resulting enforcement immediately changes
the openp638 attributes in the markup. This requirement on authors forbids such misleading markup.

Note

Visually and programmatically grouping related elements together can be important for accessible user experiences. This can help
users understand the relationship between such elements. When related elements are in disparate sections of a web page rather
than being grouped, the elements' relationships to each other can be less discoverable or understandable.

Note

This ability to request that additional information be shown or hidden may simply be the activation behavior of the appropriate
summaryp643 element, in the case such an element exists. However, if no such element exists, user agents can still provide this
ability through some other user interface affordance.

Note

638

https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext

1. If namespace is not null, then return.

2. If localName is namep638, then ensure details exclusivity by closing the given element if neededp639 given element.

3. If localName is openp638, then:

1. If one of oldValue or value is null and the other is not null, run the following steps, which are known as the details
notification task steps, for this detailsp637 element:

1. If oldValue is null, queue a details toggle event taskp639 given the detailsp637 element, "closed", and
"open".

2. Otherwise, queue a details toggle event taskp639 given the detailsp637 element, "open", and "closed".

2. If oldValue is null and value is not null, then ensure details exclusivity by closing other elements if neededp639 given
element.

The detailsp637 HTML element insertion stepsp45, given insertedNode, are:

1. Ensure details exclusivity by closing the given element if neededp639 given insertedNode.

To queue a details toggle event task given a detailsp637 element element, a string oldState, and a string newState:

1. If element's details toggle task trackerp638 is not null, then:

1. Set oldState to element's details toggle task trackerp638 's old statep833.

2. Remove element's details toggle task trackerp638 's taskp833 from its task queuep1123.

3. Set element's details toggle task trackerp638 to null.

2. Queue an element taskp1125 given the DOM manipulation task sourcep1134 and element to run the following steps:

1. Fire an event named togglep1472 at element, using ToggleEventp833, with the oldStatep833 attribute initialized to
oldState and the newStatep833 attribute initialized to newState.

2. Set element's details toggle task trackerp638 to null.

3. Set element's details toggle task trackerp638 to a struct with taskp833 set to the just-queued taskp1124 and old statep833 set to
oldState.

To ensure details exclusivity by closing other elements if needed given a detailsp637 element element:

1. Assert: element has an openp638 attribute.

2. If element does not have a namep638 attribute, or its namep638 attribute is the empty string, then return.

3. Let groupMembers be a list of elements, containing all elements in element's details name groupp638 except for element, in
tree order.

4. For each element otherElement of groupMembers:

1. If the openp638 attribute is set on otherElement, then:

1. Assert: otherElement is the only element in groupMembers that has the openp638 attribute set.

2. Remove the openp638 attribute on otherElement.

3. Break.

To ensure details exclusivity by closing the given element if needed given a detailsp637 element element:

When the openp638 attribute is toggled several times in succession, the resulting tasks essentially get coalesced
so that only one event is fired.

Note

To be clear, these attribute change and insertion steps also run when an attribute or element is inserted via the parser.
Note

639

https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://infra.spec.whatwg.org/#iteration-break

1. If element does not have an openp638 attribute, then return.

2. If element does not have a namep638 attribute, or its namep638 attribute is the empty string, then return.

3. Let groupMembers be a list of elements, containing all elements in element's details name groupp638 except for element, in
tree order.

4. For each element otherElement of groupMembers:

1. If the openp638 attribute is set on otherElement, then:

1. Remove the openp638 attribute on element.

2. Break.

The name and open IDL attributes must reflectp104 the respective content attributes of the same name.

The ancestor details revealing algorithm is to run the following steps on currentNode:

1. While currentNode has a parent node within the flat tree:

1. If currentNode is slotted into the second slot of a detailsp637 element:

1. Set currentNode to the detailsp637 element which currentNode is slotted into.

2. If the openp638 attribute is not set on currentNode, then set the openp638 attribute on currentNode to the
empty string.

2. Otherwise, set currentNode to the parent node of currentNode within the flat tree.

The following example shows the detailsp637 element being used to hide technical details in a progress report.

<section class="progress window">
<h1>Copying "Really Achieving Your Childhood Dreams"</h1>
<details>
<summary>Copying... <progress max="375505392" value="97543282"></progress> 25%</summary>
<dl>
<dt>Transfer rate:</dt> <dd>452KB/s</dd>
<dt>Local filename:</dt> <dd>/home/rpausch/raycd.m4v</dd>
<dt>Remote filename:</dt> <dd>/var/www/lectures/raycd.m4v</dd>
<dt>Duration:</dt> <dd>01:16:27</dd>
<dt>Color profile:</dt> <dd>SD (6-1-6)</dd>
<dt>Dimensions:</dt> <dd>320×240</dd>

</dl>
</details>

</section>

Example

The following shows how a detailsp637 element can be used to hide some controls by default:

<details>
<summary><label for=fn>Name & Extension:</label></summary>
<p><input type=text id=fn name=fn value="Pillar Magazine.pdf">
<p><label><input type=checkbox name=ext checked> Hide extension</label>

</details>

One could use this in conjunction with other detailsp637 in a list to allow the user to collapse a set of fields down to a small set of
headings, with the ability to open each one.

Example

✔ MDN

640

https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://infra.spec.whatwg.org/#iteration-break
https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#concept-element-attributes-set-value
https://drafts.csswg.org/css-scoping/#flat-tree

In these examples, the summary really just summarizes what the controls can change, and not the actual values, which is less than
ideal.

The following example shows the namep638 attribute of the detailsp637 element being used to create an exclusive accordion, a set
of detailsp637 elements where a user action to open one detailsp637 element causes any open detailsp637 to close.

<section class="characteristics">
<details name="frame-characteristics">
<summary>Material</summary>
The picture frame is made of solid oak wood.

</details>
<details name="frame-characteristics">
<summary>Size</summary>
The picture frame fits a photo 40cm tall and 30cm wide.

Example

641

The frame is 45cm tall, 35cm wide, and 2cm thick.
</details>
<details name="frame-characteristics">
<summary>Color</summary>
The picture frame is available in its natural wood
color, or with black stain.

</details>
</section>

The following example shows what happens when the openp638 attribute is set on a detailsp637 element that is part of a set of
elements using the namep638 attribute to create an exclusive accordion.

Given the initial markup:

<section class="characteristics">
<details name="frame-characteristics" id="d1" open>...</details>
<details name="frame-characteristics" id="d2">...</details>
<details name="frame-characteristics" id="d3">...</details>

</section>

and the script:

document.getElementById("d2").setAttribute("open", "");

then the resulting tree after the script executes will be equivalent to the markup:

<section class="characteristics">
<details name="frame-characteristics" id="d1">...</details>
<details name="frame-characteristics" id="d2" open>...</details>
<details name="frame-characteristics" id="d3">...</details>

</section>

because setting the openp638 attribute on d2 removes it from d1.

The same happens when the user activates the summaryp643 element inside of d2.

Example

Because the openp638 attribute is added and removed automatically as the user interacts with the control, it can be used in CSS to
style the element differently based on its state. Here, a style sheet is used to animate the color of the summary when the element
is opened or closed:

<style>
details > summary { transition: color 1s; color: black; }
details[open] > summary { color: red; }

</style>
<details>
<summary>Automated Status: Operational</summary>
<p>Velocity: 12m/s</p>
<p>Direction: North</p>

</details>

Example

642

Categoriesp146:
None.

Contexts in which this element can be usedp146:
As the first child of a detailsp637 element.

Content modelp146:
Phrasing contentp150, optionally intermixed with heading contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The summaryp643 element representsp141 a summary, caption, or legend for the rest of the contents of the summaryp643 element's parent
detailsp637 element, if any.

A summaryp643 element is a summary for its parent details if the following algorithm returns true:

1. If this summaryp643 element has no parent, then return false.

2. Let parent be this summaryp643 element's parent.

3. If parent is not a detailsp637 element, then return false.

4. If parent's first summaryp643 element child is not this summaryp643 element, then return false.

5. Return true.

The activation behavior of summaryp643 elements is to run the following steps:

1. If this summaryp643 element is not the summary for its parent detailsp643, then return.

2. Let parent be this summaryp643 element's parent.

3. If the openp638 attribute is present on parent, then remove it. Otherwise, set parent's openp638 attribute to the empty string.

A command is the abstraction behind menu items, buttons, and links. Once a command is defined, other parts of the interface can
refer to the same command, allowing many access points to a single feature to share facets such as the Disabled Statep644.

Commands are defined to have the following facets:

Label
The name of the command as seen by the user.

Access Key
A key combination selected by the user agent that triggers the command. A command might not have an Access Key.

This will then run the details notification task stepsp639.
Note

4.11.3.1 Facets §p64

3

4.11.2 The summary element §p64

3

4.11.3 Commands §p64

3

✔ MDN

643

https://dom.spec.whatwg.org/#concept-tree-first-child
https://w3c.github.io/html-aria/#el-summary
https://w3c.github.io/html-aam/#el-summary
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#concept-element-attributes-set-value

Hidden State
Whether the command is hidden or not (basically, whether it should be shown in menus).

Disabled State
Whether the command is relevant and can be triggered or not.

Action
The actual effect that triggering the command will have. This could be a scripted event handler, a URL to which to navigatep1014, or
a form submission.

User agents may expose the commandsp643 that match the following criteria:

• The Hidden Statep644 facet is false (visible)

• The element is in a document with a non-null browsing contextp999.

• Neither the element nor any of its ancestors has a hiddenp824 attribute specified.

User agents are encouraged to do this especially for commands that have Access Keysp643, as a way to advertise those keys to the
user.

An ap257 element with an hrefp303 attribute defines a commandp643.

The Labelp643 of the command is the element's descendant text content.

The Access Keyp643 of the command is the element's assigned access keyp852, if any.

The Hidden Statep644 of the command is true (hidden) if the element has a hiddenp824 attribute, and false otherwise.

The Disabled Statep644 facet of the command is true if the element or one of its ancestors is inertp827, and false otherwise.

The Actionp644 of the command is to fire a click eventp1148 at the element.

A buttonp566 element always defines a commandp643.

The Labelp643, Access Keyp643, Hidden Statep644, and Actionp644 facets of the command are determined as for a elementsp644 (see the
previous section).

The Disabled Statep644 of the command is true if the element or one of its ancestors is inertp827, or if the element's disabledp601 state is
set, and false otherwise.

An inputp520 element whose typep523 attribute is in one of the Submit Buttonp546, Reset Buttonp549, Image Buttonp547, Buttonp550, Radio
Buttonp543, or Checkboxp542 states defines a commandp643.

The Labelp643 of the command is determined as follows:

• If the typep523 attribute is in one of the Submit Buttonp546, Reset Buttonp549, Image Buttonp547, or Buttonp550 states, then the
Labelp643 is the string given by the valuep525 attribute, if any, and a UA-dependent, locale-dependent value that the UA uses
to label the button itself if the attribute is absent.

For example, such commands could be listed in the user agent's menu bar.
Example

4.11.3.2 Using the a element to define a command §p64

4

4.11.3.3 Using the button element to define a command §p64

4

4.11.3.4 Using the input element to define a command §p64

4

644

https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#in-a-document
https://dom.spec.whatwg.org/#concept-descendant-text-content

• Otherwise, if the element is a labeled controlp518, then the Labelp643 is the descendant text content of the first labelp518

element in tree order whose labeled controlp518 is the element in question. (In JavaScript terms, this is given by
element.labels[0].textContent.)

• Otherwise, if the valuep525 attribute is present, then the Labelp643 is the value of that attribute.

• Otherwise, the Labelp643 is the empty string.

The Access Keyp643 of the command is the element's assigned access keyp852, if any.

The Hidden Statep644 of the command is true (hidden) if the element has a hiddenp824 attribute, and false otherwise.

The Disabled Statep644 of the command is true if the element or one of its ancestors is inertp827, or if the element's disabledp601 state is
set, and false otherwise.

The Actionp644 of the command is to fire a click eventp1148 at the element.

An optionp577 element with an ancestor selectp568 element and either no valuep578 attribute or a valuep578 attribute that is not the
empty string defines a commandp643.

The Labelp643 of the command is the value of the optionp577 element's labelp578 attribute, if there is one, or else the optionp577

element's descendant text content, with ASCII whitespace stripped and collapsed.

The Access Keyp643 of the command is the element's assigned access keyp852, if any.

The Hidden Statep644 of the command is true (hidden) if the element has a hiddenp824 attribute, and false otherwise.

The Disabled Statep644 of the command is true if the element is disabledp578, or if its nearest ancestor selectp568 element is
disabledp601, or if it or one of its ancestors is inertp827, and false otherwise.

If the optionp577 's nearest ancestor selectp568 element has a multiplep569 attribute, the Actionp644 of the command is to togglep571 the
optionp577 element. Otherwise, the Actionp644 is to pickp570 the optionp577 element.

A legendp596 element defines a commandp643 if all of the following are true:

• It has an assigned access keyp852.

• It is a child of a fieldsetp594 element.

• Its parent has a descendant that defines a commandp643 that is neither a labelp518 element nor a legendp596 element. This
element, if it exists, is the legend element's accesskey delegatee.

The Labelp643 of the command is the element's descendant text content.

The Access Keyp643 of the command is the element's assigned access keyp852.

The Hidden Statep644, Disabled Statep644, and Actionp644 facets of the command are the same as the respective facets of the legend
element's accesskey delegateep645.

Even though the valuep525 attribute on inputp520 elements in the Image Buttonp547 state is non-conformant, the attribute can still
contribute to the Labelp643 determination, if it is present and the Image Button's altp548 attribute is missing.

Note

4.11.3.5 Using the option element to define a command §p64

5

4.11.3.6 Using the accesskey attribute on a legend element to define a command §p64

5

In this example, the legendp596 element specifies an accesskeyp851, which, when activated, will delegate to the inputp520 element
Example

645

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace
https://dom.spec.whatwg.org/#concept-descendant-text-content

An element that has an assigned access keyp852 defines a commandp643.

If one of the earlier sections that define elements that define commandsp643 define that this element defines a commandp643, then that
section applies to this element, and this section does not. Otherwise, this section applies to that element.

The Labelp643 of the command depends on the element. If the element is a labeled controlp518, the descendant text content of the first
labelp518 element in tree order whose labeled controlp518 is the element in question is the Labelp643 (in JavaScript terms, this is given by
element.labels[0].textContent). Otherwise, the Labelp643 is the element's descendant text content.

The Access Keyp643 of the command is the element's assigned access keyp852.

The Hidden Statep644 of the command is true (hidden) if the element has a hiddenp824 attribute, and false otherwise.

The Disabled Statep644 of the command is true if the element or one of its ancestors is inertp827, and false otherwise.

The Actionp644 of the command is to run the following steps:

1. Run the focusing stepsp842 for the element.

2. Fire a click eventp1148 at the element.

Categoriesp146:
Flow contentp149.

Contexts in which this element can be usedp146:
Where flow contentp149 is expected.

Content modelp146:
Flow contentp149.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

openp648 — Whether the dialog box is showing

Accessibility considerationsp146:
For authors.
For implementers.

inside the legendp596 element.

<fieldset>
<legend accesskey=p>
<label>I want <input name=pizza type=number step=1 value=1 min=0>
pizza(s) with these toppings</label>

</legend>
<label><input name=pizza-cheese type=checkbox checked> Cheese</label>
<label><input name=pizza-ham type=checkbox checked> Ham</label>
<label><input name=pizza-pineapple type=checkbox> Pineapple</label>

</fieldset>

4.11.3.7 Using the accesskey attribute to define a command on other elements §p64

6

4.11.4 The dialog element §p64

6

✔ MDN

✔ MDN

646

https://dom.spec.whatwg.org/#concept-descendant-text-content
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://w3c.github.io/html-aria/#el-dialog
https://w3c.github.io/html-aam/#el-dialog

DOM interfacep147:

[Exposed=Window]
interface HTMLDialogElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean open;
attribute DOMString returnValue;
[CEReactions] undefined show();
[CEReactions] undefined showModal();
[CEReactions] undefined close(optional DOMString returnValue);

};

The dialogp646 element represents a transitory part of an application, in the form of a small window ("dialog box"), which the user
interacts with to perform a task or gather information. Once the user is done, the dialog can be automatically closed by the application,
or manually closed by the user.

Especially for modal dialogs, which are a familiar pattern across all types of applications, authors should work to ensure that dialogs in
their web applications behave in a way that is familiar to users of non-web applications.

An important part of user-facing dialog behavior is the placement of initial focus. The dialog focusing stepsp650 attempt to pick a good
candidate for initial focus when a dialog is shown, but might not be a substitute for authors carefully thinking through the correct
choice to match user expectations for a specific dialog. As such, authors should use the autofocusp848 attribute on the descendant
element of the dialog that the user is expected to immediately interact with after the dialog opens. If there is no such element, then
authors should use the autofocusp848 attribute on the dialogp646 element itself.

Another important aspect of user behavior is whether dialogs are scrollable or not. In some cases, overflow (and thus scrollability)
cannot be avoided, e.g., when it is caused by the user's high text zoom settings. But in general, scrollable dialogs are not expected by
users. Adding large text nodes directly to dialog elements is particularly bad as this is likely to cause the dialog element itself to
overflow. Authors are best off avoiding them.

As with all HTML elements, it is not conforming to use the dialogp646 element when attempting to represent another type of
control. For example, context menus, tooltips, and popup listboxes are not dialog boxes, so abusing the dialogp646 element to
implement these patterns is incorrect.

Note

In the following example, a dialog is used for editing the details of a product in an inventory management web application.

<dialog>
<label>Product Number <input type="text" readonly></label>
<label>Product Name <input type="text" autofocus></label>

</dialog>

If the autofocusp848 attribute was not present, the Product Number field would have been focused by the dialog focusing steps.
Although that is reasonable behavior, the author determined that the more relevant field to focus was the Product Name field, as
the Product Number field is readonly and expects no user input. So, the author used autofocus to override the default.

Even if the author wants to focus the Product Number field by default, they are best off explicitly specifying that by using autofocus
on that inputp520 element. This makes the intent obvious to future readers of the code, and ensures the code stays robust in the
face of future updates. (For example, if another developer added a close button, and positioned it in the node tree before the
Product Number field).

Example

The following terms of service dialog respects the above suggestions.

<dialog style="height: 80vh;">
<div style="overflow: auto; height: 60vh;" autofocus>

<p>By placing an order via this Web site on the first day of the fourth month of the year

Example

IDL

647

The open attribute is a boolean attributep75. When specified, it indicates that the dialogp646 element is active and that the user can
interact with it.

A dialogp646 element without an openp648 attribute specified should not be shown to the user. This requirement may be implemented
indirectly through the style layer. For example, user agents that support the suggested default renderingp48 implement this
requirement using the CSS rules described in the Rendering sectionp1388.

The tabindexp838 attribute must not be specified on dialogp646 elements.

Every dialogp646 element has a dialog toggle task tracker, which is a toggle task trackerp833 or null, initially null.

2010 Anno Domini, you agree to grant Us a non-transferable option to claim, for now and for
ever more, your immortal soul.</p>
<p>Should We wish to exercise this option, you agree to surrender your immortal soul,
and any claim you may have on it, within 5 (five) working days of receiving written
notification from this site or one of its duly authorized minions.</p>
<!-- ... etc., with many more <p> elements ... -->

</div>
<form method="dialog">

<button type="submit" value="agree">Agree</button>
<button type="submit" value="disagree">Disagree</button>

</form>
</dialog>

Note how the dialog focusing stepsp650 would have picked the scrollable divp256 element by default, but similarly to the previous
example, we have placed autofocusp848 on the divp256 so as to be more explicit and robust against future changes.

In contrast, if the pp229 elements expressing the terms of service did not have such a wrapper divp256 element, then the dialogp646

itself would become scrollable, violating the above advice. Furthermore, in the absence of any autofocusp848 attribute, such a
markup pattern would have violated the above advice and tripped up the dialog focusing stepsp650 's default behavior, and caused
focus to jump to the Agree buttonp566, which is a bad user experience.

Removing the openp648 attribute will usually hide the dialog. However, doing so has a number of strange additional consequences:

• The closep1471 event will not be fired.

• The close()p650 method, and any close requestsp863, will no longer be able to close the dialog.

• If the dialog was shown using its showModal()p649 method, the Documentp130 will still be blockedp828.

For these reasons, it is generally better to never remove the openp648 attribute manually. Instead, use the close()p650 method to
close the dialog, or the hiddenp824 attribute to hide it.

Note

dialog.showp649()
Displays the dialogp646 element.

dialog.showModalp649()
Displays the dialogp646 element and makes it the top-most modal dialog.
This method honors the autofocusp848 attribute.

dialog.closep650([result])
Closes the dialogp646 element.
The argument, if provided, provides a return value.

dialog.returnValuep651 [= result]
Returns the dialogp646 's return value.
Can be set, to update the return value.

For web developers (non-normative)

648

To queue a dialog toggle event task given a dialogp646 element element, a string oldState, and a string newState:

1. If element's dialog toggle task trackerp648 is not null, then:

1. Set oldState to element's dialog toggle task trackerp648 's old statep833.

2. Remove element's dialog toggle task trackerp648 's taskp833 from its task queuep1123.

3. Set element's dialog toggle task trackerp648 to null.

2. Queue an element taskp1125 given the DOM manipulation task sourcep1134 and element to run the following steps:

1. Fire an event named togglep1472 at element, using ToggleEventp833, with the oldStatep833 attribute initialized to
oldState and the newStatep833 attribute initialized to newState.

2. Set element's dialog toggle task trackerp648 to null.

3. Set element's dialog toggle task trackerp648 to a struct with taskp833 set to the just-queued taskp1124 and old statep833 set to
oldState.

The show() method steps are:

1. If this has an openp648 attribute and the is modalp652 flag of this is false, then return.

2. If this has an openp648 attribute, then throw an "InvalidStateError" DOMException.

3. If the result of firing an event named beforetogglep1471, using ToggleEventp833, with the cancelable attribute initialized to
true, the oldStatep833 attribute initialized to "closed", and the newStatep833 attribute initialized to "open" at this is false,
then return.

4. If this has an openp648 attribute, then return.

5. Queue a dialog toggle event taskp649 given subject, "closed", and "open".

6. Add an openp648 attribute to this, whose value is the empty string.

7. Set this's previously focused elementp652 to the focusedp836 element.

8. Let hideUntil be the result of running topmost popover ancestorp892 given this, null, and false.

9. If hideUntil is null, then set hideUntil to this's node document.

10. Run hide all popovers untilp891 given hideUntil, false, and true.

11. Run the dialog focusing stepsp650 given this.

The showModal() method steps are:

1. If this has an openp648 attribute and the is modalp652 flag of this is true, then return.

2. If this has an openp648 attribute, then throw an "InvalidStateError" DOMException.

3. If this's node document is not fully activep1003, then throw an "InvalidStateError" DOMException.

4. If this is not connected, then throw an "InvalidStateError" DOMException.

5. If this is in the popover showing statep887, then throw an "InvalidStateError" DOMException.

6. If the result of firing an event named beforetogglep1471, using ToggleEventp833, with the cancelable attribute initialized to
true, the oldStatep833 attribute initialized to "closed", and the newStatep833 attribute initialized to "open" at this is false,
then return.

7. If this has an openp648 attribute, then return.

8. If this is not connected, then return.

9. If this is in the popover showing statep887, then return.

10. Queue a dialog toggle event taskp649 given subject, "closed", and "open".

11. Add an openp648 attribute to this, whose value is the empty string.
649

https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#connected
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#connected
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

12. Set the is modalp652 flag of this to true.

13. Let this's node document be blocked by the modal dialogp828 this.

14. If this's node document's top layer does not already contain this, then add an element to the top layer given this.

15. Set this's close watcherp651 to the result of establishing a close watcherp865 given this's relevant global objectp1083, with:

◦ cancelActionp865 given canPreventClose being to return the result of firing an event named cancelp1471 at this, with
the cancelable attribute initialized to canPreventClose.

◦ closeActionp865 being to close the dialogp651 given this and null.

16. Set this's previously focused elementp652 to the focusedp836 element.

17. Let hideUntil be the result of running topmost popover ancestorp892 given this, null, and false.

18. If hideUntil is null, then set hideUntil to this's node document.

19. Run hide all popovers untilp891 given hideUntil, false, and true.

20. Run the dialog focusing stepsp650 given this.

The dialog focusing steps, given a dialogp646 element subject, are as follows:

1. Let control be null.

2. If subject has the autofocusp848 attribute, then set control to subject.

3. If control is null, then set control to the focus delegatep841 of subject.

4. If control is null, then set control to subject.

5. Run the focusing stepsp842 for control.

6. Let topDocument be control's node navigablep989 's top-level traversablep990 's active documentp989.

7. If control's node document's origin is not the samep899 as the origin of topDocument, then return.

8. Empty topDocument's autofocus candidatesp848.

9. Set topDocument's autofocus processed flagp848 to true.

The dialogp646 HTML element removing stepsp45, given removedNode and oldParent, are:

1. If removedNode's close watcherp651 is not null, then:

1. Destroyp866 removedNode's close watcherp651.

2. Set removedNode's close watcherp651 to null.

2. If removedNode's node document's top layer contains removedNode, then remove an element from the top layer
immediately given removedNode.

3. Set the is modalp652 flag of removedNode to false.

The close(returnValue) method steps are:

1. If returnValue is not given, then set it to null.

This will cause the focused area of the documentp836 to become inertp827 (unless that currently focused area is a shadow-
including descendant of subject). In such cases, the focused area of the documentp836 will soon be resetp1130 to the
viewport. In a couple steps we will attempt to find a better candidate to focus.

Note

If control is not focusablep837, this will do nothing. This would only happen if subject had no focus delegate, and the user
agent decided that dialogp646 elements were not generally focusable. In that case, any earlier modificationsp650 to the
focused area of the documentp836 will apply.

Note

650

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://drafts.csswg.org/css2/#viewport
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-position-4/#document-top-layer
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-position-4/#add-an-element-to-the-top-layer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#dom-event-cancelable
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-empty
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-position-4/#document-top-layer
https://infra.spec.whatwg.org/#list-contain
https://drafts.csswg.org/css-position-4/#remove-an-element-from-the-top-layer-immediately
https://drafts.csswg.org/css-position-4/#remove-an-element-from-the-top-layer-immediately

2. Close the dialogp651 this with returnValue.

When a dialogp646 element subject is to be closed, with null or a string result, run these steps:

1. If subject does not have an openp648 attribute, then return.

2. Fire an event named beforetogglep1471, using ToggleEventp833, with the oldStatep833 attribute initialized to "open" and the
newStatep833 attribute initialized to "closed" at subject.

3. If subject does not have an openp648 attribute, then return.

4. Queue a dialog toggle event taskp649 given subject, "open", and "closed".

5. Remove subject's openp648 attribute.

6. If the is modalp652 flag of subject is true, then request an element to be removed from the top layer given subject.

7. Let wasModal be the value of subject's is modalp652 flag.

8. Set the is modalp652 flag of subject to false.

9. If result is not null, then set the returnValuep651 attribute to result.

10. If subject's previously focused elementp652 is not null, then:

1. Let element be subject's previously focused elementp652.

2. Set subject's previously focused elementp652 to null.

3. If subject's node document's focused area of the documentp836 's DOM anchorp835 is a shadow-including inclusive
descendant of element, or wasModal is true, then run the focusing stepsp842 for element; the viewport should not
be scrolled by doing this step.

11. Queue an element taskp1125 on the user interaction task sourcep1134 given the subject element to fire an event named
closep1471 at subject.

12. If subject's close watcherp651 is not null, then:

1. Destroyp866 subject's close watcherp651.

2. Set subject's close watcherp651 to null.

The returnValue IDL attribute, on getting, must return the last value to which it was set. On setting, it must be set to the new value.
When the element is created, it must be set to the empty string.

Each dialogp646 element has a close watcher, which is a close watcherp865 or null, initially null.

We use show/close as the verbs for dialogp646 elements, as opposed to verb pairs that are more commonly thought of as
antonyms such as show/hide or open/close, due to the following constraints:

• Hiding a dialog is different from closing one. Closing a dialog gives it a return value, fires an event, unblocks the page for
other dialogs, and so on. Whereas hiding a dialog is a purely visual property, and is something you can already do with
the hiddenp824 attribute or by removing the openp648 attribute. (See also the note abovep648 about removing the openp648

attribute, and how hiding the dialog in that way is generally not desired.)

• Showing a dialog is different from opening one. Opening a dialog consists of creating and showing that dialog (similar to
how window.open()p926 both creates and shows a new window). Whereas showing the dialog is the process of taking a
dialogp646 element that is already in the DOM, and making it interactive and visible to the user.

• If we were to have a dialog.open() method despite the above, it would conflict with the dialog.openp652 property.

Furthermore, a survey of many other UI frameworks contemporary to the original design of the dialogp646 element made it clear
that the show/close verb pair was reasonably common.

In summary, it turns out that the implications of certain verbs, and how they are used in technology contexts, mean that paired
actions such as showing and closing a dialog are not always expressible as antonyms.

Note

651

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-position-4/#request-an-element-to-be-removed-from-the-top-layer
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-event-fire
https://lists.whatwg.org/pipermail/whatwg-whatwg.org/2013-December/041799.html

Each dialogp646 element has an is modal flag. When a dialogp646 element is created, this flag must be set to false.

Each HTML elementp45 has a previously focused element which is null or an element, and it is initially null. When showModal()p649

and show()p649 are called, this element is set to the currently focusedp836 element before running the dialog focusing stepsp650.
Elements with the popoverp886 attribute set this element to the currently focusedp836 element during the show popover algorithmp888.

The open IDL attribute must reflectp104 the openp648 content attribute.

Scripts allow authors to add interactivity to their documents.

Authors are encouraged to use declarative alternatives to scripting where possible, as declarative mechanisms are often more
maintainable, and many users disable scripting.

Authors are also encouraged to make their applications degrade gracefully in the absence of scripting support.

Categoriesp146:
Metadata contentp148.
Flow contentp149.
Phrasing contentp150.
Script-supporting elementp151.

Contexts in which this element can be usedp146:
Where metadata contentp148 is expected.
Where phrasing contentp150 is expected.
Where script-supporting elementsp151 are expected.

Content modelp146:
If there is no srcp654 attribute, depends on the value of the typep653 attribute, but must match script content restrictionsp666.
If there is a srcp654 attribute, the element must be either empty or contain only script documentationp668 that also matches
script content restrictionsp666.

This dialog box has some small print. The strongp261 element is used to draw the user's attention to the more important part.

<dialog>
<h1>Add to Wallet</h1>
<p><label for=amt>How many gold coins do you want to add to your

wallet?</label></p>
<p><input id=amt name=amt type=number min=0 step=0.01 value=100></p>
<p><small>You add coins at your own risk.</small></p>
<p><label><input name=round type=checkbox> Only add perfectly round coins</label></p>
<p><input type=button onclick="submit()" value="Add Coins"></p>

</dialog>

Example

4.12 Scripting §p65

2

For example, instead of using a script to show or hide a section to show more details, the detailsp637 element could be used.
Example

For example, if an author provides a link in a table header to dynamically resort the table, the link could also be made to function
without scripts by requesting the sorted table from the server.

Example

4.12.1 The script element §p65

2

✔ MDN

✔ MDN

✔ MDN

652

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

srcp654 — Address of the resource
typep653 — Type of script
nomodulep654 — Prevents execution in user agents that support module scriptsp1085

asyncp654 — Execute script when available, without blocking while fetching
deferp654 — Defer script execution
crossoriginp655 — How the element handles crossorigin requests
integrityp655 — Integrity metadata used in Subresource Integrity checks [SRI]p1482

referrerpolicyp655 — Referrer policy for fetches initiated by the element
blockingp655 — Whether the element is potentially render-blockingp103

fetchpriorityp655 — Sets the priority for fetches initiated by the element

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLScriptElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString type;
[CEReactions] attribute boolean noModule;
[CEReactions] attribute boolean async;
[CEReactions] attribute boolean defer;
[CEReactions] attribute DOMString? crossOrigin;
[CEReactions] attribute DOMString text;
[CEReactions] attribute DOMString integrity;
[CEReactions] attribute DOMString referrerPolicy;
[SameObject, PutForwards=value] readonly attribute DOMTokenList blocking;
[CEReactions] attribute DOMString fetchPriority;

static boolean supports(DOMString type);

// also has obsolete members
};

The scriptp652 element allows authors to include dynamic script and data blocks in their documents. The element does not
representp141 content for the user.

The type attribute allows customization of the type of script represented:

• Omitting the attribute, setting it to the empty string, or setting it to a JavaScript MIME type essence match, means that the
script is a classic scriptp1085, to be interpreted according to the JavaScript Script top-level production. Classic scripts are
affected by the asyncp654 and deferp654 attributes, but only when the srcp654 attribute is set. Authors should omit the typep653

attribute instead of redundantly setting it.

• Setting the attribute to an ASCII case-insensitive match for "module" means that the script is a JavaScript module scriptp1085,
to be interpreted according to the JavaScript Module top-level production. Module scripts are not affected by the deferp654

attribute, but are affected by the asyncp654 attribute (regardless of the state of the srcp654 attribute).

• Setting the attribute to an ASCII case-insensitive match for "importmap" means that the script is an import mapp1107,
containing JSON that will be used to control the behavior of module specifier resolutionp1102. Import maps can only be inline,
i.e., the srcp654 attribute and most other attributes are meaningless and not to be used with them.

• Setting the attribute to any other value means that the script is a data block, which is not processed. None of the scriptp652

attributes (except typep653 itself) have any effect on data blocks. Authors must use a valid MIME type string that is not a

IDL

✔ MDN

653

https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/html-aria/#el-script
https://w3c.github.io/html-aam/#el-script
https://dom.spec.whatwg.org/#dom-domtokenlist-value
https://dom.spec.whatwg.org/#interface-domtokenlist
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://tc39.es/ecma262/#prod-Script
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://tc39.es/ecma262/#prod-Module
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#valid-mime-type

JavaScript MIME type essence match to denote data blocks.

Classic scriptsp1085 and JavaScript module scriptsp1085 can be embedded inline, or be imported from an external file using the src
attribute, which if specified gives the URL of the external script resource to use. If srcp654 is specified, it must be a valid non-empty URL
potentially surrounded by spacesp96.

The contents of inline scriptp652 elements, or the external script resource, must conform with the requirements of the JavaScript
specification's Script or Module productions, for classic scriptsp1085 and JavaScript module scriptsp1085 respectively. [JAVASCRIPT]p1479

The contents of the external script resource for CSS module scriptsp1085 must conform to the requirements of the CSS specification.
[CSS]p1476

The contents of the external script resource for JSON module scriptsp1085 must conform to the requirements of the JSON specification.
[JSON]p1479

The contents of inline scriptp652 elements for import mapsp1107 must conform with the import map authoring requirementsp1106.

For import mapp1107 scriptp652 elements, the srcp654, asyncp654, nomodulep654, deferp654, crossoriginp655, integrityp655, and
referrerpolicyp655 attributes must not be specified.

A document must not have more than one import mapp1107 scriptp652 element.

When used to include data blocksp653, the data must be embedded inline, the format of the data must be given using the typep653

attribute, and the contents of the scriptp652 element must conform to the requirements defined for the format used. The srcp654,
asyncp654, nomodulep654, deferp654, crossoriginp655, integrityp655, referrerpolicyp655, and fetchpriorityp655 attributes must not be
specified.

The nomodule attribute is a boolean attributep75 that prevents a script from being executed in user agents that support module
scriptsp1085. This allows selective execution of module scriptsp1085 in modern user agents and classic scriptsp1085 in older user agents, as
shown belowp657. The nomodulep654 attribute must not be specified on module scriptsp1085 (and will be ignored if it is).

The async and defer attributes are boolean attributesp75 that indicate how the script should be evaluated. Classic scriptsp1085 may
specify deferp654 or asyncp654, but must not specify either unless the srcp654 attribute is present. Module scriptsp1085 may specify the
asyncp654 attribute, but must not specify the deferp654 attribute.

There are several possible modes that can be selected using these attributes, and depending on the script's type.

For classic scriptsp1085, if the asyncp654 attribute is present, then the classic script will be fetched in parallelp43 to parsing and evaluated
as soon as it is available (potentially before parsing completes). If the asyncp654 attribute is not present but the deferp654 attribute is
present, then the classic script will be fetched in parallelp43 and evaluated when the page has finished parsing. If neither attribute is
present, then the script is fetched and evaluated immediately, blocking parsing until these are both complete.

For module scriptsp1085, if the asyncp654 attribute is present, then the module script and all its dependencies will be fetched in
parallelp43 to parsing, and the module script will be evaluated as soon as it is available (potentially before parsing completes).
Otherwise, the module script and its dependencies will be fetched in parallelp43 to parsing and evaluated when the page has finished
parsing. (The deferp654 attribute has no effect on module scripts.)

This is all summarized in the following schematic diagram:

The requirement that data blocksp653 must be denoted using a valid MIME type string is in place to avoid potential future collisions.
If this specification ever adds additional types of scriptp1084, they will be triggered by setting the typep653 attribute to something
which is not a MIME type, like how the "module" value denotes module scriptsp1085. By using a valid MIME type string now, you
ensure that your data block will not ever be reinterpreted as a different script type, even in future user agents.

Note

✔ MDN

654

https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://url.spec.whatwg.org/#concept-url
https://tc39.es/ecma262/#prod-Script
https://tc39.es/ecma262/#prod-Module

<script> Scripting:
HTML Parser:

<script defer> Scripting:
HTML Parser:

<script async> Scripting:
HTML Parser:

<script type="module"> Scripting:
HTML Parser:

<script type="module" async> Scripting:
HTML Parser:

parser fetch execution runtime →

The deferp654 attribute may be specified even if the asyncp654 attribute is specified, to cause legacy web browsers that only support
deferp654 (and not asyncp654) to fall back to the deferp654 behavior instead of the blocking behavior that is the default.

The crossorigin attribute is a CORS settings attributep99. For classic scriptsp1085, it controls whether error information will be exposed,
when the script is obtained from other originsp898. For module scriptsp1085, it controls the credentials mode used for cross-origin
requests.

The integrity attribute represents the integrity metadata for requests which this element is responsible for. The value is text. The
integrityp655 attribute must not be specified when the srcp654 attribute is not specified. [SRI]p1482

The referrerpolicy attribute is a referrer policy attributep100. Its purpose is to set the referrer policy used when fetching the script, as
well as any scripts imported from it. [REFERRERPOLICY]p1481

The blocking attribute is a blocking attributep103.

The fetchpriority attribute is a fetch priority attributep103. Its purpose is to set the priority used when fetching the script.

Changing the srcp654, typep653, nomodulep654, asyncp654, deferp654, crossoriginp655, integrityp655, referrerpolicyp655, and
fetchpriorityp655 attributes dynamically has no direct effect; these attributes are only used at specific times described below.

The IDL attributes src, type, defer, integrity, and blocking, must each reflectp104 the respective content attributes of the same
name.

The exact processing details for these attributes are, for mostly historical reasons, somewhat non-trivial, involving a number of
aspects of HTML. The implementation requirements are therefore by necessity scattered throughout the specification. The
algorithms below (in this section) describe the core of this processing, but these algorithms reference and are referenced by the
parsing rules for scriptp652 startp1328 and endp1342 tags in HTML, in foreign contentp1357, and in XMLp1385, the rules for the
document.write()p1153 method, the handling of scriptingp1072, etc.

Note

When inserted using the document.write()p1153 method, scriptp652 elements usuallyp1329 execute (typically blocking further script
execution or HTML parsing). When inserted using the innerHTMLp1158 and outerHTMLp1159 attributes, they do not execute at all.

Note

Unlike classic scriptsp1085, module scriptsp1085 require the use of the CORS protocol for cross-origin fetching.
Note

An example of a scriptp652 element's referrer policy being used when fetching imported scripts but not other subresources:

<script referrerpolicy="origin">
fetch('/api/data'); // not fetched with <script>'s referrer policy
import('./utils.mjs'); // is fetched with <script>'s referrer policy ("origin" in this case)

</script>

Example

✔ MDN

655

https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch

The referrerPolicy IDL attribute must reflectp104 the referrerpolicyp655 content attribute, limited to only known valuesp105.

The fetchPriority IDL attribute must reflectp104 the fetchpriorityp655 content attribute, limited to only known valuesp105.

The crossOrigin IDL attribute must reflectp104 the crossoriginp655 content attribute, limited to only known valuesp105.

The noModule IDL attribute must reflectp104 the nomodulep654 content attribute.

The async getter steps are:

1. If this's force asyncp659 is true, then return true.

2. If this's asyncp654 content attribute is present, then return true.

3. Return false.

The asyncp656 setter steps are:

1. Set this's force asyncp659 to false.

2. If the given value is true, then set this's asyncp654 content attribute to the empty string.

3. Otherwise, remove this's asyncp654 content attribute.

The text attribute's getter must return this scriptp652 element's child text content.

The textp656 attribute's setter must string replace all with the given value within this scriptp652 element.

The supports(type) method steps are:

1. If type is "classic", then return true.

2. If type is "module", then return true.

3. If type is "importmap", then return true.

4. Return false.

script.textp656 [= value]
Returns the child text content of the element.
Can be set, to replace the element's children with the given value.

HTMLScriptElementp653.supportsp656(type)
Returns true if the given type is a script type supported by the user agent. The possible script types in this specification are
"classic", "module", and "importmap", but others might be added in the future.

For web developers (non-normative)

The type argument has to exactly match these values; we do not perform an ASCII case-insensitive match. This is different from
how typep653 content attribute values are treated, and how DOMTokenList's supports() method works, but it aligns with the
WorkerTypep1236 enumeration used in the Worker()p1236 constructor.

Note

In this example, two scriptp652 elements are used. One embeds an external classic scriptp1085, and the other includes some data as
a data blockp653.

<script src="game-engine.js"></script>
<script type="text/x-game-map">
........U.........e
o............A....e
.....A.....AAA....e
.A..AAA...AAAAA...e
</script>

Example

✔ MDN

656

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#string-replace-all
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#interface-domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-supports

The data in this case might be used by the script to generate the map of a video game. The data doesn't have to be used that way,
though; maybe the map data is actually embedded in other parts of the page's markup, and the data block here is just used by the
site's search engine to help users who are looking for particular features in their game maps.

The following sample shows how a scriptp652 element can be used to define a function that is then used by other parts of the
document, as part of a classic scriptp1085. It also shows how a scriptp652 element can be used to invoke script while the document
is being parsed, in this case to initialize the form's output.

<script>
function calculate(form) {

var price = 52000;
if (form.elements.brakes.checked)

price += 1000;
if (form.elements.radio.checked)

price += 2500;
if (form.elements.turbo.checked)

price += 5000;
if (form.elements.sticker.checked)

price += 250;
form.elements.result.value = price;

}
</script>
<form name="pricecalc" onsubmit="return false" onchange="calculate(this)">
<fieldset>
<legend>Work out the price of your car</legend>
<p>Base cost: £52000.</p>
<p>Select additional options:</p>

<label><input type=checkbox name=brakes> Ceramic brakes (£1000)</label>
<label><input type=checkbox name=radio> Satellite radio (£2500)</label>
<label><input type=checkbox name=turbo> Turbo charger (£5000)</label>
<label><input type=checkbox name=sticker> "XZ" sticker (£250)</label>

<p>Total: £<output name=result></output></p>

</fieldset>
<script>
calculate(document.forms.pricecalc);

</script>
</form>

Example

The following sample shows how a scriptp652 element can be used to include an external JavaScript module scriptp1085.

<script type="module" src="app.mjs"></script>

This module, and all its dependencies (expressed through JavaScript import statements in the source file), will be fetched. Once
the entire resulting module graph has been imported, and the document has finished parsing, the contents of app.mjs will be
evaluated.

Additionally, if code from another scriptp652 element in the same Windowp922 imports the module from app.mjs (e.g. via import
"./app.mjs";), then the same JavaScript module scriptp1085 created by the former scriptp652 element will be imported.

Example

This example shows how to include a JavaScript module scriptp1085 for modern user agents, and a classic scriptp1085 for older user
agents:

Example

657

<script type="module" src="app.mjs"></script>
<script nomodule defer src="classic-app-bundle.js"></script>

In modern user agents that support JavaScript module scriptsp1085, the scriptp652 element with the nomodulep654 attribute will be
ignored, and the scriptp652 element with a typep653 of "module" will be fetched and evaluated (as a JavaScript module scriptp1085).
Conversely, older user agents will ignore the scriptp652 element with a typep653 of "module", as that is an unknown script type for
them — but they will have no problem fetching and evaluating the other scriptp652 element (as a classic scriptp1085), since they do
not implement the nomodulep654 attribute.

The following sample shows how a scriptp652 element can be used to write an inline JavaScript module scriptp1085 that performs a
number of substitutions on the document's text, in order to make for a more interesting reading experience (e.g. on a news site):
[XKCD1288]p1484

<script type="module">
import { walkAllTextNodeDescendants } from "./dom-utils.mjs";

const substitutions = new Map([
["witnesses", "these dudes I know"]
["allegedly", "kinda probably"]
["new study", "Tumblr post"]
["rebuild", "avenge"]
["space", "spaaace"]
["Google glass", "Virtual Boy"]
["smartphone", "Pokédex"]
["electric", "atomic"]
["Senator", "Elf-Lord"]
["car", "cat"]
["election", "eating contest"]
["Congressional leaders", "river spirits"]
["homeland security", "Homestar Runner"]
["could not be reached for comment", "is guilty and everyone knows it"]

]);

function substitute(textNode) {
for (const [before, after] of substitutions.entries()) {

textNode.data = textNode.data.replace(new RegExp(`\\b${before}\\b`, "ig"), after);
}

}

walkAllTextNodeDescendants(document.body, substitute);
</script>

Some notable features gained by using a JavaScript module script include the ability to import functions from other JavaScript
modules, strict mode by default, and how top-level declarations do not introduce new properties onto the global objectp1076. Also
note that no matter where this scriptp652 element appears in the document, it will not be evaluated until both document parsing
has complete and its dependency (dom-utils.mjs) has been fetched and evaluated.

Example

The following sample shows how a JSON module scriptp1085 can be imported from inside a JavaScript module scriptp1085:

<script type="module">
import peopleInSpace from "http://api.open-notify.org/astros.json" with { type: "json" };

const list = document.querySelector("#people-in-space");
for (const { craft, name } of peopleInSpace.people) {

const li = document.createElement("li");
li.textContent = `${name} / ${craft}`;

Example

658

A scriptp652 element has several associated pieces of state.

A scriptp652 element has a parser document, which is either null or a Documentp130, initially null. It is set by the HTML parserp1271 and
the XML parserp1384 on scriptp652 elements they insert, and affects the processing of those elements. scriptp652 elements with non-
null parser documentsp659 are known as parser-inserted.

A scriptp652 element has a preparation-time document, which is either null or a Documentp130, initially null. It is used to prevent
scripts that move between documents during preparationp661 from executingp665.

A scriptp652 element has a force async boolean, initially true. It is set to false by the HTML parserp1271 and the XML parserp1384 on
scriptp652 elements they insert, and when the element gets an asyncp654 content attribute added.

A scriptp652 element has a from an external file boolean, initially false. It is determined when the script is preparedp661, based on
the srcp654 attribute of the element at that time.

A scriptp652 element has a ready to be parser-executed boolean, initially false. This is used only used for elements that are also
parser-insertedp659, to let the parser know when to execute the script.

A scriptp652 element has an already started boolean, initially false.

A scriptp652 element has a delaying the load event boolean, initially false.

A scriptp652 element has a type, which is either null, "classic", "module", or "importmap", initially null. It is determined when the
element is preparedp661, based on the typep653 attribute of the element at that time.

A scriptp652 element has a result, which is either "uninitialized", null (representing an error), a scriptp1084, or an import map parse
resultp1101. It is initially "uninitialized".

A scriptp652 element has steps to run when the result is ready, which are a series of steps or null, initially null. To mark as ready
a scriptp652 element el given a scriptp1084, import map parse resultp1101, or null result:

1. Set el's resultp659 to result.

2. If el's steps to run when the result is readyp659 are not null, then run them.

3. Set el's steps to run when the result is readyp659 to null.

4. Set el's delaying the load eventp659 to false.

A scriptp652 element el is implicitly potentially render-blockingp103 if el's typep659 is "classic", el is parser-insertedp659, and el does not
have an asyncp654 or deferp654 attribute.

The cloning steps for a scriptp652 element el being cloned to a copy copy are to set copy's already startedp659 to el's already
startedp659.

When an asyncp654 attribute is added to a scriptp652 element el, the user agent must set el's force asyncp659 to false.

Whenever a scriptp652 element el's delaying the load eventp659 is true, the user agent must delay the load eventp1359 of el's
preparation-time documentp659.

list.append(li);
}

</script>

MIME type checking for module scripts is strict. In order for the fetch of the JSON module scriptp1085 to succeed, the HTTP response
must have a JSON MIME type, for example Content-Type: text/json. On the other hand, if the with { type: "json" } part of
the statement is omitted, it is assumed that the intent is to import a JavaScript module scriptp1085, and the fetch will fail if the HTTP
response has a MIME type that is not a JavaScript MIME type.

4.12.1.1 Processing model §p65

9

659

https://mimesniff.spec.whatwg.org/#json-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://dom.spec.whatwg.org/#concept-node-clone-ext

The scriptp652 HTML element post-connection stepsp45, given insertedNode, are:

1. If insertedNode is not connected, then return.

2. If insertedNode is parser-insertedp659, then return.

3. Prepare the script elementp661 given insertedNode.

The scriptp652 children changed steps are:

1. Run the scriptp652 HTML element post-connection stepsp45, given the scriptp652 element.

This can happen in the case where an earlier-inserted scriptp652 removes a later-inserted scriptp652. For instance:

<script>
const script1 = document.createElement('script');
script1.innerText = `

document.querySelector('#script2').remove();
`;

const script2 = document.createElement('script');
script2.id = 'script2';
script2.textContent = `console.log('script#2 running')`;

document.body.append(script1, script2);
</script>

Nothing is printed to the console in this example. By the time the HTML element post-connection stepsp45 run for the first
scriptp652 that was atomically inserted by append(), it can observe that the second scriptp652 is already connected to
the DOM. It removes the second scriptp652, so that by the time its HTML element post-connection stepsp45 run, it is no
longer connected, and does not get preparedp661.

Example

This has an interesting implication on the execution order of a scriptp652 element and any newly-inserted child scriptp652

elements. Consider the following snippet:

<script id=outer-script></script>

<script>
const outerScript = document.querySelector('#outer-script');

const start = new Text('console.log(1);');
const innerScript = document.createElement('script');
innerScript.textContent = `console.log('inner script executing')`;
const end = new Text('console.log(2);');

outerScript.append(start, innerScript, end);

// Logs:
// 1
// 2
// inner script executing

</script>

By the time the second script block executes, the outer-script has already been preparedp661, but because it is empty, it did not
execute and therefore is not marked as already startedp659. The atomic insertion of the Text nodes and nested scriptp652 element
have the following effects:

1. All three child nodes get atomically inserted as children of outer-script; all of their insertion steps run, which have no
observable consequences in this case.

Example

660

https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#dom-node-append
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-node-insert-ext

The following attribute change steps, given element, localName, oldValue, value, and namespace, are used for all scriptp652 elements:

1. If namespace is not null, then return.

2. If localName is srcp654, then run the scriptp652 HTML element post-connection stepsp45, given element.

To prepare the script element given a scriptp652 element el:

1. If el's already startedp659 is true, then return.

2. Let parser document be el's parser documentp659.

3. Set el's parser documentp659 to null.

4. If parser document is non-null and el does not have an asyncp654 attribute, then set el's force asyncp659 to true.

5. Let source text be el's child text content.

6. If el has no srcp654 attribute, and source text is the empty string, then return.

7. If el is not connected, then return.

8. If any of the following are true:

◦ el has a typep653 attribute whose value is the empty string;

◦ el has no typep653 attribute but it has a languagep1429 attribute and that attribute's value is the empty string; or

◦ el has neither a typep653 attribute nor a languagep1429 attribute,

then let the script block's type string for this scriptp652 element be "text/javascript".

Otherwise, if el has a typep653 attribute, then let the script block's type string be the value of that attribute with leading and
trailing ASCII whitespace stripped.

Otherwise, el has a non-empty languagep1429 attribute; let the script block's type string be the concatenation of "text/" and
the value of el's languagep1429 attribute.

9. If the script block's type string is a JavaScript MIME type essence match, then set el's typep659 to "classic".

10. Otherwise, if the script block's type string is an ASCII case-insensitive match for the string "module", then set el's typep659 to
"module".

11. Otherwise, if the script block's type string is an ASCII case-insensitive match for the string "importmap", then set el's typep659

to "importmap".

12. Otherwise, return. (No script is executed, and el's typep659 is left as null.)

2. The outer-script's children changed steps run, which preparesp661 that script; because its body is now non-empty, this
executes the contents of the two Text nodes, in order.

3. The scriptp652 HTML element post-connection stepsp45 finally run for innerScript, causing its body to execute.

This is done so that if parser-inserted scriptp652 elements fail to run when the parser tries to run them, e.g. because
they are empty or specify an unsupported scripting language, another script can later mutate them and cause them to
run again.

Note

This is done so that if a parser-inserted scriptp652 element fails to run when the parser tries to run it, but it is later
executed after a script dynamically updates it, it will execute in an async fashion even if the asyncp654 attribute isn't set.

Note

The languagep1429 attribute is never conforming, and is always ignored if there is a typep653 attribute present.
Note

661

https://dom.spec.whatwg.org/#concept-node-children-changed-ext
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#connected
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

13. If parser document is non-null, then set el's parser documentp659 back to parser document and set el's force asyncp659 to
false.

14. Set el's already startedp659 to true.

15. Set el's preparation-time documentp659 to its node document.

16. If parser document is non-null, and parser document is not equal to el's preparation-time documentp659, then return.

17. If scripting is disabledp1083 for el, then return.

18. If el has a nomodulep654 content attribute and its typep659 is "classic", then return.

19. If el does not have a srcp654 content attribute, and the Should element's inline behavior be blocked by Content Security
Policy? algorithm returns "Blocked" when given el, "script", and source text, then return. [CSP]p1476

20. If el has an eventp1429 attribute and a forp1429 attribute, and el's typep659 is "classic", then:

1. Let for be the value of el's forp1429 attribute.

2. Let event be the value of el's eventp1429 attribute.

3. Strip leading and trailing ASCII whitespace from event and for.

4. If for is not an ASCII case-insensitive match for the string "window", then return.

5. If event is not an ASCII case-insensitive match for either the string "onload" or the string "onload()", then return.

21. If el has a charsetp1427 attribute, then let encoding be the result of getting an encoding from the value of the charsetp1427

attribute.

If el does not have a charsetp1427 attribute, or if getting an encoding failed, then let encoding be el's node document's the
encoding.

22. Let classic script CORS setting be the current state of el's crossoriginp655 content attribute.

23. Let module script credentials mode be the CORS settings attribute credentials modep99 for el's crossoriginp655 content
attribute.

24. Let cryptographic nonce be el's [[CryptographicNonce]]p100 internal slot's value.

25. If el has an integrityp655 attribute, then let integrity metadata be that attribute's value.

Otherwise, let integrity metadata be the empty string.

26. Let referrer policy be the current state of el's referrerpolicyp655 content attribute.

27. Let fetch priority be the current state of el's fetchpriorityp655 content attribute.

28. Let parser metadata be "parser-inserted" if el is parser-insertedp659, and "not-parser-inserted" otherwise.

29. Let options be a script fetch optionsp1085 whose cryptographic noncep1086 is cryptographic nonce, integrity metadatap1086 is
integrity metadata, parser metadatap1086 is parser metadata, credentials modep1086 is module script credentials mode,
referrer policyp1086 is referrer policy, and fetch priorityp1086 is fetch priority.

30. Let settings object be el's node document's relevant settings objectp1083.

The definition of scripting is disabledp1083 means that, amongst others, the following scripts will not execute: scripts in
XMLHttpRequest's responseXML documents, scripts in DOMParserp1154-created documents, scripts in documents created
by XSLTProcessorp51 's transformToDocumentp51 feature, and scripts that are first inserted by a script into a Documentp130

that was created using the createDocument() API. [XHR]p1484 [DOMPARSING]p1478 [XSLTP]p1484 [DOM]p1478

Note

This means specifying nomodulep654 on a module scriptp1085 has no effect; the algorithm continues onward.
Note

If el's typep659 is "module", this encoding will be ignored.
Note

662

https://dom.spec.whatwg.org/#concept-node-document
https://xhr.spec.whatwg.org/#xmlhttprequest
https://xhr.spec.whatwg.org/#dom-xmlhttprequest-responsexml
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://w3c.github.io/webappsec-csp/#should-block-inline
https://w3c.github.io/webappsec-csp/#should-block-inline
https://infra.spec.whatwg.org/#strip-leading-and-trailing-ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#concept-encoding-get
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-node-document

31. If el has a srcp654 content attribute, then:

1. If el's typep659 is "importmap", then queue an element taskp1125 on the DOM manipulation task sourcep1134 given el
to fire an event named errorp1471 at el, and return.

2. Let src be the value of el's srcp654 attribute.

3. If src is the empty string, then queue an element taskp1125 on the DOM manipulation task sourcep1134 given el to fire
an event named errorp1471 at el, and return.

4. Set el's from an external filep659 to true.

5. Let url be the result of encoding-parsing a URLp97 given src, relative to el's node document.

6. If url is failure, then queue an element taskp1125 on the DOM manipulation task sourcep1134 given el to fire an event
named errorp1471 at el, and return.

7. If el is potentially render-blockingp103, then block renderingp134 on el.

8. Set el's delaying the load eventp659 to true.

9. If el is currently render-blockingp134, then set options's render-blockingp1086 to true.

10. Let onComplete given result be the following steps:

1. Mark as readyp659 el given result.

11. Switch on el's typep659:

↪ "classic"
Fetch a classic scriptp1087 given url, settings object, options, classic script CORS setting, encoding, and
onComplete.

↪ "module"
If el does not have an integrityp655 attribute, then set options's integrity metadatap1086 to the result of
resolving a module integrity metadatap1086 with url and settings object.

Fetch an external module script graphp1089 given url, settings object, options, and onComplete.

For performance reasons, user agents may start fetching the classic script or module graph (as defined above) as
soon as the srcp654 attribute is set, instead, in the hope that el will become connected (and that the
crossoriginp655 attribute won't change value in the meantime). Either way, once el becomes connectedp46, the
load must have started as described in this step. If the UA performs such prefetching, but el never becomes
connected, or the srcp654 attribute is dynamically changed, or the crossoriginp655 attribute is dynamically
changed, then the user agent will not execute the script so obtained, and the fetching process will have been
effectively wasted.

32. If el does not have a srcp654 content attribute:

1. Let base URL be el's node document's document base URLp96.

2. Switch on el's typep659:

↪ "classic"

1. Let script be the result of creating a classic scriptp1093 using source text, settings object, base URL,
and options.

2. Mark as readyp659 el given script.

↪ "module"

1. Set el's delaying the load eventp659 to true.

2. If el is potentially render-blockingp103, then:

External import map scripts are not currently supported. See WICG/import-maps issue #235 for discussions on
adding support.

Note

663

https://dom.spec.whatwg.org/#concept-event-fire
https://github.com/WICG/import-maps/issues/235
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-node-document

1. Block renderingp134 on el.

2. Set options's render-blockingp1086 to true.

3. Fetch an inline module script graphp1090, given source text, base URL, settings object, options, and
with the following steps given result:

1. Queue an element taskp1125 on the networking task sourcep1134 given el to perform the
following steps:

1. Mark as readyp659 el given result.

↪ "importmap"

1. Let result be the result of creating an import map parse resultp1101 given source text and base
URL.

2. Mark as readyp659 el given result.

33. If el's typep659 is "classic" and el has a srcp654 attribute, or el's typep659 is "module":

1. Assert: el's resultp659 is "uninitialized".

2. If el has an asyncp654 attribute or el's force asyncp659 is true:

1. Let scripts be el's preparation-time documentp659 's set of scripts that will execute as soon as possiblep665.

2. Append el to scripts.

3. Set el's steps to run when the result is readyp659 to the following:

1. Execute the script elementp665 el.

2. Remove el from scripts.

3. Otherwise, if el is not parser-insertedp659:

1. Let scripts be el's preparation-time documentp659 's list of scripts that will execute in order as soon as
possiblep665.

2. Append el to scripts.

3. Set el's steps to run when the result is readyp659 to the following:

1. If scripts[0] is not el, then abort these steps.

2. While scripts is not empty, and scripts[0]'s resultp659 is not "uninitialized":

1. Execute the script elementp665 scripts[0].

2. Remove scripts[0].

4. Otherwise, if el has a deferp654 attribute or el's typep659 is "module":

1. Append el to its parser documentp659 's list of scripts that will execute when the document has finished
parsingp665.

2. Set el's steps to run when the result is readyp659 to the following: set el's ready to be parser-executedp659

to true. (The parser will handle executing the script.)

5. Otherwise:

1. Set el's parser documentp659 's pending parsing-blocking scriptp665 to el.

2. Block renderingp134 on el.

Queueing a task here means that, even if the inline module script has no
dependencies or synchronously results in a parse error, we won't proceed to
execute the script elementp665 synchronously.

Note

664

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-append

3. Set el's steps to run when the result is readyp659 to the following: set el's ready to be parser-executedp659

to true. (The parser will handle executing the script.)

34. Otherwise:

1. Assert: el's resultp659 is not "uninitialized".

2. If all of the following are true:

▪ el's typep659 is "classic";

▪ el is parser-insertedp659;

▪ el's parser documentp659 has a style sheet that is blocking scriptsp204; and

▪ either the parser that created el is an XML parserp1384, or it's an HTML parserp1271 whose script nesting
levelp1273 is not greater than one,

then:

1. Set el's parser documentp659 's pending parsing-blocking scriptp665 to el.

2. Set el's ready to be parser-executedp659 to true. (The parser will handle executing the script.)

3. Otherwise, immediatelyp43 execute the script elementp665 el, even if other scripts are already executing.

Each Documentp130 has a pending parsing-blocking script, which is a scriptp652 element or null, initially null.

Each Documentp130 has a set of scripts that will execute as soon as possible, which is a set of scriptp652 elements, initially
empty.

Each Documentp130 has a list of scripts that will execute in order as soon as possible, which is a list of scriptp652 elements,
initially empty.

Each Documentp130 has a list of scripts that will execute when the document has finished parsing, which is a list of scriptp652

elements, initially empty.

To execute the script element given a scriptp652 element el:

1. Let document be el's node document.

2. If el's preparation-time documentp659 is not equal to document, then return.

3. Unblock renderingp135 on el.

4. If el's resultp659 is null, then fire an event named errorp1471 at el, and return.

5. If el's from an external filep659 is true, or el's typep659 is "module", then increment document's ignore-destructive-writes
counterp1152.

6. Switch on el's typep659:

↪ "classic"

1. Let oldCurrentScript be the value to which document's currentScriptp137 object was most recently set.

2. If el's root is not a shadow root, then set document's currentScriptp137 attribute to el. Otherwise, set it to
null.

If a scriptp652 element that blocks a parser gets moved to another Documentp130 before it would normally have stopped blocking
that parser, it nonetheless continues blocking that parser until the condition that causes it to be blocking the parser no longer
applies (e.g., if the script is a pending parsing-blocking scriptp665 because the original Documentp130 has a style sheet that is
blocking scriptsp204 when it was parsed, but then the script is moved to another Documentp130 before the blocking style sheet(s)
loaded, the script still blocks the parser until the style sheets are all loaded, at which time the script executes and the parser is
unblocked).

Note

665

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-shadow-root

3. Run the classic scriptp1096 given by el's resultp659.

4. Set document's currentScriptp137 attribute to oldCurrentScript.

↪ "module"

1. Assert: document's currentScriptp137 attribute is null.

2. Run the module scriptp1096 given by el's resultp659.

↪ "importmap"

1. Register an import mapp1101 given el's relevant global objectp1083 and el's resultp659.

7. Decrement the ignore-destructive-writes counterp1152 of document, if it was incremented in the earlier step.

8. If el's from an external filep659 is true, then fire an event named loadp1471 at el.

User agents are not required to support JavaScript. This standard needs to be updated if a language other than JavaScript comes along
and gets similar wide adoption by web browsers. Until such a time, implementing other languages is in conflict with this standard,
given the processing model defined for the scriptp652 element.

Servers should use text/javascriptp1474 for JavaScript resources, in accordance with Updates to ECMAScript Media Types. Servers
should not use other JavaScript MIME types for JavaScript resources, and must not use non-JavaScript MIME types. [RFC9239]p1481

For external JavaScript resources, MIME type parameters in `Content-Typep98` headers are generally ignored. (In some cases the
`charset` parameter has an effect.) However, for the scriptp652 element's typep653 attribute they are significant; it uses the JavaScript
MIME type essence match concept.

Furthermore, again for external JavaScript resources, special considerations apply around `Content-Typep98` header processing as
detailed in the prepare the script elementp661 algorithm and Fetch. [FETCH]p1478

The scriptp652 element's descendant text content must match the script production in the following ABNF, the character set for
which is Unicode. [ABNF]p1475

script = outer *(comment-open inner comment-close outer)

outer = < any string that doesn't contain a substring that matches not-in-outer >
not-in-outer = comment-open

This does not use the in a document tree check, as el could have been removed from the document
prior to execution, and in that scenario currentScriptp137 still needs to point to it.

Note

4.12.1.2 Scripting languages §p66

6

For example, scripts with their typep653 attribute set to "text/javascript; charset=utf-8" will not be evaluated, even though
that is a valid JavaScript MIME type when parsed.

Note

4.12.1.3 Restrictions for contents of script elements §p66

6

The easiest and safest way to avoid the rather strange restrictions described in this section is to always escape an ASCII case-
insensitive match for "<!--" as "\x3C!--", "<script" as "\x3Cscript", and "</script" as "\x3C/script" when these sequences
appear in literals in scripts (e.g. in strings, regular expressions, or comments), and to avoid writing code that uses such constructs
in expressions. Doing so avoids the pitfalls that the restrictions in this section are prone to triggering: namely, that, for historical
reasons, parsing of scriptp652 blocks in HTML is a strange and exotic practice that acts unintuitively in the face of these
sequences.

Note

666

https://dom.spec.whatwg.org/#in-a-document-tree
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-event-fire
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://dom.spec.whatwg.org/#concept-descendant-text-content

inner = < any string that doesn't contain a substring that matches not-in-inner >
not-in-inner = comment-close / script-open

comment-open = "<!--"
comment-close = "-->"
script-open = "<" s c r i p t tag-end

s = %x0053 ; U+0053 LATIN CAPITAL LETTER S
s =/ %x0073 ; U+0073 LATIN SMALL LETTER S
c = %x0043 ; U+0043 LATIN CAPITAL LETTER C
c =/ %x0063 ; U+0063 LATIN SMALL LETTER C
r = %x0052 ; U+0052 LATIN CAPITAL LETTER R
r =/ %x0072 ; U+0072 LATIN SMALL LETTER R
i = %x0049 ; U+0049 LATIN CAPITAL LETTER I
i =/ %x0069 ; U+0069 LATIN SMALL LETTER I
p = %x0050 ; U+0050 LATIN CAPITAL LETTER P
p =/ %x0070 ; U+0070 LATIN SMALL LETTER P
t = %x0054 ; U+0054 LATIN CAPITAL LETTER T
t =/ %x0074 ; U+0074 LATIN SMALL LETTER T

tag-end = %x0009 ; U+0009 CHARACTER TABULATION (tab)
tag-end =/ %x000A ; U+000A LINE FEED (LF)
tag-end =/ %x000C ; U+000C FORM FEED (FF)
tag-end =/ %x0020 ; U+0020 SPACE
tag-end =/ %x002F ; U+002F SOLIDUS (/)
tag-end =/ %x003E ; U+003E GREATER-THAN SIGN (>)

When a scriptp652 element contains script documentationp668, there are further restrictions on the contents of the element, as
described in the section below.

The following script illustrates this issue. Suppose you have a script that contains a string, as in:

const example = 'Consider this string: <!-- <script>';
console.log(example);

If one were to put this string directly in a scriptp652 block, it would violate the restrictions above:

<script>
const example = 'Consider this string: <!-- <script>';
console.log(example);

</script>

The bigger problem, though, and the reason why it would violate those restrictions, is that actually the script would get parsed
weirdly: the script block above is not terminated. That is, what looks like a "</script>" end tag in this snippet is actually still part
of the scriptp652 block. The script doesn't execute (since it's not terminated); if it somehow were to execute, as it might if the
markup looked as follows, it would fail because the script (highlighted here) is not valid JavaScript:

<script>
const example = 'Consider this string: <!-- <script>';
console.log(example);

</script>
<!-- despite appearances, this is actually part of the script still! -->
<script>
... // this is the same script block still...

</script>

What is going on here is that for legacy reasons, "<!--" and "<script" strings in scriptp652 elements in HTML need to be balanced
in order for the parser to consider closing the block.

Example

667

If a scriptp652 element's srcp654 attribute is specified, then the contents of the scriptp652 element, if any, must be such that the value
of the textp656 IDL attribute, which is derived from the element's contents, matches the documentation production in the following
ABNF, the character set for which is Unicode. [ABNF]p1475

documentation = *(*(space / tab / comment) [line-comment] newline)
comment = slash star *(not-star / star not-slash) 1*star slash
line-comment = slash slash *not-newline

; characters
tab = %x0009 ; U+0009 CHARACTER TABULATION (tab)
newline = %x000A ; U+000A LINE FEED (LF)
space = %x0020 ; U+0020 SPACE
star = %x002A ; U+002A ASTERISK (*)
slash = %x002F ; U+002F SOLIDUS (/)
not-newline = %x0000-0009 / %x000B-10FFFF

; a scalar value other than U+000A LINE FEED (LF)
not-star = %x0000-0029 / %x002B-10FFFF

; a scalar value other than U+002A ASTERISK (*)
not-slash = %x0000-002E / %x0030-10FFFF

; a scalar value other than U+002F SOLIDUS (/)

By escaping the problematic strings as mentioned at the top of this section, the problem is avoided entirely:

<script>
// Note: `\x3C` is an escape sequence for `<`.
const example = 'Consider this string: \x3C!-- \x3Cscript>';
console.log(example);

</script>
<!-- this is just a comment between script blocks -->
<script>
... // this is a new script block

</script>

It is possible for these sequences to naturally occur in script expressions, as in the following examples:

if (x<!--y) { ... }
if (player<script) { ... }

In such cases the characters cannot be escaped, but the expressions can be rewritten so that the sequences don't occur, as in:

if (x < !--y) { ... }
if (!--y > x) { ... }
if (!(--y) > x) { ... }
if (player < script) { ... }
if (script > player) { ... }

Doing this also avoids a different pitfall as well: for related historical reasons, the string "<!--" in classic scriptsp1085 is actually
treated as a line comment start, just like "//".

4.12.1.4 Inline documentation for external scripts §p66

8

This corresponds to putting the contents of the element in JavaScript comments.
Note

668

https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#scalar-value

This section is non-normative.

This specification does not define how XSLT interacts with the scriptp652 element. However, in the absence of another specification
actually defining this, here are some guidelines for implementers, based on existing implementations:

• When an XSLT transformation program is triggered by an <?xml-stylesheet?> processing instruction and the browser
implements a direct-to-DOM transformation, scriptp652 elements created by the XSLT processor need to have its parser
documentp659 set correctly, and run in document order (modulo scripts marked deferp654 or asyncp654), immediatelyp43, as the
transformation is occurring.

• The XSLTProcessorp51 transformToDocument()p51 method adds elements to a Documentp130 object with a null browsing
contextp999, and, accordingly, any scriptp652 elements they create need to have their already startedp659 set to true in the
prepare the script elementp661 algorithm and never get executed (scripting is disabledp1083). Such scriptp652 elements still
need to have their parser documentp659 set, though, such that their asyncp656 IDL attribute will return false in the absence of
an asyncp654 content attribute.

• The XSLTProcessorp51 transformToFragment()p51 method needs to create a fragment that is equivalent to one built
manually by creating the elements using document.createElementNS(). For instance, it needs to create scriptp652

elements with null parser documentp659 and with their already startedp659 set to false, so that they will execute when the
fragment is inserted into a document.

The main distinction between the first two cases and the last case is that the first two operate on Documentp130s and the last operates
on a fragment.

Categoriesp146:
Metadata contentp148.
Flow contentp149.
Phrasing contentp150.

Contexts in which this element can be usedp146:
In a headp173 element of an HTML document, if there are no ancestor noscriptp669 elements.
Where phrasing contentp150 is expected in HTML documents, if there are no ancestor noscriptp669 elements.

Content modelp146:
When scripting is disabledp1083, in a headp173 element: in any order, zero or more linkp177 elements, zero or more stylep200

elements, and zero or more metap189 elements.
When scripting is disabledp1083, not in a headp173 element: transparentp151, but there must be no noscriptp669 element
descendants.

This requirement is in addition to the earlier restrictions on the syntax of contents of scriptp652 elements.
Note

This allows authors to include documentation, such as license information or API information, inside their documents while still
referring to external script files. The syntax is constrained so that authors don't accidentally include what looks like valid script
while also providing a srcp654 attribute.

<script src="cool-effects.js">
// create new instances using:
// var e = new Effect();
// start the effect using .play, stop using .stop:
// e.play();
// e.stop();

</script>

Example

4.12.1.5 Interaction of scriptp652 elements and XSLT §p66

9

4.12.2 The noscript element §p66

9

✔ MDN

669

https://dom.spec.whatwg.org/#dom-document-createelementns
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document

Otherwise: text that conforms to the requirements given in the prose.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:
Uses HTMLElementp142.

The noscriptp669 element representsp141 nothing if scripting is enabledp1083, and representsp141 its children if scripting is disabledp1083. It
is used to present different markup to user agents that support scripting and those that don't support scripting, by affecting how the
document is parsed.

When used in HTML documents, the allowed content model is as follows:

In a headp173 element, if scripting is disabledp1083 for the noscriptp669 element
The noscriptp669 element must contain only linkp177, stylep200, and metap189 elements.

In a headp173 element, if scripting is enabledp1083 for the noscriptp669 element
The noscriptp669 element must contain only text, except that invoking the HTML fragment parsing algorithmp1373 with the
noscriptp669 element as the contextp1373 element and the text contents as the input must result in a list of nodes that consists only
of linkp177, stylep200, and metap189 elements that would be conforming if they were children of the noscriptp669 element, and no
parse errorsp1273.

Outside of headp173 elements, if scripting is disabledp1083 for the noscriptp669 element
The noscriptp669 element's content model is transparentp151, with the additional restriction that a noscriptp669 element must not
have a noscriptp669 element as an ancestor (that is, noscriptp669 can't be nested).

Outside of headp173 elements, if scripting is enabledp1083 for the noscriptp669 element
The noscriptp669 element must contain only text, except that the text must be such that running the following algorithm results in a
conforming document with no noscriptp669 elements and no scriptp652 elements, and such that no step in the algorithm throws an
exception or causes an HTML parserp1271 to flag a parse errorp1273:

1. Remove every scriptp652 element from the document.

2. Make a list of every noscriptp669 element in the document. For every noscriptp669 element in that list, perform the
following steps:

1. Let s be the child text content of the noscriptp669 element.

2. Set the outerHTMLp1159 attribute of the noscriptp669 element to the value of s. (This, as a side-effect, causes the
noscriptp669 element to be removed from the document.)

The noscriptp669 element must not be used in XML documents.

The noscriptp669 element has no other requirements. In particular, children of the noscriptp669 element are not exempt from form
submissionp628, scripting, and so forth, even when scripting is enabledp1083 for the element.

All these contortions are required because, for historical reasons, the noscriptp669 element is handled differently by the HTML
parserp1271 based on whether scripting was enabled or notp1289 when the parser was invoked.

Note

The noscriptp669 element is only effective in the HTML syntaxp1259, it has no effect in the XML syntaxp1384. This is because the way
it works is by essentially "turning off" the parser when scripts are enabled, so that the contents of the element are treated as pure
text and not as real elements. XML does not define a mechanism by which to do this.

Note

670

https://w3c.github.io/html-aria/#el-noscript
https://w3c.github.io/html-aam/#el-noscript
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#xml-document

Categoriesp146:
Metadata contentp148.
Flow contentp149.

In the following example, a noscriptp669 element is used to provide fallback for a script.

<form action="calcSquare.php">
<p>
<label for=x>Number</label>:
<input id="x" name="x" type="number">

</p>
<script>
var x = document.getElementById('x');
var output = document.createElement('p');
output.textContent = 'Type a number; it will be squared right then!';
x.form.appendChild(output);
x.form.onsubmit = function () { return false; }
x.oninput = function () {

var v = x.valueAsNumber;
output.textContent = v + ' squared is ' + v * v;

};
</script>
<noscript>
<input type=submit value="Calculate Square">

</noscript>
</form>

When script is disabled, a button appears to do the calculation on the server side. When script is enabled, the value is computed
on-the-fly instead.

The noscriptp669 element is a blunt instrument. Sometimes, scripts might be enabled, but for some reason the page's script might
fail. For this reason, it's generally better to avoid using noscriptp669, and to instead design the script to change the page from
being a scriptless page to a scripted page on the fly, as in the next example:

<form action="calcSquare.php">
<p>
<label for=x>Number</label>:
<input id="x" name="x" type="number">

</p>
<input id="submit" type=submit value="Calculate Square">
<script>
var x = document.getElementById('x');
var output = document.createElement('p');
output.textContent = 'Type a number; it will be squared right then!';
x.form.appendChild(output);
x.form.onsubmit = function () { return false; }
x.oninput = function () {

var v = x.valueAsNumber;
output.textContent = v + ' squared is ' + v * v;

};
var submit = document.getElementById('submit');
submit.parentNode.removeChild(submit);

</script>
</form>

The above technique is also useful in XML documents, since noscriptp669 is not allowed there.

Example

4.12.3 The template element §p67

1

✔ MDN

✔ MDN

671

https://dom.spec.whatwg.org/#xml-document

Phrasing contentp150.
Script-supporting elementp151.

Contexts in which this element can be usedp146:
Where metadata contentp148 is expected.
Where phrasing contentp150 is expected.
Where script-supporting elementsp151 are expected.
As a child of a colgroupp487 element that doesn't have a spanp488 attribute.

Content modelp146:
Nothingp148 (for clarification, see examplep673).

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

shadowrootmodep672 — Enables streaming declarative shadow roots
shadowrootdelegatesfocusp672 — Sets delegates focus on a declarative shadow root
shadowrootclonablep672 — Sets clonable on a declarative shadow root
shadowrootserializablep672 — Sets serializablep117 on a declarative shadow root

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLTemplateElement : HTMLElement {

[HTMLConstructor] constructor();

readonly attribute DocumentFragment content;
[CEReactions] attribute DOMString shadowRootMode;
[CEReactions] attribute boolean shadowRootDelegatesFocus;
[CEReactions] attribute boolean shadowRootClonable;
[CEReactions] attribute boolean shadowRootSerializable;

};

The templatep671 element is used to declare fragments of HTML that can be cloned and inserted in the document by script.

In a rendering, the templatep671 element representsp141 nothing.

The shadowrootmode content attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

open open The template element represents an open declarative shadow root.
closed closed The template element represents a closed declarative shadow root.

The shadowrootmodep672 attribute's invalid value defaultp76 and missing value defaultp76 are both the none state.

The shadowrootdelegatesfocus content attribute is a boolean attributep75.

The shadowrootclonable content attribute is a boolean attributep75.

The shadowrootserializable content attribute is a boolean attributep75.

The template contentsp673 of a templatep671 element are not children of the element itselfp1261.

It is also possible, as a result of DOM manipulation, for a templatep671 element to contain Text nodes and element nodes; however,
having any is a violation of the templatep671 element's content model, since its content model is defined as nothingp148.

Note

IDL

672

https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#shadowroot-clonable
https://w3c.github.io/html-aria/#el-template
https://w3c.github.io/html-aam/#el-template
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-text

Each templatep671 element has an associated DocumentFragment object that is its template contents. The template contentsp673

have no conformance requirementsp140. When a templatep671 element is created, the user agent must run the following steps to
establish the template contentsp673:

1. Let doc be the templatep671 element's node document's appropriate template contents owner documentp673.

2. Create a DocumentFragment object whose node document is doc and host is the templatep671 element.

3. Set the templatep671 element's template contentsp673 to the newly created DocumentFragment object.

A Documentp130 doc's appropriate template contents owner document is the Documentp130 returned by the following algorithm:

1. If doc is not a Documentp130 created by this algorithm, then:

1. If doc does not yet have an associated inert template document, then:

1. Let new doc be a new Documentp130 (whose browsing contextp999 is null). This is "a Documentp130 created
by this algorithm" for the purposes of the step above.

2. If doc is an HTML document, mark new doc as an HTML document also.

3. Let doc's associated inert template documentp673 be new doc.

2. Set doc to doc's associated inert template documentp673.

2. Return doc.

For example, consider the following document:

<!doctype html>
<html lang="en">
<head>
<title>Homework</title>

<body>
<template id="template"><p>Smile!</p></template>
<script>
let num = 3;
const fragment = document.getElementById('template').content.cloneNode(true);
while (num-- > 1) {

fragment.firstChild.before(fragment.firstChild.cloneNode(true));
fragment.firstChild.textContent += fragment.lastChild.textContent;

}
document.body.appendChild(fragment);

</script>
</html>

The pp229 element in the templatep671 is not a child of the templatep671 in the DOM; it is a child of the DocumentFragment returned
by the templatep671 element's contentp674 IDL attribute.

If the script were to call appendChild() on the templatep671 element, that would add a child to the templatep671 element (as for
any other element); however, doing so is a violation of the templatep671 element's content model.

Example

template.contentp674

Returns the template contentsp673 (a DocumentFragment).

For web developers (non-normative)

Each Documentp130 not created by this algorithm thus gets a single Documentp130 to act as its proxy for owning the
template contentsp673 of all its templatep671 elements, so that they aren't in a browsing contextp998 and thus remain inert
(e.g. scripts do not run). Meanwhile, templatep671 elements inside Documentp130 objects that are created by this algorithm
just reuse the same Documentp130 owner for their contents.

Note

673

https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#dom-node-appendchild
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document

The adopting steps (with node and oldDocument as parameters) for templatep671 elements are the following:

1. Let doc be node's node document's appropriate template contents owner documentp673.

2. Adopt node's template contentsp673 (a DocumentFragment object) into doc.

The content getter steps are to return templatep671 's template contentsp673, if the template contentsp673 is not a ShadowRoot node;
otherwise null.

The shadowRootMode IDL attribute must reflectp104 the shadowrootmodep672 content attribute, limited to only known valuesp105.

The shadowRootDelegatesFocus IDL attribute must reflectp104 the shadowrootdelegatesfocusp672 content attribute.

The shadowRootClonable IDL attribute must reflectp104 the shadowrootclonablep672 content attribute.

The shadowRootSerializable IDL attribute must reflectp104 the shadowrootserializablep672 content attribute.

The cloning steps for a templatep671 element node being cloned to a copy copy must run the following steps:

1. If the clone children flag is not set in the calling clone algorithm, return.

2. Let copied contents be the result of cloning all the children of node's template contentsp673, with document set to copy's
template contentsp673 's node document, and with the clone children flag set.

3. Append copied contents to copy's template contentsp673.

node's node document is the Documentp130 object that node was just adopted into.
Note

In this example, a script populates a table four-column with data from a data structure, using a templatep671 to provide the
element structure instead of manually generating the structure from markup.

<!DOCTYPE html>
<html lang='en'>
<title>Cat data</title>
<script>
// Data is hard-coded here, but could come from the server
var data = [

{ name: 'Pillar', color: 'Ticked Tabby', sex: 'Female (neutered)', legs: 3 },
{ name: 'Hedral', color: 'Tuxedo', sex: 'Male (neutered)', legs: 4 },

];
</script>
<table>
<thead>
<tr>
<th>Name <th>Color <th>Sex <th>Legs

<tbody>
<template id="row">
<tr><td><td><td><td>

</template>
</table>
<script>
var template = document.querySelector('#row');
for (var i = 0; i < data.length; i += 1) {

var cat = data[i];
var clone = template.content.cloneNode(true);
var cells = clone.querySelectorAll('td');
cells[0].textContent = cat.name;
cells[1].textContent = cat.color;
cells[2].textContent = cat.sex;

Example

674

https://dom.spec.whatwg.org/#concept-node-adopt-ext
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-adopt
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-shadowroot
https://dom.spec.whatwg.org/#concept-node-clone-ext
https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#concept-node-document

This section is non-normative.

This specification does not define how XSLT and XPath interact with the templatep671 element. However, in the absence of another
specification actually defining this, here are some guidelines for implementers, which are intended to be consistent with other
processing described in this specification:

• An XSLT processor based on an XML parser that acts as described in this specificationp1384 needs to act as if templatep671

elements contain as descendants their template contentsp673 for the purposes of the transform.

• An XSLT processor that outputs a DOM needs to ensure that nodes that would go into a templatep671 element are instead
placed into the element's template contentsp673.

• XPath evaluation using the XPath DOM API when applied to a Documentp130 parsed using the HTML parserp1271 or the XML
parserp1384 described in this specification needs to ignore template contentsp673.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Transparentp151

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

namep676 — Name of shadow tree slot

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

[Exposed=Window]
interface HTMLSlotElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
sequence<Node> assignedNodes(optional AssignedNodesOptions options = {});

cells[3].textContent = cat.legs;
template.parentNode.appendChild(clone);

}
</script>

This example uses cloneNode() on the templatep671 's contents; it could equivalently have used document.importNode(), which
does the same thing. The only difference between these two APIs is when the node document is updated: with cloneNode() it is
updated when the nodes are appended with appendChild(), with document.importNode() it is updated when the nodes are
cloned.

4.12.3.1 Interaction of templatep671 elements with XSLT and XPath §p67

5

IDL

4.12.4 The slot element §p67

5

✔ MDN

✔ MDN

675

https://dom.spec.whatwg.org/#dom-node-clonenode
https://dom.spec.whatwg.org/#dom-document-importnode
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#dom-node-clonenode
https://dom.spec.whatwg.org/#dom-node-appendchild
https://dom.spec.whatwg.org/#dom-document-importnode
https://w3c.github.io/html-aria/#el-slot
https://w3c.github.io/html-aam/#el-slot

sequence<Element> assignedElements(optional AssignedNodesOptions options = {});
undefined assign((Element or Text)... nodes);

};

dictionary AssignedNodesOptions {
boolean flatten = false;

};

The slotp675 element defines a slot. It is typically used in a shadow tree. A slotp675 element representsp141 its assigned nodes, if any,
and its contents otherwise.

The name content attribute may contain any string value. It represents a slot's name.

The name IDL attribute must reflectp104 the content attribute of the same name.

The slotp675 element has manually assigned nodes, which is an ordered set of slottables set by assign()p676. This set is initially
empty.

The assignedNodes(options) method steps are:

1. If options["flattenp676"] is false, then return this's assigned nodes.

2. Return the result of finding flattened slottables with this.

The assignedElements(options) method steps are:

1. If options["flattenp676"] is false, then return this's assigned nodes, filtered to contain only Element nodes.

2. Return the result of finding flattened slottables with this, filtered to contain only Element nodes.

The assign(...nodes) method steps are:

1. For each node of this's manually assigned nodesp676, set node's manual slot assignment to null.

The namep676 attribute is used to assign slots to other elements: a slotp675 element with a namep676 attribute creates a named slot to
which any element is assigned if that element has a slotp154 attribute whose value matches that namep676 attribute's value, and the
slotp675 element is a child of the shadow tree whose root's host has that corresponding slotp154 attribute value.

Note

slot.namep676

Can be used to get and set slot's name.

slot.assignedNodesp676()
Returns slot's assigned nodes.

slot.assignedNodesp676({ flatten: true })
Returns slot's assigned nodes, if any, and slot's children otherwise, and does the same for any slotp675 elements encountered
therein, recursively, until there are no slotp675 elements left.

slot.assignedElementsp676()
Returns slot's assigned nodes, limited to elements.

slot.assignedElementsp676({ flatten: true })
Returns the same as assignedNodes({ flatten: true })p676, limited to elements.

slot.assignp676(...nodes)
Sets slot's manually assigned nodesp676 to the given nodes.

For web developers (non-normative)

The manually assigned nodesp676 set can be implemented using weak references to the slottables, because this set is not directly
accessible from script.

Note

✔ MDN

676

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#slot-name
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-slot
https://dom.spec.whatwg.org/#assign-a-slot
https://dom.spec.whatwg.org/#concept-shadow-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#slot-name
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://infra.spec.whatwg.org/#ordered-set
https://dom.spec.whatwg.org/#concept-slotable
https://dom.spec.whatwg.org/#concept-slotable
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#find-flattened-slotables
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#slot-assigned-nodes
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#find-flattened-slotables
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#slottable-manual-slot-assignment

2. Let nodesSet be a new ordered set.

3. For each node of nodes:

1. If node's manual slot assignment refers to a slotp675, then remove node from that slotp675 's manually assigned
nodesp676.

2. Set node's manual slot assignment to this.

3. Append node to nodesSet.

4. Set this's manually assigned nodesp676 to nodesSet.

5. Run assign slottables for a tree for this's root.

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Embedded contentp150.
Palpable contentp150.

Contexts in which this element can be usedp146:
Where embedded contentp150 is expected.

Content modelp146:
Transparentp151, but with no interactive contentp150 descendants except for ap257 elements, imgp346 elements with usemapp473

attributes, buttonp566 elements, inputp520 elements whose typep523 attribute are in the Checkboxp542 or Radio Buttonp543 states,
inputp520 elements that are buttonsp514, and selectp568 elements with a multiplep569 attribute or a display sizep569 greater than
1.

Tag omission in text/htmlp146:
Neither tag is omissible.

Content attributesp146:
Global attributesp154

widthp678 — Horizontal dimension
heightp678 — Vertical dimension

Accessibility considerationsp146:
For authors.
For implementers.

DOM interfacep147:

typedef (CanvasRenderingContext2D or ImageBitmapRenderingContext or WebGLRenderingContext or
WebGL2RenderingContext or GPUCanvasContext) RenderingContext;

[Exposed=Window]
interface HTMLCanvasElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute unsigned long width;
[CEReactions] attribute unsigned long height;

RenderingContext? getContext(DOMString contextId, optional any options = null);

USVString toDataURL(optional DOMString type = "image/png", optional any quality);
undefined toBlob(BlobCallback _callback, optional DOMString type = "image/png", optional any

quality);
OffscreenCanvas transferControlToOffscreen();

};

IDL

4.12.5 The canvas element §p67

7

✔ MDN

✔ MDN

677

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#slottable-manual-slot-assignment
https://dom.spec.whatwg.org/#slottable-manual-slot-assignment
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#set-append
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#assign-slotables-for-a-tree
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-root
https://w3c.github.io/html-aria/#el-canvas
https://w3c.github.io/html-aam/#el-canvas
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://gpuweb.github.io/gpuweb/#canvas-context

callback BlobCallback = undefined (Blob? blob);

The canvasp677 element provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering graphs, game
graphics, art, or other visual images on the fly.

Authors should not use the canvasp677 element in a document when a more suitable element is available. For example, it is
inappropriate to use a canvasp677 element to render a page heading: if the desired presentation of the heading is graphically intense, it
should be marked up using appropriate elements (typically h1p216) and then styled using CSS and supporting technologies such as
shadow trees.

When authors use the canvasp677 element, they must also provide content that, when presented to the user, conveys essentially the
same function or purpose as the canvasp677 's bitmap. This content may be placed as content of the canvasp677 element. The contents
of the canvasp677 element, if any, are the element's fallback contentp150.

In interactive visual media, if scripting is enabledp1083 for the canvasp677 element, and if support for canvasp677 elements has been
enabled, then the canvasp677 element representsp141 embedded contentp150 consisting of a dynamically created image, the element's
bitmap.

In non-interactive, static, visual media, if the canvasp677 element has been previously associated with a rendering context (e.g. if the
page was viewed in an interactive visual medium and is now being printed, or if some script that ran during the page layout process
painted on the element), then the canvasp677 element representsp141 embedded contentp150 with the element's current bitmap and size.
Otherwise, the element represents its fallback contentp150 instead.

In non-visual media, and in visual media if scripting is disabledp1083 for the canvasp677 element or if support for canvasp677 elements has
been disabled, the canvasp677 element representsp141 its fallback contentp150 instead.

When a canvasp677 element representsp141 embedded contentp150, the user can still focus descendants of the canvasp677 element (in the
fallback contentp150). When an element is focusedp836, it is the target of keyboard interaction events (even though the element itself is
not visible). This allows authors to make an interactive canvas keyboard-accessible: authors should have a one-to-one mapping of
interactive regions to focusable areasp835 in the fallback contentp150. (Focus has no effect on mouse interaction events.) [UIEVENTS]p1483

An element whose nearest canvasp677 element ancestor is being renderedp1388 and representsp141 embedded contentp150 is an element
that is being used as relevant canvas fallback content.

The canvasp677 element has two attributes to control the size of the element's bitmap: width and height. These attributes, when
specified, must have values that are valid non-negative integersp77. The rules for parsing non-negative integersp77 must be used to
obtain their numeric values. If an attribute is missing, or if parsing its value returns an error, then the default value must be used
instead. The widthp678 attribute defaults to 300, and the heightp678 attribute defaults to 150.

When setting the value of the widthp678 or heightp678 attribute, if the context modep679 of the canvasp677 element is set to
placeholderp679, the user agent must throw an "InvalidStateError" DOMException and leave the attribute's value unchanged.

The natural dimensions of the canvasp677 element when it representsp141 embedded contentp150 are equal to the dimensions of the
element's bitmap.

The user agent must use a square pixel density consisting of one pixel of image data per coordinate space unit for the bitmaps of a
canvasp677 and its rendering contexts.

The bitmaps of canvasp677 elements, the bitmaps of ImageBitmapp1181 objects, as well as some of the bitmaps of rendering contexts,
such as those described in the sections on the CanvasRenderingContext2Dp682 and ImageBitmapRenderingContextp739 objects below,
have an origin-clean flag, which can be set to true or false. Initially, when the canvasp677 element or ImageBitmapp1181 object is
created, its bitmap's origin-cleanp678 flag must be set to true.

A canvasp677 element can have a rendering context bound to it. Initially, it does not have a bound rendering context. To keep track of

A canvasp677 element can be sized arbitrarily by a style sheet, its bitmap is then subject to the 'object-fit' CSS property.
Note

678

https://w3c.github.io/FileAPI/#dfn-Blob
https://dom.spec.whatwg.org/#concept-shadow-tree
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-images/#the-object-fit

whether it has a rendering context or not, and what kind of rendering context it is, a canvasp677 also has a canvas context mode,
which is initially none but can be changed to either placeholder, 2d, bitmaprenderer, webgl, webgl2, or webgpu by algorithms
defined in this specification.

When its canvas context modep679 is nonep679, a canvasp677 element has no rendering context, and its bitmap must be transparent
black with a natural width equal to the numeric valuep678 of the element's widthp678 attribute and a natural height equal to the numeric
valuep678 of the element's heightp678 attribute, those values being interpreted in CSS pixels, and being updated as the attributes are
set, changed, or removed.

When its canvas context modep679 is placeholderp679, a canvasp677 element has no rendering context. It serves as a placeholder for an
OffscreenCanvasp741 object, and the content of the canvasp677 element is updated by the OffscreenCanvasp741 object's rendering
context.

When a canvasp677 element represents embedded contentp150, it provides a paint source whose width is the element's natural width,
whose height is the element's natural height, and whose appearance is the element's bitmap.

Whenever the widthp678 and heightp678 content attributes are set, removed, changed, or redundantly set to the value they already
have, then the user agent must perform the action from the row of the following table that corresponds to the canvasp677 element's
context modep679.

Context Modep679 Action

2dp679 Follow the steps to set bitmap dimensionsp688 to the numeric valuesp678 of the widthp678 and heightp678 content attributes.

webglp679 or
webgl2p679

Follow the behavior defined in the WebGL specifications. [WEBGL]p1483

webgpup679 Follow the behavior defined in WebGPU. [WEBGPU]p1483

bitmaprendererp679 If the context's bitmap modep740 is set to blankp740, run the steps to set an ImageBitmapRenderingContext's output bitmapp740, passing
the canvasp677 element's rendering context.

placeholderp679 Do nothing.

nonep679 Do nothing.

The width and height IDL attributes must reflectp104 the respective content attributes of the same name, with the same defaults.

The getContext(contextId, options) method of the canvasp677 element, when invoked, must run these steps:

1. If options is not an object, then set options to null.

2. Set options to the result of converting options to a JavaScript value.

3. Run the steps in the cell of the following table whose column header matches this canvasp677 element's canvas context
modep679 and whose row header matches contextId:

context = canvas.getContextp679(contextId [, options])
Returns an object that exposes an API for drawing on the canvas. contextId specifies the desired API: "2dp680",
"bitmaprendererp680", "webglp680", "webgl2p680", or "webgpup680". options is handled by that API.
This specification defines the "2dp680" and "bitmaprendererp680" contexts below. The WebGL specifications define the
"webglp680" and "webgl2p680" contexts. WebGPU defines the "webgpup680" context. [WEBGL]p1483 [WEBGPU]p1483

Returns null if contextId is not supported, or if the canvas has already been initialized with another context type (e.g., trying to
get a "2dp680" context after getting a "webglp680" context).

For web developers (non-normative)

✔ MDN

679

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images-4/#paint-source
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#es-type-mapping

nonep679 2dp679 bitmaprendererp679 webglp679

or
webgl2p679

webgpup679 placeholderp679

"2d"
1. Let context be the result of

running the 2D context creation
algorithmp688 given this and
options.

2. Set this's context modep679 to
2dp679.

3. Return context.

Return the
same
object as
was
returned
the last
time the
method
was
invoked
with this
same first
argument.

Return null. Return null. Return null. Throw an
"InvalidStateError"
DOMException.

"bitmaprenderer"
1. Let context be the result of

running the
ImageBitmapRenderingContext
creation algorithmp741 given this
and options.

2. Set this's context modep679 to
bitmaprendererp679.

3. Return context.

Return
null.

Return the same
object as was
returned the last
time the method was
invoked with this
same first argument.

Return null. Return null. Throw an
"InvalidStateError"
DOMException.

"webgl" or
"webgl2", if the
user agent
supports the
WebGL feature
in its current
configuration

1. Let context be the result of
following the instructions given
in the WebGL specifications'
Context Creation sections.
[WEBGL]p1483

2. If context is null, then return
null; otherwise set this's context
modep679 to webglp679 or
webgl2p679.

3. Return context.

Return
null.

Return null. Return the
same
object as
was
returned
the last
time the
method
was
invoked
with this
same first
argument.

Return null. Throw an
"InvalidStateError"
DOMException.

"webgpu", if the
user agent
supports the
WebGPU feature
in its current
configuration

1. Let context be the result of
following the instructions given
in WebGPU's Canvas Rendering
section. [WEBGPU]p1483

2. If context is null, then return
null; otherwise set this's context
modep679 to webgpup679.

3. Return context.

Return
null.

Return null. Return null. Return the
same object
as was
returned the
last time
the method
was invoked
with this
same first
argument.

Throw an
"InvalidStateError"
DOMException.

An unsupported
value*

Return null. Return
null.

Return null. Return null. Return null. Throw an
"InvalidStateError"
DOMException.

* For example, the "webglp680" or "webgl2p680" value in the case of a user agent having exhausted the graphics hardware's abilities and
having no software fallback implementation.

url = canvas.toDataURLp681([type [, quality]])
Returns a data: URL for the image in the canvas.
The first argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The default is "image/pngp1473";
that type is also used if the given type isn't supported. The second argument applies if the type is an image format that
supports variable quality (such as "image/jpegp1473"), and is a number in the range 0.0 to 1.0 inclusive indicating the desired
quality level for the resulting image.
When trying to use types other than "image/pngp1473", authors can check if the image was really returned in the requested
format by checking to see if the returned string starts with one of the exact strings "data:image/png," or "data:image/png;".

For web developers (non-normative)

680

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://gpuweb.github.io/gpuweb/#canvas-rendering
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://www.rfc-editor.org/rfc/rfc2397#section-2

The toDataURL(type, quality) method, when invoked, must run these steps:

1. If this canvasp677 element's bitmap's origin-cleanp678 flag is set to false, then throw a "SecurityError" DOMException.

2. If this canvasp677 element's bitmap has no pixels (i.e. either its horizontal dimension or its vertical dimension is zero) then
return the string "data:,". (This is the shortest data: URL; it represents the empty string in a text/plain resource.)

3. Let file be a serialization of this canvas element's bitmap as a filep747, passing type and quality if given.

4. If file is null then return "data:,".

5. Return a data: URL representing file. [RFC2397]p1481

The toBlob(callback, type, quality) method, when invoked, must run these steps:

1. If this canvasp677 element's bitmap's origin-cleanp678 flag is set to false, then throw a "SecurityError" DOMException.

2. Let result be null.

3. If this canvasp677 element's bitmap has pixels (i.e., neither its horizontal dimension nor its vertical dimension is zero), then
set result to a copy of this canvasp677 element's bitmap.

4. Run these steps in parallelp43:

1. If result is non-null, then set result to a serialization of result as a filep747 with type and quality if given.

2. Queue an element taskp1125 on the canvas blob serialization task source given the canvasp677 element to run
these steps:

1. If result is non-null, then set result to a new Blob object, created in the relevant realmp1083 of this
canvasp677 element, representing result. [FILEAPI]p1478

2. Invoke callback with « result » and "report".

The transferControlToOffscreen() method, when invoked, must run these steps:

1. If this canvasp677 element's context modep679 is not set to nonep679, throw an "InvalidStateError" DOMException.

2. Let offscreenCanvas be a new OffscreenCanvasp741 object with its width and height equal to the values of the widthp678 and
heightp678 content attributes of this canvasp677 element.

3. Set the placeholder canvas elementp742 of offscreenCanvas to a weak reference to this canvasp677 element.

4. Set this canvasp677 element's context modep679 to placeholderp679.

5. Return offscreenCanvas.

If it does, the image is PNG, and thus the requested type was not supported. (The one exception to this is if the canvas has
either no height or no width, in which case the result might simply be "data:,".)

canvas.toBlobp681(callback [, type [, quality]])
Creates a Blob object representing a file containing the image in the canvas, and invokes a callback with a handle to that
object.
The second argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The default is "image/
pngp1473"; that type is also used if the given type isn't supported. The third argument applies if the type is an image format that
supports variable quality (such as "image/jpegp1473"), and is a number in the range 0.0 to 1.0 inclusive indicating the desired
quality level for the resulting image.

canvas.transferControlToOffscreenp681()
Returns a newly created OffscreenCanvasp741 object that uses the canvasp677 element as a placeholder. Once the canvasp677

element has become a placeholder for an OffscreenCanvasp741 object, its natural size can no longer be changed, and it cannot
have a rendering context. The content of the placeholder canvas is updated on the OffscreenCanvasp741 's relevant agentp1073 's
event loopp1123 's update the renderingp1128 steps.

681

https://w3c.github.io/FileAPI/#dfn-Blob
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

typedef (HTMLImageElement or
SVGImageElement) HTMLOrSVGImageElement;

typedef (HTMLOrSVGImageElement or
HTMLVideoElement or
HTMLCanvasElement or
ImageBitmap or
OffscreenCanvas or
VideoFrame) CanvasImageSource;

enum PredefinedColorSpace { "srgb", "display-p3" };

enum CanvasFillRule { "nonzero", "evenodd" };

dictionary CanvasRenderingContext2DSettings {
boolean alpha = true;
boolean desynchronized = false;
PredefinedColorSpace colorSpace = "srgb";
boolean willReadFrequently = false;

};

enum ImageSmoothingQuality { "low", "medium", "high" };

[Exposed=Window]
interface CanvasRenderingContext2D {

// back-reference to the canvas
readonly attribute HTMLCanvasElement canvas;

CanvasRenderingContext2DSettings getContextAttributes();
};
CanvasRenderingContext2D includes CanvasState;
CanvasRenderingContext2D includes CanvasTransform;
CanvasRenderingContext2D includes CanvasCompositing;
CanvasRenderingContext2D includes CanvasImageSmoothing;
CanvasRenderingContext2D includes CanvasFillStrokeStyles;
CanvasRenderingContext2D includes CanvasShadowStyles;
CanvasRenderingContext2D includes CanvasFilters;
CanvasRenderingContext2D includes CanvasRect;
CanvasRenderingContext2D includes CanvasDrawPath;
CanvasRenderingContext2D includes CanvasUserInterface;
CanvasRenderingContext2D includes CanvasText;
CanvasRenderingContext2D includes CanvasDrawImage;
CanvasRenderingContext2D includes CanvasImageData;
CanvasRenderingContext2D includes CanvasPathDrawingStyles;
CanvasRenderingContext2D includes CanvasTextDrawingStyles;
CanvasRenderingContext2D includes CanvasPath;

interface mixin CanvasState {
// state
undefined save(); // push state on state stack
undefined restore(); // pop state stack and restore state
undefined reset(); // reset the rendering context to its default state
boolean isContextLost(); // return whether context is lost

};

interface mixin CanvasTransform {
// transformations (default transform is the identity matrix)
undefined scale(unrestricted double x, unrestricted double y);
undefined rotate(unrestricted double angle);
undefined translate(unrestricted double x, unrestricted double y);

4.12.5.1 The 2D rendering context §p68

2

IDL

✔ MDN

MDN

682

https://svgwg.org/svg2-draft/embedded.html#InterfaceSVGImageElement
https://w3c.github.io/webcodecs/#videoframe-interface

undefined transform(unrestricted double a, unrestricted double b, unrestricted double c, unrestricted
double d, unrestricted double e, unrestricted double f);

[NewObject] DOMMatrix getTransform();
undefined setTransform(unrestricted double a, unrestricted double b, unrestricted double c,

unrestricted double d, unrestricted double e, unrestricted double f);
undefined setTransform(optional DOMMatrix2DInit transform = {});
undefined resetTransform();

};

interface mixin CanvasCompositing {
// compositing
attribute unrestricted double globalAlpha; // (default 1.0)
attribute DOMString globalCompositeOperation; // (default "source-over")

};

interface mixin CanvasImageSmoothing {
// image smoothing
attribute boolean imageSmoothingEnabled; // (default true)
attribute ImageSmoothingQuality imageSmoothingQuality; // (default low)

};

interface mixin CanvasFillStrokeStyles {
// colors and styles (see also the CanvasPathDrawingStyles and CanvasTextDrawingStyles interfaces)
attribute (DOMString or CanvasGradient or CanvasPattern) strokeStyle; // (default black)
attribute (DOMString or CanvasGradient or CanvasPattern) fillStyle; // (default black)
CanvasGradient createLinearGradient(double x0, double y0, double x1, double y1);
CanvasGradient createRadialGradient(double x0, double y0, double r0, double x1, double y1, double r1);
CanvasGradient createConicGradient(double startAngle, double x, double y);
CanvasPattern? createPattern(CanvasImageSource image, [LegacyNullToEmptyString] DOMString repetition);

};

interface mixin CanvasShadowStyles {
// shadows
attribute unrestricted double shadowOffsetX; // (default 0)
attribute unrestricted double shadowOffsetY; // (default 0)
attribute unrestricted double shadowBlur; // (default 0)
attribute DOMString shadowColor; // (default transparent black)

};

interface mixin CanvasFilters {
// filters
attribute DOMString filter; // (default "none")

};

interface mixin CanvasRect {
// rects
undefined clearRect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h);
undefined fillRect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h);
undefined strokeRect(unrestricted double x, unrestricted double y, unrestricted double w,

unrestricted double h);
};

interface mixin CanvasDrawPath {
// path API (see also CanvasPath)
undefined beginPath();

683

https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://drafts.csswg.org/css-color/#transparent-black

undefined fill(optional CanvasFillRule fillRule = "nonzero");
undefined fill(Path2D path, optional CanvasFillRule fillRule = "nonzero");
undefined stroke();
undefined stroke(Path2D path);
undefined clip(optional CanvasFillRule fillRule = "nonzero");
undefined clip(Path2D path, optional CanvasFillRule fillRule = "nonzero");
boolean isPointInPath(unrestricted double x, unrestricted double y, optional CanvasFillRule fillRule =

"nonzero");
boolean isPointInPath(Path2D path, unrestricted double x, unrestricted double y, optional

CanvasFillRule fillRule = "nonzero");
boolean isPointInStroke(unrestricted double x, unrestricted double y);
boolean isPointInStroke(Path2D path, unrestricted double x, unrestricted double y);

};

interface mixin CanvasUserInterface {
undefined drawFocusIfNeeded(Element element);
undefined drawFocusIfNeeded(Path2D path, Element element);

};

interface mixin CanvasText {
// text (see also the CanvasPathDrawingStyles and CanvasTextDrawingStyles interfaces)
undefined fillText(DOMString text, unrestricted double x, unrestricted double y, optional

unrestricted double maxWidth);
undefined strokeText(DOMString text, unrestricted double x, unrestricted double y, optional

unrestricted double maxWidth);
TextMetrics measureText(DOMString text);

};

interface mixin CanvasDrawImage {
// drawing images
undefined drawImage(CanvasImageSource image, unrestricted double dx, unrestricted double dy);
undefined drawImage(CanvasImageSource image, unrestricted double dx, unrestricted double dy,

unrestricted double dw, unrestricted double dh);
undefined drawImage(CanvasImageSource image, unrestricted double sx, unrestricted double sy,

unrestricted double sw, unrestricted double sh, unrestricted double dx, unrestricted double dy,
unrestricted double dw, unrestricted double dh);
};

interface mixin CanvasImageData {
// pixel manipulation
ImageData createImageData([EnforceRange] long sw, [EnforceRange] long sh, optional ImageDataSettings

settings = {});
ImageData createImageData(ImageData imagedata);
ImageData getImageData([EnforceRange] long sx, [EnforceRange] long sy, [EnforceRange] long sw,

[EnforceRange] long sh, optional ImageDataSettings settings = {});
undefined putImageData(ImageData imagedata, [EnforceRange] long dx, [EnforceRange] long dy);
undefined putImageData(ImageData imagedata, [EnforceRange] long dx, [EnforceRange] long dy,

[EnforceRange] long dirtyX, [EnforceRange] long dirtyY, [EnforceRange] long dirtyWidth, [EnforceRange]
long dirtyHeight);
};

enum CanvasLineCap { "butt", "round", "square" };
enum CanvasLineJoin { "round", "bevel", "miter" };
enum CanvasTextAlign { "start", "end", "left", "right", "center" };
enum CanvasTextBaseline { "top", "hanging", "middle", "alphabetic", "ideographic", "bottom" };
enum CanvasDirection { "ltr", "rtl", "inherit" };
enum CanvasFontKerning { "auto", "normal", "none" };
enum CanvasFontStretch { "ultra-condensed", "extra-condensed", "condensed", "semi-condensed", "normal",
"semi-expanded", "expanded", "extra-expanded", "ultra-expanded" };
enum CanvasFontVariantCaps { "normal", "small-caps", "all-small-caps", "petite-caps", "all-petite-caps",
"unicase", "titling-caps" };

684

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element

enum CanvasTextRendering { "auto", "optimizeSpeed", "optimizeLegibility", "geometricPrecision" };

interface mixin CanvasPathDrawingStyles {
// line caps/joins
attribute unrestricted double lineWidth; // (default 1)
attribute CanvasLineCap lineCap; // (default "butt")
attribute CanvasLineJoin lineJoin; // (default "miter")
attribute unrestricted double miterLimit; // (default 10)

// dashed lines
undefined setLineDash(sequence<unrestricted double> segments); // default empty
sequence<unrestricted double> getLineDash();
attribute unrestricted double lineDashOffset;

};

interface mixin CanvasTextDrawingStyles {
// text
attribute DOMString font; // (default 10px sans-serif)
attribute CanvasTextAlign textAlign; // (default: "start")
attribute CanvasTextBaseline textBaseline; // (default: "alphabetic")
attribute CanvasDirection direction; // (default: "inherit")
attribute DOMString letterSpacing; // (default: "0px")
attribute CanvasFontKerning fontKerning; // (default: "auto")
attribute CanvasFontStretch fontStretch; // (default: "normal")
attribute CanvasFontVariantCaps fontVariantCaps; // (default: "normal")
attribute CanvasTextRendering textRendering; // (default: "auto")
attribute DOMString wordSpacing; // (default: "0px")

};

interface mixin CanvasPath {
// shared path API methods
undefined closePath();
undefined moveTo(unrestricted double x, unrestricted double y);
undefined lineTo(unrestricted double x, unrestricted double y);
undefined quadraticCurveTo(unrestricted double cpx, unrestricted double cpy, unrestricted double x,

unrestricted double y);
undefined bezierCurveTo(unrestricted double cp1x, unrestricted double cp1y, unrestricted double cp2x,

unrestricted double cp2y, unrestricted double x, unrestricted double y);
undefined arcTo(unrestricted double x1, unrestricted double y1, unrestricted double x2, unrestricted

double y2, unrestricted double radius);
undefined rect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h);
undefined roundRect(unrestricted double x, unrestricted double y, unrestricted double w, unrestricted

double h, optional (unrestricted double or DOMPointInit or sequence<(unrestricted double or
DOMPointInit)>) radii = 0);

undefined arc(unrestricted double x, unrestricted double y, unrestricted double radius, unrestricted
double startAngle, unrestricted double endAngle, optional boolean counterclockwise = false);

undefined ellipse(unrestricted double x, unrestricted double y, unrestricted double radiusX,
unrestricted double radiusY, unrestricted double rotation, unrestricted double startAngle, unrestricted
double endAngle, optional boolean counterclockwise = false);
};

[Exposed=(Window,Worker)]
interface CanvasGradient {

// opaque object
undefined addColorStop(double offset, DOMString color);

};

[Exposed=(Window,Worker)]
interface CanvasPattern {

// opaque object

685

https://drafts.fxtf.org/geometry/#dictdef-dompointinit
https://drafts.fxtf.org/geometry/#dictdef-dompointinit

undefined setTransform(optional DOMMatrix2DInit transform = {});
};

[Exposed=(Window,Worker)]
interface TextMetrics {

// x-direction
readonly attribute double width; // advance width
readonly attribute double actualBoundingBoxLeft;
readonly attribute double actualBoundingBoxRight;

// y-direction
readonly attribute double fontBoundingBoxAscent;
readonly attribute double fontBoundingBoxDescent;
readonly attribute double actualBoundingBoxAscent;
readonly attribute double actualBoundingBoxDescent;
readonly attribute double emHeightAscent;
readonly attribute double emHeightDescent;
readonly attribute double hangingBaseline;
readonly attribute double alphabeticBaseline;
readonly attribute double ideographicBaseline;

};

dictionary ImageDataSettings {
PredefinedColorSpace colorSpace;

};

[Exposed=(Window,Worker),
Serializable]

interface ImageData {
constructor(unsigned long sw, unsigned long sh, optional ImageDataSettings settings = {});
constructor(Uint8ClampedArray data, unsigned long sw, optional unsigned long sh, optional

ImageDataSettings settings = {});

readonly attribute unsigned long width;
readonly attribute unsigned long height;
readonly attribute Uint8ClampedArray data;
readonly attribute PredefinedColorSpace colorSpace;

};

[Exposed=(Window,Worker)]
interface Path2D {

constructor(optional (Path2D or DOMString) path);

undefined addPath(Path2D path, optional DOMMatrix2DInit transform = {});
};
Path2D includes CanvasPath;

To maintain compatibility with existing web content, user agents need to enumerate methods defined in CanvasUserInterfacep684

immediately after the stroke()p720 method on CanvasRenderingContext2Dp682 objects.

Note

context = canvas.getContextp679('2d' [, { [alphap688: true] [, desynchronizedp688: false] [, colorSpacep688:
'srgb'] [, willReadFrequentlyp688: false]}])

Returns a CanvasRenderingContext2Dp682 object that is permanently bound to a particular canvasp677 element.
If the alphap688 member is false, then the context is forced to always be opaque.
If the desynchronizedp688 member is true, then the context might be desynchronizedp687.
The colorSpacep688 member specifies the color spacep688 of the rendering context.

For web developers (non-normative)

686

https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit

A CanvasRenderingContext2Dp682 object has an output bitmap that is initialized when the object is created.

The output bitmapp687 has an origin-cleanp678 flag, which can be set to true or false. Initially, when one of these bitmaps is created, its
origin-cleanp678 flag must be set to true.

The CanvasRenderingContext2Dp682 object also has an alpha boolean. When a CanvasRenderingContext2Dp682 object's alphap687 is
false, then its alpha channel must be fixed to 1.0 (fully opaque) for all pixels, and attempts to change the alpha component of any pixel
must be silently ignored.

The CanvasRenderingContext2Dp682 object also has a desynchronized boolean. When a CanvasRenderingContext2Dp682 object's
desynchronizedp687 is true, then the user agent may optimize the rendering of the canvas to reduce the latency, as measured from
input events to rasterization, by desynchronizing the canvas paint cycle from the event loop, bypassing the ordinary user agent
rendering algorithm, or both. Insofar as this mode involves bypassing the usual paint mechanisms, rasterization, or both, it might
introduce visible tearing artifacts.

The CanvasRenderingContext2Dp682 object also has a will read frequently boolean. When a CanvasRenderingContext2Dp682 object's
will read frequentlyp687 is true, the user agent may optimize the canvas for readback operations.

If the willReadFrequentlyp688 member is true, then the context is marked for readback optimizationp687.

context.canvasp689

Returns the canvasp677 element.

attributes = context.getContextAttributesp688()
Returns an object whose:

• alphap687 member is true if the context has an alpha channel, or false if it was forced to be opaque.

• desynchronizedp688 member is true if the context can be desynchronizedp687.

• colorSpacep688 member is a string indicating the context's color spacep688.

• willReadFrequentlyp688 member is true if the context is marked for readback optimizationp687.

Thus, the bitmap of such a context starts off as opaque black instead of transparent black; clearRect()p716 always results in
opaque black pixels, every fourth byte from getImageData()p727 is always 255, the putImageData()p728 method effectively ignores
every fourth byte in its input, and so on. However, the alpha component of styles and images drawn onto the canvas are still
honoured up to the point where they would impact the output bitmapp687 's alpha channel; for instance, drawing a 50% transparent
white square on a freshly created output bitmapp687 with its alphap687 set to false will result in a fully-opaque gray square.

Note

The user agent usually renders on a buffer which is not being displayed, quickly swapping it and the one being scanned out for
presentation; the former buffer is called back buffer and the latter front buffer. A popular technique for reducing latency is called
front buffer rendering, also known as single buffer rendering, where rendering happens in parallel and racily with the scanning out
process. This technique reduces the latency at the price of potentially introducing tearing artifacts and can be used to implement
in total or part of the desynchronizedp687 boolean. [MULTIPLEBUFFERING]p1480

Note

The desynchronizedp687 boolean can be useful when implementing certain kinds of applications, such as drawing applications,
where the latency between input and rasterization is critical.

Note

On most devices the user agent needs to decide whether to store the canvas's output bitmapp687 on the GPU (this is also called
"hardware accelerated"), or on the CPU (also called "software"). Most rendering operations are more performant for accelerated
canvases, with the major exception being readback with getImageData()p727, toDataURL()p681, or toBlob()p681.
CanvasRenderingContext2Dp682 objects with will read frequentlyp687 equal to true tell the user agent that the webpage is likely to
perform many readback operations and that it is advantageous to use a software canvas.

Note

687

https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black

The CanvasRenderingContext2Dp682 object also has a color space setting of type PredefinedColorSpacep682. The
CanvasRenderingContext2Dp682 object's color spacep688 indicates the color space for the output bitmapp687.

The getContextAttributes() method steps are to return «["alphap688" → this's alphap687, "desynchronizedp688" → this's
desynchronizedp687, "colorSpacep688" → this's color spacep688, "willReadFrequentlyp688" → this's will read frequentlyp687]».

The CanvasRenderingContext2Dp682 2D rendering context represents a flat linear Cartesian surface whose origin (0,0) is at the top left
corner, with the coordinate space having x values increasing when going right, and y values increasing when going down. The
x-coordinate of the right-most edge is equal to the width of the rendering context's output bitmapp687 in CSS pixels; similarly, the
y-coordinate of the bottom-most edge is equal to the height of the rendering context's output bitmapp687 in CSS pixels.

The size of the coordinate space does not necessarily represent the size of the actual bitmaps that the user agent will use internally or
during rendering. On high-definition displays, for instance, the user agent may internally use bitmaps with four device pixels per unit in
the coordinate space, so that the rendering remains at high quality throughout. Anti-aliasing can similarly be implemented using
oversampling with bitmaps of a higher resolution than the final image on the display.

The 2D context creation algorithm, which is passed a target (a canvasp677 element) and options, consists of running these steps:

1. Let settings be the result of converting options to the dictionary type CanvasRenderingContext2DSettingsp682. (This can
throw an exception.).

2. Let context be a new CanvasRenderingContext2Dp682 object.

3. Initialize context's canvasp689 attribute to point to target.

4. Set context's output bitmapp687 to the same bitmap as target's bitmap (so that they are shared).

5. Set bitmap dimensionsp688 to the numeric valuesp678 of target's widthp678 and heightp678 content attributes.

6. Set context's alphap687 to settings["alpha"].

7. Set context's desynchronizedp687 to settings["desynchronized"].

8. Set context's color spacep688 to settings["colorSpace"].

9. Set context's will read frequentlyp687 to settings["willReadFrequently"].

10. Return context.

When the user agent is to set bitmap dimensions to width and height, it must run these steps:

1. Reset the rendering context to its default statep690.

2. Resize the output bitmapp687 to the new width and height.

3. Let canvas be the canvasp677 element to which the rendering context's canvasp689 attribute was initialized.

4. If the numeric valuep678 of canvas's widthp678 content attribute differs from width, then set canvas's widthp678 content
attribute to the shortest possible string representing width as a valid non-negative integerp77.

5. If the numeric valuep678 of canvas's heightp678 content attribute differs from height, then set canvas's heightp678 content
attribute to the shortest possible string representing height as a valid non-negative integerp77.

Using CSS pixels to describe the size of a rendering context's output bitmapp687 does not mean that when rendered the canvas will
cover an equivalent area in CSS pixels. CSS pixels are reused for ease of integration with CSS features, such as text layout.

In other words, the canvasp677 element below's rendering context has a 200x200 output bitmapp687 (which internally uses CSS
pixels as a unit for ease of integration with CSS) and is rendered as 100x100 CSS pixels:

<canvas width=200 height=200 style=width:100px;height:100px>

Example

688

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://webidl.spec.whatwg.org/#es-type-mapping

The canvas attribute must return the value it was initialized to when the object was created.

The PredefinedColorSpacep682 enumeration is used to specify the color spacep688 of the canvas's backing store.

The "srgb" value indicates the 'srgb' color space.

The "display-p3" value indicates the 'display-p3' color space.

The CanvasFillRulep682 enumeration is used to select the fill rule algorithm by which to determine if a point is inside or outside a
path.

The value "nonzero" value indicates the nonzero winding rule, wherein a point is considered to be outside a shape if the number of
times a half-infinite straight line drawn from that point crosses the shape's path going in one direction is equal to the number of times
it crosses the path going in the other direction.

The "evenodd" value indicates the even-odd rule, wherein a point is considered to be outside a shape if the number of times a half-
infinite straight line drawn from that point crosses the shape's path is even.

If a point is not outside a shape, it is inside the shape.

The ImageSmoothingQualityp682 enumeration is used to express a preference for the interpolation quality to use when smoothing
images.

The "low" value indicates a preference for a low level of image interpolation quality. Low-quality image interpolation may be more
computationally efficient than higher settings.

The "medium" value indicates a preference for a medium level of image interpolation quality.

The "high" value indicates a preference for a high level of image interpolation quality. High-quality image interpolation may be more
computationally expensive than lower settings.

This section is non-normative.

The output bitmapp687, when it is not directly displayed by the user agent, implementations can, instead of updating this bitmap,
merely remember the sequence of drawing operations that have been applied to it until such time as the bitmap's actual data is

Only one square appears to be drawn in the following example:

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');
context.fillRect(0,0,50,50);
canvas.setAttribute('width', '300'); // clears the canvas
context.fillRect(0,100,50,50);
canvas.width = canvas.width; // clears the canvas
context.fillRect(100,0,50,50); // only this square remains

Example

The algorithm for converting between color spaces can be found in the Converting Colors section of CSS Color. [CSSCOLOR]p1476

Note

Bilinear scaling is an example of a relatively fast, lower-quality image-smoothing algorithm. Bicubic or Lanczos scaling are
examples of image-smoothing algorithms that produce higher-quality output. This specification does not mandate that specific
interpolation algorithms be used.

Note

4.12.5.1.1 Implementation notes §p68

9

689

https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-color/#valdef-color-display-p3
https://drafts.csswg.org/css-color/#color-conversion

needed (for example because of a call to drawImage()p723, or the createImageBitmap()p1182 factory method). In many cases, this will
be more memory efficient.

The bitmap of a canvasp677 element is the one bitmap that's pretty much always going to be needed in practice. The output bitmapp687

of a rendering context, when it has one, is always just an alias to a canvasp677 element's bitmap.

Additional bitmaps are sometimes needed, e.g. to enable fast drawing when the canvas is being painted at a different size than its
natural size, or to enable double buffering so that graphics updates, like page scrolling for example, can be processed concurrently
while canvas draw commands are being executed.

Objects that implement the CanvasStatep682 interface maintain a stack of drawing states. Drawing states consist of:

• The current transformation matrixp709.

• The current clipping regionp720.

• The current letter spacingp697, word spacingp697, fill stylep712, stroke stylep712, filterp733, global alphap731, compositing and
blending operatorp731, and shadow colorp732.

• The current values of the following attributes: lineWidthp691, lineCapp691, lineJoinp692, miterLimitp692, lineDashOffsetp692,
shadowOffsetXp732, shadowOffsetYp732, shadowBlurp732, fontp696, textAlignp697, textBaselinep697, directionp697,
fontKerningp697, fontStretchp697, fontVariantCapsp698, textRenderingp698, imageSmoothingEnabledp731,
imageSmoothingQualityp731.

• The current dash listp692.

Objects that implement the CanvasStatep682 mixin have a context lost boolean, that is initialized to false when the object is created.
The context lostp690 value is updated in the context lost stepsp1129.

The save() method steps are to push a copy of the current drawing state onto the drawing state stack.

The restore() method steps are to pop the top entry in the drawing state stack, and reset the drawing state it describes. If there is no
saved state, then the method must do nothing.

The reset() method steps are to reset the rendering context to its default statep690.

To reset the rendering context to its default state:

1. Clear canvas's bitmap to transparent black.

2. Empty the list of subpaths in context's current default pathp719.

3. Clear the context's drawing state stack.

4.12.5.1.2 The canvas state §p69

0

The rendering context's bitmaps are not part of the drawing state, as they depend on whether and how the rendering context is
bound to a canvasp677 element.

Note

context.savep690()
Pushes the current state onto the stack.

context.restorep690()
Pops the top state on the stack, restoring the context to that state.

context.resetp690()
Resets the rendering context, which includes the backing buffer, the drawing state stack, path, and styles.

context.isContextLostp691()
Returns true if the rendering context was lost. Context loss can occur due to driver crashes, running out of memory, etc. In
these cases, the canvas loses its backing storage and takes steps to reset the rendering context to its default statep690.

For web developers (non-normative)

MDN

690

https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-color/#transparent-black

4. Reset everything that drawing statep690 consists of to their initial values.

The isContextLost() method steps are to return this's context lostp690.

Objects that implement the CanvasPathDrawingStylesp685 interface have attributes and methods (defined in this section) that control
how lines are treated by the object.

The lineWidth attribute gives the width of lines, in coordinate space units. On getting, it must return the current value. On setting,
zero, negative, infinite, and NaN values must be ignored, leaving the value unchanged; other values must change the current value to
the new value.

When the object implementing the CanvasPathDrawingStylesp685 interface is created, the lineWidthp691 attribute must initially have
the value 1.0.

The lineCap attribute defines the type of endings that UAs will place on the end of lines. The three valid values are "butt", "round",
and "square".

4.12.5.1.3 Line styles §p69

1

context.lineWidthp691 [= value]
styles.lineWidthp691 [= value]

Returns the current line width.
Can be set, to change the line width. Values that are not finite values greater than zero are ignored.

context.lineCapp691 [= value]
styles.lineCapp691 [= value]

Returns the current line cap style.
Can be set, to change the line cap style.
The possible line cap styles are "butt", "round", and "square". Other values are ignored.

context.lineJoinp692 [= value]
styles.lineJoinp692 [= value]

Returns the current line join style.
Can be set, to change the line join style.
The possible line join styles are "bevel", "round", and "miter". Other values are ignored.

context.miterLimitp692 [= value]
styles.miterLimitp692 [= value]

Returns the current miter limit ratio.
Can be set, to change the miter limit ratio. Values that are not finite values greater than zero are ignored.

context.setLineDashp692(segments)
styles.setLineDashp692(segments)

Sets the current line dash pattern (as used when stroking). The argument is a list of distances for which to alternately have the
line on and the line off.

segments = context.getLineDashp692()
segments = styles.getLineDashp692()

Returns a copy of the current line dash pattern. The array returned will always have an even number of entries (i.e. the pattern
is normalized).

context.lineDashOffsetp692

styles.lineDashOffsetp692

Returns the phase offset (in the same units as the line dash pattern).
Can be set, to change the phase offset. Values that are not finite values are ignored.

For web developers (non-normative)

⚠ MDN

691

https://webidl.spec.whatwg.org/#this

On getting, it must return the current value. On setting, the current value must be changed to the new value.

When the object implementing the CanvasPathDrawingStylesp685 interface is created, the lineCapp691 attribute must initially have the
value "butt".

The lineJoin attribute defines the type of corners that UAs will place where two lines meet. The three valid values are "bevel",
"round", and "miter".

On getting, it must return the current value. On setting, the current value must be changed to the new value.

When the object implementing the CanvasPathDrawingStylesp685 interface is created, the lineJoinp692 attribute must initially have
the value "miter".

When the lineJoinp692 attribute has the value "miter", strokes use the miter limit ratio to decide how to render joins. The miter limit
ratio can be explicitly set using the miterLimit attribute. On getting, it must return the current value. On setting, zero, negative,
infinite, and NaN values must be ignored, leaving the value unchanged; other values must change the current value to the new value.

When the object implementing the CanvasPathDrawingStylesp685 interface is created, the miterLimitp692 attribute must initially have
the value 10.0.

Each CanvasPathDrawingStylesp685 object has a dash list, which is either empty or consists of an even number of non-negative
numbers. Initially, the dash listp692 must be empty.

The setLineDash(segments) method, when invoked, must run these steps:

1. If any value in segments is not finite (e.g. an Infinity or a NaN value), or if any value is negative (less than zero), then return
(without throwing an exception; user agents could show a message on a developer console, though, as that would be helpful
for debugging).

2. If the number of elements in segments is odd, then let segments be the concatenation of two copies of segments.

3. Let the object's dash listp692 be segments.

When the getLineDash() method is invoked, it must return a sequence whose values are the values of the object's dash listp692, in the
same order.

It is sometimes useful to change the "phase" of the dash pattern, e.g. to achieve a "marching ants" effect. The phase can be set using
the lineDashOffset attribute. On getting, it must return the current value. On setting, infinite and NaN values must be ignored,
leaving the value unchanged; other values must change the current value to the new value.

When the object implementing the CanvasPathDrawingStylesp685 interface is created, the lineDashOffsetp692 attribute must initially
have the value 0.0.

When a user agent is to trace a path, given an object style that implements the CanvasPathDrawingStylesp685 interface, it must run
the following algorithm. This algorithm returns a new pathp702.

1. Let path be a copy of the path being traced.

2. Prune all zero-length line segmentsp702 from path.

3. Remove from path any subpaths containing no lines (i.e. subpaths with just one point).

4. Replace each point in each subpath of path other than the first point and the last point of each subpath by a join that joins
the line leading to that point to the line leading out of that point, such that the subpaths all consist of two points (a starting
point with a line leading out of it, and an ending point with a line leading into it), one or more lines (connecting the points
and the joins), and zero or more joins (each connecting one line to another), connected together such that each subpath is a
series of one or more lines with a join between each one and a point on each end.

5. Add a straight closing line to each closed subpath in path connecting the last point and the first point of that subpath;
change the last point to a join (from the previously last line to the newly added closing line), and change the first point to a
join (from the newly added closing line to the first line).

692

6. If style's dash listp692 is empty, then jump to the step labeled convert.

7. Let pattern width be the concatenation of all the entries of style's dash listp692, in coordinate space units.

8. For each subpath subpath in path, run the following substeps. These substeps mutate the subpaths in path in vivo.

1. Let subpath width be the length of all the lines of subpath, in coordinate space units.

2. Let offset be the value of style's lineDashOffsetp692, in coordinate space units.

3. While offset is greater than pattern width, decrement it by pattern width.

While offset is less than zero, increment it by pattern width.

4. Define L to be a linear coordinate line defined along all lines in subpath, such that the start of the first line in the
subpath is defined as coordinate 0, and the end of the last line in the subpath is defined as coordinate subpath
width.

5. Let position be zero minus offset.

6. Let index be 0.

7. Let current state be off (the other states being on and zero-on).

8. Dash on: Let segment length be the value of style's dash listp692 's indexth entry.

9. Increment position by segment length.

10. If position is greater than subpath width, then end these substeps for this subpath and start them again for the
next subpath; if there are no more subpaths, then jump to the step labeled convert instead.

11. If segment length is nonzero, then let current state be on.

12. Increment index by one.

13. Dash off: Let segment length be the value of style's dash listp692 's indexth entry.

14. Let start be the offset position on L.

15. Increment position by segment length.

16. If position is less than zero, then jump to the step labeled post-cut.

17. If start is less than zero, then let start be zero.

18. If position is greater than subpath width, then let end be the offset subpath width on L. Otherwise, let end be the
offset position on L.

19. Jump to the first appropriate step:

↪ If segment length is zero and current state is off
Do nothing, just continue to the next step.

↪ If current state is off
Cut the line on which end finds itself short at end and place a point there, cutting in two the subpath that it
was in; remove all line segments, joins, points, and subpaths that are between start and end; and finally
place a single point at start with no lines connecting to it.

The point has a directionality for the purposes of drawing line caps (see below). The directionality is the
direction that the original line had at that point (i.e. when L was defined above).

↪ Otherwise
Cut the line on which start finds itself into two at start and place a point there, cutting in two the subpath
that it was in, and similarly cut the line on which end finds itself short at end and place a point there, cutting
in two the subpath that it was in, and then remove all line segments, joins, points, and subpaths that are
between start and end.

If start and end are the same point, then this results in just the line being cut in two and two points being
inserted there, with nothing being removed, unless a join also happens to be at that point, in which case the
join must be removed.

693

20. Post-cut: If position is greater than subpath width, then jump to the step labeled convert.

21. If segment length is greater than zero, then let positioned-at-on-dash be false.

22. Increment index by one. If it is equal to the number of entries in style's dash listp692, then let index be 0.

23. Return to the step labeled dash on.

9. Convert: This is the step that converts the path to a new path that represents its stroke.

Create a new pathp702 that describes the edge of the areas that would be covered if a straight line of length equal to style's
lineWidthp691 was swept along each subpath in path while being kept at an angle such that the line is orthogonal to the path
being swept, replacing each point with the end cap necessary to satisfy style's lineCapp691 attribute as described previously
and elaborated below, and replacing each join with the join necessary to satisfy style's lineJoinp692 type, as defined below.

Caps: Each point has a flat edge perpendicular to the direction of the line coming out of it. This is then augmented according
to the value of style's lineCapp691. The "butt" value means that no additional line cap is added. The "round" value means
that a semi-circle with the diameter equal to style's lineWidthp691 width must additionally be placed on to the line coming
out of each point. The "square" value means that a rectangle with the length of style's lineWidthp691 width and the width of
half style's lineWidthp691 width, placed flat against the edge perpendicular to the direction of the line coming out of the
point, must be added at each point.

Points with no lines coming out of them must have two caps placed back-to-back as if it was really two points connected to
each other by an infinitesimally short straight line in the direction of the point's directionality (as defined above).

Joins: In addition to the point where a join occurs, two additional points are relevant to each join, one for each line: the two
corners found half the line width away from the join point, one perpendicular to each line, each on the side furthest from the
other line.

A triangle connecting these two opposite corners with a straight line, with the third point of the triangle being the join point,
must be added at all joins. The lineJoinp692 attribute controls whether anything else is rendered. The three aforementioned
values have the following meanings:

The "bevel" value means that this is all that is rendered at joins.

The "round" value means that an arc connecting the two aforementioned corners of the join, abutting (and not overlapping)
the aforementioned triangle, with the diameter equal to the line width and the origin at the point of the join, must be added
at joins.

The "miter" value means that a second triangle must (if it can given the miter length) be added at the join, with one line
being the line between the two aforementioned corners, abutting the first triangle, and the other two being continuations of
the outside edges of the two joining lines, as long as required to intersect without going over the miter length.

The miter length is the distance from the point where the join occurs to the intersection of the line edges on the outside of
the join. The miter limit ratio is the maximum allowed ratio of the miter length to half the line width. If the miter length would
cause the miter limit ratio (as set by style's miterLimitp692 attribute) to be exceeded, then this second triangle must not be
added.

The subpaths in the newly created path must be oriented such that for any point, the number of times a half-infinite straight
line drawn from that point crosses a subpath is even if and only if the number of times a half-infinite straight line drawn from
that same point crosses a subpath going in one direction is equal to the number of times it crosses a subpath going in the
other direction.

10. Return the newly created path.

4.12.5.1.4 Text styles §p69

4

context.fontp696 [= value]
styles.fontp696 [= value]

Returns the current font settings.
Can be set, to change the font. The syntax is the same as for the CSS 'font' property; values that cannot be parsed as CSS font
values are ignored.
Relative keywords and lengths are computed relative to the font of the canvasp677 element.

For web developers (non-normative)

694

https://drafts.csswg.org/css-fonts/#font-prop

Objects that implement the CanvasTextDrawingStylesp685 interface have attributes (defined in this section) that control how text is
laid out (rasterized or outlined) by the object. Such objects can also have a font style source object. For
CanvasRenderingContext2Dp682 objects, this is the canvasp677 element given by the value of the context's canvasp689 attribute. For
OffscreenCanvasRenderingContext2Dp745 objects, this is the associated OffscreenCanvas objectp746.

context.textAlignp697 [= value]
styles.textAlignp697 [= value]

Returns the current text alignment settings.
Can be set, to change the alignment. The possible values are and their meanings are given below. Other values are ignored. The
default is "start".

context.textBaselinep697 [= value]
styles.textBaselinep697 [= value]

Returns the current baseline alignment settings.
Can be set, to change the baseline alignment. The possible values and their meanings are given below. Other values are
ignored. The default is "alphabeticp698".

context.directionp697 [= value]
styles.directionp697 [= value]

Returns the current directionality.
Can be set, to change the directionality. The possible values and their meanings are given below. Other values are ignored. The
default is "inheritp699".

context.letterSpacingp697 [= value]
styles.letterSpacingp697 [= value]

Returns the current spacing between characters in the text.
Can be set, to change spacing between characters. Values that cannot be parsed as a CSS <length> are ignored. The default is
"0px".

context.fontKerningp697 [= value]
styles.fontKerningp697 [= value]

Returns the current font kerning settings.
Can be set, to change the font kerning. The possible values and their meanings are given below. Other values are ignored. The
default is "autop699".

context.fontStretchp697 [= value]
styles.fontStretchp697 [= value]

Returns the current font stretch settings.
Can be set, to change the font stretch. The possible values and their meanings are given below. Other values are ignored. The
default is "normalp699".

context.fontVariantCapsp698 [= value]
styles.fontVariantCapsp698 [= value]

Returns the current font variant caps settings.
Can be set, to change the font variant caps. The possible values and their meanings are given below. Other values are ignored.
The default is "normalp699".

context.textRenderingp698 [= value]
styles.textRenderingp698 [= value]

Returns the current text rendering settings.
Can be set, to change the text rendering. The possible values and their meanings are given below. Other values are ignored.
The default is "autop700".

context.wordSpacingp697 [= value]
styles.wordSpacingp697 [= value]

Returns the current spacing between words in the text.
Can be set, to change spacing between words. Values that cannot be parsed as a CSS <length> are ignored. The default is
"0px".

695

https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-values/#lengths

Font resolution for the font style source objectp695 requires a font source. This is determined for a given object implementing
CanvasTextDrawingStylesp685 by the following steps: [CSSFONTLOAD]p1476

1. If object's font style source objectp695 is a canvasp677 element, return the element's node document.

2. Otherwise, object's font style source objectp695 is an OffscreenCanvasp741 object:

1. Let global be object's relevant global objectp1083.

2. If global is a Windowp922 object, then return global's associated Documentp923.

3. Assert: global implements WorkerGlobalScopep1228.

4. Return global.

The font IDL attribute, on setting, must be parsed as a CSS <'font'> value (but without supporting property-independent style sheet
syntax like 'inherit'), and the resulting font must be assigned to the context, with the 'line-height' component forced to 'normal', with
the 'font-size' component converted to CSS pixels, and with system fonts being computed to explicit values. If the new value is
syntactically incorrect (including using property-independent style sheet syntax like 'inherit' or 'initial'), then it must be ignored,
without assigning a new font value. [CSS]p1476

Font family names must be interpreted in the context of the font style source objectp695 when the font is to be used; any fonts
embedded using @font-face or loaded using FontFacep67 objects that are visible to the font style source objectp695 must therefore be
available once they are loaded. (Each font style source objectp695 has a font source, which determines what fonts are available.) If a
font is used before it is fully loaded, or if the font style source objectp695 does not have that font in scope at the time the font is to be

This is an example of font resolution with a regular canvasp677 element with ID c1.

const font = new FontFace("MyCanvasFont", "url(mycanvasfont.ttf)");
documents.fonts.add(font);

const context = document.getElementById("c1").getContext("2d");
document.fonts.ready.then(function() {

context.font = "64px MyCanvasFont";
context.fillText("hello", 0, 0);

});

In this example, the canvas will display text using mycanvasfont.ttf as its font.

Example

This is an example of how font resolution can happen using OffscreenCanvasp741. Assuming a canvasp677 element with ID c2 which
is transferred to a worker like so:

const offscreenCanvas = document.getElementById("c2").transferControlToOffscreen();
worker.postMessage(offscreenCanvas, [offscreenCanvas]);

Then, in the worker:

self.onmessage = function(ev) {
const transferredCanvas = ev.data;
const context = transferredCanvas.getContext("2d");
const font = new FontFace("MyFont", "url(myfont.ttf)");
self.fonts.add(font);
self.fonts.ready.then(function() {

context.font = "64px MyFont";
context.fillText("hello", 0, 0);

});
};

In this example, the canvas will display a text using myfont.ttf. Notice that the font is only loaded inside the worker, and not in
the document context.

Example

696

https://drafts.csswg.org/css-font-loading/#font-source
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-font-loading/#font-source

used, then it must be treated as if it was an unknown font, falling back to another as described by the relevant CSS specifications.
[CSSFONTS]p1476 [CSSFONTLOAD]p1476

On getting, the fontp696 attribute must return the serialized form of the current font of the context (with no 'line-height' component).
[CSSOM]p1477

When the object implementing the CanvasTextDrawingStylesp685 interface is created, the font of the context must be set to 10px
sans-serif. When the 'font-size' component is set to lengths using percentages, 'em' or 'ex' units, or the 'larger' or 'smaller' keywords,
these must be interpreted relative to the computed value of the 'font-size' property of the font style source objectp695 at the time that
the attribute is set, if it is an element. When the 'font-weight' component is set to the relative values 'bolder' and 'lighter', these must
be interpreted relative to the computed value of the 'font-weight' property of the font style source objectp695 at the time that the
attribute is set, if it is an element. If the computed values are undefined for a particular case (e.g. because the font style source
objectp695 is not an element or is not being renderedp1388), then the relative keywords must be interpreted relative to the normal-weight
10px sans-serif default.

The textAlign IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the textAlignp697 attribute must initially
have the value startp698.

The textBaseline IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the textBaselinep697 attribute must
initially have the value alphabeticp698.

The direction IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the directionp697 attribute must initially
have the value "inheritp699".

Objects that implement the CanvasTextDrawingStylesp685 interface have attributes that control the spacing between letters and
words. Such objects have associated letter spacing and word spacing values, which are CSS <length> values. Initially, both must
be the result of parsing "0px" as a CSS <length>.

The letterSpacing getter steps are to return the serialized form of this's letter spacingp697.

The letterSpacingp697 setter steps are:

1. Let parsed be the result of parsing the given value as a CSS <length>.

2. If parsed is failure, then return.

3. Set this's letter spacingp697 to parsed.

The wordSpacing getter steps are to return the serialized form of this's word spacingp697.

The wordSpacingp697 setter steps are:

1. Let parsed be the result of parsing the given value as a CSS <length>.

2. If parsed is failure, then return.

3. Set this's word spacingp697 to parsed.

The fontKerning IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the fontKerningp697 attribute must
initially have the value "autop699".

The fontStretch IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new

For example, after the following statement:

context.font = 'italic 400 12px/2 Unknown Font, sans-serif';

...the expression context.font would evaluate to the string "italic 12px "Unknown Font", sans-serif". The "400" font-weight
doesn't appear because that is the default value. The line-height doesn't appear because it is forced to "normal", the default value.

Example

⚠ MDN

⚠ MDN

MDN
⚠ MDN

697

https://drafts.csswg.org/cssom/#serialize-a-css-value
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-values/#em
https://drafts.csswg.org/css-values/#ex
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-fonts/#font-weight-prop
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-fonts/#font-weight-prop
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css-values/#lengths
https://drafts.csswg.org/cssom/#serialize-a-css-value
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css-values/#lengths
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/cssom/#serialize-a-css-value
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.csswg.org/css-values/#lengths
https://webidl.spec.whatwg.org/#this

value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the fontStretchp697 attribute must
initially have the value "normalp699".

The fontVariantCaps IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the
new value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the fontVariantCapsp698 attribute
must initially have the value "normalp699".

The textRendering IDL attribute, on getting, must return the current value. On setting, the current value must be changed to the new
value. When the object implementing the CanvasTextDrawingStylesp685 interface is created, the textRenderingp698 attribute must
initially have the value "autop700".

The textAlignp697 attribute's allowed keywords are as follows:

start
Align to the start edge of the text (left side in left-to-right text, right side in right-to-left text).

end
Align to the end edge of the text (right side in left-to-right text, left side in right-to-left text).

left
Align to the left.

right
Align to the right.

center
Align to the center.

The textBaselinep697 attribute's allowed keywords correspond to alignment points in the font:

The keywords map to these alignment points as follows:

top
The em-over baseline

hanging
The hanging baseline

middle
Halfway between the em-over baseline and the em-under baseline

alphabetic
The alphabetic baseline

⚠ MDN

⚠ MDN

698

https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-inline/#alphabetic-baseline

ideographic
The ideographic-under baseline

bottom
The em-under baseline

The directionp697 attribute's allowed keywords are as follows:

ltr
Treat input to the text preparation algorithmp700 as left-to-right text.

rtl
Treat input to the text preparation algorithmp700 as right-to-left text.

inherit
Default to the directionality of the canvasp677 element or Documentp130 as appropriate.

The fontKerningp697 attribute's allowed keywords are as follows:

auto
Kerning is applied at the discretion of the user agent.

normal
Kerning is applied.

none
Kerning is not applied.

The fontStretchp697 attribute's allowed keywords are as follows:

ultra-condensed
Same as CSS 'font-stretch' 'ultra-condensed' setting.

extra-condensed
Same as CSS 'font-stretch' 'extra-condensed' setting.

condensed
Same as CSS 'font-stretch' 'condensed' setting.

semi-condensed
Same as CSS 'font-stretch' 'semi-condensed' setting.

normal
The default setting, where width of the glyphs is at 100%.

semi-expanded
Same as CSS 'font-stretch' 'semi-expanded' setting.

expanded
Same as CSS 'font-stretch' 'expanded' setting.

extra-expanded
Same as CSS 'font-stretch' 'extra-expanded' setting.

ultra-expanded
Same as CSS 'font-stretch' 'ultra-expanded' setting.

The fontVariantCapsp698 attribute's allowed keywords are as follows:

normal
None of the features listed below are enabled.

699

https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-ultra-condensed
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-extra-condensed
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-condensed
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-semi-condensed
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-semi-expanded
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-expanded
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-extra-expanded
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#valdef-font-stretch-ultra-expanded

small-caps
Same as CSS 'font-variant-caps' 'small-caps' setting.

all-small-caps
Same as CSS 'font-variant-caps' 'all-small-caps' setting.

petite-caps
Same as CSS 'font-variant-caps' 'petite-caps' setting.

all-petite-caps
Same as CSS 'font-variant-caps' 'all-petite-caps' setting.

unicase
Same as CSS 'font-variant-caps' 'unicase' setting.

titling-caps
Same as CSS 'font-variant-caps' 'titling-caps' setting.

The textRenderingp698 attribute's allowed keywords are as follows:

auto
Same as 'auto' in SVG text-rendering property.

optimizeSpeed
Same as 'optimizeSpeed' in SVG text-rendering property.

optimizeLegibility
Same as 'optimizeLegibility' in SVG text-rendering property.

geometricPrecision
Same as 'geometricPrecision' in SVG text-rendering property.

The text preparation algorithm is as follows. It takes as input a string text, a CanvasTextDrawingStylesp685 object target, and an
optional length maxWidth. It returns an array of glyph shapes, each positioned on a common coordinate space, a physical alignment
whose value is one of left, right, and center, and an inline box. (Most callers of this algorithm ignore the physical alignment and the
inline box.)

1. If maxWidth was provided but is less than or equal to zero or equal to NaN, then return an empty array.

2. Replace all ASCII whitespace in text with U+0020 SPACE characters.

3. Let font be the current font of target, as given by that object's fontp696 attribute.

4. Apply the appropriate step from the following list to determine the value of direction:

↪ If the target object's directionp697 attribute has the value "ltrp699"
Let direction be 'ltrp160 '.

↪ If the target object's directionp697 attribute has the value "rtlp699"
Let direction be 'rtlp160 '.

↪ If the target object's font style source objectp695 is an element
Let direction be the directionalityp160 of the target object's font style source objectp695.

↪ If the target object's font style source objectp695 is a Documentp130 with a non-null document element
Let direction be the directionalityp160 of the target object's font style source objectp695 's document element.

↪ Otherwise
Let direction be 'ltrp160 '.

5. Form a hypothetical infinitely-wide CSS line box containing a single inline box containing the text text, with its CSS properties
set as follows:

Property Source

'direction' direction

700

https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-small-caps
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-all-small-caps
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-petite-caps
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-all-petite-caps
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-unicase
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-fonts/#valdef-font-variant-caps-titling-caps
https://svgwg.org/svg2-draft/painting.html#TextRendering
https://svgwg.org/svg2-draft/painting.html#TextRendering
https://svgwg.org/svg2-draft/painting.html#TextRendering
https://svgwg.org/svg2-draft/painting.html#TextRendering
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css2/#line-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-writing-modes/#direction

Property Source

'font' font

'font-kerning' target's fontKerningp697

'font-stretch' target's fontStretchp697

'font-variant-caps' target's fontVariantCapsp698

'letter-spacing' target's letter spacingp697

SVG text-rendering target's textRenderingp698

'white-space' 'pre'
'word-spacing' target's word spacingp697

and with all other properties set to their initial values.

6. If maxWidth was provided and the hypothetical width of the inline box in the hypothetical line box is greater than maxWidth
CSS pixels, then change font to have a more condensed font (if one is available or if a reasonably readable one can be
synthesized by applying a horizontal scale factor to the font) or a smaller font, and return to the previous step.

7. The anchor point is a point on the inline box, and the physical alignment is one of the values left, right, and center. These
variables are determined by the textAlignp697 and textBaselinep697 values as follows:

Horizontal position:

If textAlignp697 is leftp698

If textAlignp697 is startp698 and direction is 'ltr'
If textAlignp697 is endp698 and direction is 'rtl'

Let the anchor point's horizontal position be the left edge of the inline box, and let physical alignment be left.

If textAlignp697 is rightp698

If textAlignp697 is endp698 and direction is 'ltr'
If textAlignp697 is startp698 and direction is 'rtl'

Let the anchor point's horizontal position be the right edge of the inline box, and let physical alignment be right.

If textAlignp697 is centerp698

Let the anchor point's horizontal position be half way between the left and right edges of the inline box, and let physical
alignment be center.

Vertical position:

If textBaselinep697 is topp698

Let the anchor point's vertical position be the top of the em box of the first available font of the inline box.

If textBaselinep697 is hangingp698

Let the anchor point's vertical position be the hanging baseline of the first available font of the inline box.

If textBaselinep697 is middlep698

Let the anchor point's vertical position be half way between the bottom and the top of the em box of the first available
font of the inline box.

If textBaselinep697 is alphabeticp698

Let the anchor point's vertical position be the alphabetic baseline of the first available font of the inline box.

If textBaselinep697 is ideographicp699

Let the anchor point's vertical position be the ideographic-under baseline of the first available font of the inline box.

If textBaselinep697 is bottomp699

Let the anchor point's vertical position be the bottom of the em box of the first available font of the inline box.

8. Let result be an array constructed by iterating over each glyph in the inline box from left to right (if any), adding to the array,
for each glyph, the shape of the glyph as it is in the inline box, positioned on a coordinate space using CSS pixels with its
origin at the anchor point.

9. Return result, physical alignment, and the inline box.

701

https://drafts.csswg.org/css-fonts/#font-prop
https://drafts.csswg.org/css-fonts/#propdef-font-kerning
https://drafts.csswg.org/css-fonts/#propdef-font-stretch
https://drafts.csswg.org/css-fonts/#propdef-font-variant-caps
https://drafts.csswg.org/css-text/#letter-spacing-property
https://svgwg.org/svg2-draft/painting.html#TextRendering
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#propdef-word-spacing
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#line-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px

Objects that implement the CanvasPathp685 interface have a pathp702. A path has a list of zero or more subpaths. Each subpath
consists of a list of one or more points, connected by straight or curved line segments, and a flag indicating whether the subpath is
closed or not. A closed subpath is one where the last point of the subpath is connected to the first point of the subpath by a straight
line. Subpaths with only one point are ignored when painting the path.

Pathsp702 have a need new subpath flag. When this flag is set, certain APIs create a new subpath rather than extending the previous
one. When a pathp702 is created, its need new subpathp702 flag must be set.

When an object implementing the CanvasPathp685 interface is created, its pathp702 must be initialized to zero subpaths.

4.12.5.1.5 Building paths §p70

2

context.moveTop704(x, y)
path.moveTop704(x, y)

Creates a new subpath with the given point.

context.closePathp705()
path.closePathp705()

Marks the current subpath as closed, and starts a new subpath with a point the same as the start and end of the newly closed
subpath.

context.lineTop705(x, y)
path.lineTop705(x, y)

Adds the given point to the current subpath, connected to the previous one by a straight line.

context.quadraticCurveTop705(cpx, cpy, x, y)
path.quadraticCurveTop705(cpx, cpy, x, y)

Adds the given point to the current subpath, connected to the previous one by a quadratic Bézier curve with the given control
point.

context.bezierCurveTop705(cp1x, cp1y, cp2x, cp2y, x, y)
path.bezierCurveTop705(cp1x, cp1y, cp2x, cp2y, x, y)

Adds the given point to the current subpath, connected to the previous one by a cubic Bézier curve with the given control
points.

context.arcTop705(x1, y1, x2, y2, radius)
path.arcTop705(x1, y1, x2, y2, radius)

Adds an arc with the given control points and radius to the current subpath, connected to the previous point by a straight line.
Throws an "IndexSizeError" DOMException if the given radius is negative.

For web developers (non-normative)

702

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

context.arcp706(x, y, radius, startAngle, endAngle [, counterclockwise])
path.arcp706(x, y, radius, startAngle, endAngle [, counterclockwise])

Adds points to the subpath such that the arc described by the circumference of the circle described by the arguments, starting
at the given start angle and ending at the given end angle, going in the given direction (defaulting to clockwise), is added to the
path, connected to the previous point by a straight line.
Throws an "IndexSizeError" DOMException if the given radius is negative.

703

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The following methods allow authors to manipulate the pathsp702 of objects implementing the CanvasPathp685 interface.

For objects implementing the CanvasDrawPathp683 and CanvasTransformp682 interfaces, the points passed to the methods, and the
resulting lines added to current default pathp719 by these methods, must be transformed according to the current transformation
matrixp709 before being added to the path.

The moveTo(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

context.ellipsep706(x, y, radiusX, radiusY, rotation, startAngle, endAngle [, counterclockwise])
path.ellipsep706(x, y, radiusX, radiusY, rotation, startAngle, endAngle [, counterclockwise])

Adds points to the subpath such that the arc described by the circumference of the ellipse described by the arguments, starting
at the given start angle and ending at the given end angle, going in the given direction (defaulting to clockwise), is added to the
path, connected to the previous point by a straight line.
Throws an "IndexSizeError" DOMException if the given radius is negative.

context.rectp706(x, y, w, h)
path.rectp706(x, y, w, h)

Adds a new closed subpath to the path, representing the given rectangle.

context.roundRectp707(x, y, w, h, radii)
path.roundRectp707(x, y, w, h, radii)

Adds a new closed subpath to the path representing the given rounded rectangle. radii is either a list of radii or a single radius
representing the corners of the rectangle in pixels. If a list is provided, the number and order of these radii function in the same
way as the CSS 'border-radius' property. A single radius behaves the same way as a list with a single element.
If w and h are both greater than or equal to 0, or if both are smaller than 0, then the path is drawn clockwise. Otherwise, it is
drawn counterclockwise.
When w is negative, the rounded rectangle is flipped horizontally, which means that the radius values that normally apply to the
left corners are used on the right and vice versa. Similarly, when h is negative, the rounded rect is flipped vertically.
When a value r in radii is a number, the corresponding corner(s) are drawn as circular arcs of radius r.
When a value r in radii is an object with { x, y } properties, the corresponding corner(s) are drawn as elliptical arcs whose x
and y radii are equal to r.x and r.y, respectively.
When the sum of the radii of two corners of the same edge is greater than the length of the edge, all the radii of the rounded
rectangle are scaled by a factor of length / (r1 + r2). If multiple edges have this property, the scale factor of the edge with the
smallest scale factor is used. This is consistent with CSS behavior.
Throws a RangeError if radii is a list whose size is not one, two, three, or four.
Throws a RangeError if a value in radii is a negative number, or is an { x, y } object whose x or y properties are negative
numbers.

704

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-backgrounds/#propdef-border-radius
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror

2. Create a new subpath with the specified point as its first (and only) point.

When the user agent is to ensure there is a subpath for a coordinate (x, y) on a pathp702, the user agent must check to see if the
pathp702 has its need new subpathp702 flag set. If it does, then the user agent must create a new subpath with the point (x, y) as its first
(and only) point, as if the moveTo()p704 method had been called, and must then unset the pathp702 's need new subpathp702 flag.

The closePath() method, when invoked, must do nothing if the object's path has no subpaths. Otherwise, it must mark the last
subpath as closed, create a new subpath whose first point is the same as the previous subpath's first point, and finally add this new
subpath to the path.

New points and the lines connecting them are added to subpaths using the methods described below. In all cases, the methods only
modify the last subpath in the object's path.

The lineTo(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. If the object's path has no subpaths, then ensure there is a subpathp705 for (x, y).

3. Otherwise, connect the last point in the subpath to the given point (x, y) using a straight line, and then add the given point
(x, y) to the subpath.

The quadraticCurveTo(cpx, cpy, x, y) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Ensure there is a subpathp705 for (cpx, cpy)

3. Connect the last point in the subpath to the given point (x, y) using a quadratic Bézier curve with control point (cpx, cpy).
[BEZIER]p1475

4. Add the given point (x, y) to the subpath.

The bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Ensure there is a subpathp705 for (cp1x, cp1y).

3. Connect the last point in the subpath to the given point (x, y) using a cubic Bézier curve with control points (cp1x, cp1y) and
(cp2x, cp2y). [BEZIER]p1475

4. Add the point (x, y) to the subpath.

The arcTo(x1, y1, x2, y2, radius) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Ensure there is a subpathp705 for (x1, y1).

3. If radius is negative, then throw an "IndexSizeError" DOMException.

4. Let the point (x0, y0) be the last point in the subpath, transformed by the inverse of the current transformation matrixp709 (so
that it is in the same coordinate system as the points passed to the method).

5. If the point (x0, y0) is equal to the point (x1, y1), or if the point (x1, y1) is equal to the point (x2, y2), or if radius is zero, then
add the point (x1, y1) to the subpath, and connect that point to the previous point (x0, y0) by a straight line.

6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line, then add the point (x1, y1) to the
subpath, and connect that point to the previous point (x0, y0) by a straight line.

If the last subpath had more than one point in its list of points, then this is equivalent to adding a straight line connecting the last
point back to the first point of the last subpath, thus "closing" the subpath.

Note

705

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius, and that has one point
tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1), and that has a different point
tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2). The points at which this circle
touches these two lines are called the start and end tangent points respectively. Connect the point (x0, y0) to the start
tangent point by a straight line, adding the start tangent point to the subpath, and then connect the start tangent point to
the end tangent point by The Arc, adding the end tangent point to the subpath.

The arc(x, y, radius, startAngle, endAngle, counterclockwise) method, when invoked, must run the ellipse method stepsp706

with this, x, y, radius, radius, 0, startAngle, endAngle, and counterclockwise.

The ellipse(x, y, radiusX, radiusY, rotation, startAngle, endAngle, counterclockwise) method, when invoked, must run
the ellipse method stepsp706 with this, x, y, radiusX, radiusY, rotation, startAngle, endAngle, and counterclockwise.

The determine the point on an ellipse steps, given ellipse, and angle, are:

1. Let eccentricCircle be the circle that shares its origin with ellipse, with a radius equal to the semi-major axis of ellipse.

2. Let outerPoint be the point on eccentricCircle's circumference at angle measured in radians clockwise from ellipse's semi-
major axis.

3. Let chord be the line perpendicular to ellipse's major axis between this axis and outerPoint.

4. Return the point on chord that crosses ellipse's circumference.

The ellipse method steps, given canvasPath, x, y, radiusX, radiusY, rotation, startAngle, endAngle, and counterclockwise, are:

1. If any of the arguments are infinite or NaN, then return.

2. If either radiusX or radiusY are negative, then throw an "IndexSizeError" DOMException.

3. If canvasPath's path has any subpaths, then add a straight line from the last point in the subpath to the start point of the arc.

4. Add the start and end points of the arc to the subpath, and connect them with an arc. The arc and its start and end points
are defined as follows:

Consider an ellipse that has its origin at (x, y), that has a major-axis radius radiusX and a minor-axis radius radiusY, and that
is rotated about its origin such that its semi-major axis is inclined rotation radians clockwise from the x-axis.

If counterclockwise is false and endAngle − startAngle is greater than or equal to 2π, or, if counterclockwise is true and
startAngle − endAngle is greater than or equal to 2π, then the arc is the whole circumference of this ellipse, and both the
start point and the end point are the result of running the determine the point on an ellipse stepsp706 given this ellipse and
startAngle.

Otherwise, the start point is the result of running the determine the point on an ellipse stepsp706 given this ellipse and
startAngle, the end point is the result of running the determine the point on an ellipse stepsp706 given this ellipse and
endAngle, and the arc is the path along the circumference of this ellipse from the start point to the end point, going
counterclockwise if counterclockwise is true, and clockwise otherwise. Since the points are on the ellipse, as opposed to
being simply angles from zero, the arc can never cover an angle greater than 2π radians.

The rect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h), (x, y+h), in that order, with those four
points connected by straight lines.

This makes it equivalent to ellipse()p706 except that both radii are equal and rotation is 0.
Note

Even if the arc covers the entire circumference of the ellipse and there are no other points in the subpath, the path is not
closed unless the closePath()p705 method is appropriately invoked.

Note

706

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

3. Mark the subpath as closed.

4. Create a new subpath with the point (x, y) as the only point in the subpath.

The roundRect(x, y, w, h, radii) method steps are:

1. If any of x, y, w, or h are infinite or NaN, then return.

2. If radii is an unrestricted double or DOMPointInit, then set radii to « radii ».

3. If radii is not a list of size one, two, three, or four, then throw a RangeError.

4. Let normalizedRadii be an empty list.

5. For each radius of radii:

1. If radius is a DOMPointInit:

1. If radius["xp67"] or radius["yp67"] is infinite or NaN, then return.

2. If radius["xp67"] or radius["yp67"] is negative, then throw a RangeError.

3. Otherwise, append radius to normalizedRadii.

2. If radius is a unrestricted double:

1. If radius is infinite or NaN, then return.

2. If radius is negative, then throw a RangeError.

3. Otherwise, append «["xp67" → radius, "yp67" → radius]» to normalizedRadii.

6. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.

7. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight
to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].

8. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1],
and set lowerRight to normalizedRadii[2].

9. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to
normalizedRadii[1].

10. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].

11. Corner curves must not overlap. Scale all radii to prevent this:

1. Let top be upperLeft["xp67"] + upperRight["xp67"].

2. Let right be upperRight["yp67"] + lowerRight["yp67"].

3. Let bottom be lowerRight["xp67"] + lowerLeft["xp67"].

4. Let left be upperLeft["yp67"] + lowerLeft["yp67"].

5. Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.

6. If scale is less than 1, then set the xp67 and yp67 members of upperLeft, upperRight, lowerLeft, and lowerRight to
their current values multiplied by scale.

12. Create a new subpath:

1. Move to the point (x + upperLeft["xp67"], y).

2. Draw a straight line to the point (x + w − upperRight["xp67"], y).

3. Draw an arc to the point (x + w, y + upperRight["yp67"]).

4. Draw a straight line to the point (x + w, y + h − lowerRight["yp67"]).

5. Draw an arc to the point (x + w − lowerRight["xp67"], y + h).

6. Draw a straight line to the point (x + lowerLeft["xp67"], y + h).

✔ MDN

707

https://webidl.spec.whatwg.org/#idl-unrestricted-double
https://drafts.fxtf.org/geometry/#dictdef-dompointinit
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://drafts.fxtf.org/geometry/#dictdef-dompointinit
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://webidl.spec.whatwg.org/#idl-unrestricted-double
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror

7. Draw an arc to the point (x, y + h − lowerLeft["yp67"]).

8. Draw a straight line to the point (x, y + upperLeft["yp67"]).

9. Draw an arc to the point (x + upperLeft["xp67"], y).

13. Mark the subpath as closed.

14. Create a new subpath with the point (x, y) as the only point in the subpath.

Path2Dp686 objects can be used to declare paths that are then later used on objects implementing the CanvasDrawPathp683 interface. In
addition to many of the APIs described in earlier sections, Path2Dp686 objects have methods to combine paths, and to add text to paths.

The Path2D(path) constructor, when invoked, must run these steps:

1. Let output be a new Path2Dp686 object.

2. If path is not given, then return output.

3. If path is a Path2Dp686 object, then add all subpaths of path to output and return output. (In other words, it returns a copy of
the argument.)

4. Let svgPath be the result of parsing and interpreting path according to SVG 2's rules for path data. [SVG]p1482

5. Let (x, y) be the last point in svgPath.

6. Add all the subpaths, if any, from svgPath to output.

7. Create a new subpath in output with (x, y) as the only point in the subpath.

8. Return output.

The addPath(path, transform) method, when invoked on a Path2Dp686 object a, must run these steps:

1. If the Path2Dp686 object path has no subpaths, then return.

2. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.

3. If one or more of matrix's m11 element, m12 element, m21 element, m22 element, m41 element, or m42 element are
infinite or NaN, then return.

4. Create a copy of all the subpaths in path. Let this copy be known as c.

5. Transform all the coordinates and lines in c by the transform matrix matrix.

This is designed to behave similarly to the CSS 'border-radius' property.
Note

4.12.5.1.6 Path2Dp686 objects §p70

8

path = new Path2Dp708()
Creates a new empty Path2Dp686 object.

path = new Path2Dp708(path)
When path is a Path2Dp686 object, returns a copy.
When path is a string, creates the path described by the argument, interpreted as SVG path data. [SVG]p1482

path.addPathp708(path [, transform])
Adds to the path the path given by the argument.

For web developers (non-normative)

The resulting path could be empty. SVG defines error handling rules for parsing and applying path data.
Note

✔ MDN

708

https://drafts.csswg.org/css-backgrounds/#propdef-border-radius
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element

6. Let (x, y) be the last point in the last subpath of c.

7. Add all the subpaths in c to a.

8. Create a new subpath in a with (x, y) as the only point in the subpath.

Objects that implement the CanvasTransformp682 interface have a current transformation matrix, as well as methods (described in
this section) to manipulate it. When an object implementing the CanvasTransformp682 interface is created, its transformation matrix
must be initialized to the identity matrix.

The current transformation matrixp709 is applied to coordinates when creating the current default pathp719, and when painting text,
shapes, and Path2Dp686 objects, on objects implementing the CanvasTransformp682 interface.

The transformations must be performed in reverse order.

The scale(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. Add the scaling transformation described by the arguments to the current transformation matrixp709. The x argument
represents the scale factor in the horizontal direction and the y argument represents the scale factor in the vertical direction.
The factors are multiples.

The rotate(angle) method, when invoked, must run these steps:

1. If angle is infinite or NaN, then return.

2. Add the rotation transformation described by the argument to the current transformation matrixp709. The angle argument
represents a clockwise rotation angle expressed in radians.

4.12.5.1.7 Transformations §p70

9

For instance, if a scale transformation that doubles the width is applied to the canvas, followed by a rotation transformation that
rotates drawing operations by a quarter turn, and a rectangle twice as wide as it is tall is then drawn on the canvas, the actual
result will be a square.

Note

context.scalep709(x, y)
Changes the current transformation matrixp709 to apply a scaling transformation with the given characteristics.

context.rotatep709(angle)
Changes the current transformation matrixp709 to apply a rotation transformation with the given characteristics. The angle is in
radians.

context.translatep710(x, y)
Changes the current transformation matrixp709 to apply a translation transformation with the given characteristics.

context.transformp710(a, b, c, d, e, f)
Changes the current transformation matrixp709 to apply the matrix given by the arguments as described below.

matrix = context.getTransformp710()
Returns a copy of the current transformation matrixp709, as a newly created DOMMatrix object.

context.setTransformp710(a, b, c, d, e, f)
Changes the current transformation matrixp709 to the matrix given by the arguments as described below.

context.setTransformp710(transform)
Changes the current transformation matrixp709 to the matrix represented by the passed DOMMatrix2DInit dictionary.

context.resetTransformp710()
Changes the current transformation matrixp709 to the identity matrix.

For web developers (non-normative)

709

https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#dictdef-dommatrix2dinit

The translate(x, y) method, when invoked, must run these steps:

1. If either of the arguments are infinite or NaN, then return.

2. Add the translation transformation described by the arguments to the current transformation matrixp709. The x argument
represents the translation distance in the horizontal direction and the y argument represents the translation distance in the
vertical direction. The arguments are in coordinate space units.

The transform(a, b, c, d, e, f) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Replace the current transformation matrixp709 with the result of multiplying the current transformation matrixp709 with the
matrix described by:

a c e

b d f

0 0 1

The getTransform() method, when invoked, must return a newly created DOMMatrix representing a copy of the current transformation
matrixp709 matrix of the context.

The setTransform(a, b, c, d, e, f) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Reset the current transformation matrixp709 to the matrix described by:

a c e

b d f

0 0 1

The setTransform(transform) method, when invoked, must run these steps:

1. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.

2. If one or more of matrix's m11 element, m12 element, m21 element, m22 element, m41 element, or m42 element are
infinite or NaN, then return.

3. Reset the current transformation matrixp709 to matrix.

The resetTransform() method, when invoked, must reset the current transformation matrixp709 to the identity matrix.

The arguments a, b, c, d, e, and f are sometimes called m11, m12, m21, m22, dx, and dy or m11, m21, m12, m22, dx, and dy.
Care ought to be taken in particular with the order of the second and third arguments (b and c) as their order varies from API to API
and APIs sometimes use the notation m12/m21 and sometimes m21/m12 for those positions.

Note

This returned object is not live, so updating it will not affect the current transformation matrixp709, and updating the current
transformation matrixp709 will not affect an already returned DOMMatrix.

Note

Given a matrix of the form created by the transform()p710 and setTransform()p710 methods, i.e.,

a c e
b d f
0 0 1

the resulting transformed coordinates after transform matrix multiplication will be

xnew = a x + c y + e
ynew = b x + d y + f

Note

710

https://drafts.fxtf.org/geometry/#matrix-multiply
https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#dommatrix
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element

Some methods on the CanvasDrawImagep684 and CanvasFillStrokeStylesp683 interfaces take the union type CanvasImageSourcep682

as an argument.

This union type allows objects implementing any of the following interfaces to be used as image sources:

• HTMLOrSVGImageElementp682 (imgp346 or SVG image elements)

• HTMLVideoElementp407 (videop406 elements)

• HTMLCanvasElementp677 (canvasp677 elements)

• OffscreenCanvasp741

• ImageBitmapp1181

• VideoFrame

To check the usability of the image argument, where image is a CanvasImageSourcep682 object, run these steps:

1. Switch on image:

↪ HTMLOrSVGImageElementp682

If image's current requestp363 's statep363 is brokenp364, then throw an "InvalidStateError" DOMException.

If image is not fully decodablep364, then return bad.

If image has a natural width or natural height (or both) equal to zero, then return bad.

↪ HTMLVideoElementp407

If image's readyStatep435 attribute is either HAVE_NOTHINGp433 or HAVE_METADATAp433, then return bad.

↪ HTMLCanvasElementp677

↪ OffscreenCanvasp741

If image has either a horizontal dimension or a vertical dimension equal to zero, then throw an "InvalidStateError"
DOMException.

↪ ImageBitmapp1181

↪ VideoFrame
If image's [[Detached]]p118 internal slot value is set to true, then throw an "InvalidStateError" DOMException.

2. Return good.

When a CanvasImageSourcep682 object represents an HTMLOrSVGImageElementp682, the element's image must be used as the source
image.

Specifically, when a CanvasImageSourcep682 object represents an animated image in an HTMLOrSVGImageElementp682, the user agent
must use the default image of the animation (the one that the format defines is to be used when animation is not supported or is
disabled), or, if there is no such image, the first frame of the animation, when rendering the image for CanvasRenderingContext2Dp682

APIs.

When a CanvasImageSourcep682 object represents an HTMLVideoElementp407, then the frame at the current playback positionp432 when
the method with the argument is invoked must be used as the source image when rendering the image for
CanvasRenderingContext2Dp682 APIs, and the source image's dimensions must be the natural widthp409 and natural heightp409 of the
media resourcep415 (i.e., after any aspect-ratio correction has been applied).

4.12.5.1.8 Image sources for 2D rendering contexts §p71

1

Although not formally specified as such, SVG image elements are expected to be implemented nearly identical to imgp346 elements.
That is, SVG image elements share the fundamental concepts and features of imgp346 elements.

Note

The ImageBitmapp1181 interface can be created from a number of other image-representing types, including ImageDatap686.
Note

711

https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://w3c.github.io/webcodecs/#videoframe-interface
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/webcodecs/#videoframe-interface
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

When a CanvasImageSourcep682 object represents an HTMLCanvasElementp677, the element's bitmap must be used as the source image.

When a CanvasImageSourcep682 object represents an element that is being renderedp1388 and that element has been resized, the
original image data of the source image must be used, not the image as it is rendered (e.g. widthp477 and heightp477 attributes on the
source element have no effect on how the object is interpreted when rendering the image for CanvasRenderingContext2Dp682 APIs).

When a CanvasImageSourcep682 object represents an ImageBitmapp1181, the object's bitmap image data must be used as the source
image.

When a CanvasImageSourcep682 object represents an OffscreenCanvasp741, the object's bitmap must be used as the source image.

When a CanvasImageSourcep682 object represents a VideoFrame, the object's pixel data must be used as the source image, and the
source image's dimensions must be the object's [[display width]] and [[display height]].

An object image is not origin-clean if, switching on image's type:

↪ HTMLOrSVGImageElementp682

image's current requestp363 's image datap363 is CORS-cross-originp98.

↪ HTMLVideoElementp407

image's media datap415 is CORS-cross-originp98.

↪ HTMLCanvasElementp677

↪ ImageBitmapp1181

↪ OffscreenCanvasp741

image's bitmap's origin-cleanp678 flag is false.

Objects that implement the CanvasFillStrokeStylesp683 interface have attributes and methods (defined in this section) that control
how shapes are treated by the object.

Such objects have associated fill style and stroke style values, which are either CSS colors, CanvasPatternp685s, or
CanvasGradientp685s. Initially, both must be the result of parsing the string "#000000".

When the value is a CSS color, it must not be affected by the transformation matrix when used to draw on bitmaps.

The fillStyle getter steps are:

1. If this's fill stylep712 is a CSS color, then return the serialization of that color with HTML-compatible serialization requested.

4.12.5.1.9 Fill and stroke styles §p71

2

context.fillStylep712 [= value]
Returns the current style used for filling shapes.
Can be set, to change the fill stylep712.
The style can be either a string containing a CSS color, or a CanvasGradientp685 or CanvasPatternp685 object. Invalid values are
ignored.

context.strokeStylep713 [= value]
Returns the current style used for stroking shapes.
Can be set, to change the stroke style.p712

The style can be either a string containing a CSS color, or a CanvasGradientp685 or CanvasPatternp685 object. Invalid values are
ignored.

For web developers (non-normative)

When set to a CanvasPatternp685 or CanvasGradientp685 object, changes made to the object after the assignment do affect
subsequent stroking or filling of shapes.

Note

712

https://w3c.github.io/webcodecs/#videoframe-interface
https://w3c.github.io/webcodecs/#dom-videoframe-display-width-slot
https://w3c.github.io/webcodecs/#dom-videoframe-display-height-slot
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#serializing-color-values
https://drafts.csswg.org/css-color/#color-serialization-html-compatible-serialization-is-requested

2. Return this's fill stylep712.

The fillStylep712 setter steps are:

1. If the given value is a string, then:

1. Let context be this's canvasp689 attribute's value, if that is an element; otherwise null.

2. Let parsedValue be the result of parsing the given value with context if non-null.

3. If parsedValue is failure, then return.

4. Set this's fill stylep712 to parsedValue.

5. Return.

2. If the given value is a CanvasPatternp685 object that is marked as not origin-cleanp715, then set this's origin-cleanp678 flag to
false.

3. Set this's fill stylep712 to the given value.

The strokeStyle getter steps are:

1. If this's stroke stylep712 is a CSS color, then return the serialization of that color with HTML-compatible serialization requested.

2. Return this's stroke stylep712.

The strokeStylep713 setter steps are:

1. If the given value is a string, then:

1. Let context be this's canvasp689 attribute's value, if that is an element; otherwise null.

2. Let parsedValue be the result of parsing the given value with context if non-null.

3. If parsedValue is failure, then return.

4. Set this's stroke stylep712 to parsedValue.

5. Return.

2. If the given value is a CanvasPatternp685 object that is marked as not origin-cleanp715, then set this's origin-cleanp678 flag to
false.

3. Set this's stroke stylep712 to the given value.

There are three types of gradients, linear gradients, radial gradients, and conic gradients, represented by objects implementing the
opaque CanvasGradientp685 interface.

Once a gradient has been created (see below), stops are placed along it to define how the colors are distributed along the gradient.
The color of the gradient at each stop is the color specified for that stop. Between each such stop, the colors and the alpha component
must be linearly interpolated over the RGBA space without premultiplying the alpha value to find the color to use at that offset. Before
the first stop, the color must be the color of the first stop. After the last stop, the color must be the color of the last stop. When there
are no stops, the gradient is transparent black.

gradient.addColorStopp714(offset, color)
Adds a color stop with the given color to the gradient at the given offset. 0.0 is the offset at one end of the gradient, 1.0 is the
offset at the other end.
Throws an "IndexSizeError" DOMException if the offset is out of range. Throws a "SyntaxError" DOMException if the color
cannot be parsed.

gradient = context.createLinearGradientp714(x0, y0, x1, y1)
Returns a CanvasGradientp685 object that represents a linear gradient that paints along the line given by the coordinates
represented by the arguments.

For web developers (non-normative)

713

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#serializing-color-values
https://drafts.csswg.org/css-color/#color-serialization-html-compatible-serialization-is-requested
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The addColorStop(offset, color) method on the CanvasGradientp685, when invoked, must run these steps:

1. If the offset is less than 0 or greater than 1, then throw an "IndexSizeError" DOMException.

2. Let parsed color be the result of parsing color.

3. If parsed color is failure, throw a "SyntaxError" DOMException.

4. Place a new stop on the gradient, at offset offset relative to the whole gradient, and with the color parsed color.

If multiple stops are added at the same offset on a gradient, then they must be placed in the order added, with the first one
closest to the start of the gradient, and each subsequent one infinitesimally further along towards the end point (in effect
causing all but the first and last stop added at each point to be ignored).

The createLinearGradient(x0, y0, x1, y1) method takes four arguments that represent the start point (x0, y0) and end point (x1,
y1) of the gradient. The method, when invoked, must return a linear CanvasGradientp685 initialized with the specified line.

Linear gradients must be rendered such that all points on a line perpendicular to the line that crosses the start and end points have the
color at the point where those two lines cross (with the colors coming from the interpolation and extrapolationp713 described above).
The points in the linear gradient must be transformed as described by the current transformation matrixp709 when rendering.

If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.

The createRadialGradient(x0, y0, r0, x1, y1, r1) method takes six arguments, the first three representing the start circle with
origin (x0, y0) and radius r0, and the last three representing the end circle with origin (x1, y1) and radius r1. The values are in
coordinate space units. If either of r0 or r1 are negative, then an "IndexSizeError" DOMException must be thrown. Otherwise, the
method, when invoked, must return a radial CanvasGradientp685 initialized with the two specified circles.

Radial gradients must be rendered by following these steps:

1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Return.

2. Let x(ω) = (x1-x0)ω + x0

Let y(ω) = (y1-y0)ω + y0

Let r(ω) = (r1-r0)ω + r0

Let the color at ω be the color at that position on the gradient (with the colors coming from the interpolation and
extrapolationp713 described above).

3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and ending with the value of ω
nearest to negative infinity, draw the circumference of the circle with radius r(ω) at position (x(ω), y(ω)), with the color at ω,
but only painting on the parts of the bitmap that have not yet been painted on by earlier circles in this step for this rendering
of the gradient.

gradient = context.createRadialGradientp714(x0, y0, r0, x1, y1, r1)
Returns a CanvasGradientp685 object that represents a radial gradient that paints along the cone given by the circles
represented by the arguments.
If either of the radii are negative, throws an "IndexSizeError" DOMException exception.

gradient = context.createConicGradientp715(startAngle, x, y)
Returns a CanvasGradientp685 object that represents a conic gradient that paints clockwise along the rotation around the center
represented by the arguments.

No element is passed to the parser because CanvasGradientp685 objects are canvasp677-neutral — a CanvasGradientp685

object created by one canvasp677 can be used by another, and there is therefore no way to know which is the "element in
question" at the time that the color is specified.

Note

This effectively creates a cone, touched by the two circles defined in the creation of the gradient, with the part of the cone before
the start circle (0.0) using the color of the first offset, the part of the cone after the end circle (1.0) using the color of the last

Note

714

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The resulting radial gradient must then be transformed as described by the current transformation matrixp709 when rendering.

The createConicGradient(startAngle, x, y) method takes three arguments, the first argument, startAngle, represents the angle in
radians at which the gradient begins, and the last two arguments, (x, y), represent the center of the gradient in CSS pixels. The
method, when invoked, must return a conic CanvasGradientp685 initialized with the specified center and angle.

It follows the same rendering rule as CSS 'conic-gradient' and it is equivalent to CSS 'conic-gradient(from adjustedStartAnglerad at xpx
ypx, angularColorStopList)'. Here:

• adjustedStartAngle is given by startAngle + π/2;

• angularColorStopList is given by the color stops that have been added to the CanvasGradientp685 using addColorStop()p714,
with the color stop offsets interpreted as percentages.

Gradients must be painted only where the relevant stroking or filling effects requires that they be drawn.

Patterns are represented by objects implementing the opaque CanvasPatternp685 interface.

The createPattern(image, repetition) method, when invoked, must run these steps:

1. Let usability be the result of checking the usability ofp711 image.

2. If usability is bad, then return null.

3. Assert: usability is good.

4. If repetition is the empty string, then set it to "repeat".

5. If repetition is not identical to one of "repeat", "repeat-x", "repeat-y", or "no-repeat", then throw a "SyntaxError"
DOMException.

6. Let pattern be a new CanvasPatternp685 object with the image image and the repetition behavior given by repetition.

7. If image is not origin-cleanp712, then mark pattern as not origin-clean.

8. Return pattern.

Modifying the image used when creating a CanvasPatternp685 object after calling the createPattern()p715 method must not affect the
pattern(s) rendered by the CanvasPatternp685 object.

Patterns have a transformation matrix, which controls how the pattern is used when it is painted. Initially, a pattern's transformation
matrix must be the identity matrix.

The setTransform(transform) method, when invoked, must run these steps:

1. Let matrix be the result of creating a DOMMatrix from the 2D dictionary transform.

2. If one or more of matrix's m11 element, m12 element, m21 element, m22 element, m41 element, or m42 element are
infinite or NaN, then return.

offset, and areas outside the cone untouched by the gradient (transparent black).

pattern = context.createPatternp715(image, repetition)
Returns a CanvasPatternp685 object that uses the given image and repeats in the direction(s) given by the repetition argument.
The allowed values for repetition are repeat (both directions), repeat-x (horizontal only), repeat-y (vertical only), and no-
repeat (neither). If the repetition argument is empty, the value repeat is used.
If the image isn't yet fully decoded, then nothing is drawn. If the image is a canvas with no data, throws an
"InvalidStateError" DOMException.

pattern.setTransformp715(transform)
Sets the transformation matrix that will be used when rendering the pattern during a fill or stroke painting operation.

For web developers (non-normative)

715

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images-4/#funcdef-conic-gradient
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#string-is
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.fxtf.org/geometry/#create-a-dommatrix-from-the-2d-dictionary
https://drafts.fxtf.org/geometry/#matrix-m11-element
https://drafts.fxtf.org/geometry/#matrix-m12-element
https://drafts.fxtf.org/geometry/#matrix-m21-element
https://drafts.fxtf.org/geometry/#matrix-m22-element
https://drafts.fxtf.org/geometry/#matrix-m41-element
https://drafts.fxtf.org/geometry/#matrix-m42-element

3. Reset the pattern's transformation matrix to matrix.

When a pattern is to be rendered within an area, the user agent must run the following steps to determine what is rendered:

1. Create an infinite transparent black bitmap.

2. Place a copy of the image on the bitmap, anchored such that its top left corner is at the origin of the coordinate space, with
one coordinate space unit per CSS pixel of the image, then place repeated copies of this image horizontally to the left and
right, if the repetition behavior is "repeat-x", or vertically up and down, if the repetition behavior is "repeat-y", or in all four
directions all over the bitmap, if the repetition behavior is "repeat".

If the original image data is a bitmap image, then the value painted at a point in the area of the repetitions is computed by
filtering the original image data. When scaling up, if the imageSmoothingEnabledp731 attribute is set to false, then the image
must be rendered using nearest-neighbor interpolation. Otherwise, the user agent may use any filtering algorithm (for
example bilinear interpolation or nearest-neighbor). User agents which support multiple filtering algorithms may use the
value of the imageSmoothingQualityp731 attribute to guide the choice of filtering algorithm. When such a filtering algorithm
requires a pixel value from outside the original image data, it must instead use the value from wrapping the pixel's
coordinates to the original image's dimensions. (That is, the filter uses 'repeat' behavior, regardless of the value of the
pattern's repetition behavior.)

3. Transform the resulting bitmap according to the pattern's transformation matrix.

4. Transform the resulting bitmap again, this time according to the current transformation matrixp709.

5. Replace any part of the image outside the area in which the pattern is to be rendered with transparent black.

6. The resulting bitmap is what is to be rendered, with the same origin and same scale.

If a radial gradient or repeated pattern is used when the transformation matrix is singular, then the resulting style must be transparent
black (otherwise the gradient or pattern would be collapsed to a point or line, leaving the other pixels undefined). Linear gradients and
solid colors always define all points even with singular transformation matrices.

Objects that implement the CanvasRectp683 interface provide the following methods for immediately drawing rectangles to the bitmap.
The methods each take four arguments; the first two give the x and y coordinates of the top left of the rectangle, and the second two
give the width w and height h of the rectangle, respectively.

The current transformation matrixp709 must be applied to the following four coordinates, which form the path that must then be closed
to get the specified rectangle: (x, y), (x+w, y), (x+w, y+h), (x, y+h).

Shapes are painted without affecting the current default pathp719, and are subject to the clipping regionp720, and, with the exception of
clearRect()p716, also shadow effectsp732, global alphap731, and the current compositing and blending operatorp731.

The clearRect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Let pixels be the set of pixels in the specified rectangle that also intersect the current clipping regionp720.

3. Clear the pixels in pixels to a transparent black, erasing any previous image.

4.12.5.1.10 Drawing rectangles to the bitmap §p71

6

context.clearRectp716(x, y, w, h)
Clears all pixels on the bitmap in the given rectangle to transparent black.

context.fillRectp717(x, y, w, h)
Paints the given rectangle onto the bitmap, using the current fill style.

context.strokeRectp717(x, y, w, h)
Paints the box that outlines the given rectangle onto the bitmap, using the current stroke style.

For web developers (non-normative)

716

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black

The fillRect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. If either w or h are zero, then return.

3. Paint the specified rectangular area using this's fill stylep712.

The strokeRect(x, y, w, h) method, when invoked, must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Take the result of tracing the pathp692 described below, using the CanvasPathDrawingStylesp685 interface's line styles, and
fill it with this's stroke stylep712.

If both w and h are zero, the path has a single subpath with just one point (x, y), and no lines, and this method thus has no effect (the
trace a pathp692 algorithm returns an empty path in that case).

If just one of either w or h is zero, then the path has a single subpath consisting of two points, with coordinates (x, y) and (x+w, y+h),
in that order, connected by a single straight line.

Otherwise, the path has a single subpath consisting of four points, with coordinates (x, y), (x+w, y), (x+w, y+h), and (x, y+h),
connected to each other in that order by straight lines.

Objects that implement the CanvasTextp684 interface provide the following methods for rendering text.

The fillText(text, x, y, maxWidth) and strokeText(text, x, y, maxWidth) methods render the given text at the given (x, y)
coordinates ensuring that the text isn't wider than maxWidth if specified, using the current fontp696, textAlignp697, and
textBaselinep697 values. Specifically, when the methods are invoked, the user agent must run these steps:

1. If any of the arguments are infinite or NaN, then return.

If either height or width are zero, this method has no effect, since the set of pixels would be empty.
Note

4.12.5.1.11 Drawing text to the bitmap §p71

7

context.fillTextp717(text, x, y [, maxWidth])
context.strokeTextp717(text, x, y [, maxWidth])

Fills or strokes (respectively) the given text at the given position. If a maximum width is provided, the text will be scaled to fit
that width if necessary.

metrics = context.measureTextp718(text)
Returns a TextMetricsp686 object with the metrics of the given text in the current font.

metrics.widthp718

metrics.actualBoundingBoxLeftp718

metrics.actualBoundingBoxRightp718

metrics.fontBoundingBoxAscentp718

metrics.fontBoundingBoxDescentp718

metrics.actualBoundingBoxAscentp718

metrics.actualBoundingBoxDescentp718

metrics.emHeightAscentp719

metrics.emHeightDescentp719

metrics.hangingBaselinep719

metrics.alphabeticBaselinep719

metrics.ideographicBaselinep719

Returns the measurement described below.

For web developers (non-normative)

✔ MDN

717

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

2. Run the text preparation algorithmp700, passing it text, the object implementing the CanvasTextp684 interface, and, if the
maxWidth argument was provided, that argument. Let glyphs be the result.

3. Move all the shapes in glyphs to the right by x CSS pixels and down by y CSS pixels.

4. Paint the shapes given in glyphs, as transformed by the current transformation matrixp709, with each CSS pixel in the
coordinate space of glyphs mapped to one coordinate space unit.

For fillText()p717, this's fill stylep712 must be applied to the shapes and this's stroke stylep712 must be ignored. For
strokeText()p717, the reverse holds: this's stroke stylep712 must be applied to the result of tracingp692 the shapes using the
object implementing the CanvasTextp684 interface for the line styles, and this's fill stylep712 must be ignored.

These shapes are painted without affecting the current path, and are subject to shadow effectsp732, global alphap731, the
clipping regionp720, and the current compositing and blending operatorp731.

The measureText(text) method steps are to run the text preparation algorithmp700, passing it text and the object
implementing the CanvasTextp684 interface, and then using the returned inline box must return a new TextMetricsp686 object
with members behaving as described in the following list: [CSS]p1476

width attribute
The width of that inline box, in CSS pixels. (The text's advance width.)

actualBoundingBoxLeft attribute
The distance parallel to the baseline from the alignment point given by the textAlignp697 attribute to the left side of the bounding
rectangle of the given text, in CSS pixels; positive numbers indicating a distance going left from the given alignment point.

actualBoundingBoxRight attribute
The distance parallel to the baseline from the alignment point given by the textAlignp697 attribute to the right side of the bounding
rectangle of the given text, in CSS pixels; positive numbers indicating a distance going right from the given alignment point.

fontBoundingBoxAscent attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the ascent metric of the first available font, in
CSS pixels; positive numbers indicating a distance going up from the given baseline.

fontBoundingBoxDescent attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the descent metric of the first available font, in
CSS pixels; positive numbers indicating a distance going down from the given baseline.

actualBoundingBoxAscent attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the top of the bounding rectangle of the given
text, in CSS pixels; positive numbers indicating a distance going up from the given baseline.

actualBoundingBoxDescent attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the bottom of the bounding rectangle of the
given text, in CSS pixels; positive numbers indicating a distance going down from the given baseline.

The sum of this value and the next (actualBoundingBoxRightp718) can be wider than the width of the inline box (widthp718), in
particular with slanted fonts where characters overhang their advance width.

Note

This value and the next are useful when rendering a background that have to have a consistent height even if the exact text
being rendered changes. The actualBoundingBoxAscentp718 attribute (and its corresponding attribute for the descent) are
useful when drawing a bounding box around specific text.

Note

This number can vary greatly based on the input text, even if the first font specified covers all the characters in the input. For
example, the actualBoundingBoxAscentp718 of a lowercase "o" from an alphabetic baseline would be less than that of an
uppercase "F". The value can easily be negative; for example, the distance from the top of the em box (textBaselinep697 value
"topp698") to the top of the bounding rectangle when the given text is just a single comma "," would likely (unless the font is
quite unusual) be negative.

Note

718

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#tracking-vector
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#ascent-metric
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#descent-metric
https://drafts.csswg.org/css-fonts/#first-available-font
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-values/#px

emHeightAscent attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the em-over baseline in the inline box, in CSS
pixels; positive numbers indicating that the given baseline is below the em-over baseline (so this value will usually be positive).
Zero if the given baseline is the em-over baseline; half the font size if the given baseline is halfway between the em-over baseline
and the em-under baseline.

emHeightDescent attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the em-under baseline in the inline box, in CSS
pixels; positive numbers indicating that the given baseline is above the em-under baseline. (Zero if the given baseline is the em-
under baseline.)

hangingBaseline attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the hanging baseline of the inline box, in CSS
pixels; positive numbers indicating that the given baseline is below the hanging baseline. (Zero if the given baseline is the hanging
baseline.)

alphabeticBaseline attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the alphabetic baseline of the inline box, in CSS
pixels; positive numbers indicating that the given baseline is below the alphabetic baseline. (Zero if the given baseline is the
alphabetic baseline.)

ideographicBaseline attribute
The distance from the horizontal line indicated by the textBaselinep697 attribute to the ideographic-under baseline of the inline
box, in CSS pixels; positive numbers indicating that the given baseline is below the ideographic-under baseline. (Zero if the given
baseline is the ideographic-under baseline.)

Objects that implement the CanvasDrawPathp683 interface have a current default path. There is only one current default pathp719, it is
not part of the drawing statep690. The current default pathp719 is a pathp702, as described above.

Glyphs rendered using fillText()p717 and strokeText()p717 can spill out of the box given by the font size and the width returned
by measureText()p718 (the text width). Authors are encouraged to use the bounding box values described above if this is an issue.

Note

A future version of the 2D context API might provide a way to render fragments of documents, rendered using CSS, straight to the
canvas. This would be provided in preference to a dedicated way of doing multiline layout.

Note

4.12.5.1.12 Drawing paths to the canvas §p71

9

context.beginPathp720()
Resets the current default pathp719.

context.fillp720([fillRule])
context.fillp720(path [, fillRule])

Fills the subpaths of the current default pathp719 or the given path with the current fill style, obeying the given fill rule.

context.strokep720()
context.strokep720(path)

Strokes the subpaths of the current default pathp719 or the given path with the current stroke style.

context.clipp720([fillRule])
context.clipp720(path [, fillRule])

Further constrains the clipping region to the current default pathp719 or the given path, using the given fill rule to determine
what points are in the path.

For web developers (non-normative)

719

https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css-inline/#em-over-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-inline/#em-under-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#hanging-baseline
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#alphabetic-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css2/#inline-box
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-inline/#ideographic-under-baseline
https://drafts.csswg.org/css-inline/#ideographic-under-baseline

The beginPath() method steps are to empty the list of subpaths in this's current default pathp719 so that it once again has zero
subpaths.

Where the following method definitions use the term intended path for a Path2Dp686-or-null path, it means path itself if it is a
Path2Dp686 object, or the current default pathp719 otherwise.

When the intended pathp720 is a Path2Dp686 object, the coordinates and lines of its subpaths must be transformed according to the
current transformation matrixp709 on the object implementing the CanvasTransformp682 interface when used by these methods (without
affecting the Path2Dp686 object itself). When the intended path is the current default pathp719, it is not affected by the transform. (This is
because transformations already affect the current default pathp719 when it is constructed, so applying it when it is painted as well
would result in a double transformation.)

The fill(fillRule) method steps are to run the fill stepsp720 given this, null, and fillRule.

The fill(path, fillRule) method steps are to run the fill stepsp720 given this, path, and fillRule.

The fill steps, given a CanvasDrawPathp683 context, a Path2Dp686-or-null path, and a fill rulep689 fillRule, are to fill all the subpaths of the
intended pathp720 for path, using context's fill stylep712, and using the fill rulep689 indicated by fillRule. Open subpaths must be implicitly
closed when being filled (without affecting the actual subpaths).

The stroke() method steps are to run the stroke stepsp720 given this and null.

The stroke(path) method steps are to run the stroke stepsp720 given this and path.

The stroke steps, given a CanvasDrawPathp683 context and a Path2Dp686-or-null path, are to tracep692 the intended pathp720 for path,
using context's line styles as set by its CanvasPathDrawingStylesp685 mixin, and then fill the resulting path using context's stroke
stylep712, using the nonzero winding rulep689.

Paths, when filled or stroked, must be painted without affecting the current default pathp719 or any Path2Dp686 objects, and must be
subject to shadow effectsp732, global alphap731, the clipping regionp720, and the current compositing and blending operatorp731. (The
effect of transformations is described above and varies based on which path is being used.)

The clip(fillRule) method steps are to run the clip stepsp720 given this, null, and fillRule.

The clip(path, fillRule) method steps are to run the clip stepsp720 given this, path, and fillRule.

The clip steps, given a CanvasDrawPathp683 context, a Path2Dp686-or-null path, and a fill rulep689 fillRule, are to create a new clipping
region by calculating the intersection of context's current clipping region and the area described by the intended pathp720 for path,
using the fill rulep689 indicated by fillRule. Open subpaths must be implicitly closed when computing the clipping region, without
affecting the actual subpaths. The new clipping region replaces the current clipping region.

When the context is initialized, its current clipping region must be set to the largest infinite surface (i.e. by default, no clipping occurs).

context.isPointInPathp721(x, y [, fillRule])
context.isPointInPathp721(path, x, y [, fillRule])

Returns true if the given point is in the current default pathp719 or the given path, using the given fill rule to determine what
points are in the path.

context.isPointInStrokep721(x, y)
context.isPointInStrokep721(path, x, y)

Returns true if the given point would be in the region covered by the stroke of the current default pathp719 or the given path,
given the current stroke style.

As a result of how the algorithm to trace a pathp692 is defined, overlapping parts of the paths in one stroke operation are treated as
if their union was what was painted.

Note

The stroke style is affected by the transformation during painting, even if the current default pathp719 is used.
Note

720

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The isPointInPath(x, y, fillRule) method steps are to return the result of the is point in path stepsp721 given this, null, x, y, and
fillRule.

The isPointInPath(path, x, y, fillRule) method steps are to return the result of the is point in path stepsp721 given this, path, x,
y, and fillRule.

The is point in path steps, given a CanvasDrawPathp683 context, a Path2Dp686-or-null path, two numbers x and y, and a fill rulep689

fillRule, are:

1. If x or y are infinite or NaN, then return false.

2. If the point given by the x and y coordinates, when treated as coordinates in the canvas coordinate space unaffected by the
current transformation, is inside the intended pathp720 for path as determined by the fill rulep689 indicated by fillRule, then
return true. Open subpaths must be implicitly closed when computing the area inside the path, without affecting the actual
subpaths. Points on the path itself must be considered to be inside the path.

3. Return false.

The isPointInStroke(x, y) method steps are to return the result of the is point in stroke stepsp721 given this, null, x, and y.

The isPointInStroke(path, x, y) method steps are to return the result of the is point in stroke stepsp721 given this, path, x, and y.

The is point in stroke steps, given a CanvasDrawPathp683 context, a Path2Dp686-or-null path, and two numbers x and y, are:

1. If x or y are infinite or NaN, then return false.

2. If the point given by the x and y coordinates, when treated as coordinates in the canvas coordinate space unaffected by the
current transformation, is inside the path that results from tracingp692 the intended pathp720 for path, using the nonzero
winding rulep689, and using context's line styles as set by its CanvasPathDrawingStylesp685 mixin, then return true. Points on
the resulting path must be considered to be inside the path.

3. Return false.

This canvasp677 element has a couple of checkboxes. The path-related commands are highlighted:

<canvas height=400 width=750>
<label><input type=checkbox id=showA> Show As</label>
<label><input type=checkbox id=showB> Show Bs</label>
<!-- ... -->

</canvas>
<script>
function drawCheckbox(context, element, x, y, paint) {

context.save();
context.font = '10px sans-serif';
context.textAlign = 'left';
context.textBaseline = 'middle';
var metrics = context.measureText(element.labels[0].textContent);
if (paint) {

context.beginPath();
context.strokeStyle = 'black';
context.rect(x-5, y-5, 10, 10);
context.stroke();
if (element.checked) {

context.fillStyle = 'black';
context.fill();

}
context.fillText(element.labels[0].textContent, x+5, y);

}
context.beginPath();
context.rect(x-7, y-7, 12 + metrics.width+2, 14);

Example

721

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

Objects that implement the CanvasUserInterfacep684 interface provide the following methods to draw focus rings.

The drawFocusIfNeeded(element) method steps are to draw focus if neededp723 given this, element, and this's current default
pathp719.

context.drawFocusIfNeeded(element);
context.restore();

}
function drawBase() { /* ... */ }
function drawAs() { /* ... */ }
function drawBs() { /* ... */ }
function redraw() {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
context.clearRect(0, 0, canvas.width, canvas.height);
drawCheckbox(context, document.getElementById('showA'), 20, 40, true);
drawCheckbox(context, document.getElementById('showB'), 20, 60, true);
drawBase();
if (document.getElementById('showA').checked)

drawAs();
if (document.getElementById('showB').checked)

drawBs();
}
function processClick(event) {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
var x = event.clientX;
var y = event.clientY;
var node = event.target;
while (node) {

x -= node.offsetLeft - node.scrollLeft;
y -= node.offsetTop - node.scrollTop;
node = node.offsetParent;

}
drawCheckbox(context, document.getElementById('showA'), 20, 40, false);
if (context.isPointInPath(x, y))

document.getElementById('showA').checked = !(document.getElementById('showA').checked);
drawCheckbox(context, document.getElementById('showB'), 20, 60, false);
if (context.isPointInPath(x, y))

document.getElementById('showB').checked = !(document.getElementById('showB').checked);
redraw();

}
document.getElementsByTagName('canvas')[0].addEventListener('focus', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('blur', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('change', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('click', processClick, false);
redraw();

</script>

4.12.5.1.13 Drawing focus rings §p72

2

context.drawFocusIfNeededp722(element)
If element is focusedp836, draws a focus ring around the current default pathp719, following the platform conventions for focus
rings.

context.drawFocusIfNeededp723(path, element)
If element is focusedp836, draws a focus ring around path, following the platform conventions for focus rings.

For web developers (non-normative)

722

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The drawFocusIfNeeded(path, element) method steps are to draw focus if neededp723 given this, element, and path.

To draw focus if needed, given an object implementing CanvasUserInterfacep684 context, an element element, and a pathp702 path:

1. If element is not focusedp836 or is not a descendant of context's canvasp677 element, then return.

2. Draw a focus ring of the appropriate style along path, following platform conventions.

The focus ring should not be subject to the shadow effectsp732, the global alphap731, the current compositing and blending
operatorp731, the fill stylep712, the stroke stylep712, or any of the members in the CanvasPathDrawingStylesp685,
CanvasTextDrawingStylesp685 interfaces, but should be subject to the clipping regionp720. (The effect of transformations is
described above and varies based on which path is being used.)

3. Inform the userp723 that the focus is at the location given by the intended path. User agents may wait until the next time the
event loopp1123 reaches its update the renderingp1128 step to optionally inform the user.

User agents should not implicitly close open subpaths in the intended path when drawing the focus ring.

"Inform the user", as used in this section, does not imply any persistent state change. It could mean, for instance, calling a system
accessibility API to notify assistive technologies such as magnification tools so that the user's magnifier moves to the given area of the
canvas. However, it does not associate the path with the element, or provide a region for tactile feedback, etc.

Objects that implement the CanvasDrawImagep684 interface have the drawImage() method to draw images.

This method can be invoked with three different sets of arguments:

• drawImage(image, dx, dy)
• drawImage(image, dx, dy, dw, dh)
• drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

Some platforms only draw focus rings around elements that have been focused from the keyboard, and not those
focused from the mouse. Other platforms simply don't draw focus rings around some elements at all unless relevant
accessibility features are enabled. This API is intended to follow these conventions. User agents that implement
distinctions based on the manner in which the element was focused are encouraged to classify focus driven by the
focus()p847 method based on the kind of user interaction event from which the call was triggered (if any).

Note

This might be a moot point, however. For example, if the focus ring is drawn as an axis-aligned bounding rectangle around the
points in the intended path, then whether the subpaths are closed or not has no effect. This specification intentionally does not
specify precisely how focus rings are to be drawn: user agents are expected to honor their platform's native conventions.

Note

4.12.5.1.14 Drawing images §p72

3

context.drawImagep723(image, dx, dy)
context.drawImagep723(image, dx, dy, dw, dh)
context.drawImagep723(image, sx, sy, sw, sh, dx, dy, dw, dh)

Draws the given image onto the canvas. The arguments are interpreted as follows:

For web developers (non-normative)

723

https://webidl.spec.whatwg.org/#this

When the drawImage()p723 method is invoked, the user agent must run these steps:

1. If any of the arguments are infinite or NaN, then return.

2. Let usability be the result of checking the usability of imagep711.

3. If usability is bad, then return (without drawing anything).

4. Establish the source and destination rectangles as follows:

If not specified, the dw and dh arguments must default to the values of sw and sh, interpreted such that one CSS pixel in the
image is treated as one unit in the output bitmapp687 's coordinate space. If the sx, sy, sw, and sh arguments are omitted,
then they must default to 0, 0, the image's natural width in image pixels, and the image's natural height in image pixels,
respectively. If the image has no natural dimensions, then the concrete object size must be used instead, as determined
using the CSS "Concrete Object Size Resolution" algorithm, with the specified size having neither a definite width nor height,
nor any additional constraints, the object's natural properties being those of the image argument, and the default object size
being the size of the output bitmapp687. [CSSIMAGES]p1476

The source rectangle is the rectangle whose corners are the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh).

The destination rectangle is the rectangle whose corners are the four points (dx, dy), (dx+dw, dy), (dx+dw, dy+dh), (dx,
dy+dh).

When the source rectangle is outside the source image, the source rectangle must be clipped to the source image and the
destination rectangle must be clipped in the same proportion.

5. If one of the sw or sh arguments is zero, then return. Nothing is painted.

6. Paint the region of the image argument specified by the source rectangle on the region of the rendering context's output
bitmapp687 specified by the destination rectangle, after applying the current transformation matrixp709 to the destination
rectangle.

If the image isn't yet fully decoded, then nothing is drawn. If the image is a canvas with no data, throws an
"InvalidStateError" DOMException.

When the destination rectangle is outside the destination image (the output bitmapp687), the pixels that land outside the
output bitmapp687 are discarded, as if the destination was an infinite canvas whose rendering was clipped to the
dimensions of the output bitmapp687.

Note

724

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-images/#default-sizing
https://drafts.csswg.org/css-images/#default-object-size

The image data must be processed in the original direction, even if the dimensions given are negative.

When scaling up, if the imageSmoothingEnabledp731 attribute is set to true, the user agent should attempt to apply a
smoothing algorithm to the image data when it is scaled. User agents which support multiple filtering algorithms may use
the value of the imageSmoothingQualityp731 attribute to guide the choice of filtering algorithm when the
imageSmoothingEnabledp731 attribute is set to true. Otherwise, the image must be rendered using nearest-neighbor
interpolation.

If the original image data is a bitmap image, then the value painted at a point in the destination rectangle is computed by
filtering the original image data. The user agent may use any filtering algorithm (for example bilinear interpolation or
nearest-neighbor). When the filtering algorithm requires a pixel value from outside the original image data, it must instead
use the value from the nearest edge pixel. (That is, the filter uses 'clamp-to-edge' behavior.) When the filtering algorithm
requires a pixel value from outside the source rectangle but inside the original image data, then the value from the original
image data must be used.

Images are painted without affecting the current path, and are subject to shadow effectsp732, global alphap731, the clipping
regionp720, and the current compositing and blending operatorp731.

7. If image is not origin-cleanp712, then set the CanvasRenderingContext2Dp682 's origin-cleanp678 flag to false.

This specification does not define the precise algorithm to use when scaling an image down, or when scaling an image
up when the imageSmoothingEnabledp731 attribute is set to true.

Note

When a canvasp677 element is drawn onto itself, the drawing modelp734 requires the source to be copied before the image
is drawn, so it is possible to copy parts of a canvasp677 element onto overlapping parts of itself.

Note

Thus, scaling an image in parts or in whole will have the same effect. This does mean that when sprites coming from a
single sprite sheet are to be scaled, adjacent images in the sprite sheet can interfere. This can be avoided by ensuring
each sprite in the sheet is surrounded by a border of transparent black, or by copying sprites to be scaled into temporary
canvasp677 elements and drawing the scaled sprites from there.

Note

4.12.5.1.15 Pixel manipulation §p72

5

imagedata = new ImageDatap726(sw, sh [, settings])
Returns an ImageDatap686 object with the given dimensions and the color space indicated by settings. All the pixels in the
returned object are transparent black.
Throws an "IndexSizeError" DOMException if either of the width or height arguments are zero.

imagedata = new ImageDatap726(data, sw [, sh [, settings]])
Returns an ImageDatap686 object using the data provided in the Uint8ClampedArray argument, interpreted using the given
dimensions and the color space indicated by settings.
As each pixel in the data is represented by four numbers, the length of the data needs to be a multiple of four times the given
width. If the height is provided as well, then the length needs to be exactly the width times the height times 4.
Throws an "IndexSizeError" DOMException if the given data and dimensions can't be interpreted consistently, or if either
dimension is zero.

imagedata = context.createImageDatap727(imagedata)
Returns an ImageDatap686 object with the same dimensions and color space as the argument. All the pixels in the returned
object are transparent black.

imagedata = context.createImageDatap726(sw, sh [, settings])
Returns an ImageDatap686 object with the given dimensions. The color space of the returned object is the color spacep688 of
context unless overridden by settings. All the pixels in the returned object are transparent black.
Throws an "IndexSizeError" DOMException if either of the width or height arguments are zero.

For web developers (non-normative)

725

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException

Objects that implement the CanvasImageDatap684 interface provide the following methods for reading and writing pixel data to the
bitmap.

The new ImageData(sw, sh, settings) constructor steps are:

1. If one or both of sw and sh are zero, then throw an "IndexSizeError" DOMException.

2. Initializep727 this given sw, sh, and settingsp727 set to settings.

3. Initialize the image data of this to transparent black.

The new ImageData(data, sw, sh, settings) constructor steps are:

1. Let length be the number of bytes in data.

2. If length is not a nonzero integral multiple of four, then throw an "InvalidStateError" DOMException.

3. Let length be length divided by four.

4. If length is not an integral multiple of sw, then throw an "IndexSizeError" DOMException.

5. Let height be length divided by sw.

6. If sh was given and its value is not equal to height, then throw an "IndexSizeError" DOMException.

7. Initializep727 this given sw, sh, settingsp727 set to settings, and sourcep727 set to data.

The createImageData(sw, sh, settings) method steps are:

1. If one or both of sw and sh are zero, then throw an "IndexSizeError" DOMException.

2. Let newImageData be a new ImageDatap686 object.

3. Initializep727 newImageData given the absolute magnitude of sw, the absolute magnitude of sh, settingsp727 set to settings,

imagedata = context.getImageDatap727(sx, sy, sw, sh [, settings])
Returns an ImageDatap686 object containing the image data for the given rectangle of the bitmap. The color space of the
returned object is the color spacep688 of context unless overridden by settings.
Throws an "IndexSizeError" DOMException if the either of the width or height arguments are zero.

imagedata.widthp727

imagedata.heightp727

Returns the actual dimensions of the data in the ImageDatap686 object, in pixels.

imagedata.datap727

Returns the one-dimensional array containing the data in RGBA order, as integers in the range 0 to 255.

imagedata.colorSpacep727

Returns the color space of the pixels.

context.putImageDatap728(imagedata, dx, dy [, dirtyX, dirtyY, dirtyWidth, dirtyHeight])
Paints the data from the given ImageDatap686 object onto the bitmap. If a dirty rectangle is provided, only the pixels from that
rectangle are painted.
The globalAlphap731 and globalCompositeOperationp731 properties, as well as the shadow attributesp732, are ignored for the
purposes of this method call; pixels in the canvas are replaced wholesale, with no composition, alpha blending, no shadows, etc.
Throws an "InvalidStateError" DOMException if the imagedata object's datap727 attribute value's [[ViewedArrayBuffer]]
internal slot is detached.

At this step, the length is guaranteed to be greater than zero (otherwise the second step above would have aborted the
steps), so if sw is zero, this step will throw the exception and return.

Note

This step does not set this's data to a copy of data. It sets it to the actual Uint8ClampedArray object passed as data.
Note

726

https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#new

and defaultColorSpacep727 set to this's color spacep688.

4. Initialize the image data of newImageData to transparent black.

5. Return newImageData.

The createImageData(imagedata) method steps are:

1. Let newImageData be a new ImageDatap686 object.

2. Initializep727 newImageData given the value of imagedata's widthp727 attribute, the value of imagedata's heightp727 attribute,
and defaultColorSpacep727 set to the value of imagedata's colorSpacep727 attribute.

3. Initialize the image data of newImageData to transparent black.

4. Return newImageData.

The getImageData(sx, sy, sw, sh, settings) method steps are:

1. If either the sw or sh arguments are zero, then throw an "IndexSizeError" DOMException.

2. If the CanvasRenderingContext2Dp682 's origin-cleanp678 flag is set to false, then throw a "SecurityError" DOMException.

3. Let imageData be a new ImageDatap686 object.

4. Initializep727 imageData given sw, sh, settingsp727 set to settings, and defaultColorSpacep727 set to this's color spacep688.

5. Let the source rectangle be the rectangle whose corners are the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx,
sy+sh).

6. Set the pixel values of imageData to be the pixels of this's output bitmapp687 in the area specified by the source rectangle in
the bitmap's coordinate space units, converted from this's color spacep688 to imageData's colorSpacep727 using 'relative-
colorimetric' rendering intent.

7. Set the pixels values of imageData for areas of the source rectangle that are outside of the output bitmapp687 to transparent
black.

8. Return imageData.

To initialize an ImageData object imageData, given a positive integer number of rows rows, a positive integer number of pixels per
row pixelsPerRow, an optional ImageDataSettingsp686 settings, an optional Uint8ClampedArray source, and an optional
PredefinedColorSpacep682 defaultColorSpace:

1. If source was given, then initialize the data attribute of imageData to source.

2. Otherwise (source was not given), initialize the datap727 attribute of imageData to a new Uint8ClampedArray object. The
Uint8ClampedArray object must use a new Canvas Pixel ArrayBufferp728 for its storage, and must have a zero start offset
and a length equal to the length of its storage, in bytes. The Canvas Pixel ArrayBufferp728 must have the correct size to
store rows × pixelsPerRow pixels.

If the Canvas Pixel ArrayBufferp728 cannot be allocated, then rethrow the RangeError thrown by JavaScript, and return.

3. Initialize the width attribute of imageData to pixelsPerRow.

4. Initialize the height attribute of imageData to rows.

5. If settings was given and settings["colorSpacep727"] exists, then initialize the colorSpace attribute of imageData to
settings["colorSpace"].

6. Otherwise, if defaultColorSpace was given, then initialize the colorSpacep727 attribute of imageData to defaultColorSpace.

7. Otherwise, initialize the colorSpacep727 attribute of imageData to "srgbp689".

ImageDatap686 objects are serializable objectsp117. Their serialization stepsp117, given value and serialized, are:

1. Set serialized.[[Data]] to the sub-serializationp122 of the value of value's datap727 attribute.

2. Set serialized.[[Width]] to the value of value's widthp727 attribute.

MDN

727

https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#new
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color-5/#valdef-color-profile-rendering-intent-relative-colorimetric
https://drafts.csswg.org/css-color-5/#valdef-color-profile-rendering-intent-relative-colorimetric
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://webidl.spec.whatwg.org/#idl-Uint8ClampedArray
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://infra.spec.whatwg.org/#map-exists

3. Set serialized.[[Height]] to the value of value's heightp727 attribute.

4. Set serialized.[[ColorSpace]] to the value of value's colorSpacep727 attribute.

Their deserialization stepsp117, given serialized, value, and targetRealm, are:

1. Initialize value's datap727 attribute to the sub-deserializationp125 of serialized.[[Data]].

2. Initialize value's widthp727 attribute to serialized.[[Width]].

3. Initialize value's heightp727 attribute to serialized.[[Height]].

4. Initialize value's colorSpacep727 attribute to serialized.[[ColorSpace]].

A Canvas Pixel ArrayBuffer is an ArrayBuffer whose data is represented in left-to-right order, row by row top to bottom, starting
with the top left, with each pixel's red, green, blue, and alpha components being given in that order for each pixel. Each component of
each pixel represented in this array must be in the range 0..255, representing the 8 bit value for that component. The components
must be assigned consecutive indices starting with 0 for the top left pixel's red component.

The putImageData() method writes data from ImageDatap686 structures back to the rendering context's output bitmapp687. Its
arguments are: imagedata, dx, dy, dirtyX, dirtyY, dirtyWidth, and dirtyHeight.

When the last four arguments to this method are omitted, they must be assumed to have the values 0, 0, the widthp727 member of the
imagedata structure, and the heightp727 member of the imagedata structure, respectively.

The method, when invoked, must act as follows:

1. Let buffer be imagedata's datap727 attribute value's [[ViewedArrayBuffer]] internal slot.

2. If IsDetachedBuffer(buffer) is true, then throw an "InvalidStateError" DOMException.

3. If dirtyWidth is negative, then let dirtyX be dirtyX+dirtyWidth, and let dirtyWidth be equal to the absolute magnitude of
dirtyWidth.

If dirtyHeight is negative, then let dirtyY be dirtyY+dirtyHeight, and let dirtyHeight be equal to the absolute magnitude of
dirtyHeight.

4. If dirtyX is negative, then let dirtyWidth be dirtyWidth+dirtyX, and let dirtyX be zero.

If dirtyY is negative, then let dirtyHeight be dirtyHeight+dirtyY, and let dirtyY be zero.

5. If dirtyX+dirtyWidth is greater than the widthp727 attribute of the imagedata argument, then let dirtyWidth be the value of
that widthp727 attribute, minus the value of dirtyX.

If dirtyY+dirtyHeight is greater than the heightp727 attribute of the imagedata argument, then let dirtyHeight be the value of
that heightp727 attribute, minus the value of dirtyY.

6. If, after those changes, either dirtyWidth or dirtyHeight are negative or zero, then return without affecting any bitmaps.

7. For all integer values of x and y where dirtyX ≤ x < dirtyX+dirtyWidth and dirtyY ≤ y < dirtyY+dirtyHeight, copy the four
channels of the pixel with coordinate (x, y) in the imagedata data structure's Canvas Pixel ArrayBufferp728 to the pixel with
coordinate (dx+x, dy+y) in the rendering context's output bitmapp687.

The current path, transformation matrixp709, shadow attributesp732, global alphap731, the clipping regionp720, and current compositing
and blending operatorp731 must not affect the methods described in this section.

Due to the lossy nature of converting between color spaces and converting to and from premultiplied alphap748 color values, pixels
that have just been set using putImageData()p728, and are not completely opaque, might be returned to an equivalent
getImageData()p727 as different values.

Note

In the following example, the script generates an ImageDatap686 object so that it can draw onto it.

// canvas is a reference to a <canvas> element

Example

728

https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

var context = canvas.getContext('2d');

// create a blank slate
var data = context.createImageData(canvas.width, canvas.height);

// create some plasma
FillPlasma(data, 'green'); // green plasma

// add a cloud to the plasma
AddCloud(data, data.width/2, data.height/2); // put a cloud in the middle

// paint the plasma+cloud on the canvas
context.putImageData(data, 0, 0);

// support methods
function FillPlasma(data, color) { ... }
function AddCloud(data, x, y) { ... }

Here is an example of using getImageData()p727 and putImageData()p728 to implement an edge detection filter.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Edge detection demo</title>
<script>
var image = new Image();
function init() {

image.onload = demo;
image.src = "image.jpeg";

}
function demo() {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');

// draw the image onto the canvas
context.drawImage(image, 0, 0);

// get the image data to manipulate
var input = context.getImageData(0, 0, canvas.width, canvas.height);

// get an empty slate to put the data into
var output = context.createImageData(canvas.width, canvas.height);

// alias some variables for convenience
// In this case input.width and input.height
// match canvas.width and canvas.height
// but we'll use the former to keep the code generic.
var w = input.width, h = input.height;
var inputData = input.data;
var outputData = output.data;

// edge detection
for (var y = 1; y < h-1; y += 1) {

for (var x = 1; x < w-1; x += 1) {
for (var c = 0; c < 3; c += 1) {

var i = (y*w + x)*4 + c;
outputData[i] = 127 + -inputData[i - w*4 - 4] - inputData[i - w*4] - inputData[i -

w*4 + 4] +

Example

729

-inputData[i - 4] + 8*inputData[i] - inputData[i + 4]
+

-inputData[i + w*4 - 4] - inputData[i + w*4] - inputData[i +
w*4 + 4];

}
outputData[(y*w + x)*4 + 3] = 255; // alpha

}
}

// put the image data back after manipulation
context.putImageData(output, 0, 0);

}
</script>

</head>
<body onload="init()">
<canvas></canvas>

</body>
</html>

Here is an example of color space conversion applied when drawing a solid color and reading the result back using and
getImageData()p727.

<!DOCTYPE HTML>
<html lang="en">
<title>Color space image data demo</title>

<canvas></canvas>

<script>
const canvas = document.querySelector('canvas');
const context = canvas.getContext('2d', {colorSpace:'display-p3'});

// Draw a red rectangle. Note that the hex color notation
// specifies sRGB colors.
context.fillStyle = "#FF0000";
context.fillRect(0, 0, 64, 64);

// Get the image data.
const pixels = context.getImageData(0, 0, 1, 1);

// This will print 'display-p3', reflecting the default behavior
// of returning image data in the canvas's color space.
console.log(pixels.colorSpace);

// This will print the values 234, 51, and 35, reflecting the
// red fill color, converted to 'display-p3'.
console.log(pixels.data[0]);
console.log(pixels.data[1]);
console.log(pixels.data[2]);
</script>

Example

4.12.5.1.16 Compositing §p73

0

For web developers (non-normative)

730

Objects that implement the CanvasCompositingp683 interface have a global alphap731 value and a current compositing and blending
operatorp731 value that both affect all the drawing operations on this object.

The global alpha value gives an alpha value that is applied to shapes and images before they are composited onto the output
bitmapp687. The value ranges from 0.0 (fully transparent) to 1.0 (no additional transparency). It must initially have the value 1.0.

The globalAlpha getter steps are to return this's global alphap731.

The globalAlphap731 setter steps are:

1. If the given value is either infinite, NaN, or not in the range 0.0 to 1.0, then return.

2. Otherwise, set this's global alphap731 to the given value.

The current compositing and blending operator value controls how shapes and images are drawn onto the output bitmapp687,
once they have had the global alphap731 and the current transformation matrixp709 applied. Initially, it must be set to "source-over".

The globalCompositeOperation getter steps are to return this's current compositing and blending operatorp731.

The globalCompositeOperationp731 setter steps are:

1. If the given value is not identical to any of the values that the <blend-mode> or the <composite-mode> properties are
defined to take, then return. [COMPOSITE]p1475

2. Otherwise, set this's current compositing and blending operatorp731 to the given value.

Objects that implement the CanvasImageSmoothingp683 interface have attributes that control how image smoothing is performed.

The imageSmoothingEnabled attribute, on getting, must return the last value it was set to. On setting, it must be set to the new value.
When the object implementing the CanvasImageSmoothingp683 interface is created, the attribute must be set to true.

The imageSmoothingQuality attribute, on getting, must return the last value it was set to. On setting, it must be set to the new value.
When the object implementing the CanvasImageSmoothingp683 interface is created, the attribute must be set to "lowp689".

context.globalAlphap731 [= value]
Returns the current global alphap731 value applied to rendering operations.
Can be set, to change the global alphap731 value. Values outside of the range 0.0 .. 1.0 are ignored.

context.globalCompositeOperationp731 [= value]
Returns the current compositing and blending operatorp731, from the values defined in Compositing and Blending.
[COMPOSITE]p1475

Can be set, to change the current compositing and blending operatorp731. Unknown values are ignored.

4.12.5.1.17 Image smoothing §p73

1

context.imageSmoothingEnabledp731 [= value]
Returns whether pattern fills and the drawImage()p723 method will attempt to smooth images if their pixels don't line up exactly
with the display, when scaling images up.
Can be set, to change whether images are smoothed (true) or not (false).

context.imageSmoothingQualityp731 [= value]
Returns the current image-smoothing-quality preference.
Can be set, to change the preferred quality of image smoothing. The possible values are "lowp689", "mediump689" and "highp689".
Unknown values are ignored.

For web developers (non-normative)

731

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.fxtf.org/compositing/#porterduffcompositingoperators_srcover
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#string-is
https://drafts.fxtf.org/compositing/#ltblendmodegt
https://drafts.fxtf.org/compositing/#compositemode
https://webidl.spec.whatwg.org/#this

All drawing operations on an object which implements the CanvasShadowStylesp683 interface are affected by the four global shadow
attributes.

Objects which implement the CanvasShadowStylesp683 interface have an associated shadow color, which is a CSS color. Initially, it
must be transparent black.

The shadowColor getter steps are to return the serialization of this's shadow colorp732 with HTML-compatible serialization requested.

The shadowColorp732 setter steps are:

1. Let context be this's canvasp689 attribute's value, if that is an element; otherwise null.

2. Let parsedValue be the result of parsing the given value with context if non-null.

3. If parsedValue is failure, then return.

4. Set this's shadow colorp732 to parsedValue.

The shadowOffsetX and shadowOffsetY attributes specify the distance that the shadow will be offset in the positive horizontal and
positive vertical distance respectively. Their values are in coordinate space units. They are not affected by the current transformation
matrix.

When the context is created, the shadow offset attributes must initially have the value 0.

On getting, they must return their current value. On setting, the attribute being set must be set to the new value, except if the value is
infinite or NaN, in which case the new value must be ignored.

The shadowBlur attribute specifies the level of the blurring effect. (The units do not map to coordinate space units, and are not
affected by the current transformation matrix.)

When the context is created, the shadowBlurp732 attribute must initially have the value 0.

On getting, the attribute must return its current value. On setting, the attribute must be set to the new value, except if the value is
negative, infinite or NaN, in which case the new value must be ignored.

Shadows are only drawn if the opacity component of the alpha component of the shadow colorp732 is nonzero and either the
shadowBlurp732 is nonzero, or the shadowOffsetXp732 is nonzero, or the shadowOffsetYp732 is nonzero.

When shadows are drawnp732, they must be rendered as follows:

1. Let A be an infinite transparent black bitmap on which the source image for which a shadow is being created has been
rendered.

2. Let B be an infinite transparent black bitmap, with a coordinate space and an origin identical to A.

3. Copy the alpha channel of A to B, offset by shadowOffsetXp732 in the positive x direction, and shadowOffsetYp732 in the
positive y direction.

4. If shadowBlurp732 is greater than 0:

4.12.5.1.18 Shadows §p73

2

context.shadowColorp732 [= value]
Returns the current shadow color.
Can be set, to change the shadow color. Values that cannot be parsed as CSS colors are ignored.

context.shadowOffsetXp732 [= value]
context.shadowOffsetYp732 [= value]

Returns the current shadow offset.
Can be set, to change the shadow offset. Values that are not finite numbers are ignored.

context.shadowBlurp732 [= value]
Returns the current level of blur applied to shadows.
Can be set, to change the blur level. Values that are not finite numbers greater than or equal to zero are ignored.

For web developers (non-normative)

732

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#serializing-color-values
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#color-serialization-html-compatible-serialization-is-requested
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#parse-a-css-color-value
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black

1. Let σ be half the value of shadowBlurp732.

2. Perform a 2D Gaussian Blur on B, using σ as the standard deviation.

User agents may limit values of σ to an implementation-specific maximum value to avoid exceeding hardware limitations
during the Gaussian blur operation.

5. Set the red, green, and blue components of every pixel in B to the red, green, and blue components (respectively) of the
shadow colorp732.

6. Multiply the alpha component of every pixel in B by the alpha component of the shadow colorp732.

7. The shadow is in the bitmap B, and is rendered as part of the drawing modelp734 described below.

If the current compositing and blending operatorp731 is "copy", then shadows effectively won't render (since the shape will overwrite
the shadow).

All drawing operations on an object which implements the CanvasFiltersp683 interface are affected by the global filter attribute.

Such objects have an associated current filter, which is a string. Initially the current filterp733 is set to the string "none". Whenever the
value of the current filterp733 is the string "none" filters will be disabled for the context.

The filterp733 getter steps are to return this's current filterp733.

The filterp733 setter steps are:

1. If the given value is "none", then set this's current filterp733 to "none" and return.

2. Let parsedValue be the result of parsing the given values as a <filter-value-list>. If any property-independent style sheet
syntax like 'inherit' or 'initial' is present, then this parsing must return failure.

3. If parsedValue is failure, then return.

4. Set this's current filterp733 to the given value.

Coordinates used in the value of the current filterp733 are interpreted such that one pixel is equivalent to one SVG user space unit and
to one canvas coordinate space unit. Filter coordinates are not affected by the current transformation matrixp709. The current
transformation matrix affects only the input to the filter. Filters are applied in the output bitmapp687 's coordinate space.

When the value of the current filterp733 is a string parsable as a <filter-value-list> which defines lengths using percentages or using
'em' or 'ex' units, these must be interpreted relative to the computed value of the 'font-size' property of the font style source objectp695

at the time that the attribute is set. If the computed values are undefined for a particular case (e.g. because the font style source
objectp695 is not an element or is not being renderedp1388), then the relative keywords must be interpreted relative to the default value
of the fontp696 attribute. The 'larger' and 'smaller' keywords are not supported.

If the value of the current filterp733 is a string parseable as a <filter-value-list> with a reference to an SVG filter in the same document,
and this SVG filter changes, then the changed filter is used for the next draw operation.

If the value of the current filterp733 is a string parseable as a <filter-value-list> with a reference to an SVG filter in an external resource

4.12.5.1.19 Filters §p73

3

context.filterp733 [= value]
Returns the current filter.
Can be set, to change the filter. Values can either be the string "none" or a string parseable as a <filter-value-list>. Other values
are ignored.

For web developers (non-normative)

Though context.filterp733 = "none" will disable filters for the context, context.filterp733 = "", context.filterp733 = null,
and context.filterp733 = undefined are all treated as unparseable inputs and the value of the current filterp733 is left
unchanged.

Note

733

https://drafts.fxtf.org/compositing/#porterduffcompositingoperators_src
https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-syntax/#parse-grammar
https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list
https://webidl.spec.whatwg.org/#this
https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list
https://drafts.csswg.org/css-values/#em
https://drafts.csswg.org/css-values/#ex
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list
https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list

document and that document is not loaded when a drawing operation is invoked, then the drawing operation must proceed with no
filtering.

This section is non-normative.

Since drawing is performed using filter value "none" until an externally-defined filter has finished loading, authors might wish to
determine whether such a filter has finished loading before proceeding with a drawing operation. One way to accomplish this is to load
the externally-defined filter elsewhere within the same page in some element that sends a load event (for example, an SVG use
element), and wait for the load event to be dispatched.

When a shape or image is painted, user agents must follow these steps, in the order given (or act as if they do):

1. Render the shape or image onto an infinite transparent black bitmap, creating image A, as described in the previous
sections. For shapes, the current fill, stroke, and line styles must be honored, and the stroke must itself also be subjected to
the current transformation matrix.

2. Multiply the alpha component of every pixel in A by global alphap731.

3. When the current filterp733 is set to a value other than "none" and all the externally-defined filters it references, if any, are in
documents that are currently loaded, then use image A as the input to the current filterp733, creating image B. If the current
filterp733 is a string parseable as a <filter-value-list>, then draw using the current filterp733 in the same manner as SVG.

Otherwise, let B be an alias for A.

4. When shadows are drawnp732, render the shadow from image B, using the current shadow styles, creating image C.

5. When shadows are drawnp732, composite C within the clipping regionp720 over the current output bitmapp687 using the current
compositing and blending operatorp731.

6. Composite B within the clipping regionp720 over the current output bitmapp687 using the current compositing and blending
operatorp731.

When compositing onto the output bitmapp687, pixels that would fall outside of the output bitmapp687 must be discarded.

When a canvas is interactive, authors should include focusablep837 elements in the element's fallback content corresponding to each
focusablep837 part of the canvas, as in the example abovep721.

When rendering focus rings, to ensure that focus rings have the appearance of native focus rings, authors should use the
drawFocusIfNeeded()p722 method, passing it the element for which a ring is being drawn. This method only draws the focus ring if the
element is focusedp836, so that it can simply be called whenever drawing the element, without checking whether the element is
focused or not first.

Authors should avoid implementing text editing controls using the canvasp677 element. Doing so has a large number of disadvantages:

• Mouse placement of the caret has to be reimplemented.

• Keyboard movement of the caret has to be reimplemented (possibly across lines, for multiline text input).

• Scrolling of the text control has to be implemented (horizontally for long lines, vertically for multiline input).

• Native features such as copy-and-paste have to be reimplemented.

• Native features such as spell-checking have to be reimplemented.

• Native features such as drag-and-drop have to be reimplemented.

4.12.5.1.20 Working with externally-defined SVG filters §p73

4

4.12.5.1.21 Drawing model §p73

4

4.12.5.1.22 Best practices §p73

4

734

https://svgwg.org/svg2-draft/struct.html#UseElement
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.fxtf.org/filter-effects/#typedef-filter-value-list

• Native features such as page-wide text search have to be reimplemented.

• Native features specific to the user, for example custom text services, have to be reimplemented. This is close to impossible
since each user might have different services installed, and there is an unbounded set of possible such services.

• Bidirectional text editing has to be reimplemented.

• For multiline text editing, line wrapping has to be implemented for all relevant languages.

• Text selection has to be reimplemented.

• Dragging of bidirectional text selections has to be reimplemented.

• Platform-native keyboard shortcuts have to be reimplemented.

• Platform-native input method editors (IMEs) have to be reimplemented.

• Undo and redo functionality has to be reimplemented.

• Accessibility features such as magnification following the caret or selection have to be reimplemented.

This is a huge amount of work, and authors are most strongly encouraged to avoid doing any of it by instead using the inputp520

element, the textareap579 element, or the contenteditablep853 attribute.

This section is non-normative.

4.12.5.1.23 Examples §p73

5

Here is an example of a script that uses canvas to draw pretty glowing lines.

<canvas width="800" height="450"></canvas>
<script>

var context = document.getElementsByTagName('canvas')[0].getContext('2d');

var lastX = context.canvas.width * Math.random();
var lastY = context.canvas.height * Math.random();
var hue = 0;
function line() {

context.save();
context.translate(context.canvas.width/2, context.canvas.height/2);
context.scale(0.9, 0.9);
context.translate(-context.canvas.width/2, -context.canvas.height/2);
context.beginPath();
context.lineWidth = 5 + Math.random() * 10;
context.moveTo(lastX, lastY);
lastX = context.canvas.width * Math.random();
lastY = context.canvas.height * Math.random();
context.bezierCurveTo(context.canvas.width * Math.random(),

context.canvas.height * Math.random(),
context.canvas.width * Math.random(),
context.canvas.height * Math.random(),
lastX, lastY);

hue = hue + 10 * Math.random();
context.strokeStyle = 'hsl(' + hue + ', 50%, 50%)';
context.shadowColor = 'white';
context.shadowBlur = 10;
context.stroke();
context.restore();

}
setInterval(line, 50);

Example

735

data:text/html;charset=utf-8;base64,PCFET0NUWVBFIEhUTUw%2BDQo8aHRtbCBsYW5nPSJlbiI%2BDQogPGhlYWQ%2BDQogIDx0aXRsZT5QcmV0dHkgR2xvd2luZyBMaW5lczwvdGl0bGU%2BDQogPC9oZWFkPg0KIDxib2R5Pg0KPGNhbnZhcyB3aWR0aD0iODAwIiBoZWlnaHQ9IjQ1MCI%2BPC9jYW52YXM%2BDQo8c2NyaXB0Pg0KDQogdmFyIGNvbnRleHQgPSBkb2N1bWVudC5nZXRFbGVtZW50c0J5VGFnTmFtZSgnY2FudmFzJylbMF0uZ2V0Q29udGV4dCgnMmQnKTsNCg0KIHZhciBsYXN0WCA9IGNvbnRleHQuY2FudmFzLndpZHRoICogTWF0aC5yYW5kb20oKTsNCiB2YXIgbGFzdFkgPSBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpOw0KIHZhciBodWUgPSAwOw0KIGZ1bmN0aW9uIGxpbmUoKSB7DQogICBjb250ZXh0LnNhdmUoKTsNCiAgIGNvbnRleHQudHJhbnNsYXRlKGNvbnRleHQuY2FudmFzLndpZHRoLzIsIGNvbnRleHQuY2FudmFzLmhlaWdodC8yKTsNCiAgIGNvbnRleHQuc2NhbGUoMC45LCAwLjkpOw0KICAgY29udGV4dC50cmFuc2xhdGUoLWNvbnRleHQuY2FudmFzLndpZHRoLzIsIC1jb250ZXh0LmNhbnZhcy5oZWlnaHQvMik7DQogICBjb250ZXh0LmJlZ2luUGF0aCgpOw0KICAgY29udGV4dC5saW5lV2lkdGggPSA1ICsgTWF0aC5yYW5kb20oKSAqIDEwOw0KICAgY29udGV4dC5tb3ZlVG8obGFzdFgsIGxhc3RZKTsNCiAgIGxhc3RYID0gY29udGV4dC5jYW52YXMud2lkdGggKiBNYXRoLnJhbmRvbSgpOw0KICAgbGFzdFkgPSBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpOw0KICAgY29udGV4dC5iZXppZXJDdXJ2ZVRvKGNvbnRleHQuY2FudmFzLndpZHRoICogTWF0aC5yYW5kb20oKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnRleHQuY2FudmFzLndpZHRoICogTWF0aC5yYW5kb20oKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBjb250ZXh0LmNhbnZhcy5oZWlnaHQgKiBNYXRoLnJhbmRvbSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGxhc3RYLCBsYXN0WSk7DQoNCiAgIGh1ZSA9IGh1ZSArIDEwICogTWF0aC5yYW5kb20oKTsNCiAgIGNvbnRleHQuc3Ryb2tlU3R5bGUgPSAnaHNsKCcgKyBodWUgKyAnLCA1MCUsIDUwJSknOw0KICAgY29udGV4dC5zaGFkb3dDb2xvciA9ICd3aGl0ZSc7DQogICBjb250ZXh0LnNoYWRvd0JsdXIgPSAxMDsNCiAgIGNvbnRleHQuc3Ryb2tlKCk7DQogICBjb250ZXh0LnJlc3RvcmUoKTsNCiB9DQogc2V0SW50ZXJ2YWwobGluZSwgNTApOw0KDQogZnVuY3Rpb24gYmxhbmsoKSB7DQogICBjb250ZXh0LmZpbGxTdHlsZSA9ICdyZ2JhKDAsMCwwLDAuMSknOw0KICAgY29udGV4dC5maWxsUmVjdCgwLCAwLCBjb250ZXh0LmNhbnZhcy53aWR0aCwgY29udGV4dC5jYW52YXMuaGVpZ2h0KTsNCiB9DQogc2V0SW50ZXJ2YWwoYmxhbmssIDQwKTsNCg0KPC9zY3JpcHQ%2BDQogPC9ib2R5Pg0KPC9odG1sPg0K

function blank() {
context.fillStyle = 'rgba(0,0,0,0.1)';
context.fillRect(0, 0, context.canvas.width, context.canvas.height);

}
setInterval(blank, 40);

</script>

The 2D rendering context for canvasp677 is often used for sprite-based games. The following example demonstrates this:

Here is the source for this example:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Blue Robot Demo</title>
<style>

html { overflow: hidden; min-height: 200px; min-width: 380px; }
body { height: 200px; position: relative; margin: 8px; }
.buttons { position: absolute; bottom: 0px; left: 0px; margin: 4px; }

</style>
<canvas width="380" height="200"></canvas>
<script>
var Landscape = function (context, width, height) {

this.offset = 0;
this.width = width;
this.advance = function (dx) {

this.offset += dx;
};
this.horizon = height * 0.7;
// This creates the sky gradient (from a darker blue to white at the bottom)
this.sky = context.createLinearGradient(0, 0, 0, this.horizon);
this.sky.addColorStop(0.0, 'rgb(55,121,179)');
this.sky.addColorStop(0.7, 'rgb(121,194,245)');
this.sky.addColorStop(1.0, 'rgb(164,200,214)');
// this creates the grass gradient (from a darker green to a lighter green)
this.earth = context.createLinearGradient(0, this.horizon, 0, height);
this.earth.addColorStop(0.0, 'rgb(81,140,20)');
this.earth.addColorStop(1.0, 'rgb(123,177,57)');
this.paintBackground = function (context, width, height) {

// first, paint the sky and grass rectangles
context.fillStyle = this.sky;

Example

736

context.fillRect(0, 0, width, this.horizon);
context.fillStyle = this.earth;
context.fillRect(0, this.horizon, width, height-this.horizon);
// then, draw the cloudy banner
// we make it cloudy by having the draw text off the top of the
// canvas, and just having the blurred shadow shown on the canvas
context.save();
context.translate(width-((this.offset+(this.width*3.2)) % (this.width*4.0))+0, 0);
context.shadowColor = 'white';
context.shadowOffsetY = 30+this.horizon/3; // offset down on canvas
context.shadowBlur = '5';
context.fillStyle = 'white';
context.textAlign = 'left';
context.textBaseline = 'top';
context.font = '20px sans-serif';
context.fillText('WHATWG ROCKS', 10, -30); // text up above canvas
context.restore();
// then, draw the background tree
context.save();
context.translate(width-((this.offset+(this.width*0.2)) % (this.width*1.5))+30, 0);
context.beginPath();
context.fillStyle = 'rgb(143,89,2)';
context.lineStyle = 'rgb(10,10,10)';
context.lineWidth = 2;
context.rect(0, this.horizon+5, 10, -50); // trunk
context.fill();
context.stroke();
context.beginPath();
context.fillStyle = 'rgb(78,154,6)';
context.arc(5, this.horizon-60, 30, 0, Math.PI*2); // leaves
context.fill();
context.stroke();
context.restore();

};
this.paintForeground = function (context, width, height) {

// draw the box that goes in front
context.save();
context.translate(width-((this.offset+(this.width*0.7)) % (this.width*1.1))+0, 0);
context.beginPath();
context.rect(0, this.horizon - 5, 25, 25);
context.fillStyle = 'rgb(220,154,94)';
context.lineStyle = 'rgb(10,10,10)';
context.lineWidth = 2;
context.fill();
context.stroke();
context.restore();

};
};

</script>
<script>
var BlueRobot = function () {

this.sprites = new Image();
this.sprites.src = 'blue-robot.png'; // this sprite sheet has 8 cells
this.targetMode = 'idle';
this.walk = function () {

this.targetMode = 'walk';
};
this.stop = function () {

this.targetMode = 'idle';
};

737

this.frameIndex = {
'idle': [0], // first cell is the idle frame
'walk': [1,2,3,4,5,6], // the walking animation is cells 1-6
'stop': [7], // last cell is the stopping animation

};
this.mode = 'idle';
this.frame = 0; // index into frameIndex
this.tick = function () {

// this advances the frame and the robot
// the return value is how many pixels the robot has moved
this.frame += 1;
if (this.frame >= this.frameIndex[this.mode].length) {

// we've reached the end of this animation cycle
this.frame = 0;
if (this.mode != this.targetMode) {

// switch to next cycle
if (this.mode == 'walk') {

// we need to stop walking before we decide what to do next
this.mode = 'stop';

} else if (this.mode == 'stop') {
if (this.targetMode == 'walk')

this.mode = 'walk';
else

this.mode = 'idle';
} else if (this.mode == 'idle') {

if (this.targetMode == 'walk')
this.mode = 'walk';

}
}

}
if (this.mode == 'walk')

return 8;
return 0;

},
this.paint = function (context, x, y) {

if (!this.sprites.complete) return;
// draw the right frame out of the sprite sheet onto the canvas
// we assume each frame is as high as the sprite sheet
// the x,y coordinates give the position of the bottom center of the sprite
context.drawImage(this.sprites,

this.frameIndex[this.mode][this.frame] * this.sprites.height, 0,
this.sprites.height, this.sprites.height,

x-this.sprites.height/2, y-this.sprites.height, this.sprites.height,
this.sprites.height);

};
};

</script>
<script>
var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
var landscape = new Landscape(context, canvas.width, canvas.height);
var blueRobot = new BlueRobot();
// paint when the browser wants us to, using requestAnimationFrame()
function paint() {

context.clearRect(0, 0, canvas.width, canvas.height);
landscape.paintBackground(context, canvas.width, canvas.height);
blueRobot.paint(context, canvas.width/2, landscape.horizon*1.1);
landscape.paintForeground(context, canvas.width, canvas.height);
requestAnimationFrame(paint);

}

738

ImageBitmapRenderingContextp739 is a performance-oriented interface that provides a low overhead method for displaying the
contents of ImageBitmapp1181 objects. It uses transfer semantics to reduce overall memory consumption. It also streamlines
performance by avoiding intermediate compositing, unlike the drawImage()p723 method of CanvasRenderingContext2Dp682.

Using an imgp346 element as an intermediate for getting an image resource into a canvas, for example, would result in two copies of the
decoded image existing in memory at the same time: the imgp346 element's copy, and the one in the canvas's backing store. This
memory cost can be prohibitive when dealing with extremely large images. This can be avoided by using
ImageBitmapRenderingContextp739.

[Exposed=(Window,Worker)]
interface ImageBitmapRenderingContext {

readonly attribute (HTMLCanvasElement or OffscreenCanvas) canvas;
undefined transferFromImageBitmap(ImageBitmap? bitmap);

};

dictionary ImageBitmapRenderingContextSettings {

paint();
// but tick every 100ms, so that we don't slow down when we don't paint
setInterval(function () {

var dx = blueRobot.tick();
landscape.advance(dx);

}, 100);
</script>
<p class="buttons">
<input type=button value="Walk" onclick="blueRobot.walk()">
<input type=button value="Stop" onclick="blueRobot.stop()">

<footer>
<small> Blue Robot Player Sprite by JohnColburn.
Licensed under the terms of the Creative Commons Attribution Share-Alike 3.0 Unported

license.</small>
<small> This work is itself licensed under a <a rel="license" href="https://creativecommons.org/

licenses/by-sa/3.0/">Creative
Commons Attribution-ShareAlike 3.0 Unported License.</small>

</footer>

4.12.5.2 The ImageBitmapp1181 rendering context §p73

9

4.12.5.2.1 Introduction §p73

9

Using ImageBitmapRenderingContextp739, here is how to transcode an image to the JPEG format in a memory- and CPU-efficient
way:

createImageBitmap(inputImageBlob).then(image => {
const canvas = document.createElement('canvas');
const context = canvas.getContext('bitmaprenderer');
context.transferFromImageBitmap(image);

canvas.toBlob(outputJPEGBlob => {
// Do something with outputJPEGBlob.

}, 'image/jpeg');
});

Example

4.12.5.2.2 The ImageBitmapRenderingContextp739 interface §p73

9

IDL

✔ MDN

739

boolean alpha = true;
};

The canvas attribute must return the value it was initialized to when the object was created.

An ImageBitmapRenderingContextp739 object has an output bitmap, which is a reference to bitmap datap1182.

An ImageBitmapRenderingContextp739 object has a bitmap mode, which can be set to valid or blank. A value of validp740 indicates
that the context's output bitmapp740 refers to bitmap datap1182 that was acquired via transferFromImageBitmap()p741. A value
blankp740 indicates that the context's output bitmapp740 is a default transparent bitmap.

An ImageBitmapRenderingContextp739 object also has an alpha flag, which can be set to true or false. When an
ImageBitmapRenderingContextp739 object has its alphap740 flag set to false, the contents of the canvasp677 element to which the
context is bound are obtained by compositing the context's output bitmapp740 onto an opaque black bitmap of the same size using the
source-over compositing operator. If the alphap740 flag is set to true, then the output bitmapp740 is used as the contents of the
canvasp677 element to which the context is bound. [COMPOSITE]p1475

When a user agent is required to set an ImageBitmapRenderingContext's output bitmap, with a context argument that is an
ImageBitmapRenderingContextp739 object and an optional argument bitmap that refers to bitmap datap1182, it must run these steps:

1. If a bitmap argument was not provided, then:

1. Set context's bitmap modep740 to blankp740.

2. Let canvas be the canvasp677 element to which context is bound.

3. Set context's output bitmapp740 to be transparent black with a natural width equal to the numeric valuep678 of
canvas's widthp678 attribute and a natural height equal to the numeric valuep678 of canvas's heightp678 attribute,
those values being interpreted in CSS pixels.

4. Set the output bitmapp740 's origin-cleanp678 flag to true.

2. If a bitmap argument was provided, then:

1. Set context's bitmap modep740 to validp740.

2. Set context's output bitmapp740 to refer to the same underlying bitmap data as bitmap, without making a copy.

context = canvas.getContextp679('bitmaprenderer' [, { [alphap741: false] }])
Returns an ImageBitmapRenderingContextp739 object that is permanently bound to a particular canvasp677 element.
If the alphap741 setting is provided and set to false, then the canvas is forced to always be opaque.

context.canvasp740

Returns the canvasp677 element that the context is bound to.

context.transferFromImageBitmapp741(imageBitmap)
Transfers the underlying bitmap datap1182 from imageBitmap to context, and the bitmap becomes the contents of the canvasp677

element to which context is bound.

context.transferFromImageBitmapp741(null)
Replaces contents of the canvasp677 element to which context is bound with a transparent black bitmap whose size corresponds
to the widthp678 and heightp678 content attributes of the canvasp677 element.

For web developers (non-normative)

The step of compositing over an opaque black bitmap ought to be elided whenever equivalent results can be obtained more
efficiently by other means.

Note

The origin-cleanp678 flag of bitmap is included in the bitmap data to be referenced by context's output
bitmapp740.

Note

740

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.fxtf.org/compositing/#porterduffcompositingoperators_srcover
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-values/#px

The ImageBitmapRenderingContext creation algorithm, which is passed a target and options, consists of running these steps:

1. Let settings be the result of converting options to the dictionary type ImageBitmapRenderingContextSettingsp739. (This can
throw an exception.)

2. Let context be a new ImageBitmapRenderingContextp739 object.

3. Initialize context's canvasp689 attribute to point to target.

4. Set context's output bitmapp740 to the same bitmap as target's bitmap (so that they are shared).

5. Run the steps to set an ImageBitmapRenderingContext's output bitmapp740 with context.

6. Initialize context's alphap740 flag to true.

7. Process each of the members of settings as follows:

alpha
If false, then set context's alphap740 flag to false.

8. Return context.

The transferFromImageBitmap(bitmap) method, when invoked, must run these steps:

1. Let bitmapContext be the ImageBitmapRenderingContextp739 object on which the transferFromImageBitmap()p741 method
was called.

2. If bitmap is null, then run the steps to set an ImageBitmapRenderingContext's output bitmapp740, with bitmapContext as the
context argument and no bitmap argument, then return.

3. If the value of bitmap's [[Detached]]p118 internal slot is set to true, then throw an "InvalidStateError" DOMException.

4. Run the steps to set an ImageBitmapRenderingContext's output bitmapp740, with the context argument equal to
bitmapContext, and the bitmap argument referring to bitmap's underlying bitmap datap1182.

5. Set the value of bitmap's [[Detached]]p118 internal slot to true.

6. Unset bitmap's bitmap datap1182.

typedef (OffscreenCanvasRenderingContext2D or ImageBitmapRenderingContext or WebGLRenderingContext or
WebGL2RenderingContext or GPUCanvasContext) OffscreenRenderingContext;

dictionary ImageEncodeOptions {
DOMString type = "image/png";
unrestricted double quality;

};

enum OffscreenRenderingContextId { "2d", "bitmaprenderer", "webgl", "webgl2", "webgpu" };

[Exposed=(Window,Worker), Transferable]
interface OffscreenCanvas : EventTarget {

constructor([EnforceRange] unsigned long long width, [EnforceRange] unsigned long long height);

attribute [EnforceRange] unsigned long long width;
attribute [EnforceRange] unsigned long long height;

OffscreenRenderingContext? getContext(OffscreenRenderingContextId contextId, optional any options =
null);

ImageBitmap transferToImageBitmap();
Promise<Blob> convertToBlob(optional ImageEncodeOptions options = {});

4.12.5.3 The OffscreenCanvasp741 interface §p74

1

IDL

✔ MDN

741

https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/2.0/#WebGL2RenderingContext
https://gpuweb.github.io/gpuweb/#canvas-context
https://dom.spec.whatwg.org/#interface-eventtarget
https://webidl.spec.whatwg.org/#idl-promise
https://w3c.github.io/FileAPI/#dfn-Blob

attribute EventHandler oncontextlost;
attribute EventHandler oncontextrestored;

};

OffscreenCanvasp741 objects are used to create rendering contexts, much like an HTMLCanvasElementp677, but with no connection to
the DOM. This makes it possible to use canvas rendering contexts in workersp1212.

An OffscreenCanvasp741 object may hold a weak reference to a placeholder canvas element, which is typically in the DOM, whose
embedded content is provided by the OffscreenCanvasp741 object. The bitmap of the OffscreenCanvasp741 object is pushed to the
placeholder canvas elementp742 as part of the OffscreenCanvasp741 's relevant agentp1073 's event loopp1123 's update the renderingp1128

steps.

An OffscreenCanvasp741 object has an internal bitmap that is initialized when the object is created. The width and height of the
bitmapp742 are equal to the values of the widthp744 and heightp744 attributes of the OffscreenCanvasp741 object. Initially, all the
bitmap's pixels are transparent black.

An OffscreenCanvasp741 object can have a rendering context bound to it. Initially, it does not have a bound rendering context. To keep
track of whether it has a rendering context or not, and what kind of rendering context it is, an OffscreenCanvasp741 object also has a
context mode, which is initially none but can be changed to either 2d, bitmaprenderer, webgl, webgl2, webgpu, or detached
by algorithms defined in this specification.

The constructor OffscreenCanvas(width, height), when invoked, must create a new OffscreenCanvasp741 object with its bitmapp742

initialized to a rectangular array of transparent black pixels of the dimensions specified by width and height; and its widthp744 and
heightp744 attributes initialized to width and height respectively.

OffscreenCanvasp741 objects are transferablep118. Their transfer stepsp118, given value and dataHolder, are as follows:

1. If value's context modep742 is not equal to nonep742, then throw an "InvalidStateError" DOMException.

2. Set value's context modep742 to detachedp742.

3. Let width and height be the dimensions of value's bitmapp742.

4. Unset value's bitmapp742.

5. Set dataHolder.[[Width]] to width and dataHolder.[[Height]] to height.

6. Set dataHolder.[[PlaceholderCanvas]] to be a weak reference to value's placeholder canvas elementp742, if value has one, or
null if it does not.

Their transfer-receiving stepsp118, given dataHolder and value, are:

OffscreenCanvasp741 is an EventTarget, so both OffscreenCanvasRenderingContext2Dp745 and WebGL can fire events at it.
OffscreenCanvasRenderingContext2Dp745 can fire contextlostp1471 and contextrestoredp1471, and WebGL can fire
webglcontextlost and webglcontextrestored. [WEBGL]p1483

Note

offscreenCanvas = new OffscreenCanvasp742(width, height)
Returns a new OffscreenCanvasp741 object that is not linked to a placeholder canvas elementp742, and whose bitmap's size is
determined by the width and height arguments.

context = offscreenCanvas.getContextp743(contextId [, options])
Returns an object that exposes an API for drawing on the OffscreenCanvasp741 object. contextId specifies the desired API:
"2dp743", "bitmaprendererp743", "webglp743", "webgl2p743", or "webgpup743". options is handled by that API.
This specification defines the "2dp680" context below, which is similar but distinct from the "2dp743" context that is created from a
canvasp677 element. The WebGL specifications define the "webglp743" and "webgl2p743" contexts. WebGPU defines the
"webgpup743" context. [WEBGL]p1483 [WEBGPU]p1483

Returns null if the canvas has already been initialized with another context type (e.g., trying to get a "2dp743" context after
getting a "webglp743" context).

For web developers (non-normative)

742

https://dom.spec.whatwg.org/#interface-eventtarget
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

1. Initialize value's bitmapp742 to a rectangular array of transparent black pixels with width given by dataHolder.[[Width]] and
height given by dataHolder.[[Height]].

2. If dataHolder.[[PlaceholderCanvas]] is not null, set value's placeholder canvas elementp742 to
dataHolder.[[PlaceholderCanvas]] (while maintaining the weak reference semantics).

The getContext(contextId, options) method of an OffscreenCanvasp741 object, when invoked, must run these steps:

1. If options is not an object, then set options to null.

2. Set options to the result of converting options to a JavaScript value.

3. Run the steps in the cell of the following table whose column header matches this OffscreenCanvasp741 object's context
modep742 and whose row header matches contextId:

nonep742 2dp742 bitmaprendererp742 webglp742

or
webgl2p742

webgpup742 detachedp742

"2d"
1. Let context be the result of

running the offscreen 2D
context creation algorithmp746

given this and options.

2. Set this's context modep742 to
2dp742.

3. Return context.

Return the
same
object as
was
returned
the last
time the
method
was
invoked
with this
same first
argument.

Return null. Return null. Return null. Throw an
"InvalidStateError"
DOMException.

"bitmaprenderer"
1. Let context be the result of

running the
ImageBitmapRenderingContext
creation algorithmp741 given this
and options.

2. Set this's context modep742 to
bitmaprendererp742.

3. Return context.

Return
null.

Return the same
object as was
returned the last
time the method was
invoked with this
same first argument.

Return null. Return null. Throw an
"InvalidStateError"
DOMException.

"webgl" or
"webgl2" 1. Let context be the result of

following the instructions given
in the WebGL specifications'
Context Creation sections.
[WEBGL]p1483

2. If context is null, then return
null; otherwise set this's context
modep742 to webglp742 or
webgl2p742.

3. Return context.

Return
null.

Return null. Return the
same value
as was
returned
the last
time the
method
was
invoked
with this
same first
argument.

Return null. Throw an
"InvalidStateError"
DOMException.

"webgpu"
1. Let context be the result of

following the instructions given
in WebGPU's Canvas Rendering
section. [WEBGPU]p1483

2. If context is null, then return
null; otherwise set this's context
modep742 to webgpup742.

3. Return context.

Return
null.

Return null. Return null. Return the
same value
as was
returned the
last time
the method
was invoked
with this
same first
argument.

Throw an
"InvalidStateError"
DOMException.

743

https://drafts.csswg.org/css-color/#transparent-black
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://gpuweb.github.io/gpuweb/#canvas-rendering
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

If either the width or height attributes of an OffscreenCanvasp741 object are set (to a new value or to the same value as before) and
the OffscreenCanvasp741 object's context modep742 is 2dp742, then reset the rendering context to its default statep690 and resize the
OffscreenCanvasp741 object's bitmapp742 to the new values of the widthp744 and heightp744 attributes.

The resizing behavior for "webglp743" and "webgl2p743" contexts is defined in the WebGL specifications. [WEBGL]p1483

The resizing behavior for "webgpup743" context is defined in WebGPU. [WEBGPU]p1483

The convertToBlob(options) method, when invoked, must run the following steps:

1. If the value of this OffscreenCanvasp741 object's [[Detached]]p118 internal slot is set to true, then return a promise rejected
with an "InvalidStateError" DOMException.

2. If this OffscreenCanvasp741 object's context modep742 is 2dp742 and the rendering context's bitmapp745 's origin-cleanp745 flag is
set to false, then return a promise rejected with a "SecurityError" DOMException.

3. If this OffscreenCanvasp741 object's bitmapp742 has no pixels (i.e., either its horizontal dimension or its vertical dimension is
zero) then return a promise rejected with an "IndexSizeError" DOMException.

4. Let bitmap be a copy of this OffscreenCanvasp741 object's bitmapp742.

5. Let result be a new promise object.

6. Run these steps in parallelp43:

1. Let file be a serialization of bitmap as a filep747, with options's type and quality if present.

2. Queue an element taskp1125 on the canvas blob serialization task sourcep681 given the canvasp677 element to run
these steps:

1. If file is null, then reject result with an "EncodingError" DOMException.

2. Otherwise, resolve result with a new Blob object, created in the relevant realmp1083 of this
OffscreenCanvasp741 object, representing file. [FILEAPI]p1478

7. Return result.

The transferToImageBitmap() method, when invoked, must run the following steps:

offscreenCanvas.widthp744 [= value]
offscreenCanvas.heightp744 [= value]

These attributes return the dimensions of the OffscreenCanvasp741 object's bitmapp742.
They can be set, to replace the bitmapp742 with a new, transparent black bitmap of the specified dimensions (effectively resizing
it).

For web developers (non-normative)

If an OffscreenCanvasp741 object whose dimensions were changed has a placeholder canvas elementp742, then the placeholder
canvas elementp742 's natural size will only be updated during the OffscreenCanvasp741 's relevant agentp1073 's event loopp1123 's
update the renderingp1128 steps.

Note

promise = offscreenCanvas.convertToBlobp744([options])
Returns a promise that will fulfill with a new Blob object representing a file containing the image in the OffscreenCanvasp741

object.
The argument, if provided, is a dictionary that controls the encoding options of the image file to be created. The typep744 field
specifies the file format and has a default value of "image/pngp1473"; that type is also used if the requested type isn't supported.
If the image format supports variable quality (such as "image/jpegp1473"), then the qualityp744 field is a number in the range
0.0 to 1.0 inclusive indicating the desired quality level for the resulting image.

canvas.transferToImageBitmapp744()
Returns a newly created ImageBitmapp1181 object with the image in the OffscreenCanvasp741 object. The image in the
OffscreenCanvasp741 object is replaced with a new blank image.

For web developers (non-normative)

744

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#natural-dimensions
https://w3c.github.io/FileAPI/#dfn-Blob
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#indexsizeerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#encodingerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob

1. If the value of this OffscreenCanvasp741 object's [[Detached]]p118 internal slot is set to true, then throw an
"InvalidStateError" DOMException.

2. If this OffscreenCanvasp741 object's context modep742 is set to nonep742, then throw an "InvalidStateError" DOMException.

3. Let image be a newly created ImageBitmapp1181 object that references the same underlying bitmap data as this
OffscreenCanvasp741 object's bitmapp742.

4. Set this OffscreenCanvasp741 object's bitmapp742 to reference a newly created bitmap of the same dimensions and color
space as the previous bitmap, and with its pixels initialized to transparent black, or opaque black if the rendering context's
alphap745 flag is set to false.

5. Return image.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the OffscreenCanvasp741 interface:

Event handlerp1136 Event handler event typep1139

oncontextlost contextlostp1471

oncontextrestored contextrestoredp1471

[Exposed=(Window,Worker)]
interface OffscreenCanvasRenderingContext2D {

readonly attribute OffscreenCanvas canvas;
};

OffscreenCanvasRenderingContext2D includes CanvasState;
OffscreenCanvasRenderingContext2D includes CanvasTransform;
OffscreenCanvasRenderingContext2D includes CanvasCompositing;
OffscreenCanvasRenderingContext2D includes CanvasImageSmoothing;
OffscreenCanvasRenderingContext2D includes CanvasFillStrokeStyles;
OffscreenCanvasRenderingContext2D includes CanvasShadowStyles;
OffscreenCanvasRenderingContext2D includes CanvasFilters;
OffscreenCanvasRenderingContext2D includes CanvasRect;
OffscreenCanvasRenderingContext2D includes CanvasDrawPath;
OffscreenCanvasRenderingContext2D includes CanvasText;
OffscreenCanvasRenderingContext2D includes CanvasDrawImage;
OffscreenCanvasRenderingContext2D includes CanvasImageData;
OffscreenCanvasRenderingContext2D includes CanvasPathDrawingStyles;
OffscreenCanvasRenderingContext2D includes CanvasTextDrawingStyles;
OffscreenCanvasRenderingContext2D includes CanvasPath;

The OffscreenCanvasRenderingContext2Dp745 object is a rendering context for drawing to the bitmapp742 of an OffscreenCanvasp741

object. It is similar to the CanvasRenderingContext2Dp682 object, with the following differences:

• there is no support for user interfacep684 features;

• its canvasp746 attribute refers to an OffscreenCanvasp741 object rather than a canvasp677 element;

An OffscreenCanvasRenderingContext2Dp745 object has a bitmap that is initialized when the object is created.

The bitmapp745 has an origin-clean flag, which can be set to true or false. Initially, when one of these bitmaps is created, its origin-
cleanp745 flag must be set to true.

An OffscreenCanvasRenderingContext2Dp745 object also has an alpha flag, which can be set to true or false. Initially, when the

This means that if the rendering context of this OffscreenCanvasp741 is a WebGLRenderingContext, the value of
preserveDrawingBuffer will have no effect. [WEBGL]p1483

Note

4.12.5.3.1 The offscreen 2D rendering context §p74

5

IDL

✔ MDN

745

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLRenderingContext
https://www.khronos.org/registry/webgl/specs/latest/1.0/#WebGLContextAttributes

context is created, its alpha flag must be set to true. When an OffscreenCanvasRenderingContext2Dp745 object has its alphap745 flag
set to false, then its alpha channel must be fixed to 1.0 (fully opaque) for all pixels, and attempts to change the alpha component of
any pixel must be silently ignored.

An OffscreenCanvasRenderingContext2Dp745 object also has a color space setting of type PredefinedColorSpacep682. The color
space for the context's bitmapp745 is set to the context's color spacep746.

An OffscreenCanvasRenderingContext2Dp745 object has an associated OffscreenCanvas object, which is the OffscreenCanvasp741

object from which the OffscreenCanvasRenderingContext2Dp745 object was created.

The offscreen 2D context creation algorithm, which is passed a target (an OffscreenCanvasp741 object) and optionally some
arguments, consists of running the following steps:

1. If the algorithm was passed some arguments, let arg be the first such argument. Otherwise, let arg be undefined.

2. Let settings be the result of converting arg to the dictionary type CanvasRenderingContext2DSettingsp682. (This can throw
an exception.).

3. Let context be a new OffscreenCanvasRenderingContext2Dp745 object.

4. Set context's associated OffscreenCanvas objectp746 to target.

5. If settings["alphap688"] is false, then set context's alphap745 flag to false.

6. Set context's color spacep746 to settings["colorSpacep688"].

7. Set context's bitmapp745 to a newly created bitmap with the dimensions specified by the widthp744 and heightp744 attributes
of target, and set target's bitmap to the same bitmap (so that they are shared).

8. If context's alphap745 flag is set to true, initialize all the pixels of context's bitmapp745 to transparent black. Otherwise,
initialize the pixels to opaque black.

9. Return context.

The canvas attribute, on getting, must return this OffscreenCanvasRenderingContext2Dp745 's associated OffscreenCanvas objectp746.

The canvasp677 APIs provide mechanisms for specifying the color space of the canvas's backing store. The default backing store color
space for all canvas APIs is 'srgb'.

Color space conversion must be applied to the canvas's backing store when rendering the canvas to the output device. This color
space conversion must be identical to the color space conversion that would be applied to an imgp346 element with a color profile that
specifies the same color spacep688 as the canvas's backing store.

When drawing content to a 2D context, all inputs must be converted to the context's color spacep688 before drawing. Interpolation of
gradient color stops must be performed on color values after conversion to the context's color spacep688. Alpha blending must be
performed on values after conversion to the context's color spacep688.

offscreenCanvas = offscreenCanvasRenderingContext2D.canvasp746

Returns the associated OffscreenCanvas objectp746.

For web developers (non-normative)

Implementations are encouraged to short-circuit the graphics update steps of the window event loopp1123 for the purposes of
updating the contents of a placeholder canvas elementp742 to the display. This could mean, for example, that the bitmap contents
are copied directly to a graphics buffer that is mapped to the physical display location of the placeholder canvas elementp742. This
or similar short-circuiting approaches can significantly reduce display latency, especially in cases where the OffscreenCanvasp741

is updated from a worker event loopp1123 and the window event loopp1123 of the placeholder canvas elementp742 is busy. However,
such shortcuts cannot have any script-observable side-effects. This means that the committed bitmap still needs to be sent to the
placeholder canvas elementp742, in case the element is used as a CanvasImageSourcep682, as an ImageBitmapSourcep1181, or in
case toDataURL()p681 or toBlob()p681 are called on it.

Note

4.12.5.4 Color spaces and color space conversion §p74

6

746

https://webidl.spec.whatwg.org/#es-type-mapping
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-color/#color-conversion
https://drafts.csswg.org/css-color/#color-conversion

When a user agent is to create a serialization of the bitmap as a file, given a type and an optional quality, it must create an image
file in the format given by type. If an error occurs during the creation of the image file (e.g. an internal encoder error), then the result
of the serialization is null. [PNG]p1481

The image file's pixel data must be the bitmap's pixel data scaled to one image pixel per coordinate space unit, and if the file format
used supports encoding resolution metadata, the resolution must be given as 96dpi (one image pixel per CSS pixel).

If type is supplied, then it must be interpreted as a MIME type giving the format to use. If the type has any parameters, then it must be
treated as not supported.

User agents must support PNG ("image/pngp1473"). User agents may support other types. If the user agent does not support the
requested type, then it must create the file using the PNG format. [PNG]p1481

User agents must convert the provided type to ASCII lowercase before establishing if they support that type.

For image types that do not support an alpha channel, the serialized image must be the bitmap image composited onto an opaque
black background using the source-over compositing operator.

For image types that support color profiles, the serialized image must include a color profile indicating the color space of the
underlying bitmap. For image types that do not support color profiles, the serialized image must be converted to the 'srgb' color space
using 'relative-colorimetric' rendering intent.

If type is an image format that supports variable quality (such as "image/jpegp1473"), quality is given, and type is not "image/pngp1473",
then, if quality is a Number in the range 0.0 to 1.0 inclusive, the user agent must treat quality as the desired quality level. Otherwise,
the user agent must use its default quality value, as if the quality argument had not been given.

This section is non-normative.

Information leakage can occur if scripts from one originp898 can access information (e.g. read pixels) from images from another origin

There do not exist any inputs to a 2D context for which the color space is undefined. The color space for CSS colors is defined in
CSS Color. The color space for images that specify no color profile information is assumed to be 'srgb', as specified in the Color
Spaces of Untagged Colors section of CSS Color. [CSSCOLOR]p1476

Note

4.12.5.5 Serializing bitmaps to a file §p74

7

For example, the value "image/pngp1473" would mean to generate a PNG image, the value "image/jpegp1473" would mean to
generate a JPEG image, and the value "image/svg+xmlp1473" would mean to generate an SVG image (which would require that the
user agent track how the bitmap was generated, an unlikely, though potentially awesome, feature).

Example

Thus, in the 2D context, calling the drawImage()p723 method to render the output of the toDataURL()p681 or toBlob()p681 method
to the canvas, given the appropriate dimensions, has no visible effect beyond, at most, clipping colors of the canvas to a more
narrow gamut.

Note

The use of type-testing here, instead of simply declaring quality as a Web IDL double, is a historical artifact.
Note

Different implementations can have slightly different interpretations of "quality". When the quality is not specified, an
implementation-specific default is used that represents a reasonable compromise between compression ratio, image quality, and
encoding time.

Note

4.12.5.6 Security with canvasp677 elements §p74

7

747

https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-color/#untagged
https://drafts.csswg.org/css-color/#untagged
https://drafts.csswg.org/css-values/#px
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-lowercase
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.csswg.org/css-color/#opaque-black
https://drafts.fxtf.org/compositing/#porterduffcompositingoperators_srcover
https://drafts.csswg.org/css-color/#color-conversion
https://drafts.csswg.org/css-color/#valdef-color-srgb
https://drafts.csswg.org/css-color-5/#valdef-color-profile-rendering-intent-relative-colorimetric
https://tc39.es/ecma262/#sec-ecmascript-language-types-number-type

(one that isn't the samep899).

To mitigate this, bitmaps used with canvasp677 elements, OffscreenCanvasp741 objects, and ImageBitmapp1181 objects are defined to
have a flag indicating whether they are origin-cleanp678. All bitmaps start with their origin-cleanp678 set to true. The flag is set to false
when cross-origin images are used.

The toDataURL()p681, toBlob()p681, and getImageData()p727 methods check the flag and will throw a "SecurityError" DOMException
rather than leak cross-origin data.

The value of the origin-cleanp678 flag is propagated from a source's bitmap to a new ImageBitmapp1181 object by
createImageBitmap()p1182. Conversely, a destination canvasp677 element's bitmap will have its origin-cleanp678 flags set to false by
drawImagep723 if the source image is an ImageBitmapp1181 object whose bitmap has its origin-cleanp678 flag set to false.

The flag can be reset in certain situations; for example, when changing the value of the widthp678 or the heightp678 content attribute of
the canvasp677 element to which a CanvasRenderingContext2Dp682 is bound, the bitmap is cleared and its origin-cleanp678 flag is reset.

When using an ImageBitmapRenderingContextp739, the value of the origin-cleanp678 flag is propagated from ImageBitmapp1181 objects
when they are transferred to the canvasp677 via transferFromImageBitmap()p741.

Premultiplied alpha refers to one way of representing transparency in an image, the other being non-premultiplied alpha.

Under non-premultiplied alpha, the red, green, and blue channels of a pixel represent that pixel's color, and its alpha channel
represents that pixel's opacity.

Under premultiplied alpha, however, the red, green, and blue channels of a pixel represent the amounts of color that the pixel adds to
the image, and its alpha channel represents the amount that the pixel obscures whatever is behind it.

4.12.5.7 Premultiplied alpha and the 2D rendering context §p74

8

For instance, assuming the color channels range from 0 (off) to 255 (full intensity), these example colors are represented in the
following ways:

CSS color
representation

Premultiplied
representation

Non-premultiplied
representation

Description of color Image of color blended above other
content

rgba(255, 127, 0, 1) 255, 127, 0, 255 255, 127, 0, 255 Completely-opaque orange

rgba(255, 255, 0, 0.5) 127, 127, 0, 127 255, 255, 0, 127 Halfway-opaque yellow

Unrepresentable 255, 127, 0, 127 Unrepresentable Additive halfway-opaque
orange

Example

748

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException

Converting a color value from a non-premultiplied representation to a premultiplied one involves multiplying the color's red,
green, and blue channels by its alpha channel (remapping the range of the alpha channel such that "fully transparent" is 0, and "fully
opaque" is 1).

Converting a color value from a premultiplied representation to a non-premultiplied one involves the inverse: dividing the
color's red, green, and blue channels by its alpha channel.

As certain colors can only be represented under premultiplied alpha (for instance, additive colors), and others can only be represented
under non-premultiplied alpha (for instance, "invisible" colors which hold certain red, green, and blue values even with no opacity); and
division and multiplication on 8-bit integers (which is how canvas's colors are currently stored) entails a loss of precision, converting
between premultiplied and non-premultiplied alpha is a lossy operation on colors that are not fully opaque.

A CanvasRenderingContext2Dp682 's output bitmapp687 and an OffscreenCanvasRenderingContext2Dp745 's bitmapp745 must use
premultiplied alpha to represent transparent colors.

This section is non-normative.

Custom elementsp759 provide a way for authors to build their own fully-featured DOM elements. Although authors could always use
non-standard elements in their documents, with application-specific behavior added after the fact by scripting or similar, such
elements have historically been non-conforming and not very functional. By definingp762 a custom element, authors can inform the
parser how to properly construct an element and how elements of that class should react to changes.

CSS color
representation

Premultiplied
representation

Non-premultiplied
representation

Description of color Image of color blended above other
content

Unrepresentable 255, 127, 0, 0 Unrepresentable Additive fully-transparent
orange

rgba(255, 127, 0, 0) 0, 0, 0, 0 255, 127, 0, 0 Fully-transparent ("invisible")
orange

rgba(0, 127, 255, 0) 0, 0, 0, 0 255, 127, 0, 0 Fully-transparent ("invisible")
turquoise

It is important for canvas bitmaps to represent colors using premultiplied alpha because it affects the range of representable
colors. While additive colors cannot currently be drawn onto canvases directly because CSS colors are non-premultiplied and
cannot represent them, it is still possible to, for instance, draw additive colors onto a WebGL canvas and then draw that WebGL
canvas onto a 2D canvas via drawImage()p723.

Note

4.13 Custom elements §p74

9

4.13.1 Introduction §p74

9

✔ MDN

749

Custom elements are part of a larger effort to "rationalise the platform", by explaining existing platform features (like the elements of
HTML) in terms of lower-level author-exposed extensibility points (like custom element definition). Although today there are many
limitations on the capabilities of custom elements—both functionally and semantically—that prevent them from fully explaining the
behaviors of HTML's existing elements, we hope to shrink this gap over time.

This section is non-normative.

For the purposes of illustrating how to create an autonomous custom elementp759, let's define a custom element that encapsulates
rendering a small icon for a country flag. Our goal is to be able to use it like so:

<flag-icon country="nl"></flag-icon>

To do this, we first declare a class for the custom element, extending HTMLElementp142:

class FlagIcon extends HTMLElement {
constructor() {

super();
this._countryCode = null;

}

static observedAttributes = ["country"];

attributeChangedCallback(name, oldValue, newValue) {
// name will always be "country" due to observedAttributes
this._countryCode = newValue;
this._updateRendering();

}
connectedCallback() {

this._updateRendering();
}

get country() {
return this._countryCode;

}
set country(v) {

this.setAttribute("country", v);
}

_updateRendering() {
// Left as an exercise for the reader. But, you'll probably want to
// check this.ownerDocument.defaultView to see if we've been
// inserted into a document with a browsing context, and avoid
// doing any work if not.

}
}

We then need to use this class to define the element:

customElements.define("flag-icon", FlagIcon);

At this point, our above code will work! The parser, whenever it sees the flag-icon tag, will construct a new instance of our FlagIcon
class, and tell our code about its new country attribute, which we then use to set the element's internal state and update its rendering
(when appropriate).

You can also create flag-icon elements using the DOM API:

const flagIcon = document.createElement("flag-icon")
flagIcon.country = "jp"

4.13.1.1 Creating an autonomous custom element §p75

0

750

document.body.appendChild(flagIcon)

Finally, we can also use the custom element constructorp759 itself. That is, the above code is equivalent to:

const flagIcon = new FlagIcon()
flagIcon.country = "jp"
document.body.appendChild(flagIcon)

This section is non-normative.

Adding a static formAssociated property, with a true value, makes an autonomous custom elementp759 a form-associated custom
elementp760. The ElementInternalsp771 interface helps you to implement functions and properties common to form control elements.

class MyCheckbox extends HTMLElement {
static formAssociated = true;
static observedAttributes = ['checked'];

constructor() {
super();
this._internals = this.attachInternals();
this.addEventListener('click', this._onClick.bind(this));

}

get form() { return this._internals.form; }
get name() { return this.getAttribute('name'); }
get type() { return this.localName; }

get checked() { return this.hasAttribute('checked'); }
set checked(flag) { this.toggleAttribute('checked', Boolean(flag)); }

attributeChangedCallback(name, oldValue, newValue) {
// name will always be "checked" due to observedAttributes
this._internals.setFormValue(this.checked ? 'on' : null);

}

_onClick(event) {
this.checked = !this.checked;

}
}
customElements.define('my-checkbox', MyCheckbox);

You can use the custom element my-checkbox like a built-in form-associated element. For example, putting it in formp514 or labelp518

associates the my-checkbox element with them, and submitting the formp514 will send data provided by my-checkbox implementation.

<form action="..." method="...">
<label><my-checkbox name="agreed"></my-checkbox> I read the agreement.</label>
<input type="submit">

</form>

This section is non-normative.

By using the appropriate properties of ElementInternalsp771, your custom element can have default accessibility semantics. The
following code expands our form-associated checkbox from the previous section to properly set its default role and checkedness, as

4.13.1.2 Creating a form-associated custom element §p75

1

4.13.1.3 Creating a custom element with default accessible roles, states, and properties §p75

1

751

viewed by accessibility technology:

class MyCheckbox extends HTMLElement {
static formAssociated = true;
static observedAttributes = ['checked'];

constructor() {
super();
this._internals = this.attachInternals();
this.addEventListener('click', this._onClick.bind(this));

this._internals.role = 'checkbox';
this._internals.ariaChecked = 'false';

}

get form() { return this._internals.form; }
get name() { return this.getAttribute('name'); }
get type() { return this.localName; }

get checked() { return this.hasAttribute('checked'); }
set checked(flag) { this.toggleAttribute('checked', Boolean(flag)); }

attributeChangedCallback(name, oldValue, newValue) {
// name will always be "checked" due to observedAttributes
this._internals.setFormValue(this.checked ? 'on' : null);
this._internals.ariaChecked = this.checked;

}

_onClick(event) {
this.checked = !this.checked;

}
}
customElements.define('my-checkbox', MyCheckbox);

Note that, like for built-in elements, these are only defaults, and can be overridden by the page author using the rolep68 and aria-*p68

attributes:

<!-- This markup is non-conforming -->
<input type="checkbox" checked role="button" aria-checked="false">

<!-- This markup is probably not what the custom element author intended -->
<my-checkbox role="button" checked aria-checked="false">

Custom element authors are encouraged to state what aspects of their accessibility semantics are strong native semantics, i.e., should
not be overridden by users of the custom element. In our example, the author of the my-checkbox element would state that its role
and aria-checked values are strong native semantics, thus discouraging code such as the above.

This section is non-normative.

Customized built-in elementsp759 are a distinct kind of custom elementp759, which are defined slightly differently and used very
differently compared to autonomous custom elementsp759. They exist to allow reuse of behaviors from the existing elements of HTML,
by extending those elements with new custom functionality. This is important since many of the existing behaviors of HTML elements
can unfortunately not be duplicated by using purely autonomous custom elementsp759. Instead, customized built-in elementsp759 allow
the installation of custom construction behavior, lifecycle hooks, and prototype chain onto existing elements, essentially "mixing in"
these capabilities on top of the already-existing element.

Customized built-in elementsp759 require a distinct syntax from autonomous custom elementsp759 because user agents and other
software key off an element's local name in order to identify the element's semantics and behavior. That is, the concept of customized

4.13.1.4 Creating a customized built-in element §p75

2

752

https://w3c.github.io/aria/#dfn-role
https://w3c.github.io/aria/#aria-checked

built-in elementsp759 building on top of existing behavior depends crucially on the extended elements retaining their original local
name.

In this example, we'll be creating a customized built-in elementp759 named plastic-button, which behaves like a normal button but
gets fancy animation effects added whenever you click on it. We start by defining a class, just like before, although this time we extend
HTMLButtonElementp566 instead of HTMLElementp142:

class PlasticButton extends HTMLButtonElement {
constructor() {

super();

this.addEventListener("click", () => {
// Draw some fancy animation effects!

});
}

}

When defining our custom element, we have to also specify the extends option:

customElements.define("plastic-button", PlasticButton, { extends: "button" });

In general, the name of the element being extended cannot be determined simply by looking at what element interface it extends, as
many elements share the same interface (such as qp266 and blockquotep235 both sharing HTMLQuoteElementp235).

To construct our customized built-in elementp759 from parsed HTML source text, we use the isp759 attribute on a buttonp566 element:

<button is="plastic-button">Click Me!</button>

Trying to use a customized built-in elementp759 as an autonomous custom elementp759 will not work; that is, <plastic-button>Click
me?</plastic-button> will simply create an HTMLElementp142 with no special behavior.

If you need to create a customized built-in element programmatically, you can use the following form of createElement():

const plasticButton = document.createElement("button", { is: "plastic-button" });
plasticButton.textContent = "Click me!";

And as before, the constructor will also work:

const plasticButton2 = new PlasticButton();
console.log(plasticButton2.localName); // will output "button"
console.assert(plasticButton2 instanceof PlasticButton);
console.assert(plasticButton2 instanceof HTMLButtonElement);

Note that when creating a customized built-in element programmatically, the isp759 attribute will not be present in the DOM, since it
was not explicitly set. However, it will be added to the output when serializingp1372:

console.assert(!plasticButton.hasAttribute("is"));
console.log(plasticButton.outerHTML); // will output '<button is="plastic-button"></button>'

Regardless of how it is created, all of the ways in which buttonp566 is special apply to such "plastic buttons" as well: their focus
behavior, ability to participate in form submissionp629, the disabledp601 attribute, and so on.

Customized built-in elementsp759 are designed to allow extension of existing HTML elements that have useful user-agent supplied
behavior or APIs. As such, they can only extend existing HTML elements defined in this specification, and cannot extend legacy
elements such as bgsoundp1426, blinkp1427, isindexp1426, keygenp1426, multicolp1427, nextidp1426, or spacerp1427 that have been defined
to use HTMLUnknownElementp142 as their element interface.

One reason for this requirement is future-compatibility: if a customized built-in elementp759 was defined that extended a currently-
unknown element, for example combobox, this would prevent this specification from defining a combobox element in the future, as
consumers of the derived customized built-in elementp759 would have come to depend on their base element having no interesting
user-agent-supplied behavior.

753

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-element-interface

This section is non-normative.

As specified below, and alluded to above, simply defining and using an element called taco-button does not mean that such elements
representp141 buttons. That is, tools such as web browsers, search engines, or accessibility technology will not automatically treat the
resulting element as a button just based on its defined name.

To convey the desired button semantics to a variety of users, while still using an autonomous custom elementp759, a number of
techniques would need to be employed:

• The addition of the tabindexp838 attribute would make the taco-button focusablep837. Note that if the taco-button were to
become logically disabled, the tabindexp838 attribute would need to be removed.

• The addition of an ARIA role and various ARIA states and properties helps convey semantics to accessibility technology. For
example, setting the role to "button" will convey the semantics that this is a button, enabling users to successfully interact
with the control using usual button-like interactions in their accessibility technology. Setting the aria-label property is
necessary to give the button an accessible name, instead of having accessibility technology traverse its child text nodes and
announce them. And setting the aria-disabled state to "true" when the button is logically disabled conveys to accessibility
technology the button's disabled state.

• The addition of event handlers to handle commonly-expected button behaviors helps convey the semantics of the button to
web browser users. In this case, the most relevant event handler would be one that proxies appropriate keydown events to
become click events, so that you can activate the button both with keyboard and by clicking.

• In addition to any default visual styling provided for taco-button elements, the visual styling will also need to be updated to
reflect changes in logical state, such as becoming disabled; that is, whatever style sheet has rules for taco-button will also
need to have rules for taco-button[disabled].

With these points in mind, a full-featured taco-button that took on the responsibility of conveying button semantics (including the
ability to be disabled) might look something like this:

class TacoButton extends HTMLElement {
static observedAttributes = ["disabled"];

constructor() {
super();
this._internals = this.attachInternals();
this._internals.role = "button";

this.addEventListener("keydown", e => {
if (e.code === "Enter" || e.code === "Space") {

this.dispatchEvent(new PointerEvent("click", {
bubbles: true,
cancelable: true

}));
}

});

this.addEventListener("click", e => {
if (this.disabled) {

e.preventDefault();
e.stopImmediatePropagation();

}
});

this._observer = new MutationObserver(() => {
this._internals.ariaLabel = this.textContent;

});
}

connectedCallback() {
this.setAttribute("tabindex", "0");

4.13.1.5 Drawbacks of autonomous custom elements §p75

4

754

https://w3c.github.io/aria/#dfn-role
https://w3c.github.io/aria/#button
https://w3c.github.io/aria/#aria-label
https://w3c.github.io/aria/#dfn-accessible-name
https://w3c.github.io/aria/#aria-disabled
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-click

this._observer.observe(this, {
childList: true,
characterData: true,
subtree: true

});
}

disconnectedCallback() {
this._observer.disconnect();

}

get disabled() {
return this.hasAttribute("disabled");

}
set disabled(flag) {

this.toggleAttribute("disabled", Boolean(flag));
}

attributeChangedCallback(name, oldValue, newValue) {
// name will always be "disabled" due to observedAttributes
if (this.disabled) {

this.removeAttribute("tabindex");
this._internals.ariaDisabled = "true";

} else {
this.setAttribute("tabindex", "0");
this._internals.ariaDisabled = "false";

}
}

}

Even with this rather-complicated element definition, the element is not a pleasure to use for consumers: it will be continually
"sprouting" tabindexp838 attributes of its own volition, and its choice of tabindex="0" focusability behavior may not match the
buttonp566 behavior on the current platform. This is because as of now there is no way to specify default focus behavior for custom
elements, forcing the use of the tabindexp838 attribute to do so (even though it is usually reserved for allowing the consumer to
override default behavior).

In contrast, a simple customized built-in elementp759, as shown in the previous section, would automatically inherit the semantics and
behavior of the buttonp566 element, with no need to implement these behaviors manually. In general, for any elements with nontrivial
behavior and semantics that build on top of existing elements of HTML, customized built-in elementsp759 will be easier to develop,
maintain, and consume.

This section is non-normative.

Because element definitionp762 can occur at any time, a non-custom element could be created, and then later become a custom
elementp759 after an appropriate definitionp761 is registered. We call this process "upgrading" the element, from a normal element into a
custom element.

Upgradesp765 enable scenarios where it may be preferable for custom element definitionsp761 to be registered after relevant elements
have been initially created, such as by the parser. They allow progressive enhancement of the content in the custom element. For
example, in the following HTML document the element definition for img-viewer is loaded asynchronously:

<!DOCTYPE html>
<html lang="en">
<title>Image viewer example</title>

<img-viewer filter="Kelvin">

</img-viewer>

4.13.1.6 Upgrading elements after their creation §p75

5

755

https://dom.spec.whatwg.org/#concept-create-element

<script src="js/elements/img-viewer.js" async></script>

The definition for the img-viewer element here is loaded using a scriptp652 element marked with the asyncp654 attribute, placed after
the <img-viewer> tag in the markup. While the script is loading, the img-viewer element will be treated as an undefined element,
similar to a spanp298. Once the script loads, it will define the img-viewer element, and the existing img-viewer element on the page
will be upgraded, applying the custom element's definition (which presumably includes applying an image filter identified by the string
"Kelvin", enhancing the image's visual appearance).

Note that upgradesp765 only apply to elements in the document tree. (Formally, elements that are connected.) An element that is not
inserted into a document will stay un-upgraded. An example illustrates this point:

<!DOCTYPE html>
<html lang="en">
<title>Upgrade edge-cases example</title>

<example-element></example-element>

<script>
"use strict";

const inDocument = document.querySelector("example-element");
const outOfDocument = document.createElement("example-element");

// Before the element definition, both are HTMLElement:
console.assert(inDocument instanceof HTMLElement);
console.assert(outOfDocument instanceof HTMLElement);

class ExampleElement extends HTMLElement {}
customElements.define("example-element", ExampleElement);

// After element definition, the in-document element was upgraded:
console.assert(inDocument instanceof ExampleElement);
console.assert(!(outOfDocument instanceof ExampleElement));

document.body.appendChild(outOfDocument);

// Now that we've moved the element into the document, it too was upgraded:
console.assert(outOfDocument instanceof ExampleElement);

</script>

Built-in elements provided by user agents have certain states that can change over time depending on user interaction and other
factors, and are exposed to web authors through pseudo-classes. For example, some form controls have the "invalid" state, which is
exposed through the :invalidp785 pseudo-class.

Like built-in elements, custom elementsp759 can have various states to be in too, and custom elementp759 authors want to expose these
states in a similar fashion as the built-in elements.

This is done via the :state()p786 pseudo-class. A custom element author can use the statesp775 property of ElementInternalsp771 to
add and remove such custom states, which are then exposed as arguments to the :state()p786 pseudo-class.

4.13.1.7 Exposing custom element states §p75

6

The following shows how :state()p786 can be used to style a custom checkbox element. Assume that LabeledCheckbox doesn't
expose its "checked" state via a content attribute.

<script>

Example

756

https://dom.spec.whatwg.org/#connected
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

class LabeledCheckbox extends HTMLElement {
constructor() {

super();
this._internals = this.attachInternals();
this.addEventListener('click', this._onClick.bind(this));

const shadowRoot = this.attachShadow({mode: 'closed'});
shadowRoot.innerHTML =

`<style>
:host::before {

content: '[]';
white-space: pre;
font-family: monospace;

}
:host(:state(checked))::before { content: '[x]' }
</style>
<slot>Label</slot>`;

}

get checked() { return this._internals.states.has('checked'); }

set checked(flag) {
if (flag)

this._internals.states.add('checked');
else

this._internals.states.delete('checked');
}

_onClick(event) {
this.checked = !this.checked;

}
}

customElements.define('labeled-checkbox', LabeledCheckbox);
</script>

<style>
labeled-checkbox { border: dashed red; }
labeled-checkbox:state(checked) { border: solid; }
</style>

<labeled-checkbox>You need to check this</labeled-checkbox>

Custom pseudo-classes can even target shadow parts. An extension of the above example shows this:

<script>
class QuestionBox extends HTMLElement {

constructor() {
super();
const shadowRoot = this.attachShadow({mode: 'closed'});
shadowRoot.innerHTML =

`<div><slot>Question</slot></div>
<labeled-checkbox part='checkbox'>Yes</labeled-checkbox>`;

}
}
customElements.define('question-box', QuestionBox);
</script>

Example

757

When authoring custom element constructorsp759, authors are bound by the following conformance requirements:

• A parameter-less call to super() must be the first statement in the constructor body, to establish the correct prototype chain
and this value before any further code is run.

• A return statement must not appear anywhere inside the constructor body, unless it is a simple early-return (return or
return this).

• The constructor must not use the document.write()p1153 or document.open()p1151 methods.

• The element's attributes and children must not be inspected, as in the non-upgradep765 case none will be present, and relying
on upgrades makes the element less usable.

• The element must not gain any attributes or children, as this violates the expectations of consumers who use the
createElement or createElementNS methods.

• In general, work should be deferred to connectedCallback as much as possible—especially work involving fetching
resources or rendering. However, note that connectedCallback can be called more than once, so any initialization work that
is truly one-time will need a guard to prevent it from running twice.

• In general, the constructor should be used to set up initial state and default values, and to set up event listeners and
possibly a shadow root.

Several of these requirements are checked during element creation, either directly or indirectly, and failing to follow them will result in
a custom element that cannot be instantiated by the parser or DOM APIs. This is true even if the work is done inside a constructor-
initiated microtaskp1124, as a microtask checkpointp1131 can occur immediately after construction.

When authoring custom element reactionsp768, authors should avoid manipulating the node tree as this can lead to unexpected results.

<style>
question-box::part(checkbox) { color: red; }
question-box::part(checkbox):state(checked) { color: green; }
</style>

<question-box>Continue?</question-box>

An element's connectedCallback can be queued before the element is disconnected, but as the callback queue is still processed,
it results in a connectedCallback for an element that is no longer connected:

class CParent extends HTMLElement {
connectedCallback() {

this.firstChild.remove();
}

}
customElements.define("c-parent", CParent);

class CChild extends HTMLElement {
connectedCallback() {

console.log("CChild connectedCallback: isConnected =", this.isConnected);
}

}
customElements.define("c-child", CChild);

const parent = new CParent(),
child = new CChild();

parent.append(child);

Example

4.13.2 Requirements for custom element constructors and reactions §p75

8

758

https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#dom-document-createelementns
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-create-element

A custom element is an element that is custom. Informally, this means that its constructor and prototype are defined by the author,
instead of by the user agent. This author-supplied constructor function is called the custom element constructor.

Two distinct types of custom elementsp759 can be defined:

1. An autonomous custom element, which is defined with no extends option. These types of custom elements have a local
name equal to their defined namep761.

2. A customized built-in element, which is defined with an extends option. These types of custom elements have a local
name equal to the value passed in their extends option, and their defined namep761 is used as the value of the is attribute,
which therefore must be a valid custom element namep760.

After a custom elementp759 is created, changing the value of the isp759 attribute does not change the element's behavior, as it is saved
on the element as its is value.

Autonomous custom elementsp759 have the following element definition:

Categoriesp146:
Flow contentp149.
Phrasing contentp150.
Palpable contentp150.
For form-associated custom elementsp760: Listedp513, labelablep514, submittablep514, and resettablep514 form-associated
elementp513.

Contexts in which this element can be usedp146:
Where phrasing contentp150 is expected.

Content modelp146:
Transparentp151.

Content attributesp146:
Global attributesp154, except the isp759 attribute
formp598, for form-associated custom elementsp760 — Associates the element with a formp514 element
disabledp601, for form-associated custom elementsp760 — Whether the form control is disabled
readonlyp760, for form-associated custom elementsp760 — Affects willValidatep625, plus any behavior added by the custom
element author
namep599, for form-associated custom elementsp760 — Name of the element to use for form submissionp628 and in the
form.elementsp516 API
Any other attribute that has no namespace (see prose).

Accessibility considerationsp146:
For form-associated custom elementsp760: for authors; for implementers.
Otherwise: for authors; for implementers.

DOM interfacep147:
Supplied by the element's author (inherits from HTMLElementp142)

An autonomous custom elementp759 does not have any special meaning: it representsp141 its children. A customized built-in elementp759

inherits the semantics of the element that it extends.

Any namespace-less attribute that is relevant to the element's functioning, as determined by the element's author, may be specified
on an autonomous custom elementp759, so long as the attribute name is XML-compatiblep45 and contains no ASCII upper alphas. The
exception is the isp759 attribute, which must not be specified on an autonomous custom elementp759 (and which will have no effect if it

document.body.append(parent);

// Logs:
// CChild connectedCallback: isConnected = false

4.13.3 Core concepts §p75

9

MDN

759

https://dom.spec.whatwg.org/#concept-element-custom
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-element-is-value
https://w3c.github.io/html-aria/#el-form-associated-custom-element
https://w3c.github.io/html-aam/#el-form-associated-custom-element
https://w3c.github.io/html-aria/#el-autonomous-custom-element
https://w3c.github.io/html-aam/#el-autonomous-custom-element
https://infra.spec.whatwg.org/#ascii-upper-alpha

is).

Customized built-in elementsp759 follow the normal requirements for attributes, based on the elements they extend. To add custom
attribute-based behavior, use data-*p164 attributes.

An autonomous custom elementp759 is called a form-associated custom element if the element is associated with a custom element
definitionp761 whose form-associatedp761 field is set to true.

The namep599 attribute represents the form-associated custom elementp760 's name. The disabledp601 attribute is used to make the form-
associated custom elementp760 non-interactive and to prevent its submission valuep773 from being submitted. The formp598 attribute is
used to explicitly associate the form-associated custom elementp760 with its form ownerp598.

The readonly attribute of form-associated custom elementsp760 specifies that the element is barred from constraint validationp622. User
agents don't provide any other behavior for the attribute, but custom element authors should, where possible, use its presence to
make their control non-editable in some appropriate fashion, similar to the behavior for the readonlyp551 attribute on built-in form
controls.

Constraint validation: If the readonlyp760 attribute is specified on a form-associated custom elementp760, the element is barred from
constraint validationp622.

The reset algorithmp637 for form-associated custom elementsp760 is to enqueue a custom element callback reactionp769 with the
element, callback name "formResetCallback", and an empty argument list.

A valid custom element name is a sequence of characters name that meets all of the following requirements:

• name must match the PotentialCustomElementNamep760 production:

PotentialCustomElementName ::=
[a-z] (PCENCharp760)* '-' (PCENCharp760)*

PCENChar ::=
"-" | "." | [0-9] | "_" | [a-z] | #xB7 | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x37D] | [#x37F-#x1FFF] |
[#x200C-#x200D] | [#x203F-#x2040] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] |
[#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

This uses the EBNF notation from the XML specification. [XML]p1484

• name must not be any of the following:

◦ annotation-xml
◦ color-profile
◦ font-face
◦ font-face-src
◦ font-face-uri
◦ font-face-format
◦ font-face-name
◦ missing-glyph

The list of names above is the summary of all hyphen-containing element names from the applicable specificationsp73,
namely SVG 2 and MathML. [SVG]p1482 [MATHML]p1479

Note

These requirements ensure a number of goals for valid custom element namesp760:

• They start with an ASCII lower alpha, ensuring that the HTML parser will treat them as tags instead of as text.

• They do not contain any ASCII upper alphas, ensuring that the user agent can always treat HTML elements ASCII-case-
insensitively.

• They contain a hyphen, used for namespacing and to ensure forward compatibility (since no elements will be added to
HTML, SVG, or MathML with hyphen-containing local names in the future).

• They can always be created with createElement() and createElementNS(), which have restrictions that go beyond the

Note

760

https://www.w3.org/TR/xml/#sec-notation
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#dom-document-createelementns

A custom element definition describes a custom elementp759 and consists of:

A name
A valid custom element namep760

A local name
A local name

A constructor
A Web IDL CustomElementConstructorp762 callback function type value wrapping the custom element constructorp759

A list of observed attributes
A sequence<DOMString>

A collection of lifecycle callbacks
A map, whose keys are the strings "connectedCallback", "disconnectedCallback", "adoptedCallback",
"attributeChangedCallback", "formAssociatedCallback", "formDisabledCallback", "formResetCallback", and
"formStateRestoreCallback". The corresponding values are either a Web IDL Function callback function type value, or null. By
default the value of each entry is null.

A construction stack
A list, initially empty, that is manipulated by the upgrade an elementp765 algorithm and the HTML element constructorsp143. Each
entry in the list will be either an element or an already constructed marker.

A form-associated boolean
If this is true, user agent treats elements associated to this custom element definitionp761 as form-associated custom elementsp760.

A disable internals boolean
Controls attachInternals()p770.

A disable shadow boolean
Controls attachShadow().

To look up a custom element definition, given a document, namespace, localName, and is, perform the following steps. They will
return either a custom element definitionp761 or null:

1. If namespace is not the HTML namespace, return null.

2. If document's browsing contextp999 is null, return null.

3. Let registry be document's relevant global objectp1083 's CustomElementRegistryp762 object.

4. If there is a custom element definitionp761 in registry with namep761 and local namep761 both equal to localName, return that
custom element definitionp761.

5. If there is a custom element definitionp761 in registry with namep761 equal to is and local namep761 equal to localName, return
that custom element definitionp761.

6. Return null.

Each Windowp922 object is associated with a unique instance of a CustomElementRegistryp762 object, allocated when the Windowp922

object is created.

parser's.

Apart from these restrictions, a large variety of names is allowed, to give maximum flexibility for use cases like <math-α> or
<emotion-😍>.

Custom element registries are associated with Windowp922 objects, instead of Documentp130 objects, since each custom element
Note

4.13.4 The CustomElementRegistryp762 interface §p76

1

✔ MDN

761

https://webidl.spec.whatwg.org/#common-Function
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://infra.spec.whatwg.org/#html-namespace

The customElements attribute of the Windowp922 interface must return the CustomElementRegistryp762 object for that Windowp922

object.

[Exposed=Window]
interface CustomElementRegistry {

[CEReactions] undefined define(DOMString name, CustomElementConstructor constructor, optional
ElementDefinitionOptions options = {});

(CustomElementConstructor or undefined) get(DOMString name);
DOMString? getName(CustomElementConstructor constructor);
Promise<CustomElementConstructor> whenDefined(DOMString name);
[CEReactions] undefined upgrade(Node root);

};

callback CustomElementConstructor = HTMLElement ();

dictionary ElementDefinitionOptions {
DOMString extends;

};

Every CustomElementRegistryp762 has a set of custom element definitionsp761, initially empty. In general, algorithms in this
specification look up elements in the registry by any of namep761, local namep761, or constructorp761.

Every CustomElementRegistryp762 also has an element definition is running flag which is used to prevent reentrant invocations of
element definitionp762. It is initially unset.

Every CustomElementRegistryp762 also has a when-defined promise map, mapping valid custom element namesp760 to promises. It
is used to implement the whenDefined()p764 method.

Element definition is a process of adding a custom element definitionp761 to the CustomElementRegistryp762. This is accomplished by
the define()p762 method. When invoked, the define(name, constructor, options) method must run these steps:

1. If IsConstructor(constructor) is false, then throw a TypeError.

constructorp759 inherits from the HTMLElementp142 interface, and there is exactly one HTMLElementp142 interface per Windowp922

object.

window.customElementsp762.definep762(name, constructor)
Defines a new custom elementp759, mapping the given name to the given constructor as an autonomous custom elementp759.

window.customElementsp762.definep762(name, constructor, { extends: baseLocalName })
Defines a new custom elementp759, mapping the given name to the given constructor as a customized built-in elementp759 for
the element typep45 identified by the supplied baseLocalName. A "NotSupportedError" DOMException will be thrown upon
trying to extend a custom elementp759 or an unknown element.

window.customElementsp762.getp764(name)
Retrieves the custom element constructorp759 defined for the given namep761. Returns undefined if there is no custom element
definitionp761 with the given namep761.

window.customElementsp762.getNamep764(constructor)
Retrieves the given name for a custom elementp759 defined for the given constructorp761. Returns null if there is no custom
element definitionp761 with the given constructorp761.

window.customElementsp762.whenDefinedp764(name)
Returns a promise that will be fulfilled with the custom elementp759 's constructor when a custom elementp759 becomes defined
with the given name. (If such a custom elementp759 is already defined, the returned promise will be immediately fulfilled.)
Returns a promise rejected with a "SyntaxError" DOMException if not given a valid custom element namep760.

window.customElementsp762.upgradep765(root)
Tries to upgradep767 all shadow-including inclusive descendant elements of root, even if they are not connected.

For web developers (non-normative)

IDL

✔ MDN

762

https://webidl.spec.whatwg.org/#idl-promise
https://dom.spec.whatwg.org/#interface-node
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#connected
https://tc39.es/ecma262/#sec-isconstructor
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

2. If name is not a valid custom element namep760, then throw a "SyntaxError" DOMException.

3. If this CustomElementRegistryp762 contains an entry with namep761 name, then throw a "NotSupportedError"
DOMException.

4. If this CustomElementRegistryp762 contains an entry with constructorp761 constructor, then throw a "NotSupportedError"
DOMException.

5. Let localName be name.

6. Let extends be the value of the extends member of options, or null if no such member exists.

7. If extends is not null, then:

1. If extends is a valid custom element namep760, then throw a "NotSupportedError" DOMException.

2. If the element interface for extends and the HTML namespace is HTMLUnknownElementp142 (e.g., if extends does not
indicate an element definition in this specification), then throw a "NotSupportedError" DOMException.

3. Set localName to extends.

8. If this CustomElementRegistryp762 's element definition is runningp762 flag is set, then throw a "NotSupportedError"
DOMException.

9. Set this CustomElementRegistryp762 's element definition is runningp762 flag.

10. Let formAssociated be false.

11. Let disableInternals be false.

12. Let disableShadow be false.

13. Let observedAttributes be an empty sequence<DOMString>.

14. Run the following substeps while catching any exceptions:

1. Let prototype be ? Get(constructor, "prototype").

2. If prototype is not an Object, then throw a TypeError exception.

3. Let lifecycleCallbacks be a map with the keys "connectedCallback", "disconnectedCallback",
"adoptedCallback", and "attributeChangedCallback", each of which belongs to an entry whose value is null.

4. For each of the keys callbackName in lifecycleCallbacks, in the order listed in the previous step:

1. Let callbackValue be ? Get(prototype, callbackName).

2. If callbackValue is not undefined, then set the value of the entry in lifecycleCallbacks with key
callbackName to the result of converting callbackValue to the Web IDL Function callback type. Rethrow
any exceptions from the conversion.

5. If the value of the entry in lifecycleCallbacks with key "attributeChangedCallback" is not null, then:

1. Let observedAttributesIterable be ? Get(constructor, "observedAttributes").

2. If observedAttributesIterable is not undefined, then set observedAttributes to the result of converting
observedAttributesIterable to a sequence<DOMString>. Rethrow any exceptions from the conversion.

6. Let disabledFeatures be an empty sequence<DOMString>.

7. Let disabledFeaturesIterable be ? Get(constructor, "disabledFeatures").

8. If disabledFeaturesIterable is not undefined, then set disabledFeatures to the result of converting
disabledFeaturesIterable to a sequence<DOMString>. Rethrow any exceptions from the conversion.

9. Set disableInternals to true if disabledFeatures contains "internals".

10. Set disableShadow to true if disabledFeatures contains "shadow".

11. Let formAssociatedValue be ? Get(constructor, "formAssociated").

12. Set formAssociated to the result of converting formAssociatedValue to a boolean. Rethrow any exceptions from the

763

https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-element-interface
https://infra.spec.whatwg.org/#html-namespace
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-get-o-p
https://tc39.es/ecma262/#sec-object-type
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-get-o-p
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#common-Function
https://tc39.es/ecma262/#sec-get-o-p
https://webidl.spec.whatwg.org/#es-type-mapping
https://tc39.es/ecma262/#sec-get-o-p
https://webidl.spec.whatwg.org/#es-type-mapping
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-contain
https://tc39.es/ecma262/#sec-get-o-p
https://webidl.spec.whatwg.org/#es-type-mapping

conversion.

13. If formAssociated is true, for each of "formAssociatedCallback", "formResetCallback",
"formDisabledCallback", and "formStateRestoreCallback" callbackName:

1. Let callbackValue be ? Get(prototype, callbackName).

2. If callbackValue is not undefined, then set the value of the entry in lifecycleCallbacks with key
callbackName to the result of converting callbackValue to the Web IDL Function callback type. Rethrow
any exceptions from the conversion.

Then, perform the following substep, regardless of whether the above steps threw an exception or not:

1. Unset this CustomElementRegistryp762 's element definition is runningp762 flag.

Finally, if the first set of substeps threw an exception, then rethrow that exception (thus terminating this algorithm).
Otherwise, continue onward.

15. Let definition be a new custom element definitionp761 with namep761 name, local namep761 localName, constructorp761

constructor, observed attributesp761 observedAttributes, lifecycle callbacksp761 lifecycleCallbacks, form-associatedp761

formAssociated, disable internalsp761 disableInternals, and disable shadowp761 disableShadow.

16. Add definition to this CustomElementRegistryp762.

17. Let document be this CustomElementRegistryp762 's relevant global objectp1083 's associated Documentp923.

18. Let upgrade candidates be all elements that are shadow-including descendants of document, whose namespace is the HTML
namespace and whose local name is localName, in shadow-including tree order. Additionally, if extends is non-null, only
include elements whose is value is equal to name.

19. For each element element in upgrade candidates, enqueue a custom element upgrade reactionp769 given element and
definition.

20. If this CustomElementRegistryp762 's when-defined promise mapp762 contains an entry with key name:

1. Let promise be the value of that entry.

2. Resolve promise with constructor.

3. Delete the entry with key name from this CustomElementRegistryp762 's when-defined promise mapp762.

When invoked, the get(name) method must run these steps:

1. If this CustomElementRegistryp762 contains an entry with namep761 name, then return that entry's constructorp761.

2. Otherwise, return undefined.

The getName(constructor) method steps are:

1. If this CustomElementRegistryp762 contains an entry with constructorp761 constructor, then return that entry's namep761.

2. Return null.

When invoked, the whenDefined(name) method must run these steps:

1. If name is not a valid custom element namep760, then return a promise rejected with a "SyntaxError" DOMException.

2. If this CustomElementRegistryp762 contains an entry with namep761 name, then return a promise resolved with that entry's
constructorp761.

3. Let map be this CustomElementRegistryp762 's when-defined promise mapp762.

4. If map does not contain an entry with key name, create an entry in map with key name and whose value is a new promise.

5. Let promise be the value of the entry in map with key name.

6. Return promise.

Example

MDN

764

https://tc39.es/ecma262/#sec-get-o-p
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#common-Function
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-element-is-value
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-resolved-with

When invoked, the upgrade(root) method must run these steps:

1. Let candidates be a list of all of root's shadow-including inclusive descendant elements, in shadow-including tree order.

2. For each candidate of candidates, try to upgradep767 candidate.

To upgrade an element, given as input a custom element definitionp761 definition and an element element, run the following steps:

1. If element's custom element state is not "undefined" or "uncustomized", then return.

The whenDefined()p764 method can be used to avoid performing an action until all appropriate custom elementsp759 are defined. In
this example, we combine it with the :definedp783 pseudo-class to hide a dynamically-loaded article's contents until we're sure
that all of the autonomous custom elementsp759 it uses are defined.

articleContainer.hidden = true;

fetch(articleURL)
.then(response => response.text())
.then(text => {

articleContainer.innerHTML = text;

return Promise.all(
[...articleContainer.querySelectorAll(":not(:defined)")]

.map(el => customElements.whenDefined(el.localName))
);

})
.then(() => {

articleContainer.hidden = false;
});

The upgrade()p765 method allows upgrading of elements at will. Normally elements are automatically upgraded when they become
connected, but this method can be used if you need to upgrade before you're ready to connect the element.

const el = document.createElement("spider-man");

class SpiderMan extends HTMLElement {}
customElements.define("spider-man", SpiderMan);

console.assert(!(el instanceof SpiderMan)); // not yet upgraded

customElements.upgrade(el);
console.assert(el instanceof SpiderMan); // upgraded!

Example

One scenario where this can occur due to reentrant invocation of this algorithm, as in the following example:

<!DOCTYPE html>
<x-foo id="a"></x-foo>
<x-foo id="b"></x-foo>

<script>
// Defining enqueues upgrade reactions for both "a" and "b"
customElements.define("x-foo", class extends HTMLElement {

constructor() {

Example

4.13.5 Upgrades §p76

5

765

https://dom.spec.whatwg.org/#concept-element-defined
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-element-custom-element-state

2. Set element's custom element definition to definition.

3. Set element's custom element state to "failed".

4. For each attribute in element's attribute list, in order, enqueue a custom element callback reactionp769 with element, callback
name "attributeChangedCallback", and an argument list containing attribute's local name, null, attribute's value, and
attribute's namespace.

5. If element is connected, then enqueue a custom element callback reactionp769 with element, callback name
"connectedCallback", and an empty argument list.

6. Add element to the end of definition's construction stackp761.

7. Let C be definition's constructorp761.

8. Run the following substeps while catching any exceptions:

1. If definition's disable shadowp761 is true and element's shadow root is non-null, then throw a "NotSupportedError"
DOMException.

2. Set element's custom element state to "precustomized".

3. Let constructResult be the result of constructing C, with no arguments.

4. If SameValue(constructResult, element) is false, then throw a TypeError.

Then, perform the following substep, regardless of whether the above steps threw an exception or not:

1. Remove the last entry from the end of definition's construction stackp761.

super();

const b = document.querySelector("#b");
b.remove();

// While this constructor is running for "a", "b" is still
// undefined, and so inserting it into the document will enqueue a
// second upgrade reaction for "b" in addition to the one enqueued
// by defining x-foo.
document.body.appendChild(b);

}
})
</script>

This step will thus bail out the algorithm early when upgrade an elementp765 is invoked with "b" a second time.

It will be set to "custom" after the upgrade succeedsp767. For now, we set it to "failed" so that any reentrant invocations
will hit the above early-exit stepp765.

Note

This is needed as attachShadow() does not use look up a custom element definitionp761 while
attachInternals()p770 does.

Note

If C non-conformantlyp758 uses an API decorated with the [CEReactions]p769 extended attribute, then the
reactions enqueued at the beginning of this algorithm will execute during this step, before C finishes and
control returns to this algorithm. Otherwise, they will execute after C and the rest of the upgrade process
finishes.

Note

This can occur if C constructs another instance of the same custom element before calling super(), or if C uses
JavaScript's return-override feature to return an arbitrary HTMLElementp142 object from the constructor.

Note

766

https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-attribute
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://webidl.spec.whatwg.org/#construct-a-callback-function
https://tc39.es/ecma262/#sec-samevalue
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

Finally, if the above steps threw an exception, then:

1. Set element's custom element definition to null.

2. Empty element's custom element reaction queuep768.

3. Rethrow the exception (thus terminating this algorithm).

9. If element is a form-associated custom elementp760, then:

1. Reset the form ownerp598 of element. If element is associated with a formp514 element, then enqueue a custom
element callback reactionp769 with element, callback name "formAssociatedCallback", and « the associated
formp514 ».

2. If element is disabledp601, then enqueue a custom element callback reactionp769 with element, callback name
"formDisabledCallback" and « true ».

10. Set element's custom element state to "custom".

To try to upgrade an element, given as input an element element, run the following steps:

1. Let definition be the result of looking up a custom element definitionp761 given element's node document, element's
namespace, element's local name, and element's is value.

2. If definition is not null, then enqueue a custom element upgrade reactionp769 given element and definition.

A custom elementp759 possesses the ability to respond to certain occurrences by running author code:

• When upgradedp765, its constructorp759 is run, with no arguments.

• When it becomes connectedp46, its connectedCallback is called, with no arguments.

• When it becomes disconnectedp46, its disconnectedCallback is called, with no arguments.

• When it is adopted into a new document, its adoptedCallback is called, given the old document and new document as
arguments.

• When any of its attributes are changed, appended, removed, or replaced, its attributeChangedCallback is called, given the
attribute's local name, old value, new value, and namespace as arguments. (An attribute's old or new value is considered to
be null when the attribute is added or removed, respectively.)

• When the user agent resets the form ownerp598 of a form-associated custom elementp760 and doing so changes the form
owner, its formAssociatedCallback is called, given the new form owner (or null if no owner) as an argument.

• When the form owner of a form-associated custom elementp760 is resetp637, its formResetCallback is called.

• When the disabledp601 state of a form-associated custom elementp760 is changed, its formDisabledCallback is called, given
the new state as an argument.

• When user agent updates a form-associated custom elementp760 's value on behalf of a user or as part of navigationp1055, its
formStateRestoreCallback is called, given the new state and a string indicating a reason, "autocomplete" or "restore", as
arguments.

Assuming C calls super() (as it will if it is conformantp758), and that the call succeeds, this will be the already
constructed markerp761 that replaced the element we pushed at the beginning of this algorithm. (The HTML
element constructorp143 carries out this replacement.)

If C does not call super() (i.e. it is not conformantp758), or if any step in the HTML element constructorp143

throws, then this entry will still be element.

Note

If the above steps threw an exception, then element's custom element state will remain "failed" or "precustomized".
Note

4.13.6 Custom element reactions §p76

7

767

https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#concept-node-adopt
https://dom.spec.whatwg.org/#concept-element-attributes-change
https://dom.spec.whatwg.org/#concept-element-attributes-append
https://dom.spec.whatwg.org/#concept-element-attributes-remove
https://dom.spec.whatwg.org/#concept-element-attributes-replace

We call these reactions collectively custom element reactions.

The way in which custom element reactionsp768 are invoked is done with special care, to avoid running author code during the middle
of delicate operations. Effectively, they are delayed until "just before returning to user script". This means that for most purposes they
appear to execute synchronously, but in the case of complicated composite operations (like cloning, or range manipulation), they will
instead be delayed until after all the relevant user agent processing steps have completed, and then run together as a batch.

Additionally, the precise ordering of these reactions is managed via a somewhat-complicated stack-of-queues system, described below.
The intention behind this system is to guarantee that custom element reactionsp768 always are invoked in the same order as their
triggering actions, at least within the local context of a single custom elementp759. (Because custom element reactionp768 code can
perform its own mutations, it is not possible to give a global ordering guarantee across multiple elements.)

Each similar-origin window agentp1072 has a custom element reactions stack, which is initially empty. A similar-origin window
agentp1072 's current element queue is the element queuep768 at the top of its custom element reactions stackp768. Each item in the
stack is an element queue, which is initially empty as well. Each item in an element queuep768 is an element. (The elements are not
necessarily custom yet, since this queue is used for upgradesp765 as well.)

Each custom element reactions stackp768 has an associated backup element queue, which is an initially-empty element queuep768.
Elements are pushed onto the backup element queuep768 during operations that affect the DOM without going through an API
decorated with [CEReactions]p769, or through the parser's create an element for the tokenp1320 algorithm. An example of this is a user-
initiated editing operation which modifies the descendants or attributes of an editable element. To prevent reentrancy when processing
the backup element queuep768, each custom element reactions stackp768 also has a processing the backup element queue flag,
initially unset.

All elements have an associated custom element reaction queue, initially empty. Each item in the custom element reaction
queuep768 is of one of two types:

• An upgrade reaction, which will upgradep765 the custom element and contains a custom element definitionp761; or

• A callback reaction, which will call a lifecycle callback, and contains a callback function as well as a list of arguments.

This is all summarized in the following schematic diagram:

custom element
reactions stack

⋯

backup element queue
processing backup
element queue flag

element queue

<x-a> <x-b> <x-c> ⋯

custom element reaction queue

Upgrade Attribute
changed

Attribute
changed Connected

To enqueue an element on the appropriate element queue, given an element element, run the following steps:

1. Let reactionsStack be element's relevant agentp1073 's custom element reactions stackp768.

768

https://dom.spec.whatwg.org/#concept-node-clone
https://dom.spec.whatwg.org/#concept-range
https://dom.spec.whatwg.org/#concept-element-custom
https://w3c.github.io/editing/docs/execCommand/#editable

2. If reactionsStack is empty, then:

1. Add element to reactionsStack's backup element queuep768.

2. If reactionsStack's processing the backup element queuep768 flag is set, then return.

3. Set reactionsStack's processing the backup element queuep768 flag.

4. Queue a microtaskp1125 to perform the following steps:

1. Invoke custom element reactionsp769 in reactionsStack's backup element queuep768.

2. Unset reactionsStack's processing the backup element queuep768 flag.

3. Otherwise, add element to element's relevant agentp1073 's current element queuep768.

To enqueue a custom element callback reaction, given a custom elementp759 element, a callback name callbackName, and a list
of arguments args, run the following steps:

1. Let definition be element's custom element definition.

2. Let callback be the value of the entry in definition's lifecycle callbacksp761 with key callbackName.

3. If callback is null, then return.

4. If callbackName is "attributeChangedCallback", then:

1. Let attributeName be the first element of args.

2. If definition's observed attributesp761 does not contain attributeName, then return.

5. Add a new callback reactionp768 to element's custom element reaction queuep768, with callback function callback and
arguments args.

6. Enqueue an element on the appropriate element queuep768 given element.

To enqueue a custom element upgrade reaction, given an element element and custom element definitionp761 definition, run the
following steps:

1. Add a new upgrade reactionp768 to element's custom element reaction queuep768, with custom element definitionp761

definition.

2. Enqueue an element on the appropriate element queuep768 given element.

To invoke custom element reactions in an element queuep768 queue, run the following steps:

1. While queue is not empty:

1. Let element be the result of dequeuing from queue.

2. Let reactions be element's custom element reaction queuep768.

3. Repeat until reactions is empty:

1. Remove the first element of reactions, and let reaction be that element. Switch on reaction's type:

↪ upgrade reactionp768

Upgradep765 element using reaction's custom element definitionp761.

If this throws an exception, catch it, and reportp1098 it for reaction's custom element definitionp761 's
constructorp761 's corresponding JavaScript object's associated realm's global objectp1077.

↪ callback reactionp768

Invoke reaction's callback function with reaction's arguments and "report", and callback this
value set to element.

To ensure custom element reactionsp768 are triggered appropriately, we introduce the [CEReactions] IDL extended attribute. It
indicates that the relevant algorithm is to be supplemented with additional steps in order to appropriately track and invoke custom

769

https://dom.spec.whatwg.org/#concept-element-custom-element-definition
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#queue-dequeue
https://webidl.spec.whatwg.org/#dfn-associated-realm
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://webidl.spec.whatwg.org/#dfn-extended-attribute

element reactionsp768.

The [CEReactions]p769 extended attribute must take no arguments, and must not appear on anything other than an operation,
attribute, setter, or deleter. Additionally, it must not appear on readonly attributes.

Operations, attributes, setters, or deleters annotated with the [CEReactions]p769 extended attribute must run the following steps in
place of the ones specified in their description:

1. Push a new element queuep768 onto this object's relevant agentp1073 's custom element reactions stackp768.

2. Run the originally-specified steps for this construct, catching any exceptions. If the steps return a value, let value be the
returned value. If they throw an exception, let exception be the thrown exception.

3. Let queue be the result of popping from this object's relevant agentp1073 's custom element reactions stackp768.

4. Invoke custom element reactionsp769 in queue.

5. If an exception exception was thrown by the original steps, rethrow exception.

6. If a value value was returned from the original steps, return value.

Any nonstandard APIs introduced by the user agent that could modify the DOM in such a way as to cause enqueuing a custom element
callback reactionp769 or enqueuing a custom element upgrade reactionp769, for example by modifying any attributes or child elements,
must also be decorated with the [CEReactions]p769 attribute.

Certain capabilities are meant to be available to a custom element author, but not to a custom element consumer. These are provided
by the element.attachInternals()p770 method, which returns an instance of ElementInternalsp771. The properties and methods of
ElementInternalsp771 allow control over internal features which the user agent provides to all elements.

Each HTMLElementp142 has an attached internals (null or an ElementInternalsp771 object), initially null.

The attachInternals() method steps are:

1. If this's is value is not null, then throw a "NotSupportedError" DOMException.

The intent behind this extended attribute is somewhat subtle. One way of accomplishing its goals would be to say that every
operation, attribute, setter, and deleter on the platform must have these steps inserted, and to allow implementers to optimize
away unnecessary cases (where no DOM mutation is possible that could cause custom element reactionsp768 to occur).

However, in practice this imprecision could lead to non-interoperable implementations of custom element reactionsp768, as some
implementations might forget to invoke these steps in some cases. Instead, we settled on the approach of explicitly annotating all
relevant IDL constructs, as a way of ensuring interoperable behavior and helping implementations easily pinpoint all cases where
these steps are necessary.

Note

As of the time of this writing, the following nonstandard or not-yet-standardized APIs are known to fall into this category:

• HTMLInputElementp522 's webkitdirectory and incremental IDL attributes

• HTMLLinkElementp178 's scope IDL attribute

Note

element.attachInternals()p770

Returns an ElementInternalsp771 object targeting the custom elementp759 element. Throws an exception if element is not a
custom elementp759, if the "internals" feature was disabled as part of the element definition, or if it is called twice on the same
element.

For web developers (non-normative)

4.13.7 Element internals §p77

0

✔ MDN

770

https://infra.spec.whatwg.org/#stack-push
https://infra.spec.whatwg.org/#stack-pop
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-element-is-value
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException

2. Let definition be the result of looking up a custom element definitionp761 given this's node document, its namespace, its local
name, and null as the is value.

3. If definition is null, then throw an "NotSupportedError" DOMException.

4. If definition's disable internalsp761 is true, then throw a "NotSupportedError" DOMException.

5. If this's attached internalsp770 is non-null, then throw an "NotSupportedError" DOMException.

6. If this's custom element state is not "precustomized" or "custom", then throw a "NotSupportedError" DOMException.

7. Set this's attached internalsp770 to a new ElementInternalsp771 instance whose target elementp772 is this.

8. Return this's attached internalsp770.

The IDL for the ElementInternalsp771 interface is as follows, with the various operations and attributes defined in the following
sections:

[Exposed=Window]
interface ElementInternals {

// Shadow root access
readonly attribute ShadowRoot? shadowRoot;

// Form-associated custom elements
undefined setFormValue((File or USVString or FormData)? value,

optional (File or USVString or FormData)? state);

readonly attribute HTMLFormElement? form;

undefined setValidity(optional ValidityStateFlags flags = {},
optional DOMString message,
optional HTMLElement anchor);

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
boolean reportValidity();

readonly attribute NodeList labels;

// Custom state pseudo-class
[SameObject] readonly attribute CustomStateSet states;

};

// Accessibility semantics
ElementInternals includes ARIAMixin;

dictionary ValidityStateFlags {
boolean valueMissing = false;
boolean typeMismatch = false;
boolean patternMismatch = false;
boolean tooLong = false;
boolean tooShort = false;
boolean rangeUnderflow = false;
boolean rangeOverflow = false;
boolean stepMismatch = false;
boolean badInput = false;
boolean customError = false;

};

4.13.7.1 The ElementInternalsp771 interface §p77

1

IDL

✔ MDN

771

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-is-value
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-element-custom-element-state
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-shadowroot
https://w3c.github.io/FileAPI/#dfn-file
https://webidl.spec.whatwg.org/#idl-USVString
https://xhr.spec.whatwg.org/#formdata
https://w3c.github.io/FileAPI/#dfn-file
https://webidl.spec.whatwg.org/#idl-USVString
https://xhr.spec.whatwg.org/#formdata
https://dom.spec.whatwg.org/#interface-nodelist
https://w3c.github.io/aria/#ARIAMixin

Each ElementInternalsp771 has a target element, which is a custom elementp759.

The shadowRoot getter steps are:

1. Let target be this's target elementp772.

2. If target is not a shadow host, then return null.

3. Let shadow be target's shadow root.

4. If shadow's available to element internals is false, then return null.

5. Return shadow.

4.13.7.2 Shadow root access §p77

2

internals.shadowRootp772

Returns the ShadowRoot for internals's target elementp772, if the target elementp772 is a shadow host, or null otherwise.

For web developers (non-normative)

4.13.7.3 Form-associated custom elements §p77

2

internals.setFormValuep773(value)
Sets both the statep773 and submission valuep773 of internals's target elementp772 to value.
If value is null, the element won't participate in form submission.

internals.setFormValuep773(value, state)
Sets the submission valuep773 of internals's target elementp772 to value, and its statep773 to state.
If value is null, the element won't participate in form submission.

internals.formp599

Returns the form ownerp598 of internals's target elementp772.

internals.setValidityp773(flags, message [, anchor])
Marks internals's target elementp772 as suffering from the constraints indicated by the flags argument, and sets the element's
validation message to message. If anchor is specified, the user agent might use it to indicate problems with the constraints of
internals's target elementp772 when the form ownerp598 is validated interactively or reportValidity()p627 is called.

internals.setValidityp773({})
Marks internals's target elementp772 as satisfying its constraintsp623.

internals.willValidatep625

Returns true if internals's target elementp772 will be validated when the form is submitted; false otherwise.

internals.validityp626

Returns the ValidityStatep626 object for internals's target elementp772.

internals.validationMessagep774

Returns the error message that would be shown to the user if internals's target elementp772 was to be checked for validity.

valid = internals.checkValidity()p627

Returns true if internals's target elementp772 has no validity problems; false otherwise. Fires an invalidp1471 event at the
element in the latter case.

valid = internals.reportValidity()p627

Returns true if internals's target elementp772 has no validity problems; otherwise, returns false, fires an invalidp1471 event at the
element, and (if the event isn't canceled) reports the problem to the user.

For web developers (non-normative)

✔ MDN

772

https://dom.spec.whatwg.org/#interface-shadowroot
https://dom.spec.whatwg.org/#element-shadow-host
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-available-to-element-internals

Each form-associated custom elementp760 has submission value. It is used to provide one or more entriesp632 on form submission.
The initial value of submission valuep773 is null, and submission valuep773 can be null, a string, a File, or a list of entriesp632.

Each form-associated custom elementp760 has state. It is information with which the user agent can restore a user's input for the
element. The initial value of statep773 is null, and statep773 can be null, a string, a File, or a list of entriesp632.

The setFormValue()p773 method is used by the custom element author to set the element's submission valuep773 and statep773, thus
communicating these to the user agent.

When the user agent believes it is a good idea to restore a form-associated custom elementp760 's statep773, for example after
navigationp1055 or restarting the user agent, they may enqueue a custom element callback reactionp769 with that element, callback
name "formStateRestoreCallback", an argument list containing the state to be restored, and "restore".

If the user agent has a form-filling assist feature, then when the feature is invoked, it may enqueue a custom element callback
reactionp769 with a form-associated custom elementp760, callback name "formStateRestoreCallback", an argument list containing the
state value determined by history of state value and some heuristics, and "autocomplete".

In general, the statep773 is information specified by a user, and the submission valuep773 is a value after canonicalization or sanitization,
suitable for submission to the server. The following examples makes this concrete:

The setFormValue(value, state) method steps are:

1. Let element be this's target elementp772.

2. If element is not a form-associated custom elementp760, then throw a "NotSupportedError" DOMException.

3. Set target elementp772 's submission valuep773 to value if value is not a FormData object, or to a clone of value's entry list
otherwise.

4. If the state argument of the function is omitted, set element's statep773 to its submission valuep773.

5. Otherwise, if state is a FormData object, set element's statep773 to a clone of state's entry list.

6. Otherwise, set element's statep773 to state.

Each form-associated custom elementp760 has validity flags named valueMissing, typeMismatch, patternMismatch, tooLong,
tooShort, rangeUnderflow, rangeOverflow, stepMismatch, and customError. They are false initially.

Each form-associated custom elementp760 has a validation message string. It is the empty string initially.

Each form-associated custom elementp760 has a validation anchor element. It is null initially.

The setValidity(flags, message, anchor) method steps are:

1. Let element be this's target elementp772.

2. If element is not a form-associated custom elementp760, then throw a "NotSupportedError" DOMException.

internals.labelsp520

Returns a NodeList of all the labelp518 elements that internals's target elementp772 is associated with.

Suppose that we have a form-associated custom elementp760 which asks a user to specify a date. The user specifies "3/15/2019",
but the control wishes to submit "2019-03-15" to the server. "3/15/2019" would be a statep773 of the element, and "2019-03-15"
would be a submission valuep773.

Example

Suppose you develop a custom element emulating a the behavior of the existing checkboxp542 inputp520 type. Its submission
valuep773 would be the value of its value content attribute, or the string "on". Its statep773 would be one of "checked",
"unchecked", "checked/indeterminate", or "unchecked/indeterminate".

Example

✔ MDN

✔ MDN

773

https://dom.spec.whatwg.org/#interface-nodelist
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#list
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#list
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://xhr.spec.whatwg.org/#formdata
https://infra.spec.whatwg.org/#list-clone
https://xhr.spec.whatwg.org/#concept-formdata-entry-list
https://xhr.spec.whatwg.org/#formdata
https://infra.spec.whatwg.org/#list-clone
https://xhr.spec.whatwg.org/#concept-formdata-entry-list
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException

3. If flags contains one or more true values and message is not given or is the empty string, then throw a TypeError.

4. For each entry flag → value of flags, set element's validity flag with the name flag to value.

5. Set element's validation messagep773 to the empty string if message is not given or all of element's validity flags are false, or
to message otherwise.

6. If element's customError validity flag is true, then set element's custom validity error messagep622 to element's validation
messagep773. Otherwise, set element's custom validity error messagep622 to the empty string.

7. Set element's validation anchorp773 to null if anchor is not given. Otherwise, if anchor is not a shadow-including descendant
of element, then throw a "NotFoundError" DOMException. Otherwise, set element's validation anchorp773 to anchor.

The validationMessage getter steps are:

1. Let element be this's target elementp772.

2. If element is not a form-associated custom elementp760, then throw a "NotSupportedError" DOMException.

3. Return element's validation messagep773.

The entry construction algorithm for a form-associated custom elementp760, given an element element and an entry listp632 entry
list, consists of the following steps:

1. If element's submission valuep773 is a list of entriesp632, then append each item of element's submission valuep773 to entry list,
and return.

2. If the element does not have a namep599 attribute specified, or its namep599 attribute's value is the empty string, then return.

3. If the element's submission valuep773 is not null, create an entryp632 with the namep599 attribute value and the submission
valuep773, and append it to entry list.

Each custom elementp759 has an internal content attribute map, which is a map, initially empty. See the Requirements related to
ARIA and to platform accessibility APIsp170 section for information on how this impacts platform accessibility APIs.

In this case, user agent does not refer to the namep599 content attribute value. An implementation of form-associated
custom elementp760 is responsible to decide names of entriesp632. They can be the namep599 content attribute value, they
can be strings based on the namep599 content attribute value, or they can be unrelated to the namep599 content attribute.

Note

4.13.7.4 Accessibility semantics §p77

4

internals.rolep0 [= value]
Sets or retrieves the default ARIA role for internals's target elementp772, which will be used unless the page author overrides it
using the rolep68 attribute.

internals.aria*p0 [= value]
Sets or retrieves various default ARIA states or property values for internals's target elementp772, which will be used unless the
page author overrides them using the aria-*p68 attributes.

For web developers (non-normative)

4.13.7.5 Custom state pseudo-class §p77

4

internals.statesp775.add(value)
Adds the string value to the element's states setp775 to be exposed as a pseudo-class.

internals.statesp775.has(value)
Returns true if value is in the element's states setp775, otherwise false.

For web developers (non-normative)

✔ MDN

774

https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://webidl.spec.whatwg.org/#notfounderror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#ordered-map

Each custom elementp759 has a states set, which is a CustomStateSetp775, initially empty.

[Exposed=Window]
interface CustomStateSet {

setlike<DOMString>;
};

The states getter steps are to return this's target elementp772 's states setp775.

This specification does not provide a machine-readable way of describing breadcrumb navigation menus. Authors are encouraged to
just use a series of links in a paragraph. The navp211 element can be used to mark the section containing these paragraphs as being
navigation blocks.

internals.statesp775.delete(value)
If the element's states setp775 has value, then it will be removed and true will be returned. Otherwise, false will be returned.

internals.statesp775.clear()
Removes all values from the element's states setp775.

for (const stateName of internals.statesp775)
for (const stateName of internals.statesp775.entries())
for (const stateName of internals.statesp775.keys())
for (const stateName of internals.statesp775.values())

Iterates over all values in the element's states setp775.

internals.statesp775.forEach(callback)
Iterates over all values in the element's states setp775 by calling callback once for each value.

internals.statesp775.size
Returns the number of values in the element's states setp775.

The states setp775 can expose boolean states represented by existence/non-existence of string values. If an author wants to expose
a state which can have three values, it can be converted to three exclusive boolean states. For example, a state called readyState
with "loading", "interactive", and "complete" values can be mapped to three exclusive boolean states, "loading",
"interactive", and "complete":

// Change the readyState from anything to "complete".
this._readyState = "complete";
this._internals.states.delete("loading");
this._internals.states.delete("interactive");
this._internals.states.add("complete");

Example

4.14 Common idioms without dedicated elements §p77

5

In the following example, the current page can be reached via two paths.

<nav>
<p>
Main ▸
Products ▸
Dishwashers ▸

Example

IDL

4.14.1 Breadcrumb navigation §p77

5

775

https://webidl.spec.whatwg.org/#this

This specification does not define any markup specifically for marking up lists of keywords that apply to a group of pages (also known
as tag clouds). In general, authors are encouraged to either mark up such lists using ulp239 elements with explicit inline counts that are
then hidden and turned into a presentational effect using a style sheet, or to use SVG.

This specification does not define a specific element for marking up conversations, meeting minutes, chat transcripts, dialogues in
screenplays, instant message logs, and other situations where different players take turns in discourse.

Instead, authors are encouraged to mark up conversations using pp229 elements and punctuation. Authors who need to mark the

<a>Second hand
</p>
<p>
Main ▸
Second hand ▸
<a>Dishwashers

</p>
</nav>

Here, three tags are included in a short tag cloud:

<style>
.tag-cloud > li > span { display: none; }
.tag-cloud > li { display: inline; }
.tag-cloud-1 { font-size: 0.7em; }
.tag-cloud-2 { font-size: 0.9em; }
.tag-cloud-3 { font-size: 1.1em; }
.tag-cloud-4 { font-size: 1.3em; }
.tag-cloud-5 { font-size: 1.5em; }

@media speech {
.tag-cloud > li > span { display:inline }

}
</style>
...
<ul class="tag-cloud">
<li class="tag-cloud-4">apple (popular)
<li class="tag-cloud-2">kiwi (rare)
<li class="tag-cloud-5">pear (very

popular)

The actual frequency of each tag is given using the titlep157 attribute. A CSS style sheet is provided to convert the markup into a
cloud of differently-sized words, but for user agents that do not support CSS or are not visual, the markup contains annotations like
"(popular)" or "(rare)" to categorize the various tags by frequency, thus enabling all users to benefit from the information.

The ulp239 element is used (rather than olp238) because the order is not particularly important: while the list is in fact ordered
alphabetically, it would convey the same information if ordered by, say, the length of the tag.

The tagp334 relp303-keyword is not used on these ap257 elements because they do not represent tags that apply to the page itself;
they are just part of an index listing the tags themselves.

Example

4.14.2 Tag clouds §p77

6

4.14.3 Conversations §p77

6

776

speaker for styling purposes are encouraged to use spanp298 or bp292. Paragraphs with their text wrapped in the ip291 element can be
used for marking up stage directions.

This example demonstrates this using an extract from Abbot and Costello's famous sketch, Who's on first:

<p> Costello: Look, you gotta first baseman?
<p> Abbott: Certainly.
<p> Costello: Who's playing first?
<p> Abbott: That's right.
<p> Costello becomes exasperated.
<p> Costello: When you pay off the first baseman every month, who gets the money?
<p> Abbott: Every dollar of it.

Example

The following extract shows how an IM conversation log could be marked up, using the datap278 element to provide Unix
timestamps for each line. Note that the timestamps are provided in a format that the timep279 element does not support, so the
datap278 element is used instead (namely, Unix time_t timestamps). Had the author wished to mark up the data using one of the
date and time formats supported by the timep279 element, that element could have been used instead of datap278. This could be
advantageous as it would allow data analysis tools to detect the timestamps unambiguously, without coordination with the page
author.

<p> <data value="1319898155">14:22</data> egof I'm not that nerdy, I've only seen 30% of the
star trek episodes
<p> <data value="1319898192">14:23</data> kaj if you know what percentage of the star trek
episodes you have seen, you are inarguably nerdy
<p> <data value="1319898200">14:23</data> egof it's unarguably
<p> <data value="1319898228">14:23</data> <i>* kaj blinks</i>
<p> <data value="1319898260">14:24</data> kaj you are not helping your case

Example

HTML does not have a good way to mark up graphs, so descriptions of interactive conversations from games are more difficult to
mark up. This example shows one possible convention using dlp244 elements to list the possible responses at each point in the
conversation. Another option to consider is describing the conversation in the form of a DOT file, and outputting the result as an
SVG image to place in the document. [DOT]p1478

<p> Next, you meet a fisher. You can say one of several greetings:
<dl>
<dt> "Hello there!"
<dd>
<p> She responds with "Hello, how may I help you?"; you can respond with:
<dl>
<dt> "I would like to buy a fish."
<dd> <p> She sells you a fish and the conversation finishes.
<dt> "Can I borrow your boat?"
<dd>
<p> She is surprised and asks "What are you offering in return?".
<dl>
<dt> "Five gold." (if you have enough)
<dt> "Ten gold." (if you have enough)
<dt> "Fifteen gold." (if you have enough)
<dd> <p> She lends you her boat. The conversation ends.
<dt> "A fish." (if you have one)
<dt> "A newspaper." (if you have one)
<dt> "A pebble." (if you have one)
<dd> <p> "No thanks", she replies. Your conversation options
at this point are the same as they were after asking to borrow
her boat, minus any options you've suggested before.

</dl>

Example

777

</dd>
</dl>

</dd>
<dt> "Vote for me in the next election!"
<dd> <p> She turns away. The conversation finishes.
<dt> "Madam, are you aware that your fish are running away?"
<dd>
<p> She looks at you skeptically and says "Fish cannot run, miss".
<dl>
<dt> "You got me!"
<dd> <p> The fisher sighs and the conversation ends.
<dt> "Only kidding."
<dd> <p> "Good one!" she retorts. Your conversation options at this
point are the same as those following "Hello there!" above.
<dt> "Oh, then what are they doing?"
<dd> <p> She looks at her fish, giving you an opportunity to steal
her boat, which you do. The conversation ends.

</dl>
</dd>

</dl>

In some games, conversations are simpler: each character merely has a fixed set of lines that they say. In this example, a game
FAQ/walkthrough lists some of the known possible responses for each character:

<section>
<h1>Dialogue</h1>
<p><small>Some characters repeat their lines in order each time you interact
with them, others randomly pick from amongst their lines. Those who respond in
order have numbered entries in the lists below.</small>
<h2>The Shopkeeper</h2>

How may I help you?
Fresh apples!
A loaf of bread for madam?

<h2>The pilot</h2>
<p>Before the accident:

I'm about to fly out, sorry!
Sorry, I'm just waiting for flight clearance and then I'll be off!

<p>After the accident:

I'm about to fly out, sorry!
Ok, I'm not leaving right now, my plane is being cleaned.
Ok, it's not being cleaned, it needs a minor repair first.
Ok, ok, stop bothering me! Truth is, I had a crash.

<h2>Clan Leader</h2>
<p>During the first clan meeting:

Hey, have you seen my daughter? I bet she's up to something nefarious again...
Nice weather we're having today, eh?
The name is Bailey, Jeff Bailey. How can I help you today?
A glass of water? Fresh from the well!

<p>After the earthquake:

Example

778

HTML does not have a dedicated mechanism for marking up footnotes. Here are the suggested alternatives.

For short inline annotations, the titlep157 attribute could be used.

For longer annotations, the ap257 element should be used, pointing to an element later in the document. The convention is that the
contents of the link be a number in square brackets.

Everyone is safe in the shelter, we just have to put out the fire!
I'll go and tell the fire brigade, you keep hosing it down!

</section>

In this example, two parts of a dialogue are annotated with footnote-like content using the titlep157 attribute.

<p> Customer: Hello! I wish to register a complaint. Hello. Miss?
<p> Shopkeeper: <span title="Colloquial pronunciation of 'What do you'"
>Watcha mean, miss?
<p> Customer: Uh, I'm sorry, I have a cold. I wish to make a complaint.
<p> Shopkeeper: Sorry, we're
closing for lunch.

Example

Unfortunately, relying on the titlep157 attribute is currently discouraged as many user agents do not expose the attribute in an
accessible manner as required by this specification (e.g. requiring a pointing device such as a mouse to cause a tooltip to appear,
which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or tablet).

Note

If the titlep157 attribute is used, CSS can be used to draw the reader's attention to the elements with the attribute.
Note

For example, the following CSS places a dashed line below elements that have a titlep157 attribute.

[title] { border-bottom: thin dashed; }

Example

CSS

In this example, a footnote in the dialogue links to a paragraph below the dialogue. The paragraph then reciprocally links back to
the dialogue, allowing the user to return to the location of the footnote.

<p> Announcer: Number 16: The <i>hand</i>.
<p> Interviewer: Good evening. I have with me in the studio tonight
Mr Norman St John Polevaulter, who for the past few years has been
contradicting people. Mr Polevaulter, why do you
contradict people?
<p> Norman: I don't. ^{[1]}
<p> Interviewer: You told me you did!
...
<section>

Example

4.14.4 Footnotes §p77

9

779

For side notes, longer annotations that apply to entire sections of the text rather than just specific words or sentences, the asidep214

element should be used.

For figures or tables, footnotes can be included in the relevant figcaptionp252 or captionp486 element, or in surrounding prose.

<p id="fn1">[1] This is, naturally, a lie,
but paradoxically if it were true he could not say so without
contradicting the interviewer and thus making it false.</p>

</section>

In this example, a sidebar is given after a dialogue, giving it some context.

<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: I'm sorry?
<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: No no no, this's'a tobacconist's.
<aside>
<p>In 1970, the British Empire lay in ruins, and foreign
nationalists frequented the streets — many of them Hungarians
(not the streets — the foreign nationals). Sadly, Alexander
Yalt has been publishing incompetently-written phrase books.

</aside>

Example

In this example, a table has cells with footnotes that are given in prose. A figurep249 element is used to give a single legend to the
combination of the table and its footnotes.

<figure>
<figcaption>Table 1. Alternative activities for knights.</figcaption>
<table>
<tr>
<th> Activity
<th> Location
<th> Cost

<tr>
<td> Dance
<td> Wherever possible
<td> £0^{1}

<tr>
<td> Routines, chorus scenes^{2}
<td> Undisclosed
<td> Undisclosed

<tr>
<td> Dining^{3}
<td> Camelot
<td> Cost of ham, jam, and spam^{4}

</table>
<p id="fn1">1. Assumed.</p>
<p id="fn2">2. Footwork impeccable.</p>
<p id="fn3">3. Quality described as "well".</p>
<p id="fn4">4. A lot.</p>

</figure>

Example

780

An element is said to be actually disabled if it is one of the following:

• a buttonp566 element that is disabledp601

• an inputp520 element that is disabledp601

• a selectp568 element that is disabledp601

• a textareap579 element that is disabledp601

• an optgroupp576 element that has a disabledp576 attribute

• an optionp577 element that is disabledp578

• a fieldsetp594 element that is a disabled fieldsetp594

• a form-associated custom elementp760 that is disabledp601

CSS Values and Units leaves the case-sensitivity of attribute names for the purpose of the 'attr()' function to be defined by the host
language. [CSSVALUES]p1477

When comparing the attribute name part of a CSS 'attr()' function to the names of namespace-less attributes on HTML elementsp45 in
HTML documents, the name part of the CSS 'attr()' function must first be converted to ASCII lowercase. The same function when
compared to other attributes must be compared according to its original case. In both cases, to match the values must be identical to
each other (and therefore the comparison is case sensitive).

Selectors leaves the case-sensitivity of element names, attribute names, and attribute values to be defined by the host language.
[SELECTORS]p1482

When comparing a CSS element type selector to the names of HTML elementsp45 in HTML documents, the CSS element type selector
must first be converted to ASCII lowercase. The same selector when compared to other elements must be compared according to its
original case. In both cases, to match the values must be identical to each other (and therefore the comparison is case sensitive).

When comparing the name part of a CSS attribute selector to the names of attributes on HTML elementsp45 in HTML documents, the
name part of the CSS attribute selector must first be converted to ASCII lowercase. The same selector when compared to other
attributes must be compared according to its original case. In both cases, the comparison is case-sensitive.

Attribute selectors on an HTML elementp45 in an HTML document must treat the values of attributes with the following names as ASCII
case-insensitive:

• accept
• accept-charset
• align
• alink
• axis
• bgcolor

4.15 Disabled elements §p78

1

This definition is used to determine what elements are focusablep837 and which elements match the :enabledp784 and
:disabledp784 pseudo classes.

Note

4.16 Matching HTML elements using selectors and CSS §p78

1

This is the same as comparing the name part of a CSS attribute selector, specified in the next section.
Note

4.16.1 Case-sensitivity of the CSS 'attr()' function §p78

1

4.16.2 Case-sensitivity of selectors §p78

1

781

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-values/#funcdef-attr
https://drafts.csswg.org/css-values/#funcdef-attr
https://drafts.csswg.org/css-values/#funcdef-attr
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/css-values/#funcdef-attr
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#string-is
https://drafts.csswg.org/selectors/#attribute-selector
https://drafts.csswg.org/selectors/#type-selector
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/selectors/#type-selector
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#string-is
https://drafts.csswg.org/selectors/#attribute-selector
https://dom.spec.whatwg.org/#html-document
https://drafts.csswg.org/selectors/#attribute-selector
https://infra.spec.whatwg.org/#ascii-lowercase
https://drafts.csswg.org/selectors/#attribute-selector
https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

• charset
• checked
• clear
• codetype
• color
• compact
• declare
• defer
• dir
• direction
• disabled
• enctype
• face
• frame
• hreflang
• http-equiv
• lang
• language
• link
• media
• method
• multiple
• nohref
• noresize
• noshade
• nowrap
• readonly
• rel
• rev
• rules
• scope
• scrolling
• selected
• shape
• target
• text
• type
• valign
• valuetype
• vlink

All other attribute values and everything else must be treated as entirely identical to each other for the purposes of selector matching.
This includes:

• IDs and classes in no-quirks mode and limited-quirks mode

• the names of elements not in the HTML namespace

• the names of HTML elementsp45 in XML documents

• the names of attributes of elements not in the HTML namespace

• the names of attributes of HTML elementsp45 in XML documents

• the names of attributes that themselves have namespaces

There are a number of dynamic selectors that can be used with HTML. This section defines when these selectors match HTML

For example, the selector [bgcolor="#ffffff"] will match any HTML element with a bgcolor attribute with values including
#ffffff, #FFFFFF and #fffFFF. This happens even if bgcolor has no effect for a given element (e.g., divp256).

The selector [type=a s] will match any HTML element with a type attribute whose value is a, but not whose value is A, due to the
s flag.

Example

Selectors defines that ID and class selectors (such as #foo and .bar), when matched against elements in documents that are in
quirks mode, will be matched in an ASCII case-insensitive manner. However, this does not apply for attribute selectors with "id" or
"class" as the name part. The selector [class="foobar"] will treat its value as case-sensitive even in quirks mode.

Note

4.16.3 Pseudo-classes §p78

2

MDN

782

https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-class
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#xml-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-document-quirks

elements. [SELECTORS]p1482 [CSSUI]p1477

:defined
The :definedp783 pseudo-class must match any element that is defined.

:link
:visited

All ap257 elements that have an hrefp303 attribute, and all areap471 elements that have an hrefp303 attribute, must match one of
:linkp783 and :visitedp783.

Other specifications might apply more specific rules regarding how these elements are to match these pseudo-classes, to mitigate
some privacy concerns that apply with straightforward implementations of this requirement.

:active
The :activep783 pseudo-class is defined to match an element “while an element is being activated by the user”.

To determine whether a particular element is being activatedp783 for the purposes of defining the :activep783 pseudo-class only, an
HTML user agent must use the first relevant entry in the following list.

If the element is a buttonp566 element
If the element is an inputp520 element whose typep523 attribute is in the Submit Buttonp546, Image Buttonp547, Reset
Buttonp549, or Buttonp550 state
If the element is an ap257 element that has an hrefp303 attribute
If the element is an areap471 element that has an hrefp303 attribute
If the element is focusablep837

The element is being activatedp783 if it is in a formal activation statep783.

If the element is being actively pointed atp783

The element is being activatedp783.

An element is said to be in a formal activation state between the time the user begins to indicate an intent to trigger the
element's activation behavior and either the time the user stops indicating an intent to trigger the element's activation behavior, or
the time the element's activation behavior has finished running, which ever comes first.

An element is said to be being actively pointed at while the user indicates the element using a pointing device while that
pointing device is in the "down" state (e.g. for a mouse, between the time the mouse button is pressed and the time it is depressed;
for a finger in a multitouch environment, while the finger is touching the display surface).

Additionally, any element that is the labeled controlp518 of a labelp518 element that is currently matching :activep783, also matches
:activep783. (But, it does not count as being being activatedp783.)

:hover
The :hoverp783 pseudo-class is defined to match an element “while the user designates an element with a pointing device”. For
the purposes of defining the :hoverp783 pseudo-class only, an HTML user agent must consider an element as being one that the user
designatesp783 if it is an element that the user indicates using a pointing device.

Additionally, any element that is the labeled controlp518 of a labelp518 element that is currently matching :hoverp783, also matches

For example, if the user is using a keyboard to push a buttonp566 element by pressing the space bar, the element would
match this pseudo-class in between the time that the element received the keydown event and the time the element
received the keyup event.

Example

Per the definition in Selectors, :activep783 also matches flat tree ancestors of elements that are being activatedp783.
[SELECTORS]p1482

Note

Per the definition in Selectors, :hoverp783 also matches flat tree ancestors of elements that are designatedp783.
[SELECTORS]p1482

Note

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

783

https://drafts.csswg.org/selectors/#pseudo-class
https://dom.spec.whatwg.org/#concept-element-defined
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keyup
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://drafts.csswg.org/css-scoping/#flat-tree
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-scoping/#flat-tree

:hoverp783. (But, it does not count as being designatedp783.)

:focus
For the purposes of the CSS :focusp784 pseudo-class, an element has the focus when:

• it is not itself a navigable containerp991; and

• any of the following are true:

◦ it is one of the elements listed in the current focus chain of the top-level traversablep836; or

◦ its shadow root shadowRoot is not null and shadowRoot is the root of at least one element that has the
focusp784.

:target
For the purposes of the CSS :targetp784 pseudo-class, the Documentp130 's target elements are a list containing the Documentp130 's
target elementp1054, if it is not null, or containing no elements, if it is. [SELECTORS]p1482

:popover-open
The :popover-openp784 pseudo-class is defined to match any HTML elementp45 whose popoverp886 attribute is not in the no popover
statep887 and whose popover visibility statep887 is showingp887.

:enabled
The :enabledp784 pseudo-class must match any buttonp566, inputp520, selectp568, textareap579, optgroupp576, optionp577,
fieldsetp594 element, or form-associated custom elementp760 that is not actually disabledp781.

:disabled
The :disabledp784 pseudo-class must match any element that is actually disabledp781.

:checked
The :checkedp784 pseudo-class must match any element falling into one of the following categories:

• inputp520 elements whose typep523 attribute is in the Checkboxp542 state and whose checkednessp597 state is true

• inputp520 elements whose typep523 attribute is in the Radio Buttonp543 state and whose checkednessp597 state is true

• optionp577 elements whose selectednessp578 is true

:indeterminate
The :indeterminatep784 pseudo-class must match any element falling into one of the following categories:

• inputp520 elements whose typep523 attribute is in the Checkboxp542 state and whose indeterminatep526 IDL attribute is set
to true

• inputp520 elements whose typep523 attribute is in the Radio Buttonp543 state and whose radio button groupp543 contains no
inputp520 elements whose checkednessp597 state is true.

• progressp587 elements with no valuep587 content attribute

:default
The :defaultp784 pseudo-class must match any element falling into one of the following categories:

Consider in particular a fragment such as:

<p> <label for=c> <input id=a> </label> <input id=c> </p>

If the user designates the element with ID "a" with their pointing device, then the pp229 element (and all its ancestors not shown
in the snippet above), the labelp518 element, the element with ID "a", and the element with ID "c" will match the :hoverp783

pseudo-class. The element with ID "a" matches it by being designatedp783; the labelp518 and pp229 elements match it because of
the condition in Selectors about flat tree ancestors; and the element with ID "c" matches it through the additional condition
above on labeled controlsp518 (i.e., its labelp518 element matches :hoverp783). However, the element with ID "b" does not match
:hoverp783: its flat tree descendant is not designated, even though that flat tree descendant matches :hoverp783.

Example

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

784

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#concept-tree-root
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

• Submit buttonsp514 that are default buttonsp628 of their form ownerp598.

• inputp520 elements to which the checkedp525 attribute applies and that have a checkedp525 attribute

• optionp577 elements that have a selectedp578 attribute

:placeholder-shown
The :placeholder-shownp785 pseudo-class must match any element falling into one of the following categories:

• inputp520 elements that have a placeholderp559 attribute whose value is currently being presented to the user

• textareap579 elements that have a placeholderp583 attribute whose value is currently being presented to the user

:valid
The :validp785 pseudo-class must match any element falling into one of the following categories:

• elements that are candidates for constraint validationp622 and that satisfy their constraintsp623

• formp514 elements that are not the form ownerp598 of any elements that themselves are candidates for constraint
validationp622 but do not satisfy their constraintsp623

• fieldsetp594 elements that have no descendant elements that themselves are candidates for constraint validationp622 but
do not satisfy their constraintsp623

:invalid
The :invalidp785 pseudo-class must match any element falling into one of the following categories:

• elements that are candidates for constraint validationp622 but that do not satisfy their constraintsp623

• formp514 elements that are the form ownerp598 of one or more elements that themselves are candidates for constraint
validationp622 but do not satisfy their constraintsp623

• fieldsetp594 elements that have of one or more descendant elements that themselves are candidates for constraint
validationp622 but do not satisfy their constraintsp623

:user-valid
The :user-validp785 pseudo-class must match inputp520, textareap579, and selectp568 elements whose user validityp597 is true, are
candidates for constraint validationp622, and that satisfy their constraintsp623.

:user-invalid
The :user-invalidp785 pseudo-class must match inputp520, textareap579, and selectp568 elements whose user validityp597 is true,
are candidates for constraint validationp622 but do not satisfy their constraintsp623.

:in-range
The :in-rangep785 pseudo-class must match all elements that are candidates for constraint validationp622, have range
limitationsp556, and that are neither suffering from an underflowp623 nor suffering from an overflowp623.

:out-of-range
The :out-of-rangep785 pseudo-class must match all elements that are candidates for constraint validationp622, have range
limitationsp556, and that are either suffering from an underflowp623 or suffering from an overflowp623.

:required
The :requiredp785 pseudo-class must match any element falling into one of the following categories:

• inputp520 elements that are requiredp552

• selectp568 elements that have a requiredp570 attribute

• textareap579 elements that have a requiredp582 attribute

:optional
The :optionalp785 pseudo-class must match any element falling into one of the following categories:

• inputp520 elements to which the requiredp552 attribute applies that are not requiredp552

• selectp568 elements that do not have a requiredp570 attribute

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

785

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

• textareap579 elements that do not have a requiredp582 attribute

:autofill
:-webkit-autofill

The :autofillp786 and :-webkit-autofillp786 pseudo-classes must match inputp520 elements which have been autofilled by user
agent. These pseudo-classes must stop matching if the user edits the autofilled field.

:read-only
:read-write

The :read-writep786 pseudo-class must match any element falling into one of the following categories, which for the purposes of
Selectors are thus considered user-alterable: [SELECTORS]p1482

• inputp520 elements to which the readonlyp551 attribute applies, and that are mutablep597 (i.e. that do not have the
readonlyp551 attribute specified and that are not disabledp601)

• textareap579 elements that do not have a readonlyp581 attribute, and that are not disabledp601

• elements that are editing hostsp855 or editable and are neither inputp520 elements nor textareap579 elements

The :read-onlyp786 pseudo-class must match all other HTML elementsp45.

:modal
The :modalp786 pseudo-class must match any element falling into one of the following categories:

• dialogp646 elements whose is modalp652 flag is true

• elements whose fullscreen flag is true

:dir(ltr)
The :dir(ltr)p786 pseudo-class must match all elements whose directionalityp160 is 'ltrp160 '.

:dir(rtl)
The :dir(rtl)p786 pseudo-class must match all elements whose directionalityp160 is 'rtlp160 '.

Custom state pseudo-class
The :state(identifier)p786 pseudo-class must match all custom elementp759s whose states setp775 's set entries contains identifier.

:playing
The :playingp786 pseudo-class must match all media elementsp414 whose pausedp436 attribute is false.

:paused
The :pausedp786 pseudo-class must match all media elementsp414 whose pausedp436 attribute is true.

:seeking
The :seekingp786 pseudo-class must match all media elementsp414 whose seekingp443 attribute is true.

:buffering
The :bufferingp786 pseudo-class must match all media elementsp414 whose pausedp436 attribute is false, networkStatep418 attribute
is NETWORK_LOADINGp418, and ready state is HAVE_CURRENT_DATAp433 or less.

:stalled
The :stalledp786 pseudo-class must match all media elementsp414 that match the :bufferingp786 pseudo-class and whose is
currently stalledp419 is true.

:muted
The :mutedp786 pseudo-class must match all media elementsp414 that are mutedp465.

One way such autofilling might happen is via the autocompletep604 attribute, but user agents could autofill even without that
attribute being involved.

Note

MDN

✔ MDN

✔ MDN

MDN

786

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://w3c.github.io/editing/docs/execCommand/#editable
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://fullscreen.spec.whatwg.org/#fullscreen-flag
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://webidl.spec.whatwg.org/#dfn-set-entries
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

:volume-locked
The :volume-lockedp787 pseudo-class must match all media elementsp414 when the user agent's volume lockedp465 is true.

This specification does not define when an element matches the :lang() dynamic pseudo-class, as it is defined in sufficient detail
in a language-agnostic fashion in Selectors. [SELECTORS]p1482

Note

787

https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

This section is non-normative.

Sometimes, it is desirable to annotate content with specific machine-readable labels, e.g. to allow generic scripts to provide services
that are customized to the page, or to enable content from a variety of cooperating authors to be processed by a single script in a
consistent manner.

For this purpose, authors can use the microdata features described in this section. Microdata allows nested groups of name-value pairs
to be added to documents, in parallel with the existing content.

This section is non-normative.

At a high level, microdata consists of a group of name-value pairs. The groups are called itemsp793, and each name-value pair is a
property. Items and properties are represented by regular elements.

To create an item, the itemscopep793 attribute is used.

To add a property to an item, the itempropp795 attribute is used on one of the item'sp793 descendants.

Markup without the microdata-related attributes does not have any effect on the microdata model.

Properties generally have values that are strings.

5 Microdata §p78

8

5.1 Introduction §p78

8

Here there are two items, each of which has the property "name":

<div itemscope>
<p>My name is Elizabeth.</p>

</div>

<div itemscope>
<p>My name is Daniel.</p>

</div>

Example

These two examples are exactly equivalent, at a microdata level, as the previous two examples respectively:

<div itemscope>
<p>My name is Elizabeth.</p>

</div>

<section>
<div itemscope>
<aside>
<p>My name is Daniel.</p>

</aside>
</div>

</section>

Example

5.1.1 Overview §p78

8

5.1.2 The basic syntax §p78

8

788

When a string value is a URL, it is expressed using the ap257 element and its hrefp303 attribute, the imgp346 element and its srcp347

attribute, or other elements that link to or embed external resources.

When a string value is in some machine-readable format unsuitable for human consumption, it is expressed using the valuep279

attribute of the datap278 element, with the human-readable version given in the element's contents.

For numeric data, the meterp589 element and its valuep590 attribute can be used instead.

Similarly, for date- and time-related data, the timep279 element and its datetimep280 attribute can be used instead.

Properties can also themselves be groups of name-value pairs, by putting the itemscopep793 attribute on the element that declares the
property.

Here the item has three properties:

<div itemscope>
<p>My name is Neil.</p>
<p>My band is called Four Parts Water.</p>
<p>I am British.</p>

</div>

Example

In this example, the item has one property, "image", whose value is a URL:

<div itemscope>

</div>

Example

Here, there is an item with a property whose value is a product ID. The ID is not human-friendly, so the product's name is used the
human-visible text instead of the ID.

<h1 itemscope>
<data itemprop="product-id" value="9678AOU879">The Instigator 2000</data>

</h1>

Example

Here a rating is given using a meterp589 element.

<div itemscope itemtype="http://schema.org/Product">
Panasonic White 60L Refrigerator

<div itemprop="aggregateRating"

itemscope itemtype="http://schema.org/AggregateRating">
<meter itemprop="ratingValue" min=0 value=3.5 max=5>Rated 3.5/5</meter>
(based on 11 customer reviews)

</div>
</div>

Example

In this example, the item has one property, "birthday", whose value is a date:

<div itemscope>
I was born on <time itemprop="birthday" datetime="2009-05-10">May 10th 2009</time>.

</div>

Example

789

https://url.spec.whatwg.org/#concept-url

Items that are not part of others are called top-level microdata itemsp798.

Properties that are not descendants of the element with the itemscopep793 attribute can be associated with the itemp793 using the
itemrefp794 attribute. This attribute takes a list of IDs of elements to crawl in addition to crawling the children of the element with the
itemscopep793 attribute.

An itemp793 can have multiple properties with the same name and different values.

An element introducing a property can also introduce multiple properties at once, to avoid duplication when some of the properties
have the same value.

In this example, the outer item represents a person, and the inner one represents a band:

<div itemscope>
<p>Name: Amanda</p>
<p>Band: Jazz Band (<span

itemprop="size">12 players)</p>
</div>

The outer item here has two properties, "name" and "band". The "name" is "Amanda", and the "band" is an item in its own right,
with two properties, "name" and "size". The "name" of the band is "Jazz Band", and the "size" is "12".

The outer item in this example is a top-level microdata item.

Example

This example is the same as the previous one, but all the properties are separated from their itemsp793:

<div itemscope id="amanda" itemref="a b"></div>
<p id="a">Name: Amanda</p>
<div id="b" itemprop="band" itemscope itemref="c"></div>
<div id="c">
<p>Band: Jazz Band</p>
<p>Size: 12 players</p>

</div>

This gives the same result as the previous example. The first item has two properties, "name", set to "Amanda", and "band", set to
another item. That second item has two further properties, "name", set to "Jazz Band", and "size", set to "12".

Example

This example describes an ice cream, with two flavors:

<div itemscope>
<p>Flavors in my favorite ice cream:</p>

<li itemprop="flavor">Lemon sorbet
<li itemprop="flavor">Apricot sorbet

</div>

This thus results in an item with two properties, both "flavor", having the values "Lemon sorbet" and "Apricot sorbet".

Example

Here we see an item with two properties, "favorite-color" and "favorite-fruit", both set to the value "orange":

<div itemscope>
orange

</div>

Example

790

It's important to note that there is no relationship between the microdata and the content of the document where the microdata is
marked up.

This section is non-normative.

The examples in the previous section show how information could be marked up on a page that doesn't expect its microdata to be re-
used. Microdata is most useful, though, when it is used in contexts where other authors and readers are able to cooperate to make new
uses of the markup.

For this purpose, it is necessary to give each itemp793 a type, such as "https://example.com/person", or "https://example.org/cat", or
"https://band.example.net/". Types are identified as URLs.

The type for an itemp793 is given as the value of an itemtypep793 attribute on the same element as the itemscopep793 attribute.

The type gives the context for the properties, thus selecting a vocabulary: a property named "class" given for an item with the type
"https://census.example/person" might refer to the economic class of an individual, while a property named "class" given for an item
with the type "https://example.com/school/teacher" might refer to the classroom a teacher has been assigned. Several types can share
a vocabulary. For example, the types "https://example.org/people/teacher" and "https://example.org/people/engineer" could
be defined to use the same vocabulary (though maybe some properties would not be especially useful in both cases, e.g. maybe the
"https://example.org/people/engineer" type might not typically be used with the "classroom" property). Multiple types defined to
use the same vocabulary can be given for a single item by listing the URLs as a space-separated list in the attribute' value. An item
cannot be given two types if they do not use the same vocabulary, however.

There is no semantic difference, for instance, between the following two examples:

<figure>

<figcaption>The Castle (1986)</figcaption>

</figure>

<meta itemprop="name" content="The Castle">
<figure>

<figcaption>The Castle (1986)</figcaption>

</figure>

Both have a figure with a caption, and both, completely unrelated to the figure, have an item with a name-value pair with the
name "name" and the value "The Castle". The only difference is that if the user drags the caption out of the document, in the
former case, the item will be included in the drag-and-drop data. In neither case is the image in any way associated with the item.

Example

Here, the item's type is "https://example.org/animals#cat":

<section itemscope itemtype="https://example.org/animals#cat">
<h1 itemprop="name">Hedral</h1>
<p itemprop="desc">Hedral is a male american domestic
shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

In this example the "https://example.org/animals#cat" item has three properties, a "name" ("Hedral"), a "desc" ("Hedral is..."), and
an "img" ("hedral.jpeg").

Example

5.1.3 Typed items §p79

1

791

https://url.spec.whatwg.org/#concept-url

This section is non-normative.

Sometimes, an itemp793 gives information about a topic that has a global identifier. For example, books can be identified by their ISBN
number.

Vocabularies (as identified by the itemtypep793 attribute) can be designed such that itemsp793 get associated with their global identifier
in an unambiguous way by expressing the global identifiers as URLs given in an itemidp794 attribute.

The exact meaning of the URLs given in itemidp794 attributes depends on the vocabulary used.

This section is non-normative.

Using microdata means using a vocabulary. For some purposes, an ad-hoc vocabulary is adequate. For others, a vocabulary will need
to be designed. Where possible, authors are encouraged to re-use existing vocabularies, as this makes content re-use easier.

When designing new vocabularies, identifiers can be created either using URLs, or, for properties, as plain words (with no dots or
colons). For URLs, conflicts with other vocabularies can be avoided by only using identifiers that correspond to pages that the author
has control over.

Properties whose names are just plain words can only be used within the context of the types for which they are intended; properties
named using URLs can be reused in items of any type. If an item has no type, and is not part of another item, then if its properties
have names that are just plain words, they are not intended to be globally unique, and are instead only intended for limited use.
Generally speaking, authors are encouraged to use either properties with globally unique names (URLs) or ensure that their items are
typed.

Here, an item is talking about a particular book:

<dl itemscope
itemtype="https://vocab.example.net/book"
itemid="urn:isbn:0-330-34032-8">

<dt>Title
<dd itemprop="title">The Reality Dysfunction
<dt>Author
<dd itemprop="author">Peter F. Hamilton
<dt>Publication date
<dd><time itemprop="pubdate" datetime="1996-01-26">26 January 1996</time>

</dl>

The "https://vocab.example.net/book" vocabulary in this example would define that the itemidp794 attribute takes a urn: URL
pointing to the ISBN of the book.

Example

For instance, if Jon and Adam both write content at example.com, at https://example.com/~jon/... and
https://example.com/~adam/... respectively, then they could select identifiers of the form "https://example.com/~jon/name"
and "https://example.com/~adam/name" respectively.

Example

Here, an item is an "https://example.org/animals#cat", and most of the properties have names that are words defined in the
context of that type. There are also a few additional properties whose names come from other vocabularies.

<section itemscope itemtype="https://example.org/animals#cat">
<h1 itemprop="name https://example.com/fn">Hedral</h1>
<p itemprop="desc">Hedral is a male American domestic

Example

5.1.4 Global identifiers for items §p79

2

5.1.5 Selecting names when defining vocabularies §p79

2

792

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://www.rfc-editor.org/rfc/rfc2141#section-2
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

The microdata model consists of groups of name-value pairs known as itemsp793.

Each group is known as an itemp793. Each itemp793 can have item typesp793, a global identifierp794 (if the vocabulary specified by the
item typesp793 support global identifiers for itemsp794), and a list of name-value pairs. Each name in the name-value pair is known as a
propertyp798, and each propertyp798 has one or more valuesp797. Each valuep797 is either a string or itself a group of name-value pairs (an
itemp793). The names are unordered relative to each other, but if a particular name has multiple values, they do have a relative order.

Every HTML elementp45 may have an itemscope attribute specified. The itemscopep793 attribute is a boolean attributep75.

An element with the itemscopep793 attribute specified creates a new item, a group of name-value pairs.

Elements with an itemscopep793 attribute may have an itemtype attribute specified, to give the item typesp793 of the itemp793.

The itemtypep793 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp95, none of which
are identical to another token and each of which is a valid URL string that is an absolute URL, and all of which are defined to use the
same vocabulary. The attribute's value must have at least one token.

The item types of an itemp793 are the tokens obtained by splitting the element's itemtype attribute's value on ASCII whitespace. If the
itemtypep793 attribute is missing or parsing it in this way finds no tokens, the itemp793 is said to have no item typesp793.

The item typesp793 must all be types defined in applicable specificationsp73 and must all be defined to use the same vocabulary.

Except if otherwise specified by that specification, the URLs given as the item typesp793 should not be automatically dereferenced.

Item typesp793 are opaque identifiers, and user agents must not dereference unknown item typesp793, or otherwise deconstruct them, in
order to determine how to process itemsp793 that use them.

The itemtypep793 attribute must not be specified on elements that do not have an itemscopep793 attribute specified.

shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

This example has one item with the type "https://example.org/animals#cat" and the following properties:

Property Value
name Hedral
https://example.com/fn Hedral
desc Hedral is a male American domestic shorthair, with a fluffy black fur with white paws and belly.
https://example.com/color black
https://example.com/color white
img .../hedral.jpeg

5.2 Encoding microdata §p79

3

A specification could define that its item typep793 can be dereferenced to provide the user with help information, for example. In
fact, vocabulary authors are encouraged to provide useful information at the given URL.

Note

5.2.1 The microdata model §p79

3

5.2.2 Items §p79

3

✔ MDN

✔ MDN

793

https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

An itemp793 is said to be a typed item when either it has an item typep793, or it is the valuep797 of a propertyp798 of a typed itemp794.
The relevant types for a typed itemp794 is the itemp793 's item typesp793, if it has any, or else is the relevant typesp794 of the itemp793 for
which it is a propertyp798 's valuep797.

Elements with an itemscopep793 attribute and an itemtypep793 attribute that references a vocabulary that is defined to support global
identifiers for items may also have an itemid attribute specified, to give a global identifier for the itemp793, so that it can be related
to other itemsp793 on pages elsewhere on the web.

The itemidp794 attribute, if specified, must have a value that is a valid URL potentially surrounded by spacesp96.

The global identifier of an itemp793 is the value of its element's itemidp794 attribute, if it has one, parsedp97 relative to the node
document of the element on which the attribute is specified. If the itemidp794 attribute is missing or if parsing it returns failure, it is
said to have no global identifierp794.

The itemidp794 attribute must not be specified on elements that do not have both an itemscopep793 attribute and an itemtypep793

attribute specified, and must not be specified on elements with an itemscopep793 attribute whose itemtypep793 attribute specifies a
vocabulary that does not support global identifiers for itemsp794, as defined by that vocabulary's specification.

The exact meaning of a global identifierp794 is determined by the vocabulary's specification. It is up to such specifications to define
whether multiple items with the same global identifier (whether on the same page or on different pages) are allowed to exist, and what
the processing rules for that vocabulary are with respect to handling the case of multiple items with the same ID.

Elements with an itemscopep793 attribute may have an itemref attribute specified, to give a list of additional elements to crawl to find
the name-value pairs of the itemp793.

The itemrefp794 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp95 none of which
are identical to another token and consisting of IDs of elements in the same tree.

The itemrefp794 attribute must not be specified on elements that do not have an itemscopep793 attribute specified.

The itemrefp794 attribute is not part of the microdata data model. It is merely a syntactic construct to aid authors in adding
annotations to pages where the data to be annotated does not follow a convenient tree structure. For example, it allows authors to
mark up data in a table so that each column defines a separate itemp793, while keeping the properties in the cells.

Note

This example shows a simple vocabulary used to describe the products of a model railway manufacturer. The vocabulary has just
five property names:

product-code
An integer that names the product in the manufacturer's catalog.

name
A brief description of the product.

scale
One of "HO", "1", or "Z" (potentially with leading or trailing whitespace), indicating the scale of the product.

digital
If present, one of "Digital", "Delta", or "Systems" (potentially with leading or trailing whitespace) indicating that the product has
a digital decoder of the given type.

track-type
For track-specific products, one of "K", "M", "C" (potentially with leading or trailing whitespace) indicating the type of track for
which the product is intended.

This vocabulary has four defined item typesp793:

https://md.example.com/loco
Rolling stock with an engine

Example

✔ MDN

✔ MDN

794

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#string-is
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree

Every HTML elementp45 may have an itempropp795 attribute specified, if doing so adds one or more propertiesp798 to one or more
itemsp793 (as defined below).

The itempropp795 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp95 none of which

https://md.example.com/passengers
Passenger rolling stock

https://md.example.com/track
Track pieces

https://md.example.com/lighting
Equipment with lighting

Each itemp793 that uses this vocabulary can be given one or more of these types, depending on what the product is.

Thus, a locomotive might be marked up as:

<dl itemscope itemtype="https://md.example.com/loco
https://md.example.com/lighting">

<dt>Name:
<dd itemprop="name">Tank Locomotive (DB 80)
<dt>Product code:
<dd itemprop="product-code">33041
<dt>Scale:
<dd itemprop="scale">HO
<dt>Digital:
<dd itemprop="digital">Delta

</dl>

A turnout lantern retrofit kit might be marked up as:

<dl itemscope itemtype="https://md.example.com/track
https://md.example.com/lighting">

<dt>Name:
<dd itemprop="name">Turnout Lantern Kit
<dt>Product code:
<dd itemprop="product-code">74470
<dt>Purpose:
<dd>For retrofitting 2 C Track
turnouts. <meta itemprop="scale" content="HO">

</dl>

A passenger car with no lighting might be marked up as:

<dl itemscope itemtype="https://md.example.com/passengers">
<dt>Name:
<dd itemprop="name">Express Train Passenger Car (DB Am 203)
<dt>Product code:
<dd itemprop="product-code">8710
<dt>Scale:
<dd itemprop="scale">Z

</dl>

Great care is necessary when creating new vocabularies. Often, a hierarchical approach to types can be taken that results in a
vocabulary where each item only ever has a single type, which is generally much simpler to manage.

5.2.3 Names: the itemprop attribute §p79

5

✔ MDN

795

are identical to another token, representing the names of the name-value pairs that it adds. The attribute's value must have at least
one token.

Each token must be either:

• If the item is a typed itemp794: a defined property name allowed in this situation according to the specification that defines
the relevant typesp794 for the item, or

• A valid URL string that is an absolute URL defined as an item property name allowed in this situation by a vocabulary
specification, or

• A valid URL string that is an absolute URL, used as a proprietary item property name (i.e. one used by the author for private
purposes, not defined in a public specification), or

• If the item is not a typed itemp794: a string that contains no U+002E FULL STOP characters (.) and no U+003A COLON
characters (:), used as a proprietary item property name (i.e. one used by the author for private purposes, not defined in a
public specification).

Specifications that introduce defined property namesp796 must ensure all such property names contain no U+002E FULL STOP
characters (.), no U+003A COLON characters (:), and no ASCII whitespace.

When an element with an itempropp795 attribute adds a propertyp798 to multiple itemsp793, the requirement above regarding the tokens
applies for each itemp793 individually.

The property names of an element are the tokens that the element's itempropp795 attribute is found to contain when its value is split
on ASCII whitespace, with the order preserved but with duplicates removed (leaving only the first occurrence of each name).

Within an itemp793, the properties are unordered with respect to each other, except for properties with the same name, which are
ordered in the order they are given by the algorithm that defines the properties of an itemp798.

The rules above disallow U+003A COLON characters (:) in non-URL values because otherwise they could not be distinguished from
URLs. Values with U+002E FULL STOP characters (.) are reserved for future extensions. ASCII whitespace are disallowed because
otherwise the values would be parsed as multiple tokens.

Note

In the following example, the "a" property has the values "1" and "2", in that order, but whether the "a" property comes before the
"b" property or not is not important:

<div itemscope>
<p itemprop="a">1</p>
<p itemprop="a">2</p>
<p itemprop="b">test</p>

</div>

Thus, the following is equivalent:

<div itemscope>
<p itemprop="b">test</p>
<p itemprop="a">1</p>
<p itemprop="a">2</p>

</div>

As is the following:

<div itemscope>
<p itemprop="a">1</p>
<p itemprop="b">test</p>
<p itemprop="a">2</p>

</div>

Example

796

https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#split-on-ascii-whitespace

The property value of a name-value pair added by an element with an itempropp795 attribute is as given for the first matching case in
the following list:

↪ If the element also has an itemscopep793 attribute
The value is the itemp793 created by the element.

↪ If the element is a metap189 element
The value is the value of the element's contentp190 attribute, if any, or the empty string if there is no such attribute.

↪ If the element is an audiop410, embedp399, iframep390, imgp346, sourcep343, trackp411, or videop406 element
The value is the result of encoding-parsing-and-serializing a URLp97 given the element's src attribute's value, relative to the
element's node document, at the time the attribute is set, or the empty string if there is no such attribute or the result is failure.

↪ If the element is an ap257, areap471, or linkp177 element
The value is the result of encoding-parsing-and-serializing a URLp97 given the element's href attribute's value, relative to the
element's node document, at the time the attribute is set, or the empty string if there is no such attribute or the result is failure.

↪ If the element is an objectp402 element
The value is the result of encoding-parsing-and-serializing a URLp97 given the element's data attribute's value, relative to the
element's node document, at the time the attribute is set, or the empty string if there is no such attribute or the result is failure.

↪ If the element is a datap278 element
The value is the value of the element's valuep279 attribute, if it has one, or the empty string otherwise.

↪ If the element is a meterp589 element
The value is the value of the element's valuep590 attribute, if it has one, or the empty string otherwise.

↪ If the element is a timep279 element
The value is the element's datetime valuep280.

↪ Otherwise
The value is the element's descendant text content.

The URL property elements are the ap257, areap471, audiop410, embedp399, iframep390, imgp346, linkp177, objectp402, sourcep343,
trackp411, and videop406 elements.

If a property's valuep797, as defined by the property's definition, is an absolute URL, the property must be specified using a URL
property elementp797.

And the following:

<div id="x">
<p itemprop="a">1</p>

</div>
<div itemscope itemref="x">
<p itemprop="b">test</p>
<p itemprop="a">2</p>

</div>

These requirements do not apply just because a property value happens to match the syntax for a URL. They only apply if the
property is explicitly defined as taking such a value.

Note

5.2.4 Values §p79

7

797

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-descendant-text-content
https://url.spec.whatwg.org/#syntax-url-absolute

To find the properties of an item defined by the element root, the user agent must run the following steps. These steps are also
used to flag microdata errorsp798.

1. Let results, memory, and pending be empty lists of elements.

2. Add the element root to memory.

3. Add the child elements of root, if any, to pending.

4. If root has an itemrefp794 attribute, split the value of that itemref attribute on ASCII whitespace. For each resulting token ID,
if there is an element in the tree of root with the ID ID, then add the first such element to pending.

5. While pending is not empty:

1. Remove an element from pending and let current be that element.

2. If current is already in memory, there is a microdata errorp798; continue.

3. Add current to memory.

4. If current does not have an itemscopep793 attribute, then: add all the child elements of current to pending.

5. If current has an itempropp795 attribute specified and has one or more property namesp796, then add current to
results.

6. Sort results in tree order.

7. Return results.

A document must not contain any itemsp793 for which the algorithm to find the properties of an itemp798 finds any microdata errors.

An itemp793 is a top-level microdata item if its element does not have an itempropp795 attribute.

All itemrefp794 attributes in a Documentp130 must be such that there are no cycles in the graph formed from representing each itemp793

in the Documentp130 as a node in the graph and each propertyp798 of an item whose valuep797 is another item as an edge in the graph
connecting those two items.

A document must not contain any elements that have an itempropp795 attribute that would not be found to be a property of any of the
itemsp793 in that document were their propertiesp798 all to be determined.

For example, a book about the first moon landing could be called "mission:moon". A "title" property from a vocabulary that defines
a title as being a string would not expect the title to be given in an ap257 element, even though it looks like a URL. On the other
hand, if there was a (rather narrowly scoped!) vocabulary for "books whose titles look like URLs" which had a "title" property
defined to take a URL, then the property would expect the title to be given in an ap257 element (or one of the other URL property
elementsp797), because of the requirement above.

Example

In this example, a single license statement is applied to two works, using itemrefp794 from the items representing the works:

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Photo gallery</title>

</head>
<body>
<h1>My photos</h1>
<figure itemscope itemtype="http://n.whatwg.org/work" itemref="licenses">

<figcaption itemprop="title">The house I found.</figcaption>

Example

5.2.5 Associating names with items §p79

8

798

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#concept-tree-order

Currently, the itemscopep793, itempropp795, and other microdata attributes are only defined for HTML elementsp45. This means that
attributes with the literal names "itemscope", "itemprop", etc, do not cause microdata processing to occur on elements in other
namespaces, such as SVG.

The vocabularies in this section are primarily intended to demonstrate how a vocabulary is specified, though they are also usable in
their own right.

</figure>
<figure itemscope itemtype="http://n.whatwg.org/work" itemref="licenses">
<img itemprop="work" src="images/mailbox.jpeg" alt="Outside the house is a mailbox. It has a

leaflet inside.">
<figcaption itemprop="title">The mailbox.</figcaption>

</figure>
<footer>
<p id="licenses">All images licensed under the <a itemprop="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
license.</p>

</footer>
</body>

</html>

The above results in two items with the type "http://n.whatwg.org/work", one with:

work
images/house.jpeg

title
The house I found.

license
http://www.opensource.org/licenses/mit-license.php

...and one with:

work
images/mailbox.jpeg

title
The mailbox.

license
http://www.opensource.org/licenses/mit-license.php

Thus, in the following example there is only one item, not two.

<p itemscope></p> <!-- this is an item (with no properties and no type) -->
<svg itemscope></svg> <!-- this is not, it's just an SVG svg element with an invalid unknown
attribute -->

Example

5.3 Sample microdata vocabularies §p79

9

5.2.6 Microdata and other namespaces §p79

9

799

https://svgwg.org/svg2-draft/struct.html#SVGElement

An item with the item typep793 http://microformats.org/profile/hcard represents a person's or organization's contact information.

This vocabulary does not support global identifiers for itemsp794.

The following are the type's defined property namesp796. They are based on the vocabulary defined in vCard Format Specification
(vCard) and its extensions, where more information on how to interpret the values can be found. [RFC6350]p1481

kind
Describes what kind of contact the item represents.

The valuep797 must be text that is identical to one of the kind stringsp807.

A single property with the name kindp800 may be present within each itemp793 with the type http://microformats.org/profile/
hcardp800.

fn
Gives the formatted text corresponding to the name of the person or organization.

The valuep797 must be text.

Exactly one property with the name fnp800 must be present within each itemp793 with the type http://microformats.org/profile/
hcardp800.

n
Gives the structured name of the person or organization.

The valuep797 must be an itemp793 with zero or more of each of the family-namep800, given-namep800, additional-namep800,
honorific-prefixp800, and honorific-suffixp801 properties.

Exactly one property with the name np800 must be present within each itemp793 with the type http://microformats.org/profile/
hcardp800.

family-name (inside np800)
Gives the family name of the person, or the full name of the organization.

The valuep797 must be text.

Any number of properties with the name family-namep800 may be present within the itemp793 that forms the valuep797 of the np800

property of an itemp793 with the type http://microformats.org/profile/hcardp800.

given-name (inside np800)
Gives the given-name of the person.

The valuep797 must be text.

Any number of properties with the name given-namep800 may be present within the itemp793 that forms the valuep797 of the np800

property of an itemp793 with the type http://microformats.org/profile/hcardp800.

additional-name (inside np800)
Gives the any additional names of the person.

The valuep797 must be text.

Any number of properties with the name additional-namep800 may be present within the itemp793 that forms the valuep797 of the
np800 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

honorific-prefix (inside np800)
Gives the honorific prefix of the person.

The valuep797 must be text.

Any number of properties with the name honorific-prefixp800 may be present within the itemp793 that forms the valuep797 of the

5.3.1 vCard §p80

0

800

https://infra.spec.whatwg.org/#string-is

np800 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

honorific-suffix (inside np800)
Gives the honorific suffix of the person.

The valuep797 must be text.

Any number of properties with the name honorific-suffixp801 may be present within the itemp793 that forms the valuep797 of the
np800 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

nickname
Gives the nickname of the person or organization.

The valuep797 must be text.

Any number of properties with the name nicknamep801 may be present within each itemp793 with the type
http://microformats.org/profile/hcardp800.

photo
Gives a photograph of the person or organization.

The valuep797 must be an absolute URL.

Any number of properties with the name photop801 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

bday
Gives the birth date of the person or organization.

The valuep797 must be a valid date stringp83.

A single property with the name bdayp801 may be present within each itemp793 with the type http://microformats.org/profile/
hcardp800.

anniversary
Gives the birth date of the person or organization.

The valuep797 must be a valid date stringp83.

A single property with the name anniversaryp801 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

sex
Gives the biological sex of the person.

The valuep797 must be one of F, meaning "female", M, meaning "male", N, meaning "none or not applicable", O, meaning "other", or
U, meaning "unknown".

A single property with the name sexp801 may be present within each itemp793 with the type http://microformats.org/profile/
hcardp800.

gender-identity
Gives the gender identity of the person.

The valuep797 must be text.

A single property with the name gender-identityp801 may be present within each itemp793 with the type
http://microformats.org/profile/hcardp800.

The nickname is the descriptive name given instead of or in addition to the one belonging to a person, place, or thing. It can
also be used to specify a familiar form of a proper name specified by the fnp800 or np800 properties.

Note

801

https://url.spec.whatwg.org/#syntax-url-absolute

adr
Gives the delivery address of the person or organization.

The valuep797 must be an itemp793 with zero or more typep802, post-office-boxp802, extended-addressp802, and street-addressp802

properties, and optionally a localityp802 property, optionally a regionp802 property, optionally a postal-codep803 property, and
optionally a country-namep803 property.

If no typep802 properties are present within an itemp793 that forms the valuep797 of an adrp802 property of an itemp793 with the type
http://microformats.org/profile/hcardp800, then the address type stringp807 workp807 is implied.

Any number of properties with the name adrp802 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

type (inside adrp802)
Gives the type of delivery address.

The valuep797 must be text that is identical to one of the address type stringsp807.

Any number of properties with the name typep802 may be present within the itemp793 that forms the valuep797 of an adrp802 property
of an itemp793 with the type http://microformats.org/profile/hcardp800, but within each such adrp802 property itemp793 there
must only be one typep802 property per distinct value.

post-office-box (inside adrp802)
Gives the post office box component of the delivery address of the person or organization.

The valuep797 must be text.

Any number of properties with the name post-office-boxp802 may be present within the itemp793 that forms the valuep797 of an
adrp802 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

extended-address (inside adrp802)
Gives an additional component of the delivery address of the person or organization.

The valuep797 must be text.

Any number of properties with the name extended-addressp802 may be present within the itemp793 that forms the valuep797 of an
adrp802 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

street-address (inside adrp802)
Gives the street address component of the delivery address of the person or organization.

The valuep797 must be text.

Any number of properties with the name street-addressp802 may be present within the itemp793 that forms the valuep797 of an
adrp802 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

locality (inside adrp802)
Gives the locality component (e.g. city) of the delivery address of the person or organization.

The valuep797 must be text.

A single property with the name localityp802 may be present within the itemp793 that forms the valuep797 of an adrp802 property of
an itemp793 with the type http://microformats.org/profile/hcardp800.

region (inside adrp802)
Gives the region component (e.g. state or province) of the delivery address of the person or organization.

vCard urges authors not to use this field.
Note

vCard urges authors not to use this field.
Note

802

https://infra.spec.whatwg.org/#string-is

The valuep797 must be text.

A single property with the name regionp802 may be present within the itemp793 that forms the valuep797 of an adrp802 property of an
itemp793 with the type http://microformats.org/profile/hcardp800.

postal-code (inside adrp802)
Gives the postal code component of the delivery address of the person or organization.

The valuep797 must be text.

A single property with the name postal-codep803 may be present within the itemp793 that forms the valuep797 of an adrp802 property
of an itemp793 with the type http://microformats.org/profile/hcardp800.

country-name (inside adrp802)
Gives the country name component of the delivery address of the person or organization.

The valuep797 must be text.

A single property with the name country-namep803 may be present within the itemp793 that forms the valuep797 of an adrp802 property
of an itemp793 with the type http://microformats.org/profile/hcardp800.

tel
Gives the telephone number of the person or organization.

The valuep797 must be either text that can be interpreted as a telephone number as defined in the CCITT specifications E.163 and
X.121, or an itemp793 with zero or more typep803 properties and exactly one valuep803 property. [E163]p1478 [X121]p1484

If no typep803 properties are present within an itemp793 that forms the valuep797 of a telp803 property of an itemp793 with the type
http://microformats.org/profile/hcardp800, or if the valuep797 of such a telp803 property is text, then the telephone type
stringp807 voicep807 is implied.

Any number of properties with the name telp803 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

type (inside telp803)
Gives the type of telephone number.

The valuep797 must be text that is identical to one of the telephone type stringsp807.

Any number of properties with the name typep803 may be present within the itemp793 that forms the valuep797 of a telp803 property of
an itemp793 with the type http://microformats.org/profile/hcardp800, but within each such telp803 property itemp793 there must
only be one typep803 property per distinct value.

value (inside telp803)
Gives the actual telephone number of the person or organization.

The valuep797 must be text that can be interpreted as a telephone number as defined in the CCITT specifications E.163 and X.121.
[E163]p1478 [X121]p1484

Exactly one property with the name valuep803 must be present within the itemp793 that forms the valuep797 of a telp803 property of
an itemp793 with the type http://microformats.org/profile/hcardp800.

email
Gives the email address of the person or organization.

The valuep797 must be text.

Any number of properties with the name emailp803 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

impp
Gives a URL for instant messaging and presence protocol communications with the person or organization.

The valuep797 must be an absolute URL.
803

https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute

Any number of properties with the name imppp803 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

lang
Gives a language understood by the person or organization.

The valuep797 must be a valid BCP 47 language tag. [BCP47]p1475

Any number of properties with the name langp804 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

tz
Gives the time zone of the person or organization.

The valuep797 must be text and must match the following syntax:

1. Either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. A valid non-negative integerp77 that is exactly two digits long and that represents a number in the range 00..23.

3. A U+003A COLON character (:).

4. A valid non-negative integerp77 that is exactly two digits long and that represents a number in the range 00..59.

Any number of properties with the name tzp804 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

geo
Gives the geographical position of the person or organization.

The valuep797 must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. One or more ASCII digits.

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

4. A U+003B SEMICOLON character (;).

5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

6. One or more ASCII digits.

7. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

The optional components marked with an asterisk (*) should be included, and should have six digits each.

Any number of properties with the name geop804 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

title
Gives the job title, functional position or function of the person or organization.

The valuep797 must be text.

Any number of properties with the name titlep804 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

role
Gives the role, occupation, or business category of the person or organization.

The value specifies latitude and longitude, in that order (i.e., "LAT LON" ordering), in decimal degrees. The longitude represents
the location east and west of the prime meridian as a positive or negative real number, respectively. The latitude represents the
location north and south of the equator as a positive or negative real number, respectively.

Note

804

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

The valuep797 must be text.

Any number of properties with the name rolep804 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

logo
Gives the logo of the person or organization.

The valuep797 must be an absolute URL.

Any number of properties with the name logop805 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

agent
Gives the contact information of another person who will act on behalf of the person or organization.

The valuep797 must be either an itemp793 with the type http://microformats.org/profile/hcardp800, or an absolute URL, or text.

Any number of properties with the name agentp805 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

org
Gives the name and units of the organization.

The valuep797 must be either text or an itemp793 with one organization-namep805 property and zero or more organization-unitp805

properties.

Any number of properties with the name orgp805 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

organization-name (inside orgp805)
Gives the name of the organization.

The valuep797 must be text.

Exactly one property with the name organization-namep805 must be present within the itemp793 that forms the valuep797 of an
orgp805 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

organization-unit (inside orgp805)
Gives the name of the organization unit.

The valuep797 must be text.

Any number of properties with the name organization-unitp805 may be present within the itemp793 that forms the valuep797 of the
orgp805 property of an itemp793 with the type http://microformats.org/profile/hcardp800.

member
Gives a URL that represents a member of the group.

The valuep797 must be an absolute URL.

Any number of properties with the name memberp805 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800 if the itemp793 also has a property with the name kindp800 whose value is "groupp807".

related
Gives a relationship to another entity.

The valuep797 must be an itemp793 with one urlp805 property and one relp806 properties.

Any number of properties with the name relatedp805 may be present within each itemp793 with the type
http://microformats.org/profile/hcardp800.

url (inside relatedp805)
Gives the URL for the related entity.

805

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url

The valuep797 must be an absolute URL.

Exactly one property with the name urlp805 must be present within the itemp793 that forms the valuep797 of a relatedp805 property of
an itemp793 with the type http://microformats.org/profile/hcardp800.

rel (inside relatedp805)
Gives the relationship between the entity and the related entity.

The valuep797 must be text that is identical to one of the relationship stringsp807.

Exactly one property with the name relp806 must be present within the itemp793 that forms the valuep797 of a relatedp805 property of
an itemp793 with the type http://microformats.org/profile/hcardp800.

categories
Gives the name of a category or tag that the person or organization could be classified as.

The valuep797 must be text.

Any number of properties with the name categoriesp806 may be present within each itemp793 with the type
http://microformats.org/profile/hcardp800.

note
Gives supplemental information or a comment about the person or organization.

The valuep797 must be text.

Any number of properties with the name notep806 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

rev
Gives the revision date and time of the contact information.

The valuep797 must be text that is a valid global date and time stringp87.

Any number of properties with the name revp806 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

sound
Gives a sound file relating to the person or organization.

The valuep797 must be an absolute URL.

Any number of properties with the name soundp806 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

uid
Gives a globally unique identifier corresponding to the person or organization.

The valuep797 must be text.

A single property with the name uidp806 may be present within each itemp793 with the type http://microformats.org/profile/
hcardp800.

url
Gives a URL relating to the person or organization.

The valuep797 must be an absolute URL.

Any number of properties with the name urlp806 may be present within each itemp793 with the type http://microformats.org/
profile/hcardp800.

The value distinguishes the current revision of the information for other renditions of the information.
Note

806

https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute

The kind strings are:

individual
Indicates a single entity (e.g. a person).

group
Indicates multiple entities (e.g. a mailing list).

org
Indicates a single entity that is not a person (e.g. a company).

location
Indicates a geographical place (e.g. an office building).

The address type strings are:

home
Indicates a delivery address for a residence.

work
Indicates a delivery address for a place of work.

The telephone type strings are:

home
Indicates a residential number.

work
Indicates a telephone number for a place of work.

text
Indicates that the telephone number supports text messages (SMS).

voice
Indicates a voice telephone number.

fax
Indicates a facsimile telephone number.

cell
Indicates a cellular telephone number.

video
Indicates a video conferencing telephone number.

pager
Indicates a paging device telephone number.

textphone
Indicates a telecommunication device for people with hearing or speech difficulties.

The relationship strings are:

emergency
An emergency contact.

agent
Another entity that acts on behalf of this entity.

807

contact
acquaintance
friend
met
worker
colleague
resident
neighbor
child
parent
sibling
spouse
kin
muse
crush
date
sweetheart
me

Has the meaning defined in XFN. [XFN]p1484

Given a list of nodes nodes in a Documentp130, a user agent must run the following algorithm to extract any vCard data represented
by those nodes (only the first vCard is returned):

1. If none of the nodes in nodes are itemsp793 with the item typep793 http://microformats.org/profile/hcardp800, then there
is no vCard. Abort the algorithm, returning nothing.

2. Let node be the first node in nodes that is an itemp793 with the item typep793 http://microformats.org/profile/hcardp800.

3. Let output be an empty string.

4. Add a vCard linep810 with the type "BEGIN" and the value "VCARD" to output.

5. Add a vCard linep810 with the type "PROFILE" and the value "VCARD" to output.

6. Add a vCard linep810 with the type "VERSION" and the value "4.0" to output.

7. Add a vCard linep810 with the type "SOURCE" and the result of escaping the vCard text stringp811 that is the document's URL as
the value to output.

8. If the title elementp135 is not null, add a vCard linep810 with the type "NAME" and with the result of escaping the vCard text
stringp811 obtained from the title elementp135 's descendant text content as the value to output.

9. Let sex be the empty string.

10. Let gender-identity be the empty string.

11. For each element element that is a property of the itemp798 node: for each name name in element's property namesp796, run
the following substeps:

1. Let parameters be an empty set of name-value pairs.

2. Run the appropriate set of substeps from the following list. The steps will set a variable value, which is used in the
next step.

If the property's valuep797 is an itemp793 subitem and name is np800

1. Let value be the empty string.

2. Append to value the result of collecting the first vCard subpropertyp811 named family-namep800 in
subitem.

5.3.1.1 Conversion to vCard §p80

8

808

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-descendant-text-content

3. Append a U+003B SEMICOLON character (;) to value.

4. Append to value the result of collecting the first vCard subpropertyp811 named given-namep800 in
subitem.

5. Append a U+003B SEMICOLON character (;) to value.

6. Append to value the result of collecting the first vCard subpropertyp811 named additional-namep800 in
subitem.

7. Append a U+003B SEMICOLON character (;) to value.

8. Append to value the result of collecting the first vCard subpropertyp811 named honorific-prefixp800

in subitem.

9. Append a U+003B SEMICOLON character (;) to value.

10. Append to value the result of collecting the first vCard subpropertyp811 named honorific-suffixp801

in subitem.

If the property's valuep797 is an itemp793 subitem and name is adrp802

1. Let value be the empty string.

2. Append to value the result of collecting vCard subpropertiesp811 named post-office-boxp802 in
subitem.

3. Append a U+003B SEMICOLON character (;) to value.

4. Append to value the result of collecting vCard subpropertiesp811 named extended-addressp802 in
subitem.

5. Append a U+003B SEMICOLON character (;) to value.

6. Append to value the result of collecting vCard subpropertiesp811 named street-addressp802 in
subitem.

7. Append a U+003B SEMICOLON character (;) to value.

8. Append to value the result of collecting the first vCard subpropertyp811 named localityp802 in
subitem.

9. Append a U+003B SEMICOLON character (;) to value.

10. Append to value the result of collecting the first vCard subpropertyp811 named regionp802 in subitem.

11. Append a U+003B SEMICOLON character (;) to value.

12. Append to value the result of collecting the first vCard subpropertyp811 named postal-codep803 in
subitem.

13. Append a U+003B SEMICOLON character (;) to value.

14. Append to value the result of collecting the first vCard subpropertyp811 named country-namep803 in
subitem.

15. If there is a property named typep802 in subitem, and the first such property has a valuep797 that is not
an itemp793 and whose value consists only of ASCII alphanumerics, then add a parameter named
"TYPE" whose value is the valuep797 of that property to parameters.

If the property's valuep797 is an itemp793 subitem and name is orgp805

1. Let value be the empty string.

2. Append to value the result of collecting the first vCard subpropertyp811 named organization-namep805

in subitem.

3. For each property named organization-unitp805 in subitem, run the following steps:

1. If the valuep797 of the property is an itemp793, then skip this property.

809

https://infra.spec.whatwg.org/#ascii-alphanumeric

2. Append a U+003B SEMICOLON character (;) to value.

3. Append the result of escaping the vCard text stringp811 given by the valuep797 of the property
to value.

If the property's valuep797 is an itemp793 subitem with the item typep793 http://microformats.org/
profile/hcardp800 and name is relatedp805

1. Let value be the empty string.

2. If there is a property named urlp805 in subitem, and its element is a URL property elementp797, then
append the result of escaping the vCard text stringp811 given by the valuep797 of the first such property
to value, and add a parameter with the name "VALUE" and the value "URI" to parameters.

3. If there is a property named relp806 in subitem, and the first such property has a valuep797 that is not
an itemp793 and whose value consists only of ASCII alphanumerics, then add a parameter named
"RELATION" whose value is the valuep797 of that property to parameters.

If the property's valuep797 is an itemp793 and name is none of the above

1. Let value be the result of collecting the first vCard subpropertyp811 named value in subitem.

2. If there is a property named type in subitem, and the first such property has a valuep797 that is not an
itemp793 and whose value consists only of ASCII alphanumerics, then add a parameter named "TYPE"
whose value is the valuep797 of that property to parameters.

If the property's valuep797 is not an itemp793 and its name is sexp801

If this is the first such property to be found, set sex to the property's valuep797.

If the property's valuep797 is not an itemp793 and its name is gender-identityp801

If this is the first such property to be found, set gender-identity to the property's valuep797.

Otherwise (the property's valuep797 is not an itemp793)

1. Let value be the property's valuep797.

2. If element is one of the URL property elementsp797, add a parameter with the name "VALUE" and the
value "URI" to parameters.

3. Otherwise, if name is bdayp801 or anniversaryp801 and the value is a valid date stringp83, add a
parameter with the name "VALUE" and the value "DATE" to parameters.

4. Otherwise, if name is revp806 and the value is a valid global date and time stringp87, add a parameter
with the name "VALUE" and the value "DATE-TIME" to parameters.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE
SOLIDUS character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

7. Unless name is geop804, prefix every U+003B SEMICOLON character (;) in value with a U+005C
REVERSE SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a
U+005C REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in
value with a U+005C REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N
character (n).

3. Add a vCard linep810 with the type name, the parameters parameters, and the value value to output.

12. If either sex or gender-identity has a value that is not the empty string, add a vCard linep810 with the type "GENDER" and the
value consisting of the concatenation of sex, a U+003B SEMICOLON character (;), and gender-identity to output.

13. Add a vCard linep810 with the type "END" and the value "VCARD" to output.

When the above algorithm says that the user agent is to add a vCard line consisting of a type type, optionally some parameters, and
a value value to a string output, it must run the following steps:

810

https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-alphanumeric

1. Let line be an empty string.

2. Append type, converted to ASCII uppercase, to line.

3. If there are any parameters, then for each parameter, in the order that they were added, run these substeps:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the parameter's name to line.

3. Append a U+003D EQUALS SIGN character (=) to line.

4. Append the parameter's value to line.

4. Append a U+003A COLON character (:) to line.

5. Append value to line.

6. Let maximum length be 75.

7. While line's code point length is greater than maximum length:

1. Append the first maximum length code points of line to output.

2. Remove the first maximum length code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

8. Append (what remains of) line to output.

9. Append a U+000D CARRIAGE RETURN character (CR) to output.

10. Append a U+000A LINE FEED character (LF) to output.

When the steps above require the user agent to obtain the result of collecting vCard subproperties named subname in subitem,
the user agent must run the following steps:

1. Let value be the empty string.

2. For each property named subname in the item subitem, run the following substeps:

1. If the valuep797 of the property is itself an itemp793, then skip this property.

2. If this is not the first property named subname in subitem (ignoring any that were skipped by the previous step),
then append a U+002C COMMA character (,) to value.

3. Append the result of escaping the vCard text stringp811 given by the valuep797 of the property to value.

3. Return value.

When the steps above require the user agent to obtain the result of collecting the first vCard subproperty named subname in
subitem, the user agent must run the following steps:

1. If there are no properties named subname in subitem, then return the empty string.

2. If the valuep797 of the first property named subname in subitem is an itemp793, then return the empty string.

3. Return the result of escaping the vCard text stringp811 given by the valuep797 of the first property named subname in subitem.

When the above algorithms say the user agent is to escape the vCard text string value, the user agent must use the following
steps:

1. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE SOLIDUS character (\).

2. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

811

https://infra.spec.whatwg.org/#ascii-uppercase
https://infra.spec.whatwg.org/#string-code-point-length

3. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE SOLIDUS character (\).

4. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a U+005C REVERSE
SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

5. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in value with a U+005C
REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

6. Return the mutated value.

This section is non-normative.

This algorithm can generate invalid vCard output, if the input does not conform to the rules described for the
http://microformats.org/profile/hcardp800 item typep793 and defined property namesp796.

Note

5.3.1.2 Examples §p81

2

Here is a long example vCard for a fictional character called "Jack Bauer":

<section id="jack" itemscope itemtype="http://microformats.org/profile/hcard">
<h1 itemprop="fn">

Jack
Bauer

</h1>

<p itemprop="org" itemscope>
Counter-Terrorist Unit
(Los Angeles Division)

</p>
<p>

10201 W. Pico Blvd.

Los Angeles,
CA
90064

United States

34.052339;-118.410623

</p>
<h2>Assorted Contact Methods</h2>

<li itemprop="tel" itemscope>
+1 (310) 597 3781 work
<meta itemprop="type" content="voice">

I'm on Wikipedia
so you can leave a message on my user talk page.
Jack Bauer Facts
<li itemprop="email">j.bauer@la.ctu.gov.invalid
<li itemprop="tel" itemscope>
+1 (310) 555 3781
<meta itemprop="type" content="cell">mobile phone

<ins datetime="2008-07-20 21:00:00+01:00">

Example

812

An item with the item typep793 http://microformats.org/profile/hcalendar#vevent represents an event.

This vocabulary does not support global identifiers for itemsp794.

The following are the type's defined property namesp796. They are based on the vocabulary defined in Internet Calendaring and
Scheduling Core Object Specification (iCalendar), where more information on how to interpret the values can be found. [RFC5545]p1481

<meta itemprop="rev" content="2008-07-20 21:00:00+01:00">
<p itemprop="tel" itemscope>Update!
My new home phone number is
01632 960 123.</p>

</ins>
</section>

The odd line wrapping is needed because newlines are meaningful in microdata: newlines would be preserved in a conversion to,
for example, the vCard format.

This example shows a site's contact details (using the addressp222 element) containing an address with two street components:

<address itemscope itemtype="http://microformats.org/profile/hcard">
<strong itemprop="fn">Alfred
Person

1600 Amphitheatre Parkway

Building 43, Second Floor

Mountain View,
CA 94043

</address>

Example

The vCard vocabulary can be used to just mark up people's names:

<span itemscope itemtype="http://microformats.org/profile/hcard"
><span itemprop="given-name"
>George Washington

This creates a single item with a two name-value pairs, one with the name "fn" and the value "George Washington", and the other
with the name "n" and a second item as its value, the second item having the two name-value pairs "given-name" and "family-
name" with the values "George" and "Washington" respectively. This is defined to map to the following vCard:

BEGIN:VCARD
PROFILE:VCARD
VERSION:4.0
SOURCE:document's address
FN:George Washington
N:Washington;George;;;
END:VCARD

Example

Only the parts of the iCalendar vocabulary relating to events are used here; this vocabulary cannot express a complete iCalendar
instance.

Note

5.3.2 vEvent §p81

3

813

attach
Gives the address of an associated document for the event.

The valuep797 must be an absolute URL.

Any number of properties with the name attachp814 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

categories
Gives the name of a category or tag that the event could be classified as.

The valuep797 must be text.

Any number of properties with the name categoriesp814 may be present within each itemp793 with the type
http://microformats.org/profile/hcalendar#veventp813.

class
Gives the access classification of the information regarding the event.

The valuep797 must be text with one of the following values:

• public
• private
• confidential

A single property with the name classp814 may be present within each itemp793 with the type http://microformats.org/profile/
hcalendar#veventp813.

comment
Gives a comment regarding the event.

The valuep797 must be text.

Any number of properties with the name commentp814 may be present within each itemp793 with the type
http://microformats.org/profile/hcalendar#veventp813.

description
Gives a detailed description of the event.

The valuep797 must be text.

A single property with the name descriptionp814 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

geo
Gives the geographical position of the event.

The valuep797 must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. One or more ASCII digits.

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

4. A U+003B SEMICOLON character (;).

5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

6. One or more ASCII digits.

7. Optionally*, a U+002E FULL STOP character (.) followed by one or more ASCII digits.

This is merely advisory and cannot be considered a confidentiality measure.
⚠Warning!

814

https://url.spec.whatwg.org/#syntax-url-absolute
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-digit

The optional components marked with an asterisk (*) should be included, and should have six digits each.

A single property with the name geop814 may be present within each itemp793 with the type http://microformats.org/profile/
hcalendar#veventp813.

location
Gives the location of the event.

The valuep797 must be text.

A single property with the name locationp815 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

resources
Gives a resource that will be needed for the event.

The valuep797 must be text.

Any number of properties with the name resourcesp815 may be present within each itemp793 with the type
http://microformats.org/profile/hcalendar#veventp813.

status
Gives the confirmation status of the event.

The valuep797 must be text with one of the following values:

• tentative
• confirmed
• canceled

A single property with the name statusp815 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

summary
Gives a short summary of the event.

The valuep797 must be text.

User agents should replace U+000A LINE FEED (LF) characters in the valuep797 by U+0020 SPACE characters when using the value.

A single property with the name summaryp815 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

dtend
Gives the date and time by which the event ends.

If the property with the name dtendp815 is present within an itemp793 with the type http://microformats.org/profile/
hcalendar#veventp813 that has a property with the name dtstartp816 whose value is a valid date stringp83, then the valuep797 of the
property with the name dtendp815 must be text that is a valid date stringp83 also. Otherwise, the valuep797 of the property must be
text that is a valid global date and time stringp87.

In either case, the valuep797 be later in time than the value of the dtstartp816 property of the same itemp793.

A single property with the name dtendp815 may be present within each itemp793 with the type http://microformats.org/profile/

The value specifies latitude and longitude, in that order (i.e., "LAT LON" ordering), in decimal degrees. The longitude represents
the location east and west of the prime meridian as a positive or negative real number, respectively. The latitude represents the
location north and south of the equator as a positive or negative real number, respectively.

Note

The time given by the dtendp815 property is not inclusive. For day-long events, therefore, the dtendp815 property's valuep797 will
be the day after the end of the event.

Note

815

hcalendar#veventp813, so long as that http://microformats.org/profile/hcalendar#veventp813 does not have a property with
the name durationp816.

dtstart
Gives the date and time at which the event starts.

The valuep797 must be text that is either a valid date stringp83 or a valid global date and time stringp87.

Exactly one property with the name dtstartp816 must be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

duration
Gives the duration of the event.

The valuep797 must be text that is a valid vevent duration stringp817.

The duration represented is the sum of all the durations represented by integers in the value.

A single property with the name durationp816 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813, so long as that http://microformats.org/profile/hcalendar#veventp813 does not have a
property with the name dtendp815.

transp
Gives whether the event is to be considered as consuming time on a calendar, for the purpose of free-busy time searches.

The valuep797 must be text with one of the following values:

• opaque
• transparent

A single property with the name transpp816 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

contact
Gives the contact information for the event.

The valuep797 must be text.

Any number of properties with the name contactp816 may be present within each itemp793 with the type
http://microformats.org/profile/hcalendar#veventp813.

url
Gives a URL for the event.

The valuep797 must be an absolute URL.

A single property with the name urlp816 may be present within each itemp793 with the type http://microformats.org/profile/
hcalendar#veventp813.

uid
Gives a globally unique identifier corresponding to the event.

The valuep797 must be text.

A single property with the name uidp816 may be present within each itemp793 with the type http://microformats.org/profile/
hcalendar#veventp813.

exdate
Gives a date and time at which the event does not occur despite the recurrence rules.

The valuep797 must be text that is either a valid date stringp83 or a valid global date and time stringp87.

Any number of properties with the name exdatep816 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

816

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#syntax-url-absolute

rdate
Gives a date and time at which the event recurs.

The valuep797 must be text that is one of the following:

• A valid date stringp83.

• A valid global date and time stringp87.

• A valid global date and time stringp87 followed by a U+002F SOLIDUS character (/) followed by a second valid global date
and time stringp87 representing a later time.

• A valid global date and time stringp87 followed by a U+002F SOLIDUS character (/) followed by a valid vevent duration
stringp817.

Any number of properties with the name rdatep817 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

rrule
Gives a rule for finding dates and times at which the event occurs.

The valuep797 must be text that matches the RECUR value type defined in iCalendar. [RFC5545]p1481

A single property with the name rrulep817 may be present within each itemp793 with the type http://microformats.org/profile/
hcalendar#veventp813.

created
Gives the date and time at which the event information was first created in a calendaring system.

The valuep797 must be text that is a valid global date and time stringp87.

A single property with the name createdp817 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

last-modified
Gives the date and time at which the event information was last modified in a calendaring system.

The valuep797 must be text that is a valid global date and time stringp87.

A single property with the name last-modifiedp817 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

sequence
Gives a revision number for the event information.

The valuep797 must be text that is a valid non-negative integerp77.

A single property with the name sequencep817 may be present within each itemp793 with the type http://microformats.org/
profile/hcalendar#veventp813.

A string is a valid vevent duration string if it matches the following pattern:

1. A U+0050 LATIN CAPITAL LETTER P character (P).

2. One of the following:

◦ A valid non-negative integerp77 followed by a U+0057 LATIN CAPITAL LETTER W character (W). The integer
represents a duration of that number of weeks.

◦ At least one, and possible both in this order, of the following:

1. A valid non-negative integerp77 followed by a U+0044 LATIN CAPITAL LETTER D character (D). The integer
represents a duration of that number of days.

2. A U+0054 LATIN CAPITAL LETTER T character (T) followed by any one of the following, or the first and
second of the following in that order, or the second and third of the following in that order, or all three of

817

the following in this order:

1. A valid non-negative integerp77 followed by a U+0048 LATIN CAPITAL LETTER H character (H).
The integer represents a duration of that number of hours.

2. A valid non-negative integerp77 followed by a U+004D LATIN CAPITAL LETTER M character (M).
The integer represents a duration of that number of minutes.

3. A valid non-negative integerp77 followed by a U+0053 LATIN CAPITAL LETTER S character (S).
The integer represents a duration of that number of seconds.

Given a list of nodes nodes in a Documentp130, a user agent must run the following algorithm to extract any vEvent data
represented by those nodes:

1. If none of the nodes in nodes are itemsp793 with the type http://microformats.org/profile/hcalendar#veventp813, then
there is no vEvent data. Abort the algorithm, returning nothing.

2. Let output be an empty string.

3. Add an iCalendar linep819 with the type "BEGIN" and the value "VCALENDAR" to output.

4. Add an iCalendar linep819 with the type "PRODID" and the value equal to a user-agent-specific string representing the user
agent to output.

5. Add an iCalendar linep819 with the type "VERSION" and the value "2.0" to output.

6. For each node node in nodes that is an itemp793 with the type http://microformats.org/profile/hcalendar#veventp813,
run the following steps:

1. Add an iCalendar linep819 with the type "BEGIN" and the value "VEVENT" to output.

2. Add an iCalendar linep819 with the type "DTSTAMP" and a value consisting of an iCalendar DATE-TIME string
representing the current date and time, with the annotation "VALUE=DATE-TIME", to output. [RFC5545]p1481

3. For each element element that is a property of the itemp798 node: for each name name in element's property
namesp796, run the appropriate set of substeps from the following list:

If the property's valuep797 is an itemp793

Skip the property.

If the property is dtendp815

If the property is dtstartp816

If the property is exdatep816

If the property is rdatep817

If the property is createdp817

If the property is last-modifiedp817

Let value be the result of stripping all U+002D HYPHEN-MINUS (-) and U+003A COLON (:) characters from the
property's valuep797.

If the property's valuep797 is a valid date stringp83 then add an iCalendar linep819 with the type name and the
value value to output, with the annotation "VALUE=DATE".

Otherwise, if the property's valuep797 is a valid global date and time stringp87 then add an iCalendar linep819 with
the type name and the value value to output, with the annotation "VALUE=DATE-TIME".

Otherwise, skip the property.

Otherwise
Add an iCalendar linep819 with the type name and the property's valuep797 to output.

4. Add an iCalendar linep819 with the type "END" and the value "VEVENT" to output.

5.3.2.1 Conversion to iCalendar §p81

8

818

7. Add an iCalendar linep819 with the type "END" and the value "VCALENDAR" to output.

When the above algorithm says that the user agent is to add an iCalendar line consisting of a type type, a value value, and
optionally an annotation, to a string output, it must run the following steps:

1. Let line be an empty string.

2. Append type, converted to ASCII uppercase, to line.

3. If there is an annotation:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the annotation to line.

4. Append a U+003A COLON character (:) to line.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE SOLIDUS character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

7. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a U+005C REVERSE
SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in value with a U+005C
REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

10. Append value to line.

11. Let maximum length be 75.

12. While line's code point length is greater than maximum length:

1. Append the first maximum length code points of line to output.

2. Remove the first maximum length code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

13. Append (what remains of) line to output.

14. Append a U+000D CARRIAGE RETURN character (CR) to output.

15. Append a U+000A LINE FEED character (LF) to output.

This section is non-normative.

This algorithm can generate invalid iCalendar output, if the input does not conform to the rules described for the
http://microformats.org/profile/hcalendar#veventp813 item typep793 and defined property namesp796.

Note

5.3.2.2 Examples §p81

9

Here is an example of a page that uses the vEvent vocabulary to mark up an event:

<body itemscope itemtype="http://microformats.org/profile/hcalendar#vevent">
...

Example

819

https://infra.spec.whatwg.org/#ascii-uppercase
https://infra.spec.whatwg.org/#string-code-point-length

An item with the item typep793 http://n.whatwg.org/work represents a work (e.g. an article, an image, a video, a song, etc.). This
type is primarily intended to allow authors to include licensing information for works.

The following are the type's defined property namesp796.

work
Identifies the work being described.

The valuep797 must be an absolute URL.

Exactly one property with the name workp820 must be present within each itemp793 with the type http://n.whatwg.org/workp820.

title
Gives the name of the work.

A single property with the name titlep820 may be present within each itemp793 with the type http://n.whatwg.org/workp820.

author
Gives the name or contact information of one of the authors or creators of the work.

The valuep797 must be either an itemp793 with the type http://microformats.org/profile/hcardp800, or text.

Any number of properties with the name authorp820 may be present within each itemp793 with the type http://n.whatwg.org/
workp820.

<h1 itemprop="summary">Bluesday Tuesday: Money Road</h1>
...
<time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th @ 7pm</time>
(until <time itemprop="dtend" datetime="2009-05-05T21:00:00Z">9pm</time>)
...
<a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"

rel="bookmark" itemprop="url">Link to this page
...
<p>Location: The RoadHouse</p>
...
<p><input type=button value="Add to Calendar"

onclick="location = getCalendar(this)"></p>
...
<meta itemprop="description" content="via livebrum.co.uk">

</body>

The getCalendar() function is left as an exercise for the reader.

The same page could offer some markup, such as the following, for copy-and-pasting into blogs:

<div itemscope itemtype="http://microformats.org/profile/hcalendar#vevent">
<p>I'm going to
<strong itemprop="summary">Bluesday Tuesday: Money Road,
<time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th at 7pm</time>
to <time itemprop="dtend" datetime="2009-05-05T21:00:00Z">9pm</time>,
at The RoadHouse!</p>
<p><a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"

itemprop="url">See this event on livebrum.co.uk.</p>
<meta itemprop="description" content="via livebrum.co.uk">

</div>

5.3.3 Licensing works §p82

0

820

https://url.spec.whatwg.org/#syntax-url-absolute

license
Identifies one of the licenses under which the work is available.

The valuep797 must be an absolute URL.

Any number of properties with the name licensep821 may be present within each itemp793 with the type http://n.whatwg.org/
workp820.

This section is non-normative.

Given a list of nodes nodes in a Documentp130, a user agent must run the following algorithm to extract the microdata from those
nodes into a JSON form:

1. Let result be an empty object.

2. Let items be an empty array.

3. For each node in nodes, check if the element is a top-level microdata itemp798, and if it is then get the objectp821 for that
element and add it to items.

4. Add an entry to result called "items" whose value is the array items.

5. Return the result of serializing result to JSON in the shortest possible way (meaning no whitespace between tokens, no
unnecessary zero digits in numbers, and only using Unicode escapes in strings for characters that do not have a dedicated
escape sequence), and with a lowercase "e" used, when appropriate, in the representation of any numbers. [JSON]p1479

When the user agent is to get the object for an item item, optionally with a list of elements memory, it must run the following
substeps:

1. Let result be an empty object.

5.3.3.1 Examples §p82

1

This example shows an embedded image entitled My Pond, licensed under the Creative Commons Attribution-Share Alike 4.0
International License and the MIT license simultaneously.

<figure itemscope itemtype="http://n.whatwg.org/work">

<figcaption>
<p><cite itemprop="title">My Pond</cite></p>
<p><small>Licensed under the <a itemprop="license"
href="https://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-Share Alike 4.0 International License
and the <a itemprop="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
license.</small>

</figcaption>
</figure>

Example

5.4 Converting HTML to other formats §p82

1

This algorithm returns an object with a single property that is an array, instead of just returning an array, so that it is possible to
extend the algorithm in the future if necessary.

Note

5.4.1 JSON §p82

1

821

https://url.spec.whatwg.org/#syntax-url-absolute

2. If no memory was passed to the algorithm, let memory be an empty list.

3. Add item to memory.

4. If the item has any item typesp793, add an entry to result called "type" whose value is an array listing the item typesp793 of
item, in the order they were specified on the itemtypep793 attribute.

5. If the item has a global identifierp794, add an entry to result called "id" whose value is the global identifierp794 of item.

6. Let properties be an empty object.

7. For each element element that has one or more property namesp796 and is one of the properties of the itemp798 item, in the
order those elements are given by the algorithm that returns the properties of an itemp798, run the following substeps:

1. Let value be the property valuep797 of element.

2. If value is an itemp793, then: If value is in memory, then let value be the string "ERROR". Otherwise, get the
objectp821 for value, passing a copy of memory, and then replace value with the object returned from those steps.

3. For each name name in element's property namesp796, run the following substeps:

1. If there is no entry named name in properties, then add an entry named name to properties whose value
is an empty array.

2. Append value to the entry named name in properties.

8. Add an entry to result called "properties" whose value is the object properties.

9. Return result.

For example, take this markup:

<!DOCTYPE HTML>
<html lang="en">
<title>My Blog</title>
<article itemscope itemtype="http://schema.org/BlogPosting">
<header>
<h1 itemprop="headline">Progress report</h1>
<p><time itemprop="datePublished" datetime="2013-08-29">today</time></p>
<link itemprop="url" href="?comments=0">

</header>
<p>All in all, he's doing well with his swim lessons. The biggest thing was he had trouble
putting his head in, but we got it down.</p>
<section>
<h1>Comments</h1>
<article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c1">
<link itemprop="url" href="#c1">
<footer>
<p>Posted by:
Greg

</p>
<p><time itemprop="commentTime" datetime="2013-08-29">15 minutes ago</time></p>

</footer>
<p>Ha!</p>

</article>
<article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c2">
<link itemprop="url" href="#c2">
<footer>
<p>Posted by:
Charlotte

</p>
<p><time itemprop="commentTime" datetime="2013-08-29">5 minutes ago</time></p>

</footer>
<p>When you say "we got it down"...</p>

Example

822

</article>
</section>

</article>

It would be turned into the following JSON by the algorithm above (supposing that the page's URL was
https://blog.example.com/progress-report):

{
"items": [

{
"type": ["http://schema.org/BlogPosting"],
"properties": {

"headline": ["Progress report"],
"datePublished": ["2013-08-29"],
"url": ["https://blog.example.com/progress-report?comments=0"],
"comment": [

{
"type": ["http://schema.org/UserComments"],
"properties": {

"url": ["https://blog.example.com/progress-report#c1"],
"creator": [

{
"type": ["http://schema.org/Person"],
"properties": {

"name": ["Greg"]
}

}
],
"commentTime": ["2013-08-29"]

}
},
{

"type": ["http://schema.org/UserComments"],
"properties": {

"url": ["https://blog.example.com/progress-report#c2"],
"creator": [

{
"type": ["http://schema.org/Person"],
"properties": {

"name": ["Charlotte"]
}

}
],
"commentTime": ["2013-08-29"]

}
}

]
}

}
]

}

823

All HTML elementsp45 may have the hidden content attribute set. The hiddenp824 attribute is an enumerated attributep76 with the
following keywords and states:

Keyword State Brief description

hidden hidden Will not be rendered.
(the empty string)
until-found hidden until found Will not be rendered, but content inside will be accessible to find-in-pagep862 and fragment navigationp1021.

The attribute's missing value defaultp76 is the not hidden state, and its invalid value defaultp76 is the hiddenp824 state.

When an element has the hiddenp824 attribute in the hiddenp824 state, it indicates that the element is not yet, or is no longer, directly
relevant to the page's current state, or that it is being used to declare content to be reused by other parts of the page as opposed to
being directly accessed by the user. User agents should not render elements that are in the hiddenp824 state. This requirement may be
implemented indirectly through the style layer. For example, a web browser could implement these requirements using the rules
suggested in the Rendering sectionp1390.

When an element has the hiddenp824 attribute in the hidden until foundp824 state, it indicates that the element is hidden like the
hiddenp824 state but the content inside the element will be accessible to find-in-pagep862 and fragment navigationp1021. When these
features attempt to scroll to a target which is in the element's subtree, the user agent will remove the hiddenp824 attribute in order to
reveal the content before scrolling to it. In addition to removing the hiddenp824 attribute, an event named beforematchp1471 is also fired
on the element before the hiddenp824 attribute is removed.

Web browsers will use 'content-visibility: hidden' instead of 'display: none' when the hiddenp824 attribute is in the hidden until foundp824

state, as specified in the Rendering sectionp1390.

6 User interaction §p82

4

6.1 The hiddenp824 attribute §p82

4

Because this attribute is typically implemented using CSS, it's also possible to override it using CSS. For instance, a rule that
applies 'display: block' to all elements will cancel the effects of the hiddenp824 state. Authors therefore have to take care when
writing their style sheets to make sure that the attribute is still styled as expected. In addition, legacy user agents which don't
support the hidden until foundp824 state will have 'display: none' instead of 'content-visibility: hidden', so authors are encouraged to
make sure that their style sheets don't change the 'display' or 'content-visibility' properties of hidden until foundp824 elements.

Since elements with the hiddenp824 attribute in the hidden until foundp824 state use 'content-visibility: hidden' instead of 'display:
none', there are two caveats of the hidden until foundp824 state that make it different from the hiddenp824 state:

1. The element needs to be affected by layout containment in order to be revealed by find-in-page. This means that if the
element in the hidden until foundp824 state has a 'display' value of 'none', 'contents', or 'inline', then the element will not
be revealed by find-in-page.

2. The element will still have a generated box when in the hidden until foundp824 state, which means that borders, margin,
and padding will still be rendered around the element.

Note

In the following skeletal example, the attribute is used to hide the web game's main screen until the user logs in:

<h1>The Example Game</h1>
<section id="login">
<h2>Login</h2>
<form>
...
<!-- calls login() once the user's credentials have been checked -->

</form>
<script>

Example

⚠ MDN

824

https://drafts.csswg.org/css-contain/#containment-layout
https://drafts.csswg.org/css2/#propdef-visibility

The hiddenp824 attribute must not be used to hide content that could legitimately be shown in another presentation. For example, it is
incorrect to use hiddenp824 to hide panels in a tabbed dialog, because the tabbed interface is merely a kind of overflow presentation —
one could equally well just show all the form controls in one big page with a scrollbar. It is similarly incorrect to use this attribute to
hide content just from one presentation — if something is marked hiddenp824, it is hidden from all presentations, including, for instance,
screen readers.

Elements that are not themselves hiddenp824 must not hyperlinkp302 to elements that are hiddenp824. The for attributes of labelp518

and outputp584 elements that are not themselves hiddenp824 must similarly not refer to elements that are hiddenp824. In both cases,
such references would cause user confusion.

Elements and scripts may, however, refer to elements that are hiddenp824 in other contexts.

Elements in a section hidden by the hiddenp824 attribute are still active, e.g. scripts and form controls in such sections still execute and
submit respectively. Only their presentation to the user changes.

The hidden getter steps are:

1. If the hiddenp824 attribute is in the hidden until foundp824 state, then return "until-foundp824".

2. If the hiddenp824 attribute is set, then return true.

3. Return false.

The hiddenp825 setter steps are:

1. If the given value is a string that is an ASCII case-insensitive match for "until-foundp824", then set the hiddenp824 attribute
to "until-foundp824".

2. Otherwise, if the given value is false, then remove the hiddenp824 attribute.

3. Otherwise, if the given value is the empty string, then remove the hiddenp824 attribute.

4. Otherwise, if the given value is null, then remove the hiddenp824 attribute.

5. Otherwise, if the given value is 0, then remove the hiddenp824 attribute.

6. Otherwise, if the given value is NaN, then remove the hiddenp824 attribute.

7. Otherwise, set the hiddenp824 attribute to the empty string.

The ancestor hidden-until-found revealing algorithm is to run the following steps on currentNode:

function login() {
// switch screens
document.getElementById('login').hidden = true;
document.getElementById('game').hidden = false;

}
</script>

</section>
<section id="game" hidden>
...

</section>

For example, it would be incorrect to use the hrefp303 attribute to link to a section marked with the hiddenp824 attribute. If the
content is not applicable or relevant, then there is no reason to link to it.

It would be fine, however, to use the ARIA aria-describedby attribute to refer to descriptions that are themselves hiddenp824.
While hiding the descriptions implies that they are not useful alone, they could be written in such a way that they are useful in the
specific context of being referenced from the elements that they describe.

Similarly, a canvasp677 element with the hiddenp824 attribute could be used by a scripted graphics engine as an off-screen buffer,
and a form control could refer to a hidden formp514 element using its formp598 attribute.

Example

✔ MDN

825

https://w3c.github.io/aria/#aria-describedby
https://infra.spec.whatwg.org/#ascii-case-insensitive

1. While currentNode has a parent node within the flat tree:

1. If currentNode has the hiddenp824 attribute in the hidden until foundp824 state, then:

1. Fire an event named beforematchp1471 at currentNode.

2. Remove the hiddenp824 attribute from currentNode.

2. Set currentNode to the parent node of currentNode within the flat tree.

A traversable navigablep990 's system visibility statep990, including its initial value upon creation, is determined by the user agent. It
represents, for example, whether the browser window is minimized, a browser tab is currently in the background, or a system element
such as a task switcher obscures the page.

When a user-agent determines that the system visibility statep990 for traversable navigablep990 traversable has changed to newState, it
must run the following steps:

1. Let navigables be the inclusive descendant navigablesp994 of traversable's active documentp989.

2. For each navigable of navigables in what order? :

1. Let document be navigable's active documentp989.

2. Queue a global taskp1125 on the user interaction task sourcep1134 given document's relevant global objectp1083 to
update the visibility statep826 of document with newState.

A Documentp130 has a visibility state, which is either "hidden" or "visible", initially set to "hidden".

The visibilityState getter steps are to return this's visibility statep826.

The hidden getter steps are to return true if this's visibility statep826 is "hidden", otherwise false.

To update the visibility state of Documentp130 document to visibilityState:

1. If document's visibility statep826 equals visibilityState, then return.

2. Set document's visibility statep826 to visibilityState.

3. Queue a new VisibilityStateEntryp827 whose visibility statep827 is visibilityState and whose timestampp827 is the current
high resolution time given document's relevant global objectp1083.

4. Run the screen orientation change steps with document. [SCREENORIENTATION]p1482

5. Run the view transition page visibility change steps with document.

6. Run any page visibility change steps which may be defined in other specifications, with visibility statep826 and document.

It would be better if specification authors sent a pull request to add calls from here into their specifications directly,
instead of using the page visibility change stepsp826 hook, to ensure well-defined cross-specification call order. As of the
time of this writing the following specifications are known to have page visibility change stepsp826, which will be run in
an unspecified order: Device Posture API and Web NFC. [DEVICEPOSTURE]p1478 [WEBNFC]p1484

7. Fire an event named visibilitychangep1472 at document, with its bubbles attribute initialized to true.

The VisibilityStateEntryp827 interface exposes visibility changes to the document, from the moment the document becomes active.

6.2 Page visibility §p82

6

6.2.1 The VisibilityStateEntryp827 interface §p82

6

✔ MDN

✔ MDN

⚠ MDN

826

https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-scoping/#flat-tree
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/performance-timeline/#queue-a-performanceentry
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/screen-orientation/#dfn-screen-orientation-change-steps
https://drafts.csswg.org/css-view-transitions/#view-transition-page-visibility-change-steps
https://dom.spec.whatwg.org/#dom-event-bubbles

[Exposed=(Window)]
interface VisibilityStateEntry : PerformanceEntry {

readonly attribute DOMString name; // shadows inherited name
readonly attribute DOMString entryType; // shadows inherited entryType
readonly attribute DOMHighResTimeStamp startTime; // shadows inherited startTime
readonly attribute unsigned long duration; // shadows inherited duration

};

The VisibilityStateEntryp827 has an associated DOMHighResTimeStamp timestamp.

The VisibilityStateEntryp827 has an associated "visible" or "hidden" visibility state.

The name getter steps are to return this's visibility statep827.

The entryType getter steps are to return "visibility-state".

The startTime getter steps are to return this's timestampp827.

The duration getter steps are to return zero.

A node (in particular elements and text nodes) can be inert. When a node is inertp827:

• Hit-testing must act as if the 'pointer-events' CSS property were set to 'none'.

• Text selection functionality must act as if the 'user-select' CSS property were set to 'none'.

• If it is editable, the node behaves as if it were non-editable.

• The user agent should ignore the node for the purposes of find-in-pagep862.

User agents may allow the user to override the restrictions on find-in-pagep862 and text selection, however.

By default, a node is not inertp827.

For example, this allows JavaScript code in the page to examine correlation between visibility changes and paint timing:
function wasHiddenBeforeFirstContentfulPaint() {

const fcpEntry = performance.getEntriesByName("first-contentful-paint")[0];
const visibilityStateEntries = performance.getEntriesByType("visibility-state");
return visibilityStateEntries.some(e =>

e.startTime < fcpEntry.startTime &&
e.name === "hidden");

}

Example

Since hiding a page can cause throttling of rendering and other user-agent operations, it is common to use visibility changes as an
indication that such throttling has occurred. However, other things could also cause throttling in different browsers, such as long
periods of inactivity.

Note

6.3 Inert subtrees §p82

7

See also inertp828 for an explanation of the attribute of the same name.
Note

Inert nodes generally cannot be focused, and user agents do not expose the inert nodes to accessibility APIs or assistive
technologies. Inert nodes that are commandsp643 will become inoperable to users, in the manner described above.

Note

IDL

827

https://w3c.github.io/performance-timeline/#dom-performanceentry
https://w3c.github.io/performance-timeline/#dom-performanceentry-name
https://w3c.github.io/performance-timeline/#dom-performanceentry-entrytype
https://w3c.github.io/performance-timeline/#dom-performanceentry-starttime
https://w3c.github.io/performance-timeline/#dom-performanceentry-duration
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-ui-4/#pointer-events-control
https://drafts.csswg.org/css-ui-4/#content-selection
https://w3c.github.io/editing/docs/execCommand/#editable

A Documentp130 document is blocked by a modal dialog subject if subject is the topmost dialogp646 element in document's top layer.
While document is so blocked, every node that is connected to document, with the exception of the subject element and its flat tree
descendants, must become inertp827.

subject can additionally become inertp827 via the inertp828 attribute, but only if specified on subject itself (i.e., subject escapes
inertness of ancestors); subject's flat tree descendants can become inertp827 in a similar fashion.

The inertp828 attribute is a boolean attributep75 that indicates, by its presence, that the element and all its flat tree descendants which
don't otherwise escape inertness (such as modal dialogs) are to be made inertp827 by the user agent.

An inert subtree should not contain any content or controls which are critical to understanding or using aspects of the page which are
not in the inert state. Content in an inert subtree will not be perceivable by all users, or interactive. Authors should not specify
elements as inert unless the content they represent are also visually obscured in some way. In most cases, authors should not specify
the inertp827 attribute on individual form controls. In these instances, the disabledp601 attribute is probably more appropriate.

The dialogp646 element's showModal()p649 method causes this mechanism to trigger, by adding the dialogp646 element to its node
document's top layer.

Note

The following example shows how to mark partially loaded content, visually obscured by a "loading" message, as inert.

<section aria-labelledby=s1>
<h3 id=s1>Population by City</h3>
<div class=container>

<div class=loading><p>Loading...</p></div>
<div inert>

<form>
<fieldset>

<legend>Date range</legend>
<div>

<label for=start>Start</label>
<input type=date id=start>

</div>
<div>

<label for=end>End</label>
<input type=date id=end>

</div>
<div>

<button>Apply</button>
</div>

</fieldset>
</form>
<table>

<caption>From 20-- to 20--</caption>
<thead>

<tr>
<th>City</th>
<th>State</th>
<th>20-- Population</th>
<th>20-- Population</th>
<th>Percentage change</th>

</tr>
</thead>
<tbody>

Example

6.3.1 Modal dialogs and inert subtrees §p82

8

6.3.2 The inert attribute §p82

8

✔ MDN

828

https://drafts.csswg.org/css-position-4/#document-top-layer
https://dom.spec.whatwg.org/#connected
https://drafts.csswg.org/css-scoping/#flat-tree
https://drafts.csswg.org/css-scoping/#flat-tree
https://drafts.csswg.org/css-position-4/#add-an-element-to-the-top-layer
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-position-4/#document-top-layer
https://drafts.csswg.org/css-scoping/#flat-tree

The inert IDL attribute must reflectp104 the content attribute of the same name.

To prevent abuse of certain APIs that could be annoying to users (e.g., opening popups or vibrating phones), user agents allow these
APIs only when the user is actively interacting with the web page or has interacted with the page at least once. This "active
interaction" state is maintained through the mechanisms defined in this section.

For the purpose of tracking user activation, each Windowp922 W has two relevant values:

• A last activation timestamp, which is either a DOMHighResTimeStamp, positive infinity (indicating that W has never been
activated), or negative infinity (indicating that the activation has been consumedp831). Initially positive infinity.

• A last history-action activation timestamp, which is either a DOMHighResTimeStamp or positive infinity, initially positive
infinity.

A user agent also defines a transient activation duration, which is a constant number indicating how long a user activation is
available for certain user activation-gated APIsp831 (e.g., for opening popups).

<!-- ... -->
</tbody>

</table>
</div>

</div>
</section>

The "loading" overlay obscures the inert content, making it visually apparent that the inert content is not presently accessible.
Notice that the heading and "loading" text are not descendants of the element with the inertp827 attribute. This will ensure this
text is accessible to all users, while the inert content cannot be interacted with by anyone.

By default, there is no persistent visual indication of an element or its subtree being inert. Appropriate visual styles for such
content is often context-dependent. For instance, an inert off-screen navigation panel would not require a default style, as its off-
screen position visually obscures the content. Similarly, a modal dialogp646 element's backdrop will serve as the means to visually
obscure the inert content of the web page, rather than styling the inert content specifically.

However, for many other situations authors are strongly encouraged to clearly mark what parts of their document are active and
which are inert, to avoid user confusion. In particular, it is worth remembering that not all users can see all parts of a page at once;
for example, users of screen readers, users on small devices or with magnifiers, and even users using particularly small windows
might not be able to see the active part of a page and might get frustrated if inert sections are not obviously inert.

Note

6.4 Tracking user activation §p82

9

6.4.1 Data model §p82

9

✔ MDN

829

https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://w3c.github.io/hr-time/#dom-domhighrestimestamp

We then have the following boolean user activation states for W:

Sticky activation
When the current high resolution time given W is greater than or equal to the last activation timestampp829 in W, W is said to have
sticky activationp830.

This is W's historical activation state, indicating whether the user has ever interacted in W. It starts false, then changes to true (and
never changes back to false) when W gets the very first activation notificationp830.

Transient activation
When the current high resolution time given W is greater than or equal to the last activation timestampp829 in W, and less than the
last activation timestampp829 in W plus the transient activation durationp829, then W is said to have transient activationp830.

This is W's current activation state, indicating whether the user has interacted in W recently. This starts with a false value, and
remains true for a limited time after every activation notificationp830 W gets.

The transient activationp830 state is considered expired if it becomes false because the transient activation durationp829 time has
elapsed since the last user activation. Note that it can become false even before the expiry time through an activation
consumptionp831.

History-action activation
When the last history-action activation timestampp829 of W is not equal to the last activation timestampp829 of W, then W is said to
have history-action activationp830.

This is a special variant of user activation, used to allow access to certain session history APIs which, if used too frequently, would
make it harder for the user to traverse back using browser UIp1069. It starts with a false value, and becomes true whenever the user
interacts with W, but is reset to false through history-action activation consumptionp831. This ensures such APIs cannot be used
multiple times in a row without an intervening user activation. But unlike transient activationp830, there is no time limit within which
such APIs must be used.

When a user interaction causes firing of an activation triggering input eventp831 in a Documentp130 document, the user agent must
perform the following activation notification steps before dispatching the event:

1. Assert: document is fully activep1003.

2. Let windows be « document's relevant global objectp1083 ».

3. Extend windows with the active windowp989 of each of document's ancestor navigablesp994.

4. Extend windows with the active windowp989 of each of document's descendant navigablesp994, filtered to include only those
navigablesp989 whose active documentp989 's origin is same originp899 with document's origin.

5. For each window in windows:

1. Set window's last activation timestampp829 to the current high resolution time.

2. Notify the close watcher manager about user activationp865 given window.

The transient activation durationp829 is expected be at most a few seconds, so that the user can possibly perceive the link between
an interaction with the page and the page calling the activation-gated API.

Note

The last activation timestampp829 and last history-action activation timestampp829 are retained even after the Documentp130 changes
its fully activep1003 status (e.g., after navigating away from a Documentp130, or navigating to a cached Documentp130). This means
sticky activationp830 state spans multiple navigations as long as the same Documentp130 gets reused. For the transient activation
state, the original expiryp830 time remains unchanged (i.e., the state still expires within the transient activation durationp829 limit
from the original activation triggering input eventp831). It is important to consider this when deciding whether to base certain things
off sticky activationp830 or transient activationp830.

Note

6.4.2 Processing model §p83

0

830

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#concept-event-dispatch
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-extend
https://infra.spec.whatwg.org/#list-extend
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-iterate
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time

An activation triggering input event is any event whose isTrusted attribute is true and whose type is one of:

• "keydown", provided the key is neither the Esc key nor a shortcut key reserved by the user agent;

• "mousedown";

• "pointerdown", provided the event's pointerType is "mouse";

• "pointerup", provided the event's pointerType is not "mouse"; or

• "touchend".

Activation consuming APIsp831 defined in this and other specifications can consume user activation by performing the following
steps, given a Windowp922 W:

1. If W's navigablep923 is null, then return.

2. Let top be W's navigablep923 's top-level traversablep990.

3. Let navigables be the inclusive descendant navigablesp994 of top's active documentp989.

4. Let windows be the list of Windowp922 objects constructed by taking the active windowp989 of each item in navigables.

5. For each window in windows, if window's last activation timestampp829 is not positive infinity, then set window's last
activation timestampp829 to negative infinity.

History-action activation-consuming APIsp831 can consume history-action user activation by performing the following steps, given
a Windowp922 W:

1. If W's navigablep923 is null, then return.

2. Let top be W's navigablep923 's top-level traversablep990.

3. Let navigables be the inclusive descendant navigablesp994 of top's active documentp989.

4. Let windows be the list of Windowp922 objects constructed by taking the active windowp989 of each item in navigables.

5. For each window in windows, set window's last history-action activation timestampp829 to window's last activation
timestampp829.

APIs that are dependent on user activation are classified into different levels:

Sticky activation-gated APIs
These APIs require the sticky activationp830 state to be true, so they are blocked until the very first user activation.

Transient activation-gated APIs
These APIs require the transient activationp830 state to be true, but they don't consumep831 it, so multiple calls are allowed per user
activation until the transient state expiresp830.

Transient activation-consuming APIs
These APIs require the transient activationp830 state to be true, and they consume user activationp831 in each call to prevent multiple
calls per user activation.

History-action activation-consuming APIs
These APIs require the history-action activationp830 state to be true, and they consume history-action user activationp831 in each call

Note the asymmetry in the sets of browsing contextsp998 in the page that are affected by an activation notificationp830 vs an
activation consumptionp831: an activation consumption changes (to false) the transient activationp830 states for all browsing
contexts in the page, but an activation notification changes (to true) the states for a subset of those browsing contexts. The
exhaustive nature of consumption here is deliberate: it prevents malicious sites from making multiple calls to an activation
consuming APIp831 from a single user activation (possibly by exploiting a deep hierarchy of iframep390s).

Note

6.4.3 APIs gated by user activation §p83

1

831

https://dom.spec.whatwg.org/#dom-event-istrusted
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/pointerevents/#the-pointerdown-event
https://w3c.github.io/pointerevents/#dom-pointerevent-pointertype
https://w3c.github.io/pointerevents/#the-pointerup-event
https://w3c.github.io/pointerevents/#dom-pointerevent-pointertype
https://w3c.github.io/touch-events/#event-touchend
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate

to prevent multiple calls per user activation.

Each Windowp922 has an associated UserActivation, which is a UserActivationp832 object. Upon creation of the Windowp922 object, its
associated UserActivationp832 must be set to a new UserActivationp832 object created in the Windowp922 object's relevant realmp1083.

[Exposed=Window]
interface UserActivation {

readonly attribute boolean hasBeenActive;
readonly attribute boolean isActive;

};

partial interface Navigator {
[SameObject] readonly attribute UserActivation userActivation;

};

The userActivation getter steps are to return this's relevant global objectp1083 's associated UserActivationp832.

The hasBeenActive getter steps are to return true if this's relevant global objectp1083 has sticky activationp830, and false otherwise.

The isActive getter steps are to return true if this's relevant global objectp1083 has transient activationp830, and false otherwise.

For the purposes of user-agent automation and application testing, this specification defines the following extension command for the
Web Driver specification. It is optional for a user agent to support the following extension command. [WEBDRIVER]p1483

HTTP Method URI Template

`POST` /session/{session id}/window/consume-user-activation

The remote end steps are:

1. Let window be current browsing context's active windowp998.

2. Let consume be true if window has transient activationp830; otherwise false.

3. If consume is true, then consume user activationp831 of window.

4. Return success with data consume.

Certain elements in HTML have an activation behavior, which means that the user can activate them. This is always caused by a click
event.

The user agent should allow the user to manually trigger elements that have an activation behavior, for instance using keyboard or
voice input, or through mouse clicks. When the user triggers an element with a defined activation behavior in a manner other than

navigatorp1170.userActivationp832.hasBeenActivep832

Returns whether the window has sticky activationp830.

navigatorp1170.userActivationp832.isActivep832

Returns whether the window has transient activationp830.

For web developers (non-normative)

6.5 Activation behavior of elements §p83

2

IDL

6.4.4 The UserActivationp832 interface §p83

2

6.4.5 User agent automation §p83

2

MDN

MDN
MDN

MDN

832

https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/webdriver/#dfn-extension-commands
https://w3c.github.io/webdriver/#dfn-extension-commands
https://w3c.github.io/webdriver/#dfn-remote-end-steps
https://w3c.github.io/webdriver/#dfn-current-browsing-context
https://w3c.github.io/webdriver/#dfn-success
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#eventtarget-activation-behavior

clicking it, the default action of the interaction event must be to fire a click eventp1148 at the element.

Each element has an associated click in progress flag, which is initially unset.

The click() method must run the following steps:

1. If this element is a form control that is disabledp601, then return.

2. If this element's click in progress flagp833 is set, then return.

3. Set this element's click in progress flagp833.

4. Fire a synthetic pointer eventp1147 named click at this element, with the not trusted flag set.

5. Unset this element's click in progress flagp833.

[Exposed=Window]
interface ToggleEvent : Event {

constructor(DOMString type, optional ToggleEventInit eventInitDict = {});
readonly attribute DOMString oldState;
readonly attribute DOMString newState;

};

dictionary ToggleEventInit : EventInit {
DOMString oldState = "";
DOMString newState = "";

};

The oldState and newState attributes must return the values they are initialized to.

A toggle task tracker is a struct which has:

task
A taskp1124 which fires a ToggleEventp833.

old state
A string which represents the taskp833 's event's value for the oldStatep833 attribute.

This section is non-normative.

An HTML user interface typically consists of multiple interactive widgets, such as form controls, scrollable regions, links, dialog boxes,

element.clickp833()
Acts as if the element was clicked.

For web developers (non-normative)

event.oldStatep833

Set to "closed" when transitioning from closed to open, or set to "open" when transitioning from open to closed.

event.newStatep833

Set to "open" when transitioning from closed to open, or set to "closed" when transitioning from open to closed.

For web developers (non-normative)

6.6 Focus §p83

3

IDL

6.5.1 The ToggleEventp833 interface §p83

3

6.6.1 Introduction §p83

3

✔ MDN

✔ MDN

833

https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://infra.spec.whatwg.org/#struct

browser tabs, and so forth. These widgets form a hierarchy, with some (e.g. browser tabs, dialog boxes) containing others (e.g. links,
form controls).

When interacting with an interface using a keyboard, key input is channeled from the system, through the hierarchy of interactive
widgets, to an active widget, which is said to be focusedp836.

Keyboard events are always targeted at this focusedp836 element.

A top-level traversablep990 has system focus when it can receive keyboard input channeled from the operating system, possibly
targeted at one of its active documentp989 's descendant navigablesp994.

A top-level traversablep990 has user attention when its system visibility statep990 is "visible", and it either has system focusp834 or
user agent widgets directly related to it can receive keyboard input channeled from the operating system.

A Documentp130 d is a fully active descendant of a top-level traversable with user attention when d is fully activep1003 and d's
node navigablep989 's top-level traversablep990 has user attentionp834.

Consider an HTML application running in a browser tab running in a graphical environment. Suppose this application had a page
with some text controls and links, and was currently showing a modal dialog, which itself had a text control and a button.

The hierarchy of focusable widgets, in this scenario, would include the browser window, which would have, amongst its children,
the browser tab containing the HTML application. The tab itself would have as its children the various links and text controls, as
well as the dialog. The dialog itself would have as its children the text control and the button.

If the widget with focusp836 in this example was the text control in the dialog box, then key input would be channeled from the
graphical system to ① the web browser, then to ② the tab, then to ③ the dialog, and finally to ④ the text control.

Example

User attention is lost when a browser window loses focus, whereas system focus might also be lost to other system widgets in the
browser window such as a location bar.

Note

6.6.2 Data model §p83

4

834

The term focusable area is used to refer to regions of the interface that can further become the target of such keyboard input.
Focusable areas can be elements, parts of elements, or other regions managed by the user agent.

Each focusable areap835 has a DOM anchor, which is a Node object that represents the position of the focusable areap835 in the DOM.
(When the focusable areap835 is itself a Node, it is its own DOM anchorp835.) The DOM anchorp835 is used in some APIs as a substitute for
the focusable areap835 when there is no other DOM object to represent the focusable areap835.

The following table describes what objects can be focusable areasp835. The cells in the left column describe objects that can be
focusable areasp835; the cells in the right column describe the DOM anchorsp835 for those elements. (The cells that span both columns
are non-normative examples.)

Focusable areap835 DOM anchorp835

Examples

Elements that meet all the following criteria:

• the element's tabindex valuep839 is non-null, or the element is determined by the user
agent to be focusable;

• the element is either not a shadow host, or has a shadow root whose delegates focus is
false;

• the element is not actually disabledp781;
• the element is not inertp827;
• the element is either being renderedp1388, delegating its rendering to its childrenp1388, or

being used as relevant canvas fallback contentp678.

The element itself.

The shapes of areap471 elements in an image mapp473 associated with an imgp346 element that is being
renderedp1388 and is not inertp827.

The imgp346 element.

The user-agent provided subwidgets of elements that are being renderedp1388 and are not actually
disabledp781 or inertp827.

The element for which the focusable areap835

is a subwidget.

The scrollable regions of elements that are being renderedp1388 and are not inertp827. The element for which the box that the
scrollable region scrolls was created.

The viewport of a Documentp130 that has a non-null browsing contextp999 and is not inertp827. The Documentp130 for which the viewport was
created.

Any other element or part of an element determined by the user agent to be a focusable area,
especially to aid with accessibility or to better match platform conventions.

The element.

iframep390, dialogp646, <input type=text>p527, sometimes p257 (depending on platform conventions).
Example

In the following example, the areap471 element creates two shapes, one on each image. The DOM anchorp835 of the first shape is the first imgp346 element, and
the DOM anchorp835 of the second shape is the second imgp346 element.

<map id=wallmap><area alt="Enter Door" coords="10,10,100,200" href="door.html"></map>
...

...

Example

The controls in the user interfacep464 for a videop406 element, the up and down buttons in a spin-control version of <input type=number>p537, the part of a
detailsp637 element's rendering that enables the element to be opened or closed using keyboard input.

Example

The CSS 'overflow' property's 'scroll' value typically creates a scrollable region.
Example

The contents of an iframep390.
Example

835

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

Focusable areap835 DOM anchorp835

Examples

One focusable areap835 in each Documentp130 is designated the focused area of the document. Which control is so designated
changes over time, based on algorithms in this specification.

The currently focused area of a top-level traversable traversable is the focusable areap835-or-null returned by this algorithm:

1. If traversable does not have system focusp834, then return null.

2. Let candidate be traversable's active documentp989.

3. While candidate's focused areap836 is a navigable containerp991 with a non-null content navigablep991: set candidate to the
active documentp989 of that navigable containerp991 's content navigablep991.

4. If candidate's focused areap836 is non-null, set candidate to candidate's focused areap836.

5. Return candidate.

The current focus chain of a top-level traversable traversable is the focus chainp836 of the currently focused areap836 of
traversable, if traversable is non-null, or an empty list otherwise.

An element that is the DOM anchorp835 of a focusable areap835 is said to gain focus when that focusable areap835 becomes the
currently focused area of a top-level traversablep836. When an element is the DOM anchorp835 of a focusable areap835 of the currently
focused area of a top-level traversablep836, it is focused.

The focus chain of a focusable areap835 subject is the ordered list constructed as follows:

1. Let output be an empty list.

2. Let currentObject be subject.

3. While true:

1. Append currentObject to output.

2. If currentObject is an areap471 element's shape, then append that areap471 element to output.

Otherwise, if currentObject's DOM anchorp835 is an element that is not currentObject itself, then append
currentObject's DOM anchorp835 to output.

3. If currentObject is a focusable areap835, then set currentObject to currentObject's DOM anchorp835 's node document.

Otherwise, if currentObject is a Documentp130 whose node navigablep989 's parentp989 is non-null, then set
currentObject to currentObject's node navigablep989 's parentp989.

Otherwise, break.

A user agent could make all list item bullets sequentially focusablep837, so that a user can more easily navigate lists.
Example

Similarly, a user agent could make all elements with titlep157 attributes sequentially focusablep837, so that their advisory information can be accessed.
Example

A navigable containerp991 (e.g. an iframep390) is a focusable areap835, but key events routed to a navigable containerp991 get
immediately routed to its content navigablep991 's active documentp989. Similarly, in sequential focus navigation a navigable
containerp991 essentially acts merely as a placeholder for its content navigablep991 's active documentp989.

Note

Even if a document is not fully activep1003 and not shown to the user, it can still have a focused area of the documentp836. If a
document's fully activep1003 state changes, its focused area of the documentp836 will stay the same.

Note

836

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#iteration-break

4. Return output.

All elements that are focusable areasp835 are said to be focusable.

There are two special types of focusability for focusable areasp835:

• A focusable areap835 is said to be sequentially focusable if it is included in its Documentp130 's sequential focus navigation
orderp844 and the user agent determines that it is sequentially focusable.

• A focusable areap835 is said to be click focusable if the user agent determines that it is click focusable. User agents should
consider focusable areas with non-null tabindex valuesp839 to be click focusable.

When a user activatesp832 a click focusablep837 focusable areap835, the user agent must run the focusing stepsp842 on the focusable
areap835 with focus trigger set to "click".

A node is a focus navigation scope owner if it is a Documentp130, a shadow host, a slotp675, or an element in the popover showing
statep887 which also has a popover invokerp887 set.

Each focus navigation scope ownerp837 has a focus navigation scope, which is a list of elements. Its contents are determined as
follows:

Every element element has an associated focus navigation owner, which is either null or a focus navigation scope ownerp837. It is
determined by the following algorithm:

1. If element's parent is null, then return null.

2. If element's parent is a shadow host, then return element's assigned slot.

3. If element's parent is a shadow root, then return the parent's host.

4. If element's parent is the document element, then return the parent's node document.

The chain starts with subject and (if subject is or can be the currently focused area of a top-level traversablep836)
continues up the focus hierarchy up to the Documentp130 of the top-level traversablep990.

Note

Elements which are not focusablep837 are not focusable areasp835, and thus not sequentially focusablep837 and not click
focusablep837.

Note

Being focusablep837 is a statement about whether an element can be focused programmatically, e.g. via the focus()p847 method or
autofocusp848 attribute. In contrast, sequentially focusablep837 and click focusablep837 govern how the user agent responds to user
interaction: respectively, to sequential focus navigationp844 and as activation behaviorp0.

The user agent might determine that an element is not sequentially focusablep837 even if it is focusablep837 and is included in its
Documentp130 's sequential focus navigation orderp844, according to user preferences. For example, macOS users can set the user
agent to skip non-form control elements, or can skip links when doing sequential focus navigationp844 with just the Tab key (as
opposed to using both the Option and Tab keys).

Similarly, the user agent might determine that an element is not click focusablep837 even if it is focusablep837. For example, in some
user agents, clicking on a non-editable form control does not focus it, i.e. the user agent has determined that such controls are not
click focusable.

Thus, an element can be focusablep837, but neither sequentially focusablep837 nor click focusablep837. For example, in some user
agents, a non-editable form-control with a negative-integer tabindex valuep839 would not be focusable via user interaction, only via
programmatic APIs.

Note

Note that focusing is not an activation behavior, i.e. calling the click()p833 method on an element or dispatching a synthetic click
event on it won't cause the element to get focused.

Note

837

https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#slotable-assigned-slot
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-node-document

5. If element is in the popover showing statep887 and has a popover invokerp887 set, then return element.

6. Return element's parent's associated focus navigation ownerp837.

Then, the contents of a given focus navigation scope ownerp837 owner's focus navigation scopep837 are all elements whose associated
focus navigation ownerp837 is owner.

A tabindex-ordered focus navigation scope is a list of focusable areasp835 and focus navigation scope ownersp837. Every focus
navigation scope ownerp837 owner has tabindex-ordered focus navigation scopep838, whose contents are determined as follows:

• It contains all elements in owner's focus navigation scopep837 that are themselves focus navigation scope ownersp837, except
the elements whose tabindex valuep839 is a negative integer.

• It contains all of the focusable areasp835 whose DOM anchorp835 is an element in owner's focus navigation scopep837, except
the focusable areasp835 whose tabindex valuep839 is a negative integer.

The order within a tabindex-ordered focus navigation scopep838 is determined by each element's tabindex valuep839, as described in the
section below.

A flattened tabindex-ordered focus navigation scope is a list of focusable areasp835. Every focus navigation scope ownerp837

owner owns a distinct flattened tabindex-ordered focus navigation scopep838, whose contents are determined by the following
algorithm:

1. Let result be a clone of owner's tabindex-ordered focus navigation scopep838.

2. For each item of result:

1. If item is not a focus navigation scope ownerp837, then continue.

2. If item is not a focusable areap835, then replace item with all of the items in item's flattened tabindex-ordered focus
navigation scopep838.

3. Otherwise, insert the contents of item's flattened tabindex-ordered focus navigation scopep838 after item.

The tabindex content attribute allows authors to make an element and regions that have the element as its DOM anchorp835 be
focusable areasp835, allow or prevent them from being sequentially focusablep837, and determine their relative ordering for sequential
focus navigationp844.

The name "tab index" comes from the common use of the Tab key to navigate through the focusable elements. The term "tabbing"
refers to moving forward through sequentially focusablep837 focusable areasp835.

The tabindexp838 attribute, if specified, must have a value that is a valid integerp76. Positive numbers specify the relative position of
the element's focusable areasp835 in the sequential focus navigation orderp844, and negative numbers indicate that the control is not
sequentially focusablep837.

Developers should use caution when using values other than 0 or −1 for their tabindexp838 attributes as this is complicated to do
correctly.

The order of elements within a focus navigation scopep837 does not impact any of the algorithms in this specification. Ordering only
becomes important for the tabindex-ordered focus navigation scopep838 and flattened tabindex-ordered focus navigation scopep838

concepts defined below.

Note

The rules there do not give a precise ordering, as they are composed mostly of "should" statements and relative orderings.
Note

The following provides a non-normative summary of the behaviors of the possible tabindexp838 attribute values. The below
Note

6.6.3 The tabindexp838 attribute §p83

8

✔ MDN

838

https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#iteration-continue

The tabindex value of an element is the value of its tabindexp838 attribute, parsed using the rules for parsing integersp76. If parsing
fails or the attribute is not specified, then the tabindex valuep839 is null.

The tabindex valuep839 of a focusable areap835 is the tabindex valuep839 of its DOM anchorp835.

The tabindex valuep839 of an element must be interpreted as follows:

If the value is null
The user agent should follow platform conventions to determine if the element should be considered as a focusable areap835 and if
so, whether the element and any focusable areasp835 that have the element as their DOM anchorp835 are sequentially focusablep837,
and if so, what their relative position in their tabindex-ordered focus navigation scopep838 is to be. If the element is a focus
navigation scope ownerp837, it must be included in its tabindex-ordered focus navigation scopep838 even if it is not a focusable
areap835.

The relative ordering within a tabindex-ordered focus navigation scopep838 for elements and focusable areasp835 that belong to the
same focus navigation scopep837 and whose tabindex valuep839 is null should be in shadow-including tree order.

Modulo platform conventions, it is suggested that the following elements should be considered as focusable areasp835 and be
sequentially focusablep837:

• ap257 elements that have an hrefp303 attribute

• buttonp566 elements

• inputp520 elements whose typep523 attribute are not in the Hiddenp527 state

• selectp568 elements

• textareap579 elements

• summaryp643 elements that are the first summaryp643 element child of a detailsp637 element

• Elements with a draggablep885 attribute set, if that would enable the user agent to allow the user to begin drag operations
for those elements without the use of a pointing device

• Editing hostsp855

• Navigable containersp991

If the value is a negative integer
The user agent must consider the element as a focusable areap835, but should omit the element from any tabindex-ordered focus
navigation scopep838.

processing model gives the more precise rules.

omitted (or non-integer values)
The user agent will decide whether the element is focusablep837, and if it is, whether it is sequentially focusablep837 or click
focusablep837 (or both).

−1 (or other negative integer values)
Causes the element to be focusablep837, and indicates that the author would prefer the element to be click focusablep837 but not
sequentially focusablep837. The user agent might ignore this preference for click and sequential focusability, e.g., for specific
element types according to platform conventions, or for keyboard-only users.

0
Causes the element to be focusablep837, and indicates that the author would prefer the element to be both click focusablep837

and sequentially focusablep837. The user agent might ignore this preference for click and sequential focusability.

positive integer values
Behaves the same as 0, but in addition creates a relative ordering within a tabindex-ordered focus navigation scopep838, so that
elements with higher tabindexp838 attribute value come later.

Note that the tabindexp838 attribute cannot be used to make an element non-focusable. The only way a page author can do that is
by disablingp781 the element, or making it inertp827.

839

https://dom.spec.whatwg.org/#concept-shadow-including-tree-order

If the value is a zero
The user agent must allow the element to be considered as a focusable areap835 and should allow the element and any focusable
areasp835 that have the element as their DOM anchorp835 to be sequentially focusablep837.

The relative ordering within a tabindex-ordered focus navigation scopep838 for elements and focusable areasp835 that belong to the
same focus navigation scopep837 and whose tabindex valuep839 is zero should be in shadow-including tree order.

If the value is greater than zero
The user agent must allow the element to be considered as a focusable areap835 and should allow the element and any focusable
areasp835 that have the element as their DOM anchorp835 to be sequentially focusablep837, and should place the element —
referenced as candidate below — and the aforementioned focusable areasp835 in the tabindex-ordered focus navigation scopep838

where the element is a part of so that, relative to other elements and focusable areasp835 that belong to the same focus navigation
scopep837, they are:

• before any focusable areap835 whose DOM anchorp835 is an element whose tabindexp838 attribute has been omitted or
whose value, when parsed, returns an error,

• before any focusable areap835 whose DOM anchorp835 is an element whose tabindexp838 attribute has a value less than or
equal to zero,

• after any focusable areap835 whose DOM anchorp835 is an element whose tabindexp838 attribute has a value greater than
zero but less than the value of the tabindexp838 attribute on candidate,

• after any focusable areap835 whose DOM anchorp835 is an element whose tabindexp838 attribute has a value equal to the
value of the tabindexp838 attribute on candidate but that is located earlier than candidate in shadow-including tree order,

• before any focusable areap835 whose DOM anchorp835 is an element whose tabindexp838 attribute has a value equal to the
value of the tabindexp838 attribute on candidate but that is located later than candidate in shadow-including tree order,
and

• before any focusable areap835 whose DOM anchorp835 is an element whose tabindexp838 attribute has a value greater than
the value of the tabindexp838 attribute on candidate.

The tabIndex IDL attribute must reflectp104 the value of the tabindexp838 content attribute. The default valuep106 is 0 if the element is
an ap257, areap471, buttonp566, framep1433, iframep390, inputp520, objectp402, selectp568, textareap579, or SVG a element, or is a
summaryp643 element that is a summary for its parent detailsp643. The default valuep106 is −1 otherwise.

To get the focusable area for a focus target that is either an element that is not a focusable areap835, or is a navigablep989, given an
optional string focus trigger (default "other"), run the first matching set of steps from the following list:

↪ If focus target is an areap471 element with one or more shapes that are focusable areasp835

Return the shape corresponding to the first imgp346 element in tree order that uses the image map to which the areap471 element
belongs.

↪ If focus target is an element with one or more scrollable regions that are focusable areasp835

Return the element's first scrollable region, according to a pre-order, depth-first traversal of the flat tree. [CSSSCOPING]p1477

↪ If focus target is the document element of its Documentp130

Return the Documentp130 's viewport.

One valid reason to ignore the requirement that sequential focus navigation not allow the author to lead to the element would
be if the user's only mechanism for moving the focus is sequential focus navigation. For instance, a keyboard-only user would
be unable to click on a text control with a negative tabindexp838, so that user's user agent would be well justified in allowing the
user to tab to the control regardless.

Note

The varying default value based on element type is a historical artifact.
Note

6.6.4 Processing model §p84

0

✔ MDN

840

https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://svgwg.org/svg2-draft/linking.html#AElement
https://dom.spec.whatwg.org/#concept-tree-order
https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css2/#viewport

↪ If focus target is a navigablep989

Return the navigablep989 's active documentp989.

↪ If focus target is a navigable containerp991 with a non-null content navigablep991

Return the navigable containerp991 's content navigablep991 's active documentp989.

↪ If focus target is a shadow host whose shadow root's delegates focus is true

1. Let focusedElement be the currently focused area of a top-level traversablep836 's DOM anchorp835.

2. If focus target is a shadow-including inclusive ancestor of focusedElement, then return focusedElement.

3. Return the focus delegatep841 for focus target given focus trigger.

↪ Otherwise
Return null.

The focus delegate for a focusTarget, given an optional string focusTrigger (default "other"), is given by the following steps:

1. If focusTarget is a shadow host and its shadow root's delegates focus is false, then return null.

2. Let whereToLook be focusTarget.

3. If whereToLook is a shadow host, then set whereToLook to whereToLook's shadow root.

4. Let autofocusDelegate be the autofocus delegatep841 for whereToLook given focusTrigger.

5. If autofocusDelegate is not null, then return autofocusDelegate.

6. For each descendant of whereToLook's descendants, in tree order:

1. Let focusableArea be null.

2. If focusTarget is a dialogp646 element and descendant is sequentially focusablep837, then set focusableArea to
descendant.

3. Otherwise, if focusTarget is not a dialogp646 and descendant is a focusable areap835, set focusableArea to
descendant.

4. Otherwise, set focusableArea to the result of getting the focusable areap840 for descendant given focusTrigger.

5. If focusableArea is not null, then return focusableArea.

7. Return null.

The autofocus delegate for a focus target given a focus trigger is given by the following steps:

1. For each descendant descendant of focus target, in tree order:

For sequential focusabilityp837, the handling of shadow hosts and delegates focus is done when constructing the sequential
focus navigation orderp844. That is, the focusing stepsp842 will never be called on such shadow hosts as part of sequential
focus navigation.

Note

This step can end up recursing, i.e., the get the focusable areap840 steps might return the focus delegatep841 of
descendant.

Note

It's important that we are not looking at the shadow-including descendants here, but instead only at the descendants.
Shadow hosts are instead handled by the recursive case mentioned above.

Note

The above algorithm essentially returns the first suitable focusable areap835 where the path between its DOM anchorp835 and
focusTarget delegates focus at any shadow tree boundaries.

Note

841

https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-tree-order

1. If descendant does not have an autofocusp848 content attribute, then continue.

2. Let focusable area be descendant, if descendant is a focusable areap835; otherwise let focusable area be the result
of getting the focusable areap840 for descendant given focus trigger.

3. If focusable area is null, then continue.

4. If focusable area is not click focusablep837 and focus trigger is "click", then continue.

5. Return focusable area.

2. Return null.

The focusing steps for an object new focus target that is either a focusable areap835, or an element that is not a focusable areap835, or
a navigablep989, are as follows. They can optionally be run with a fallback target and a string focus trigger.

1. If new focus target is not a focusable areap835, then set new focus target to the result of getting the focusable areap840 for
new focus target, given focus trigger if it was passed.

2. If new focus target is null, then:

1. If no fallback target was specified, then return.

2. Otherwise, set new focus target to the fallback target.

3. If new focus target is a navigable containerp991 with non-null content navigablep991, then set new focus target to the content
navigablep991 's active documentp989.

4. If new focus target is a focusable areap835 and its DOM anchorp835 is inertp827, then return.

5. If new focus target is the currently focused area of a top-level traversablep836, then return.

6. Let old chain be the current focus chain of the top-level traversablep836 in which new focus target finds itself.

7. Let new chain be the focus chainp836 of new focus target.

8. Run the focus update stepsp843 with old chain, new chain, and new focus target respectively.

User agents must immediatelyp43 run the focusing stepsp842 for a focusable areap835 or navigablep989 candidate whenever the user
attempts to move the focus to candidate.

The unfocusing steps for an object old focus target that is either a focusable areap835 or an element that is not a focusable areap835

are as follows:

1. If old focus target is a shadow host whose shadow root's delegates focus is true, and old focus target's shadow root is a
shadow-including inclusive ancestor of the currently focused area of a top-level traversablep836 's DOM anchorp835, then set
old focus target to that currently focused area of a top-level traversablep836.

2. If old focus target is inertp827, then return.

3. If old focus target is an areap471 element and one of its shapes is the currently focused area of a top-level traversablep836, or,
if old focus target is an element with one or more scrollable regions, and one of them is the currently focused area of a top-
level traversablep836, then let old focus target be that currently focused area of a top-level traversablep836.

4. Let old chain be the current focus chain of the top-level traversablep836 in which old focus target finds itself.

5. If old focus target is not one of the entries in old chain, then return.

6. If old focus target is not a focusable areap835, then return.

7. Let topDocument be old chain's last entry.

8. If topDocument's node navigablep989 has system focusp834, then run the focusing stepsp842 for topDocument's viewport.

Otherwise, apply any relevant platform-specific conventions for removing system focusp834 from topDocument's node
navigablep989, and run the focus update stepsp843 given old chain, an empty list, and null.

The unfocusing stepsp842 do not always result in the focus changing, even when applied to the currently focused area of a top-level
Note

842

https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://drafts.csswg.org/css2/#viewport

The focus update steps, given an old chain, a new chain, and a new focus target respectively, are as follows:

1. If the last entry in old chain and the last entry in new chain are the same, pop the last entry from old chain and the last entry
from new chain and redo this step.

2. For each entry entry in old chain, in order, run these substeps:

1. If entry is an inputp520 element, and the changep1471 event appliesp523 to the element, and the element does not
have a defined activation behavior, and the user has changed the element's valuep597 or its list of selected filesp544

while the control was focused without committing that change (such that it is different to what it was when the
control was first focused), then:

1. Set entry's user validityp597 to true.

2. Fire an event named changep1471 at the element, with the bubbles attribute initialized to true.

2. If entry is an element, let blur event target be entry.

If entry is a Documentp130 object, let blur event target be that Documentp130 object's relevant global objectp1083.

Otherwise, let blur event target be null.

3. If entry is the last entry in old chain, and entry is an Element, and the last entry in new chain is also an Element,
then let related blur target be the last entry in new chain. Otherwise, let related blur target be null.

4. If blur event target is not null, fire a focus eventp843 named blurp1471 at blur event target, with related blur target as
the related target.

3. Apply any relevant platform-specific conventions for focusing new focus target. (For example, some platforms select the
contents of a text control when that control is focused.)

4. For each entry entry in new chain, in reverse order, run these substeps:

1. If entry is a focusable areap835, and the focused area of the documentp836 is not entry:

1. Set document's relevant global objectp1083 's navigation APIp952 's focus changed during ongoing
navigationp964 to true.

2. Designate entry as the focused area of the documentp836.

2. If entry is an element, let focus event target be entry.

If entry is a Documentp130 object, let focus event target be that Documentp130 object's relevant global objectp1083.

Otherwise, let focus event target be null.

3. If entry is the last entry in new chain, and entry is an Element, and the last entry in old chain is also an Element,
then let related focus target be the last entry in old chain. Otherwise, let related focus target be null.

4. If focus event target is not null, fire a focus eventp843 named focusp1471 at focus event target, with related focus
target as the related target.

To fire a focus event named e at an element t with a given related target r, fire an event named e at t, using FocusEvent, with the
relatedTarget attribute initialized to r, the view attribute initialized to t's node document's relevant global objectp1083, and the
composed flag set.

traversablep836. For example, if the currently focused area of a top-level traversablep836 is a viewport, then it will usually keep its
focus regardless until another focusable areap835 is explicitly focused with the focusing stepsp842.

In some cases, e.g., if entry is an areap471 element's shape, a scrollable region, or a viewport, no event is fired.
Note

In some cases, e.g. if entry is an areap471 element's shape, a scrollable region, or a viewport, no event is fired.
Note

843

https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/uievents/#focusevent
https://w3c.github.io/uievents/#dom-focusevent-relatedtarget
https://w3c.github.io/uievents/#dom-uievent-view
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#composed-flag

When a key event is to be routed in a top-level traversablep990, the user agent must run the following steps:

1. Let target area be the currently focused area of the top-level traversablep836.

2. Assert: target area is not null, since key events are only routed to top-level traversablesp990 that have system focusp834.
Therefore, target area is a focusable areap835.

3. Let target node be target area's DOM anchorp835.

4. If target node is a Documentp130 that has a body elementp136, then let target node be the body elementp136 of that
Documentp130.

Otherwise, if target node is a Documentp130 object that has a non-null document element, then let target node be that
document element.

5. If target node is not inertp827, then:

1. Let canHandle be the result of dispatching the key event at target node.

2. If canHandle is true, then let target area handle the key event. This might include firing a click eventp1148 at target
node.

The has focus steps, given a Documentp130 object target, are as follows:

1. If target's node navigablep989 's top-level traversablep990 does not have system focusp834, then return false.

2. Let candidate be target's node navigablep989 's top-level traversablep990 's active documentp998.

3. While true:

1. If candidate is target, then return true.

2. If the focused areap836 of candidate is a navigable containerp991 with a non-null content navigablep991, then set
candidate to the active documentp989 of that navigable containerp991 's content navigablep991.

3. Otherwise, return false.

Each Documentp130 has a sequential focus navigation order, which orders some or all of the focusable areasp835 in the Documentp130

relative to each other. Its contents and ordering are given by the flattened tabindex-ordered focus navigation scopep838 of the
Documentp130.

If a focusable areap835 is omitted from the sequential focus navigation orderp844 of its Documentp130, then it is unreachable via sequential
focus navigationp844.

There can also be a sequential focus navigation starting point. It is initially unset. The user agent may set it when the user
indicates that it should be moved.

A sequential focus direction is one of two possible values: "forward", or "backward". They are used in the below algorithms to

Per the rules defining the flattened tabindex-ordered focus navigation scopep838, the ordering is not necessarily related to the tree
order of the Documentp130.

Note

For example, the user agent could set it to the position of the user's click if the user clicks on the document contents.
Example

User agents are required to set the sequential focus navigation starting pointp844 to the target elementp1054 when navigating to a
fragmentp1021.

Note

6.6.5 Sequential focus navigation §p84

4

844

https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-tree-order

describe the direction in which sequential focus travels at the user's request.

A selection mechanism is one of two possible values: "DOM", or "sequential". They are used to describe how the sequential
navigation search algorithmp845 finds the focusable areap835 it returns.

When the user requests that focus move from the currently focused area of a top-level traversablep836 to the next or previous focusable
areap835 (e.g., as the default action of pressing the tab key), or when the user requests that focus sequentially move to a top-level
traversablep990 in the first place (e.g., from the browser's location bar), the user agent must use the following algorithm:

1. Let starting point be the currently focused area of a top-level traversablep836, if the user requested to move focus
sequentially from there, or else the top-level traversablep990 itself, if the user instead requested to move focus from outside
the top-level traversablep990.

2. If there is a sequential focus navigation starting pointp844 defined and it is inside starting point, then let starting point be the
sequential focus navigation starting pointp844 instead.

3. Let direction be "forwardp844" if the user requested the next control, and "backwardp844" if the user requested the previous
control.

4. Loop: Let selection mechanism be "sequentialp845" if starting point is a navigablep989 or if starting point is in its
Documentp130 's sequential focus navigation orderp844.

Otherwise, starting point is not in its Documentp130 's sequential focus navigation orderp844; let selection mechanism be
"DOMp845".

5. Let candidate be the result of running the sequential navigation search algorithmp845 with starting point, direction, and
selection mechanism.

6. If candidate is not null, then run the focusing stepsp842 for candidate and return.

7. Otherwise, unset the sequential focus navigation starting pointp844.

8. If starting point is a top-level traversablep990, or a focusable areap835 in the top-level traversablep990, the user agent should
transfer focus to its own controls appropriately (if any), honouring direction, and then return.

If the user agent has no sequentially focusablep837 controls — a kiosk-mode browser, for instance — then the user agent may
instead restart these steps with the starting point being the top-level traversablep990 itself.

9. Otherwise, starting point is a focusable areap835 in a child navigablep992. Set starting point to that child navigablep992 's
parentp989 and return to the step labeled loop.

The sequential navigation search algorithm, given a focusable areap835 starting point, sequential focus directionp844 direction, and
selection mechanismp845 selection mechanism, consists of the following steps. They return a focusable areap835-or-null.

1. Pick the appropriate cell from the following table, and follow the instructions in that cell.

The appropriate cell is the one that is from the column whose header describes direction and from the first row whose header
describes starting point and selection mechanism.

direction is "forwardp844" direction is "backwardp844"

starting point
is a
navigablep989

Let candidate be the first suitable sequentially focusable areap846 in
starting point's active documentp989, if any; or else null

Let candidate be the last suitable sequentially focusable
areap846 in starting point's active documentp989, if any; or
else null

selection
mechanism is
"DOMp845"

Let candidate be the suitable sequentially focusable areap846, that
appears nearest after starting point in starting point's Documentp130, in
shadow-including tree order, if any; or else null

Let candidate be the suitable sequentially focusable
areap846, that appears nearest before starting point in
starting point's Documentp130, in shadow-including tree
order, if any; or else null

Typically, pressing tab requests the next control, and pressing shift + tab requests the previous control.
Note

For example, if direction is backward, then the last sequentially focusablep837 control before the browser's rendering area
would be the control to focus.

Example

845

https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order

direction is "forwardp844" direction is "backwardp844"

selection
mechanism is
"sequentialp845"

Let candidate be the first suitable sequentially focusable areap846 after
starting point, in starting point's Documentp130 's sequential focus
navigation orderp844, if any; or else null

Let candidate be the last suitable sequentially focusable
areap846 before starting point, in starting point's
Documentp130 's sequential focus navigation orderp844, if
any; or else null

A suitable sequentially focusable area is a focusable areap835 whose DOM anchorp835 is not inertp827 and is sequentially
focusablep837.

2. If candidate is a navigable containerp991 with a non-null content navigablep991, then:

1. Let recursive candidate be the result of running the sequential navigation search algorithmp845 with candidate's
content navigablep991, direction, and "sequentialp845".

2. If recursive candidate is null, then return the result of running the sequential navigation search algorithmp845 with
candidate, direction, and selection mechanism.

3. Otherwise, set candidate to recursive candidate.

3. Return candidate.

dictionary FocusOptions {
boolean preventScroll = false;
boolean focusVisible;

};

In this case, starting point does not necessarily belong to its
Documentp130 's sequential focus navigation orderp844, so we'll
select the suitablep846 item from that list that comes after starting
point in shadow-including tree order.

Note

documentOrShadowRoot.activeElementp847

Returns the deepest element in the document through which or to which key events are being routed. This is, roughly speaking,
the focused element in the document.
For the purposes of this API, when a child navigablep992 is focused, its containerp991 is focusedp836 within its parentp989 's active
documentp989. For example, if the user moves the focus to a text control in an iframep390, the iframep390 is the element returned
by the activeElementp847 API in the iframep390 's node document.
Similarly, when the focused element is in a different node tree than documentOrShadowRoot, the element returned will be the
host that's located in the same node tree as documentOrShadowRoot if documentOrShadowRoot is a shadow-including inclusive
ancestor of the focused element, and null if not.

document.hasFocusp847()
Returns true if key events are being routed through or to the document; otherwise, returns false. Roughly speaking, this
corresponds to the document, or a document nested inside this one, being focused.

window.focusp847()
Moves the focus to the window's navigablep923, if any.

element.focusp847([{ preventScrollp847: true }])
Moves the focus to the element.
If the element is a navigable containerp991, moves the focus to its content navigablep991 instead.
By default, this method also scrolls the element into view. Providing the preventScrollp847 option and setting it to true prevents
this behavior.

For web developers (non-normative)

IDL

6.6.6 Focus management APIs §p84

6

846

https://infra.spec.whatwg.org/#list-item
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-node-tree
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-ancestor

The activeElement attribute's getter must run these steps:

1. Let candidate be the DOM anchorp835 of the focused areap836 of this DocumentOrShadowRootp132 's node document.

2. Set candidate to the result of retargeting candidate against this DocumentOrShadowRootp132.

3. If candidate's root is not this DocumentOrShadowRootp132, then return null.

4. If candidate is not a Documentp130 object, then return candidate.

5. If candidate has a body elementp136, then return that body elementp136.

6. If candidate's document element is non-null, then return that document element.

7. Return null.

The hasFocus() method on the Documentp130 object, when invoked, must return the result of running the has focus stepsp844 with the
Documentp130 object as the argument.

The focus() method, when invoked, must run these steps:

1. Let current be this Windowp922 object's navigablep923.

2. If current is null, then return.

3. Run the focusing stepsp842 with current.

4. If current is a top-level traversablep990, user agents are encouraged to trigger some sort of notification to indicate to the user
that the page is attempting to gain focus.

The blur() method steps are to do nothing.

The focus(options) method on elements, when invoked, must run the following steps:

1. If the element is marked as locked for focusp847, then return.

2. Mark the element as locked for focus.

3. Run the focusing stepsp842 for the element.

4. If the value of the focusVisible dictionary member of options is true, or is not present but in an implementation-defined
way the user agent determines it would be best to do so, then indicate focus.

5. If the value of the preventScroll dictionary member of options is false, then scroll the element into view given "auto",

element.blurp848()
Moves the focus to the viewport. Use of this method is discouraged; if you want to focus the viewport, call the focus()p847

method on the Documentp130 's document element.
Do not use this method to hide the focus ring if you find the focus ring unsightly. Instead, use the :focus-visible pseudo-class
to override the 'outline' property, and provide a different way to show what element is focused. Be aware that if an alternative
focusing style isn't made available, the page will be significantly less usable for people who primarily navigate pages using a
keyboard, or those with reduced vision who use focus outlines to help them navigate the page.

For example, to hide the outline from textareap579 elements and instead use a yellow background to indicate focus, you
could use:

textarea:focus-visible { outline: none; background: yellow; color: black; }

Example

CSS

Historically, the focus()p847 and blur()p847 methods actually affected the system-level focus of the system widget (e.g., tab or
window) that contained the navigablep989, but hostile sites widely abuse this behavior to the user's detriment.

Note

✔ MDN

847

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/selectors/#the-focus-visible-pseudo
https://drafts.csswg.org/css-ui/#outline
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#retarget
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#implementation-defined
https://drafts.csswg.org/selectors/#indicate-focus
https://drafts.csswg.org/cssom-view/#scroll-a-target-into-view

"center", and "center".

6. Unmark the element as locked for focusp847.

The blur() method, when invoked, should run the unfocusing stepsp842 for the element on which the method was called. User agents
may selectively or uniformly ignore calls to this method for usability reasons.

The autofocus content attribute allows the author to indicate that an element is to be focused as soon as the page is loaded, allowing
the user to just start typing without having to manually focus the main element.

When the autofocusp848 attribute is specified on an element inside dialogp646 elements or HTML elementsp45 whose popoverp886

attribute is set, then it will be focused when the dialog or popover becomes shown.

The autofocusp848 attribute is a boolean attributep75.

To find the nearest ancestor autofocus scoping root element given an Element element:

1. If element is a dialogp646 element, then return element.

2. If element's popoverp886 attribute is not in the no popover statep887, then return element.

3. Let ancestor be element.

4. While ancestor has a parent element:

1. Set ancestor to ancestor's parent element.

2. If ancestor is a dialogp646 element, then return ancestor.

3. If ancestor's popoverp886 attribute is not in the no popover statep887, then return ancestor.

5. Return ancestor.

There must not be two elements with the same nearest ancestor autofocus scoping root elementp848 that both have the autofocusp848

attribute specified.

Each Documentp130 has an autofocus candidates list, initially empty.

Each Documentp130 has an autofocus processed flag boolean, initially false.

When an element with the autofocusp848 attribute specified is inserted into a documentp46, run the following steps:

1. If the user has indicated (for example, by starting to type in a form control) that they do not wish focus to be changed, then
optionally return.

2. Let target be the element's node document.

3. If target is not fully activep1003, then return.

4. If target's active sandboxing flag setp917 has the sandboxed automatic features browsing context flagp915, then return.

5. For each ancestorNavigable of target's ancestor navigablesp994: if ancestorNavigable's active documentp989 's origin is not
same originp899 with target's origin, then return.

6. Let topDocument be target's node navigablep989 's top-level traversablep990 's active documentp989.

7. If topDocument's autofocus processed flagp848 is false, then remove the element from topDocument's autofocus
candidatesp848, and append the element to topDocument's autofocus candidatesp848.

For example, if the blur()p848 method is unwisely being used to remove the focus ring for aesthetics reasons, the page would
become unusable by keyboard users. Ignoring calls to this method would thus allow keyboard users to interact with the page.

Example

6.6.7 The autofocusp848 attribute §p84

8

848

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#parent-element
https://dom.spec.whatwg.org/#parent-element
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-append

To flush autofocus candidates for a document topDocument, run these steps:

1. If topDocument's autofocus processed flagp848 is true, then return.

2. Let candidates be topDocument's autofocus candidatesp848.

3. If candidates is empty, then return.

4. If topDocument's focused areap836 is not topDocument itself, or topDocument has non-null target elementp1054, then:

1. Empty candidates.

2. Set topDocument's autofocus processed flagp848 to true.

3. Return.

5. While candidates is not empty:

1. Let element be candidates[0].

2. Let doc be element's node document.

3. If doc is not fully activep1003, then remove element from candidates, and continue.

4. If doc's node navigablep989 's top-level traversablep990 is not the same as topDocument's node navigablep989, then
remove element from candidates, and continue.

5. If doc's script-blocking style sheet setp204 is not empty, then return.

6. Remove element from candidates.

7. Let inclusiveAncestorDocuments be a list consisting of the active documentp989 of doc's inclusive ancestor
navigablesp994.

8. If any Documentp130 in inclusiveAncestorDocuments has non-null target elementp1054, then continue.

9. Let target be element.

10. If target is not a focusable areap835, then set target to the result of getting the focusable areap840 for target.

11. If target is not null, then:

1. Empty candidates.

2. Set topDocument's autofocus processed flagp848 to true.

3. Run the focusing stepsp842 for target.

We do not check if an element is a focusable areap835 before storing it in the autofocus candidatesp848 list, because even if it is not
a focusable area when it is inserted, it could become one by the time flush autofocus candidatesp849 sees it.

Note

In this case, element is the currently-best candidate, but doc is not ready for autofocusing. We'll try again next
time flush autofocus candidatesp849 is called.

Note

Autofocus candidatesp848 can contain elements which are not focusable areasp835. In addition to the special
cases handled in the get the focusable areap840 algorithm, this can happen because a non-focusable areap835

element with an autofocusp848 attribute was inserted into a documentp46 and it never became focusable, or
because the element was focusable but its status changed while it was stored in autofocus candidatesp848.

Note

This handles the automatic focusing during document load. The show()p649 and showModal()p649 methods of dialogp646 elements
also processes the autofocusp848 attribute.

Note

849

https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#list-is-empty
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-empty

The autofocus IDL attribute must reflectp104 the content attribute of the same name.

This section is non-normative.

Each element that can be activated or focused can be assigned a single key combination to activate it, using the accesskeyp851

attribute.

The exact shortcut is determined by the user agent, based on information about the user's keyboard, what keyboard shortcuts already
exist on the platform, and what other shortcuts have been specified on the page, using the information provided in the accesskeyp851

attribute as a guide.

In order to ensure that a relevant keyboard shortcut is available on a wide variety of input devices, the author can provide a number of
alternatives in the accesskeyp851 attribute.

Each alternative consists of a single character, such as a letter or digit.

User agents can provide users with a list of the keyboard shortcuts, but authors are encouraged to do so also. The accessKeyLabelp852

IDL attribute returns a string representing the actual key combination assigned by the user agent.

Focusing the element does not imply that the user agent has to focus the browser window if it has lost focus.
Note

In the following snippet, the text control would be focused when the document was loaded.

<input maxlength="256" name="q" value="" autofocus>
<input type="submit" value="Search">

Example

The autofocusp848 attribute applies to all elements, not just to form controls. This allows examples such as the following:

<div contenteditable autofocus>Edit me!<div>

Example

6.7 Assigning keyboard shortcuts §p85

0

In this example, an author has provided a button that can be invoked using a shortcut key. To support full keyboards, the author
has provided "C" as a possible key. To support devices equipped only with numeric keypads, the author has provided "1" as another
possible key.

<input type=button value=Collect onclick="collect()"
accesskey="C 1" id=c>

Example

To tell the user what the shortcut key is, the author has this script here opted to explicitly add the key combination to the button's
label:

function addShortcutKeyLabel(button) {
if (button.accessKeyLabel != '')

button.value += ' (' + button.accessKeyLabel + ')';
}
addShortcutKeyLabel(document.getElementById('c'));

Example

6.7.1 Introduction §p85

0

⚠ MDN

850

All HTML elementsp45 may have the accesskeyp851 content attribute set. The accesskeyp851 attribute's value is used by the user agent
as a guide for creating a keyboard shortcut that activates or focuses the element.

If specified, the value must be an ordered set of unique space-separated tokensp95 none of which are identical to another token and
each of which must be exactly one code point in length.

Browsers on different platforms will show different labels, even for the same key combination, based on the convention prevalent
on that platform. For example, if the key combination is the Control key, the Shift key, and the letter C, a Windows browser might
display "Ctrl+Shift+C", whereas a Mac browser might display "^⇧C", while an Emacs browser might just display "C-C". Similarly, if
the key combination is the Alt key and the Escape key, Windows might use "Alt+Esc", Mac might use "⌥⎋", and an Emacs browser
might use "M-ESC" or "ESC ESC".

In general, therefore, it is unwise to attempt to parse the value returned from the accessKeyLabelp852 IDL attribute.

In the following example, a variety of links are given with access keys so that keyboard users familiar with the site can more
quickly navigate to the relevant pages:

<nav>
<p>
Activities |
Technical Reports

|
Site Index |
About Consortium |
Contact

</p>
</nav>

Example

In the following example, the search field is given two possible access keys, "s" and "0" (in that order). A user agent on a device
with a full keyboard might pick Ctrl + Alt + S as the shortcut key, while a user agent on a small device with just a numeric
keypad might pick just the plain unadorned key 0:

<form action="/search">
<label>Search: <input type="search" name="q" accesskey="s 0"></label>
<input type="submit">

</form>

Example

In the following example, a button has possible access keys described. A script then tries to update the button's label to advertise
the key combination the user agent selected.

<input type=submit accesskey="N @ 1" value="Compose">
...
<script>
function labelButton(button) {

if (button.accessKeyLabel)
button.value += ' (' + button.accessKeyLabel + ')';

}
var inputs = document.getElementsByTagName('input');
for (var i = 0; i < inputs.length; i += 1) {

Example

6.7.2 The accesskey attribute §p85

1

✔ MDN

851

https://infra.spec.whatwg.org/#string-is

An element's assigned access key is a key combination derived from the element's accesskeyp851 content attribute. Initially, an
element must not have an assigned access keyp852.

Whenever an element's accesskeyp851 attribute is set, changed, or removed, the user agent must update the element's assigned
access keyp852 by running the following steps:

1. If the element has no accesskeyp851 attribute, then skip to the fallback step below.

2. Otherwise, split the attribute's value on ASCII whitespace, and let keys be the resulting tokens.

3. For each value in keys in turn, in the order the tokens appeared in the attribute's value, run the following substeps:

1. If the value is not a string exactly one code point in length, then skip the remainder of these steps for this value.

2. If the value does not correspond to a key on the system's keyboard, then skip the remainder of these steps for this
value.

3. If the user agent can find a mix of zero or more modifier keys that, combined with the key that
corresponds to the value given in the attribute, can be used as the access key, then the user agent may
assign that combination of keys as the element's assigned access keyp852 and return.

4. Fallback: Optionally, the user agent may assign a key combination of its choosing as the element's assigned access
keyp852 and then return.

5. If this step is reached, the element has no assigned access keyp852.

Once a user agent has selected and assigned an access key for an element, the user agent should not change the element's assigned
access keyp852 unless the accesskeyp851 content attribute is changed or the element is moved to another Documentp130.

When the user presses the key combination corresponding to the assigned access keyp852 for an element, if the element defines a
commandp643, the command's Hidden Statep644 facet is false (visible), the command's Disabled Statep644 facet is also false (enabled),
the element is in a document that has a non-null browsing contextp999, and neither the element nor any of its ancestors has a
hiddenp824 attribute specified, then the user agent must trigger the Actionp644 of the command.

The accessKey IDL attribute must reflectp104 the accesskeyp851 content attribute.

The accessKeyLabel IDL attribute must return a string that represents the element's assigned access keyp852, if any. If the element
does not have one, then the IDL attribute must return the empty string.

if (inputs[i].type == "submit")
labelButton(inputs[i]);

}
</script>

On one user agent, the button's label might become "Compose (⌘N)". On another, it might become "Compose (Alt+⇧+1)". If the
user agent doesn't assign a key, it will be just "Compose". The exact string depends on what the assigned access keyp852 is, and on
how the user agent represents that key combination.

User agents might exposep644 elements that have an accesskeyp851 attribute in other ways as well, e.g. in a menu displayed in
response to a specific key combination.

Note

6.7.3 Processing model §p85

2

✔ MDN
MDN

852

https://infra.spec.whatwg.org/#split-on-ascii-whitespace
https://infra.spec.whatwg.org/#tracking-vector
https://dom.spec.whatwg.org/#in-a-document

interface mixin ElementContentEditable {
[CEReactions] attribute DOMString contentEditable;
[CEReactions] attribute DOMString enterKeyHint;
readonly attribute boolean isContentEditable;
[CEReactions] attribute DOMString inputMode;

};

The contenteditable content attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

true true The element is editable.
(the empty string)
false false The element is not editable.
plaintext-only plaintext-only Only the element's raw text content is editable; rich formatting is disabled.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the inherit state. The inherit state indicates that the
element is editable (or not) based on the parent element's state.

6.8 Editing §p85

3

For example, consider a page that has a formp514 and a textareap579 to publish a new article, where the user is expected to write
the article using HTML:

<form method=POST>
<fieldset>
<legend>New article</legend>
<textarea name=article><p>Hello world.</p></textarea>

</fieldset>
<p><button>Publish</button></p>

</form>

When scripting is enabled, the textareap579 element could be replaced with a rich text control instead, using the
contenteditablep853 attribute:

<form method=POST>
<fieldset>
<legend>New article</legend>
<textarea id=textarea name=article><p>Hello world.</p></textarea>
<div id=div style="white-space: pre-wrap" hidden><p>Hello world.</p></div>
<script>
let textarea = document.getElementById("textarea");
let div = document.getElementById("div");
textarea.hidden = true;
div.hidden = false;
div.contentEditable = "true";
div.oninput = (e) => {

textarea.value = div.innerHTML;
};

</script>
</fieldset>
<p><button>Publish</button></p>

</form>

Features to enable, e.g., inserting links, can be implemented using the document.execCommand() API, or using Selection APIs and
other DOM APIs. [EXECCOMMAND]p1478 [SELECTION]p1482 [DOM]p1478

Example

Example

IDL

6.8.1 Making document regions editable: The contenteditablep853 content attribute §p85

3

✔ MDN

✔ MDN

853

https://w3c.github.io/editing/docs/execCommand/#execcommand%28%29
https://w3c.github.io/selection-api/#selection-interface

The contentEditable IDL attribute, on getting, must return the string "true" if the content attribute is set to the truep853 state,
"plaintext-only" if the content attribute is set to the plaintext-onlyp853 state, "false" if the content attribute is set to the falsep853

state, and "inheritp853" otherwise. On setting, if the new value is an ASCII case-insensitive match for the string "inherit" then the
content attribute must be removed, if the new value is an ASCII case-insensitive match for the string "true" then the content attribute
must be set to the string "true", if the new value is an ASCII case-insensitive match for the string "plaintext-only" then the content
attribute must be set to the string "plaintext-only", if the new value is an ASCII case-insensitive match for the string "false" then
the content attribute must be set to the string "false", and otherwise the attribute setter must throw a "SyntaxError" DOMException.

The isContentEditable IDL attribute, on getting, must return true if the element is either an editing hostp855 or editable, and false
otherwise.

Documentp130 objects have an associated design mode enabled, which is a boolean. It is initially false.

The designMode getter steps are to return "on" if this's design mode enabledp854 is true; otherwise "off".

The designModep854 setter steps are:

1. Let value be the given value, converted to ASCII lowercase.

2. If value is "on" and this's design mode enabledp854 is false, then:

1. Set this's design mode enabledp854 to true.

2. Reset this's active range's start and end boundary points to be at the start of this.

3. Run the focusing stepsp842 for this's document element, if non-null.

3. If value is "off", then set this's design mode enabledp854 to false.

The contenteditablep853 attribute can also be used to great effect:

<!doctype html>
<html lang=en>
<title>Live CSS editing!</title>
<style style=white-space:pre contenteditable>
html { margin:.2em; font-size:2em; color:lime; background:purple }
head, title, style { display:block }
body { display:none }
</style>

element.contentEditablep854 [= value]
Returns "true", "plaintext-only", "false", or "inheritp853", based on the state of the contenteditablep853 attribute.
Can be set, to change that state.
Throws a "SyntaxError" DOMException if the new value isn't one of those strings.

element.isContentEditablep854

Returns true if the element is editable; otherwise, returns false.

For web developers (non-normative)

document.designModep854 [= value]
Returns "on" if the document is editable, and "off" if it isn't.
Can be set, to change the document's current state. This focuses the document and resets the selection in that document.

For web developers (non-normative)

6.8.2 Making entire documents editable: the designModep854 getter and setter §p85

4

854

https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/editing/docs/execCommand/#editable
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#ascii-lowercase
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/editing/docs/execCommand/#active-range
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#document-element
https://webidl.spec.whatwg.org/#this

Authors are encouraged to set the 'white-space' property on editing hostsp855 and on markup that was originally created through these
editing mechanisms to the value 'pre-wrap'. Default HTML whitespace handling is not well suited to WYSIWYG editing, and line
wrapping will not work correctly in some corner cases if 'white-space' is left at its default value.

An editing host is either an HTML elementp45 with its contenteditablep853 attribute in the true state or plaintext-only state, or a child
HTML elementp45 of a Documentp130 whose design mode enabledp854 is true.

The definition of the terms active range, editing host of, and editable, the user interface requirements of elements that are editing
hostsp855 or editable, the execCommand(), queryCommandEnabled(), queryCommandIndeterm(), queryCommandState(),
queryCommandSupported(), and queryCommandValue() methods, text selections, and the delete the selection algorithm are defined
in execCommand. [EXECCOMMAND]p1478

User agents can support the checking of spelling and grammar of editable text, either in form controls (such as the value of
textareap579 elements), or in elements in an editing hostp855 (e.g. using contenteditablep853).

For each element, user agents must establish a default behavior, either through defaults or through preferences expressed by the
user. There are three possible default behaviors for each element:

true-by-default
The element will be checked for spelling and grammar if its contents are editable and spellchecking is not explicitly disabled
through the spellcheckp855 attribute.

false-by-default
The element will never be checked for spelling and grammar unless spellchecking is explicitly enabled through the spellcheckp855

attribute.

inherit-by-default
The element's default behavior is the same as its parent element's. Elements that have no parent element cannot have this as their
default behavior.

The spellcheck attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

true true Spelling and grammar will be checked.
(the empty string)
false false Spelling and grammar will not be checked.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the default state. The default state indicates that the

As an example of problems that occur if the default 'normal' value is used instead, consider the case of the user typing
"yellow␣␣ball", with two spaces (here represented by "␣") between the words. With the editing rules in place for the default value
of 'white-space' ('normal'), the resulting markup will either consist of "yellow ball" or "yellow ball"; i.e., there
will be a non-breaking space between the two words in addition to the regular space. This is necessary because the 'normal' value
for 'white-space' requires adjacent regular spaces to be collapsed together.

In the former case, "yellow⍽" might wrap to the next line ("⍽" being used here to represent a non-breaking space) even though
"yellow" alone might fit at the end of the line; in the latter case, "⍽ball", if wrapped to the start of the line, would have visible
indentation from the non-breaking space.

When 'white-space' is set to 'pre-wrap', however, the editing rules will instead simply put two regular spaces between the words,
and should the two words be split at the end of a line, the spaces would be neatly removed from the rendering.

Example

6.8.3 Best practices for in-page editors §p85

5

6.8.4 Editing APIs §p85

5

6.8.5 Spelling and grammar checking §p85

5

✔ MDN

855

https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-text/#white-space-property
https://dom.spec.whatwg.org/#concept-tree-child
https://w3c.github.io/editing/docs/execCommand/#active-range
https://w3c.github.io/editing/docs/execCommand/#editing-host-of
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#execcommand%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandenabled%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandindeterm%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandstate%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandsupported%28%29
https://w3c.github.io/editing/docs/execCommand/#querycommandvalue%28%29
https://w3c.github.io/editing/docs/execCommand/#delete-the-selection

element is to act according to a default behavior, possibly based on the parent element's own spellcheckp855 state, as defined below.

The spellcheck IDL attribute, on getting, must return true if the element's spellcheckp855 content attribute is in the truep855 state, or
if the element's spellcheckp855 content attribute is in the defaultp855 state and the element's default behaviorp855 is true-by-defaultp855,
or if the element's spellcheckp855 content attribute is in the defaultp855 state and the element's default behaviorp855 is inherit-by-
defaultp855 and the element's parent element's spellcheckp856 IDL attribute would return true; otherwise, if none of those conditions
applies, then the attribute must instead return false.

On setting, if the new value is true, then the element's spellcheckp855 content attribute must be set to "true", otherwise it must be
set to "false".

User agents should only consider the following pieces of text as checkable for the purposes of this feature:

• The valuep597 of inputp520 elements whose typep523 attributes are in the Textp527, Searchp527, URLp529, or Emailp530 states and
that are mutablep597 (i.e. that do not have the readonlyp551 attribute specified and that are not disabledp601).

• The valuep597 of textareap579 elements that do not have a readonlyp581 attribute and that are not disabledp601.

• Text in Text nodes that are children of editing hostsp855 or editable elements.

• Text in attributes of editable elements.

For text that is part of a Text node, the element with which the text is associated is the element that is the immediate parent of the
first character of the word, sentence, or other piece of text. For text in attributes, it is the attribute's element. For the values of
inputp520 and textareap579 elements, it is the element itself.

To determine if a word, sentence, or other piece of text in an applicable element (as defined above) is to have spelling- and grammar-
checking enabled, the UA must use the following algorithm:

1. If the user has disabled the checking for this text, then the checking is disabled.

2. Otherwise, if the user has forced the checking for this text to always be enabled, then the checking is enabled.

3. Otherwise, if the element with which the text is associated has a spellcheckp855 content attribute, then: if that attribute is in
the truep855 state, then checking is enabled; otherwise, if that attribute is in the falsep855 state, then checking is disabled.

4. Otherwise, if there is an ancestor element with a spellcheckp855 content attribute that is not in the defaultp855 state, then: if
the nearest such ancestor's spellcheckp855 content attribute is in the truep855 state, then checking is enabled; otherwise,
checking is disabled.

5. Otherwise, if the element's default behaviorp855 is true-by-defaultp855, then checking is enabled.

6. Otherwise, if the element's default behaviorp855 is false-by-defaultp855, then checking is disabled.

7. Otherwise, if the element's parent element has its checking enabled, then checking is enabled.

8. Otherwise, checking is disabled.

If the checking is enabled for a word/sentence/text, the user agent should indicate spelling and grammar errors in that text. User
agents should take into account the other semantics given in the document when suggesting spelling and grammar corrections. User
agents may use the language of the element to determine what spelling and grammar rules to use, or may use the user's preferred
language settings. UAs should use inputp520 element attributes such as patternp554 to ensure that the resulting value is valid, where
possible.

element.spellcheckp856 [= value]
Returns true if the element is to have its spelling and grammar checked; otherwise, returns false.
Can be set, to override the default and set the spellcheckp855 content attribute.

For web developers (non-normative)

The spellcheckp856 IDL attribute is not affected by user preferences that override the spellcheckp855 content attribute, and
therefore might not reflect the actual spellchecking state.

Note

856

https://dom.spec.whatwg.org/#interface-text
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#editable
https://dom.spec.whatwg.org/#interface-text

If checking is disabled, the user agent should not indicate spelling or grammar errors for that text.

User agents offer writing suggestions as users type into editable regions, either in form controls (e.g., the textareap579 element) or in
elements in an editing hostp855.

The writingsuggestions content attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

true true Writing suggestions should be offered on this element.
(the empty string)
false false Writing suggestions should not be offered on this element.

The attribute's missing value defaultp76 is the default state. The default state indicates that the element is to act according to a
default behavior, possibly based on the parent element's own writingsuggestionsp857 state, as defined below.

The attribute's invalid value defaultp76 is the truep857 state.

The computed writing suggestions value of a given element is determined by running the following steps:

1. If element's writingsuggestionsp857 content attribute is in the falsep857 state, return "false".

2. If element's writingsuggestionsp857 content attribute is in the defaultp857 state, element has a parent element, and the
computed writing suggestions valuep857 of element's parent element is "false", then return "false".

3. Return "true".

The writingSuggestions getter steps are:

1. Return this's computed writing suggestions valuep857.

The element with ID "a" in the following example would be the one used to determine if the word "Hello" is checked for spelling
errors. In this example, it would not be.

<div contenteditable="true">
Hello!

</div>

The element with ID "b" in the following example would have checking enabled (the leading space character in the attribute's
value on the inputp520 element causes the attribute to be ignored, so the ancestor's value is used instead, regardless of the
default).

<p spellcheck="true">
<label>Name: <input spellcheck=" false" id="b"></label>

</p>

Example

This specification does not define the user interface for spelling and grammar checkers. A user agent could offer on-demand
checking, could perform continuous checking while the checking is enabled, or could use other interfaces.

Note

element.writingSuggestionsp857 [= value]
Returns "true" if the user agent is to offer writing suggestions under the scope of the element; otherwise, returns "false".
Can be set, to override the default and set the writingsuggestionsp857 content attribute.

For web developers (non-normative)

6.8.6 Writing suggestions §p85

7

857

https://webidl.spec.whatwg.org/#this

The writingSuggestionsp857 setter steps are:

1. Set this's writingsuggestionsp857 content attribute to the given value.

User agents should only offer suggestions within an element's scope if the result of running the following algorithm given element
returns true:

1. If the user has disabled writing suggestions, then return false.

2. If none of the following conditions are true:

◦ element is an inputp520 element whose typep523 attribute is in either the Textp527, Searchp527, Telephonep528,
URLp529, or Emailp530 state and is mutablep597;

◦ element is a textareap579 element that is mutablep597; or

◦ element is an editing hostp855 or is editable,

then return false.

3. If element has an inclusive ancestor with a writingsuggestionsp857 content attribute that's not in the defaultp857 and the
nearest such ancestor's writingsuggestionsp857 content attribute is in the falsep857 state, then return false.

4. Otherwise, return true.

Some methods of entering text, for example virtual keyboards on mobile devices, and also voice input, often assist users by
automatically capitalizing the first letter of sentences (when composing text in a language with this convention). A virtual keyboard
that implements autocapitalization might automatically switch to showing uppercase letters (but allow the user to toggle it back to
lowercase) when a letter that should be autocapitalized is about to be typed. Other types of input, for example voice input, may
perform autocapitalization in a way that does not give users an option to intervene first. The autocapitalizep859 attribute allows
authors to control such behavior.

The autocapitalizep859 attribute, as typically implemented, does not affect behavior when typing on a physical keyboard. (For this
reason, as well as the ability for users to override the autocapitalization behavior in some cases or edit the text after initial input, the
attribute must not be relied on for any sort of input validation.)

The autocapitalizep859 attribute can be used on an editing hostp855 to control autocapitalization behavior for the hosted editable
region, on an inputp520 or textareap579 element to control the behavior for inputting text into that element, or on a formp514 element to
control the default behavior for all autocapitalize-and-autocorrect inheriting elementsp514 associated with the formp514 element.

The autocapitalizep859 attribute never causes autocapitalization to be enabled for inputp520 elements whose typep523 attribute is in
one of the URLp529, Emailp530, or Passwordp531 states. (This behavior is included in the used autocapitalization hintp859 algorithm below.)

The autocapitalization processing model is based on selecting among five autocapitalization hints, defined as follows:

default
The user agent and input method should make their own determination of whether or not to enable autocapitalization.

none
No autocapitalization should be applied (all letters should default to lowercase).

The writingSuggestionsp857 IDL attribute is not affected by user preferences that override the writingsuggestionsp857 content
attribute, and therefore might not reflect the actual writing suggestions state.

Note

This specification does not define the user interface for writing suggestions. A user agent could offer on-demand suggestions,
continuous suggestions as the user types, inline suggestions, autofill-like suggestions in a popup, or could use other interfaces.

Note

6.8.7 Autocapitalization §p85

8

858

https://webidl.spec.whatwg.org/#this
https://w3c.github.io/editing/docs/execCommand/#editable
https://dom.spec.whatwg.org/#concept-tree-inclusive-ancestor

sentences
The first letter of each sentence should default to a capital letter; all other letters should default to lowercase.

words
The first letter of each word should default to a capital letter; all other letters should default to lowercase.

characters
All letters should default to uppercase.

The autocapitalize attribute is an enumerated attributep76 whose states are the possible autocapitalization hintsp858. The
autocapitalization hintp858 specified by the attribute's state combines with other considerations to form the used autocapitalization
hintp859, which informs the behavior of the user agent. The keywords for this attribute and their state mappings are as follows:

Keyword State

off nonep858

none

on sentencesp859

sentences

words wordsp859

characters charactersp859

The attribute's missing value defaultp76 is the defaultp858 state, and its invalid value defaultp76 is the sentencesp859 state.

To compute the own autocapitalization hint of an element element, run the following steps:

1. If the autocapitalizep859 content attribute is present on element, and its value is not the empty string, return the state of
the attribute.

2. If element is an autocapitalize-and-autocorrect inheriting elementp514 and has a non-null form ownerp598, return the own
autocapitalization hintp859 of element's form ownerp598.

3. Return defaultp858.

The autocapitalize getter steps are to:

1. Let state be the own autocapitalization hintp859 of this.

2. If state is defaultp858, then return the empty string.

3. If state is nonep858, then return "nonep859".

4. If state is sentencesp859, then return "sentencesp859".

5. Return the keyword value corresponding to state.

The autocapitalizep859 setter steps are to set the autocapitalizep859 content attribute to the given value.

User agents that support customizable autocapitalization behavior for a text input method and wish to allow web developers to control
this functionality should, during text input into an element, compute the used autocapitalization hint for the element. This will be
an autocapitalization hintp858 that describes the recommended autocapitalization behavior for text input into the element.

User agents or input methods may choose to ignore or override the used autocapitalization hintp859 in certain circumstances.

element.autocapitalizep859 [= value]
Returns the current autocapitalization state for the element, or an empty string if it hasn't been set. Note that for inputp520 and
textareap579 elements that inherit their state from a formp514 element, this will return the autocapitalization state of the formp514

element, but for an element in an editable region, this will not return the autocapitalization state of the editing host (unless this
element is, in fact, the editing hostp855).
Can be set, to set the autocapitalizep859 content attribute (and thereby change the autocapitalization behavior for the
element).

For web developers (non-normative)

✔ MDN

859

https://webidl.spec.whatwg.org/#this

The used autocapitalization hintp859 for an element element is computed using the following algorithm:

1. If element is an inputp520 element whose typep523 attribute is in one of the URLp529, Emailp530, or Passwordp531 states, then
return defaultp858.

2. If element is an inputp520 element or a textareap579 element, then return element's own autocapitalization hintp859.

3. If element is an editing hostp855 or an editable element, then return the own autocapitalization hintp859 of the editing host of
element.

4. Assert: this step is never reached, since text input only occurs in elements that meet one of the above criteria.

Some methods of entering text assist users by automatically correcting misspelled words while typing, a process also known as
autocorrection. User agents can support autocorrection of editable text, either in form controls (such as the value of textareap579

elements), or in elements in an editing hostp855 (e.g., using contenteditablep853). Autocorrection may be accompanied by user
interfaces indicating that text is about to be autocorrected or has been autocorrected, and is commonly performed when inserting
punctuation characters, spaces, or new paragraphs after misspelled words. The autocorrectp860 attribute allows authors to control
such behavior.

The autocorrectp860 attribute can be used on an editing host to control autocorrection behavior for the hosted editable region, on an
inputp520 or textareap579 element to control the behavior when inserting text into that element, or on a formp514 element to control the
default behavior for all autocapitalize-and-autocorrect inheriting elementsp514 associated with the formp514 element.

The autocorrectp860 attribute never causes autocorrection to be enabled for inputp520 elements whose typep523 attribute is in one of
the URLp529, E-mailp530, or Passwordp531 states. (This behavior is included in the used autocorrection statep860 algorithm below.)

The autocorrect attribute is an enumerated attribute with the following keywords and states:

Keyword State Brief description

on on The user agent is permitted to automatically correct spelling errors while the user types. Whether spelling is automatically corrected while
typing left is for the user agent to decide, and may depend on the element as well as the user's preferences.(the

empty
string)
off off The user agent is not allowed to automatically correct spelling while the user types.

The attribute's invalid value defaultp76 and missing value defaultp76 are both the onp860 state.

The autocorrect getter steps are: return true if the element's used autocorrection statep860 is onp860 and false if the element's used
autocorrection statep860 is offp860. The setter steps are: if the given value is true, then the element's autocorrectp860 attribute must be
set to "on"; otherwise it must be set to "off".

To compute the used autocorrection state of an element element, run these steps:

1. If element is an inputp520 element whose typep523 attribute is in one of the URLp529, E-mailp530, or Passwordp531 states, then
return offp860.

2. If the autocorrectp860 content attribute is present on element, then return the state of the attribute.

3. If element is an autocapitalize-and-autocorrect inheriting elementp514 and has a non-null form ownerp598, then return the
state of element's form ownerp598 's autocorrectp860 attribute.

4. Return onp860.

element . autocorrectp860

Returns the autocorrection behavior of the element. Note that for autocapitalize-and-autocorrect inheriting elementsp514 that
inherit their state from a formp514 element, this will return the autocorrection behavior of the formp514 element, but for an
element in an editable region, this will not return the autocorrection behavior of the editing hostp855 (unless this element is, in
fact, the editing hostp855).

For web developers (non-normative)

6.8.8 Autocorrection §p86

0

860

https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#editing-host-of
https://infra.spec.whatwg.org/#assert

User agents can support the inputmodep861 attribute on form controls (such as the value of textareap579 elements), or in elements in
an editing hostp855 (e.g., using contenteditablep853).

The inputmode content attribute is an enumerated attributep76 that specifies what kind of input mechanism would be most helpful for
users entering content.

Keyword Description

none The user agent should not display a virtual keyboard. This keyword is useful for content that renders its own keyboard control.
text The user agent should display a virtual keyboard capable of text input in the user's locale.
tel The user agent should display a virtual keyboard capable of telephone number input. This should including keys for the digits 0 to 9, the "#"

character, and the "*" character. In some locales, this can also include alphabetic mnemonic labels (e.g., in the US, the key labeled "2" is historically
also labeled with the letters A, B, and C).

url The user agent should display a virtual keyboard capable of text input in the user's locale, with keys for aiding in the input of URLs, such as that for
the "/" and "." characters and for quick input of strings commonly found in domain names such as "www." or ".com".

email The user agent should display a virtual keyboard capable of text input in the user's locale, with keys for aiding in the input of email addresses, such as
that for the "@" character and the "." character.

numeric The user agent should display a virtual keyboard capable of numeric input. This keyword is useful for PIN entry.
decimal The user agent should display a virtual keyboard capable of fractional numeric input. Numeric keys and the format separator for the locale should be

shown.
search The user agent should display a virtual keyboard optimized for search.

The inputMode IDL attribute must reflectp104 the inputmodep861 content attribute, limited to only known valuesp105.

When inputmodep861 is unspecified (or is in a state not supported by the user agent), the user agent should determine the default
virtual keyboard to be shown. Contextual information such as the input typep523 or patternp554 attributes should be used to determine
which type of virtual keyboard should be presented to the user.

User agents can support the enterkeyhintp861 attribute on form controls (such as the value of textareap579 elements), or in elements
in an editing hostp855 (e.g., using contenteditablep853).

The enterkeyhint content attribute is an enumerated attributep76 that specifies what action label (or icon) to present for the enter key
on virtual keyboards. This allows authors to customize the presentation of the enter key in order to make it more helpful for users.

Keyword Description

enter The user agent should present a cue for the operation 'enter', typically inserting a new line.
done The user agent should present a cue for the operation 'done', typically meaning there is nothing more to input and the input method editor (IME) will

be closed.
go The user agent should present a cue for the operation 'go', typically meaning to take the user to the target of the text they typed.

element . autocorrectp860 = value
Updates the autocorrectp860 content attribute (and thereby changes the autocorrection behavior of the element).

The inputp520 element in the following example would not allow autocorrection, since it does not have an autocorrectp860 content
attribute and therefore inherits from the formp514 element, which has an attribute of "offp860". However, the textareap579 element
would allow autocorrection, since it has an autocorrectp860 content attribute with a value of "onp860".

<form autocorrect="off">
<input type="search">
<textarea autocorrect="on"></textarea>

</form>

Example

6.8.9 Input modalities: the inputmodep861 attribute §p86

1

6.8.10 Input modalities: the enterkeyhintp861 attribute §p86

1

✔ MDN

✔ MDN

✔ MDN

861

https://url.spec.whatwg.org/#concept-url

Keyword Description

next The user agent should present a cue for the operation 'next', typically taking the user to the next field that will accept text.
previous The user agent should present a cue for the operation 'previous', typically taking the user to the previous field that will accept text.
search The user agent should present a cue for the operation 'search', typically taking the user to the results of searching for the text they have typed.
send The user agent should present a cue for the operation 'send', typically delivering the text to its target.

The enterKeyHint IDL attribute must reflectp104 the enterkeyhintp861 content attribute, limited to only known valuesp105.

When enterkeyhintp861 is unspecified (or is in a state not supported by the user agent), the user agent should determine the default
action label (or icon) to present. Contextual information such as the inputmodep861, typep523, or patternp554 attributes should be used
to determine which action label (or icon) to present on the virtual keyboard.

This section defines find-in-page — a common user-agent mechanism which allows users to search through the contents of the page
for particular information.

Access to the find-in-pagep862 feature is provided via a find-in-page interface. This is a user-agent provided user interface, which
allows the user to specify input and the parameters of the search. This interface can appear as a result of a shortcut or a menu
selection.

A combination of text input and settings in the find-in-page interfacep862 represents the user query. This typically includes the text that
the user wants to search for, as well as optional settings (e.g., the ability to restrict the search to whole words only).

The user-agent processes page contents for a given queryp862, and identifies zero or more matches, which are content ranges that
satisfy the user queryp862.

One of the matchesp862 is identified to the user as the active match. It is highlighted and scrolled into view. The user can navigate
through the matchesp862 by advancing the active matchp862 using the find-in-page interfacep862.

Issue #3539 tracks standardizing how find-in-pagep862 underlies the currently-unspecified window.find() API.

When find-in-page begins searching for matches, all detailsp637 elements in the page which do not have their openp638 attribute set
should have the skipped contents of their second slot become accessible, without modifying the openp638 attribute, in order to make
find-in-page able to search through it. Similarly, all HTML elements with the hiddenp824 attribute in the hidden until foundp824 state
should have their skipped contents become accessible without modifying the hiddenp824 attribute in order to make find-in-page able to
search through them. After find-in-page finishes searching for matches, the detailsp637 elements and the elements with the hiddenp824

attribute in the hidden until foundp824 state should have their contents become skipped again. This entire process must happen
synchronously (and so is not observable to users or to author code). [CSSCONTAIN]p1476

When find-in-page chooses a new active matchp862, perform the following steps:

1. Let node be the first node in the active matchp862.

2. Queue a global taskp1125 on the user interaction task sourcep1134 given node's relevant global objectp1083 to run the following
steps:

1. Run the ancestor details revealing algorithmp640 on node.

2. Run the ancestor hidden-until-found revealing algorithmp825 on node.

6.9 Find-in-page §p86

2

6.9.1 Introduction §p86

2

6.9.2 Interaction with detailsp637 and hidden=until-foundp824 §p86

2

✔ MDN

862

https://github.com/whatwg/html/issues/3539
https://drafts.csswg.org/css-contain/#skips-its-contents
https://drafts.csswg.org/css-contain/#skips-its-contents

The find-in-page process is invoked in the context of a document, and may have an effect on the selection of that document.
Specifically, the range that defines the active matchp862 can dictate the current selection. These selection updates, however, can
happen at different times during the find-in-page process (e.g. upon the find-in-page interfacep862 dismissal or upon a change in the
active matchp862 range).

In an implementation-defined (and likely device-specific) manner, a user can send a close request to the user agent. This indicates
that the user wishes to close something that is currently being shown on the screen, such as a popover, menu, dialog, picker, or
display mode.

Whenever the user agent receives a potential close request targeted at a Documentp130 document, it must queue a global taskp1125 on
the user interaction task sourcep1134 given document's relevant global objectp1083 to perform the following close request steps:

1. If document's fullscreen element is not null, then:

1. Fully exit fullscreen given document's node navigablep989 's top-level traversablep990 's active documentp989.

2. Return.

2. Optionally, skip to the step labeled alternative processingp864.

3. Fire any relevant events, per UI Events or other relevant specifications. [UIEVENTS]p1483

When find-in-page auto-expands a detailsp637 element like this, it will fire a togglep1472 event. As with the
separate scroll event that find-in-page fires, this event could be used by the page to discover what the user
is typing into the find-in-page dialog. If the page creates a tiny scrollable area with the current search term
and every possible next character the user could type separated by a gap, and observes which one the
browser scrolls to, it can add that character to the search term and update the scrollable area to
incrementally build the search term. By wrapping each possible next match in a closed detailsp637 element, the page
could listen to togglep1472 events instead of scroll events. This attack could be addressed for both events by not
acting on every character the user types into the find-in-page dialog.

⚠Warning!

6.10 Close requests and close watchers §p86

3

Some example close requests are:

• The Esc key on desktop platforms.

• The back button or gesture on certain mobile platforms such as Android.

• Any assistive technology's dismiss gesture, such as iOS VoiceOver's two-finger scrub "z" gesture.

• A game controller's canonical "back" button, such as the circle button on a DualShock gamepad.

Example

This does not fire any relevant event, such as keydown; it only causes fullscreenchange to be eventually fired.
Note

For example, if the user agent detects user frustration at repeated close request interception by the current web page, it
might take this path.

Note

6.9.3 Interaction with selection §p86

3

6.10.1 Close requests §p86

3

863

https://infra.spec.whatwg.org/#tracking-vector
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://w3c.github.io/selection-api/#dfn-selection
https://infra.spec.whatwg.org/#implementation-defined
https://fullscreen.spec.whatwg.org/#fullscreen-element
https://fullscreen.spec.whatwg.org/#fully-exit-fullscreen
https://w3c.github.io/uievents/#event-type-keydown
https://fullscreen.spec.whatwg.org/#eventdef-document-fullscreenchange

4. Let event be null if no such events are fired, or the Event object representing one of the fired events otherwise. If multiple
events are fired, which one is chosen is implementation-defined.

5. If event is not null, and its canceled flag is set, then return.

6. If document is not fully activep1003, then return.

7. Let closedSomething be the result of processing close watchersp866 on document's relevant global objectp1083.

8. If closedSomething is true, then return.

9. Alternative processing: Otherwise, there was nothing watching for a close requestp863. The user agent may instead interpret
this interaction as some other action, instead of interpreting it as a close request.

On platforms where pressing the Esc key is interpreted as a close requestp863, the user agent must interpret the key being pressed
down as the close request, instead of the key being released. Thus, in the above algorithm, the "relevant events" that are fired must be
the single keydown event.

Each Windowp922 has a close watcher manager, which is a struct with the following items:

• Groups, a list of lists of close watchersp865, initially empty.

• Allowed number of groups, a number, initially 1.

• Next user interaction allows a new group, a boolean, initially true.

Most of the complexity of the close watcher managerp864 comes from anti-abuse protections designed to prevent developers from
disabling users' history traversal abilities, for platforms where a close requestp863 's fallback actionp864 is the main mechanism of history
traversal. In particular:

The grouping of close watchersp865 is designed so that if multiple close watchers are created without history-action activationp830, they
are grouped together, so that a user-triggered close requestp863 will close all of the close watchers in a group. This ensures that web
developers can't intercept an unlimited number of close requests by creating close watchers; instead they can create a number equal
to at most 1 + the number of times the user activates the pagep829.

An example of a relevant event in the UI Events model would be the keydown event that UI Events suggests firing when
the user presses the Esc key on their keyboard. On most platforms with keyboards, this is treated as a close requestp863,
and so would trigger these close request stepsp863.

Example

An example of relevant events that are outside of the model given in UI Events would be assistive technology
synthesizing an Esc keydown event when the user sends a close requestp863 by using a dismiss gesture.

Example

This step is necessary because, if event is not null, then an event listener might have caused document to no longer be
fully activep1003.

Note

On platforms where Esc is the close requestp863, the user agent will first fire an appropriately-initialized keydown event. If the web
developer cancels the event by calling preventDefault(), then nothing further happens. But if the event fires without being
canceled, then the user agent proceeds to process close watchersp866.

Example

On platforms where a back button is a potential close requestp863, no event is involved, so when the back button is pressed, the
user agent proceeds directly to process close watchersp866. If there is an activep865 close watcherp865, then that will get triggered. If
there is not, then the user agent can interpret the back button press in another way, for example as a request to traverse the
history by a deltap1028 of −1.

Example

6.10.2 Close watcher infrastructure §p86

4

864

https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#events-keyboard-event-order
https://w3c.github.io/uievents/#event-type-keydown
https://dom.spec.whatwg.org/#interface-event
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#canceled-flag
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keydown
https://dom.spec.whatwg.org/#dom-event-preventdefault
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list

The next user interaction allows a new groupp864 boolean encourages web developers to create close watchersp865 in a way that is tied
to individual user activationsp829. Without it, each user activation would increase the allowed number of groupsp864, even if the web
developer isn't "using" those user activations to create close watchers. In short:

• Allowed: user interaction; create a close watcher in its own group; user interaction; create a close watcher in a second
independent group.

• Disallowed: user interaction; user interaction; create a close watcher in its own group; create a close watcher in a second
independent group.

• Allowed: user interaction; user interaction; create a close watcher in its own group; create a close watcher grouped with the
previous one.

This protection is not important for upholding our desired invariant of creating at most (1 + the number of times the user activates the
pagep829) groups. A determined abuser will just create one close watcher per user interaction, "banking" them for future abuse. But this
system causes more predictable behavior for the normal case, and encourages non-abusive developers to create close watchers
directly in response to user interactions.

To notify the close watcher manager about user activation given a Windowp922 window:

1. Let manager be window's close watcher managerp864.

2. If manager's next user interaction allows a new groupp864 is true, then increment manager's allowed number of groupsp864.

3. Set manager's next user interaction allows a new groupp864 to false.

A close watcher is a struct with the following items:

• A window, a Windowp922.

• A cancel action, an algorithm accepting a boolean argument and returning a boolean. The argument indicates whether or
not the cancel action algorithm can prevent the close request from proceeding via the algorithm's return value. If the
boolean argument is true, then the algorithm can return either true to indicate that the caller will proceed to the close
actionp865, or false to indicate that the caller will bail out. If the argument is false, then the return value is always false. This
algorithm can never throw an exception.

• A close action, an algorithm accepting no arguments and returning nothing. This algorithm can never throw an exception.

• An is running cancel action boolean.

A close watcherp865 closeWatcher is active if closeWatcher's windowp865 's close watcher managerp864 contains any list which contains
closeWatcher.

To establish a close watcher given a Windowp922 window, a list of steps cancelAction, and a list of steps closeAction:

1. Assert: window's associated Documentp923 is fully activep1003.

2. Let closeWatcher be a new close watcherp865, with
windowp865

window
cancel actionp865

cancelAction
close actionp865

closeAction
is running cancel actionp865

false

3. Let manager be window's close watcher managerp864.

4. If manager's groupsp864 's size is less than manager's allowed number of groupsp864, then append « closeWatcher » to
manager's groupsp864.

5. Otherwise:

1. Assert: manager's groupsp864 's size is at least 1 in this branch, since manager's allowed number of groupsp864 is
865

https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-size

always at least 1.

2. Append closeWatcher to manager's groupsp864 's last item.

6. Set manager's next user interaction allows a new groupp864 to true.

7. Return closeWatcher.

To request to close a close watcherp865 closeWatcher:

1. If closeWatcher is not activep865, then return true.

2. If closeWatcher's is running cancel actionp865 is true, then return true.

3. Let window be closeWatcher's windowp865.

4. If window's associated Documentp923 is not fully activep1003, then return true.

5. Let canPreventClose be true if window's close watcher managerp864 's groupsp864 's size is less than window's close watcher
managerp864 's allowed number of groupsp864, and window has history-action activationp830; otherwise false.

6. Set closeWatcher's is running cancel actionp865 to true.

7. Let shouldContinue be the result of running closeWatcher's cancel actionp865 given canPreventClose.

8. Set closeWatcher's is running cancel actionp865 to false.

9. If shouldContinue is false, then:

1. Assert: canPreventClose is true.

2. Consume history-action user activationp831 given window.

3. Return false.

10. Closep866 closeWatcher.

11. Return true.

To close a close watcherp865 closeWatcher:

1. If closeWatcher is not activep865, then return.

2. If closeWatcher's windowp865 's associated Documentp923 is not fully activep1003, then return.

3. Destroyp866 closeWatcher.

4. Run closeWatcher's close actionp865.

To destroy a close watcherp865 closeWatcher:

1. Let manager be closeWatcher's windowp865 's close watcher managerp864.

2. For each group of manager's groupsp864: remove closeWatcher from group.

3. Remove any item from manager's groupsp864 that is empty.

To process close watchers given a Windowp922 window:

1. Let processedACloseWatcher be false.

2. If window's close watcher managerp864 's groupsp864 is not empty:

1. Let group be the last item in window's close watcher managerp864 's groupsp864.

Note that since these substeps consume history-action user activationp831, requesting to closep866 a close watcherp865

twice without any intervening user activationp829 will result in canPreventClose being false the second time.

Note

866

https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-item
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-item

2. For each closeWatcher of group, in reverse order:

1. Set processedACloseWatcher to true.

2. Let shouldProceed be the result of requesting to closep866 closeWatcher.

3. If shouldProceed is false, then break.

3. If window's close watcher managerp864 's allowed number of groupsp864 is greater than 1, decrement it by 1.

4. Return processedACloseWatcher.

[Exposed=Window]
interface CloseWatcher : EventTarget {

constructor(optional CloseWatcherOptions options = {});

undefined requestClose();
undefined close();
undefined destroy();

attribute EventHandler oncancel;
attribute EventHandler onclose;

};

dictionary CloseWatcherOptions {
AbortSignal signal;

};

Each CloseWatcherp867 instance has an internal close watcher, which is a close watcherp865.

watcher = new CloseWatcherp868()
watcher = new CloseWatcherp868({ signalp867 })

Creates a new CloseWatcherp867 instance.
If the signalp867 option is provided, then watcher can be destroyed (as if by watcher.destroy()p868) by aborting the given
AbortSignal.
If any close watcherp865 is already active, and the Windowp922 does not have history-action activationp830, then the resulting
CloseWatcherp867 will be closed together with that already-active close watcherp865 in response to any close requestp863. (This
already-active close watcherp865 does not necessarily have to be a CloseWatcherp867 object; it could be a modal dialogp646

element, or a popover generated by an element with the popoverp886 attribute.)

watcher.requestClosep868()
Acts as if a close requestp863 was sent targeting watcher, by first firing a cancelp1471 event, and if that event is not canceled with
preventDefault(), proceeding to fire a closep1471 event before deactivating the close watcher as if watcher.destroy()p868

was called.
This is a helper utility that can be used to consolidate cancelation and closing logic into the cancelp1471 and closep1471 event
handlers, by having all non-close requestp863 closing affordances call this method.

watcher.closep868()
Immediately fires the closep1471 event, and then deactivates the close watcher as if watcher.destroy()p868 was called.
This is a helper utility that can be used trigger the closing logic into the closep1471 event handler, skipping any logic in the
cancelp1471 event handler.

watcher.destroyp868()
Deactivates watcher, so that it will no longer receive closep1471 events and so that new independent CloseWatcherp867

instances can be constructed.
This is intended to be called if the relevant UI element is torn down in some other way than being closed.

For web developers (non-normative)

IDL

6.10.3 The CloseWatcherp867 interface §p86

7

867

https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#iteration-break
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#abortsignal
https://dom.spec.whatwg.org/#abortsignal
https://dom.spec.whatwg.org/#dom-event-preventdefault

The new CloseWatcher(options) constructor steps are:

1. If this's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then throw an "InvalidStateError"
DOMException.

2. Let closeWatcher be the result of establishing a close watcherp865 given this's relevant global objectp1083, with:

◦ cancelActionp865 given canPreventClose being to return the result of firing an event named cancelp1471 at this, with
the cancelable attribute initialized to canPreventClose.

◦ closeActionp865 being to fire an event named closep1471 at this.

3. If options["signalp867"] exists, then:

1. If options["signalp867"] is aborted, then destroyp866 closeWatcher.

2. Add the following steps to options["signalp867"]:

1. Destroyp866 closeWatcher.

4. Set this's internal close watcherp867 to closeWatcher.

The requestClose() method steps are to request to closep866 this's internal close watcherp867.

The close() method steps are to closep866 this's internal close watcherp867.

The destroy() method steps are to destroyp866 this's internal close watcherp867.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the CloseWatcherp867 interface:

Event handlerp1136 Event handler event typep1139

oncancel cancelp1471

onclose closep1471

If one wanted to implement a custom picker control, which closed itself on a user-provided close requestp863 as well as when a
close button is pressed, the following code shows how one would use the CloseWatcherp867 API to process close requests:

const watcher = new CloseWatcher();
const picker = setUpAndShowPickerDOMElement();

let chosenValue = null;

watcher.onclose = () => {
chosenValue = picker.querySelector('input').value;
picker.remove();

};

picker.querySelector('.close-button').onclick = () => watcher.requestClose();

Note how the logic to gather the chosen value is centralized in the CloseWatcherp867 object's closep1471 event handler, with the
click event handler for the close button delegating to that logic by calling requestClose()p868.

Example

The cancelp1471 event on CloseWatcherp867 objects can be used to prevent the closep1471 event from firing, and the
CloseWatcherp867 from being destroying. A typical use case is as follows:

watcher.oncancel = async (e) => {
if (hasUnsavedData && e.cancelable) {

e.preventDefault();

Example

868

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://dom.spec.whatwg.org/#abortsignal-aborted
https://dom.spec.whatwg.org/#abortsignal-add
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/uievents/#event-type-click

Combined, the above two examples show how requestClose()p868 and close()p868 differ. Because we used requestClose()p868 in the
click event handler for the close button, clicking that button will trigger the CloseWatcherp867 's cancelp1471 event, and thus
potentially ask the user for confirmation if there is unsaved data. If we had used close()p868, then this check would be skipped.
Sometimes that is appropriate, but usually requestClose()p868 is the better option for user-triggered close requests.

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action of a mousedown event that is followed by a
series of mousemove events, and the drop could be triggered by the mouse being released.

When using an input modality other than a pointing device, users would probably have to explicitly indicate their intention to perform a
drag-and-drop operation, stating what they wish to drag and where they wish to drop it, respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g. where the mouse was clicked, or the start of the
selection or element that was selected for the drag), may have any number of intermediate steps (elements that the mouse moves

const userReallyWantsToClose = await askForConfirmation("Are you sure you want to close?");
if (userReallyWantsToClose) {

hasUnsavedData = false;
watcher.close();

}
}

};

For abuse prevention purposes, this event is only cancelable if the page has history-action activationp830, which will be lost after
any given close requestp863. This ensures that if the user sends a close request twice in a row without any intervening user
activation, the request definitely succeeds; the second request ignores any cancelp1471 event handler's attempt to call
preventDefault() and proceeds to close the CloseWatcherp867.

In addition to the user activationp829 restrictions for cancelp1471 events, there is a more subtle form of user activation gating for
CloseWatcherp867 construction. If one creates more than one CloseWatcherp867 without user activation, then the newly-created one
will get grouped together with the most-recently-created close watcherp865, so that a single close requestp863 will close them both:

window.onload = () => {
// This will work as normal: it is the first close watcher created without user activation.
(new CloseWatcher()).onclose = () => { /* ... */ };

};

button1.onclick = () => {
// This will work as normal: the button click counts as user activation.
(new CloseWatcher()).onclose = () => { /* ... */ };

};

button2.onclick = () => {
// These will be grouped together, and both will close in response to a single close request.
(new CloseWatcher()).onclose = () => { /* ... */ };
(new CloseWatcher()).onclose = () => { /* ... */ };

};

This means that calling destroy()p868, close()p868, or requestClose()p868 properly is important. Doing so is the only way to get
back the "free" ungrouped close watcher slot. Such close watchers created without user activation are useful for cases like session
inactivity timeout dialogs or urgent notifications of server-triggered events, which are not generated in response to user activation.

Example

6.11 Drag and drop §p86

9

✔ MDN

869

https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-preventdefault
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mousemove

over during a drag, or elements that the user picks as possible drop points as they cycle through possibilities), and must either have an
end point (the element above which the mouse button was released, or the element that was finally selected), or be canceled. The end
point must be the last element selected as a possible drop point before the drop occurs (so if the operation is not canceled, there must
be at least one element in the middle step).

This section is non-normative.

To make an element draggable, give the element a draggablep885 attribute, and set an event listener for dragstartp884 that stores the
data being dragged.

The event handler typically needs to check that it's not a text selection that is being dragged, and then needs to store data into the
DataTransferp872 object and set the allowed effects (copy, move, link, or some combination).

For example:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)">
<li draggable="true" data-value="fruit-apple">Apples
<li draggable="true" data-value="fruit-orange">Oranges
<li draggable="true" data-value="fruit-pear">Pears

<script>

var internalDNDType = 'text/x-example'; // set this to something specific to your site
function dragStartHandler(event) {

if (event.target instanceof HTMLLIElement) {
// use the element's data-value="" attribute as the value to be moving:
event.dataTransfer.setData(internalDNDType, event.target.dataset.value);
event.dataTransfer.effectAllowed = 'move'; // only allow moves

} else {
event.preventDefault(); // don't allow selection to be dragged

}
}

</script>

To accept a drop, the drop target has to listen to the following events:

1. The dragenterp884 event handler reports whether or not the drop target is potentially willing to accept the drop, by canceling
the event.

2. The dragoverp884 event handler specifies what feedback will be shown to the user, by setting the dropEffectp874 attribute of
the DataTransferp872 associated with the event. This event also needs to be canceled.

3. The dropp885 event handler has a final chance to accept or reject the drop. If the drop is accepted, the event handler must
perform the drop operation on the target. This event needs to be canceled, so that the dropEffectp874 attribute's value can
be used by the source. Otherwise, the drop operation is rejected.

For example:

<p>Drop your favorite fruits below:</p>
<ol ondragenter="dragEnterHandler(event)" ondragover="dragOverHandler(event)"

ondrop="dropHandler(event)">

<script>

var internalDNDType = 'text/x-example'; // set this to something specific to your site
function dragEnterHandler(event) {

var items = event.dataTransfer.items;
for (var i = 0; i < items.length; ++i) {

var item = items[i];

6.11.1 Introduction §p87

0

870

if (item.kind == 'string' && item.type == internalDNDType) {
event.preventDefault();
return;

}
}

}
function dragOverHandler(event) {

event.dataTransfer.dropEffect = 'move';
event.preventDefault();

}
function dropHandler(event) {

var li = document.createElement('li');
var data = event.dataTransfer.getData(internalDNDType);
if (data == 'fruit-apple') {

li.textContent = 'Apples';
} else if (data == 'fruit-orange') {

li.textContent = 'Oranges';
} else if (data == 'fruit-pear') {

li.textContent = 'Pears';
} else {

li.textContent = 'Unknown Fruit';
}
event.target.appendChild(li);

}
</script>

To remove the original element (the one that was dragged) from the display, the dragendp885 event can be used.

For our example here, that means updating the original markup to handle that event:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)" ondragend="dragEndHandler(event)">
...as before...

<script>

function dragStartHandler(event) {
// ...as before...

}
function dragEndHandler(event) {

if (event.dataTransfer.dropEffect == 'move') {
// remove the dragged element
event.target.parentNode.removeChild(event.target);

}
}

</script>

The data that underlies a drag-and-drop operation, known as the drag data store, consists of the following information:

• A drag data store item list, which is a list of items representing the dragged data, each consisting of the following
information:

The drag data item kind
The kind of data:

Text
Text.

6.11.2 The drag data store §p87

1

871

File
Binary data with a filename.

The drag data item type string
A Unicode string giving the type or format of the data, generally given by a MIME type. Some values that are not MIME
types are special-cased for legacy reasons. The API does not enforce the use of MIME types; other values can be used as
well. In all cases, however, the values are all converted to ASCII lowercase by the API.

There is a limit of one text item per item type stringp872.

The actual data
A Unicode or binary string, in some cases with a filename (itself a Unicode string), as per the drag data item kindp871.

The drag data store item listp871 is ordered in the order that the items were added to the list; most recently added last.

• The following information, used to generate the UI feedback during the drag:

◦ User-agent-defined default feedback information, known as the drag data store default feedback.

◦ Optionally, a bitmap image and the coordinate of a point within that image, known as the drag data store
bitmap and drag data store hot spot coordinate.

• A drag data store mode, which is one of the following:

Read/write mode
For the dragstartp884 event. New data can be added to the drag data storep871.

Read-only mode
For the dropp885 event. The list of items representing dragged data can be read, including the data. No new data can be
added.

Protected mode
For all other events. The formats and kinds in the drag data storep871 list of items representing dragged data can be
enumerated, but the data itself is unavailable and no new data can be added.

• A drag data store allowed effects state, which is a string.

When a drag data storep871 is created, it must be initialized such that its drag data store item listp871 is empty, it has no drag data
store default feedbackp872, it has no drag data store bitmapp872 and drag data store hot spot coordinatep872, its drag data store
modep872 is protected modep872, and its drag data store allowed effects statep872 is the string "uninitializedp874".

DataTransferp872 objects are used to expose the drag data storep871 that underlies a drag-and-drop operation.

[Exposed=Window]
interface DataTransfer {

constructor();

attribute DOMString dropEffect;
attribute DOMString effectAllowed;

[SameObject] readonly attribute DataTransferItemList items;

undefined setDragImage(Element image, long x, long y);

/* old interface */
readonly attribute FrozenArray<DOMString> types;
DOMString getData(DOMString format);
undefined setData(DOMString format, DOMString data);
undefined clearData(optional DOMString format);

IDL

6.11.3 The DataTransferp872 interface §p87

2

✔ MDN

872

https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-lowercase

[SameObject] readonly attribute FileList files;
};

DataTransferp872 objects that are created as part of drag-and-drop eventsp884 are only valid while those events are being fired.

A DataTransferp872 object is associated with a drag data storep871 while it is valid.

A DataTransferp872 object has an associated types array, which is a FrozenArray<DOMString>, initially empty. When the contents of
the DataTransferp872 object's drag data store item listp871 change, or when the DataTransferp872 object becomes no longer associated
with a drag data storep871, run the following steps:

1. Let L be an empty sequence.

2. If the DataTransferp872 object is still associated with a drag data storep871, then:

1. For each item in the DataTransferp872 object's drag data store item listp871 whose kindp871 is text, add an entry to L
consisting of the item's type stringp872.

2. If there are any items in the DataTransferp872 object's drag data store item listp871 whose kindp871 is File, then add
an entry to L consisting of the string "Files". (This value can be distinguished from the other values because it is
not lowercase.)

3. Set the DataTransferp872 object's types arrayp873 to the result of creating a frozen array from L.

The DataTransfer() constructor, when invoked, must return a newly created DataTransferp872 object initialized as follows:

dataTransfer = new DataTransferp873()
Creates a new DataTransferp872 object with an empty drag data storep871.

dataTransfer.dropEffectp874 [= value]
Returns the kind of operation that is currently selected. If the kind of operation isn't one of those that is allowed by the
effectAllowedp874 attribute, then the operation will fail.
Can be set, to change the selected operation.
The possible values are "nonep874", "copyp874", "linkp874", and "movep874".

dataTransfer.effectAllowedp874 [= value]
Returns the kinds of operations that are to be allowed.
Can be set (during the dragstartp884 event), to change the allowed operations.
The possible values are "nonep874", "copyp874", "copyLinkp874", "copyMovep874", "linkp874", "linkMovep874", "movep874", "allp874",
and "uninitializedp874",

dataTransfer.itemsp874

Returns a DataTransferItemListp875 object, with the drag data.

dataTransfer.setDragImagep874(element, x, y)
Uses the given element to update the drag feedback, replacing any previously specified feedback.

dataTransfer.typesp874

Returns a frozen array listing the formats that were set in the dragstartp884 event. In addition, if any files are being dragged,
then one of the types will be the string "Files".

data = dataTransfer.getDatap874(format)
Returns the specified data. If there is no such data, returns the empty string.

dataTransfer.setDatap874(format, data)
Adds the specified data.

dataTransfer.clearDatap875([format])
Removes the data of the specified formats. Removes all data if the argument is omitted.

dataTransfer.filesp875

Returns a FileList of the files being dragged, if any.

For web developers (non-normative)

873

https://w3c.github.io/FileAPI/#filelist-section
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://w3c.github.io/FileAPI/#filelist-section
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://webidl.spec.whatwg.org/#dfn-create-frozen-array

1. Set the drag data storep871 's item listp871 to be an empty list.

2. Set the drag data storep871 's modep872 to read/write modep872.

3. Set the dropEffectp874 and effectAllowedp874 to "none".

The dropEffect attribute controls the drag-and-drop feedback that the user is given during a drag-and-drop operation. When the
DataTransferp872 object is created, the dropEffectp874 attribute is set to a string value. On getting, it must return its current value. On
setting, if the new value is one of "none", "copy", "link", or "move", then the attribute's current value must be set to the new value.
Other values must be ignored.

The effectAllowed attribute is used in the drag-and-drop processing model to initialize the dropEffectp874 attribute during the
dragenterp884 and dragoverp884 events. When the DataTransferp872 object is created, the effectAllowedp874 attribute is set to a string
value. On getting, it must return its current value. On setting, if drag data storep871 's modep872 is the read/write modep872 and the new
value is one of "none", "copy", "copyLink", "copyMove", "link", "linkMove", "move", "all", or "uninitialized", then the attribute's
current value must be set to the new value. Otherwise, it must be left unchanged.

The items attribute must return a DataTransferItemListp875 object associated with the DataTransferp872 object.

The setDragImage(image, x, y) method must run the following steps:

1. If the DataTransferp872 object is no longer associated with a drag data storep871, return. Nothing happens.

2. If the drag data storep871 's modep872 is not the read/write modep872, return. Nothing happens.

3. If image is an imgp346 element, then set the drag data store bitmapp872 to the element's image (at its natural size); otherwise,
set the drag data store bitmapp872 to an image generated from the given element (the exact mechanism for doing so is not
currently specified).

4. Set the drag data store hot spot coordinatep872 to the given x, y coordinate.

The types attribute must return this DataTransferp872 object's types arrayp873.

The getData(format) method must run the following steps:

1. If the DataTransferp872 object is no longer associated with a drag data storep871, then return the empty string.

2. If the drag data storep871 's modep872 is the protected modep872, then return the empty string.

3. Let format be the first argument, converted to ASCII lowercase.

4. Let convert-to-URL be false.

5. If format equals "text", change it to "text/plain".

6. If format equals "url", change it to "text/uri-list" and set convert-to-URL to true.

7. If there is no item in the drag data store item listp871 whose kindp871 is text and whose type stringp872 is equal to format,
return the empty string.

8. Let result be the data of the item in the drag data store item listp871 whose kindp871 is Plain Unicode string and whose type
stringp872 is equal to format.

9. If convert-to-URL is true, then parse result as appropriate for text/uri-list data, and then set result to the first URL from
the list, if any, or the empty string otherwise. [RFC2483]p1481

10. Return result.

The setData(format, data) method must run the following steps:

1. If the DataTransferp872 object is no longer associated with a drag data storep871, return. Nothing happens.

2. If the drag data storep871 's modep872 is not the read/write modep872, return. Nothing happens.

3. Let format be the first argument, converted to ASCII lowercase.

4. If format equals "text", change it to "text/plain".

If format equals "url", change it to "text/uri-list".

874

https://drafts.csswg.org/css-images/#natural-dimensions
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase

5. Remove the item in the drag data store item listp871 whose kindp871 is text and whose type stringp872 is equal to format, if
there is one.

6. Add an item to the drag data store item listp871 whose kindp871 is text, whose type stringp872 is equal to format, and whose
data is the string given by the method's second argument.

The clearData(format) method must run the following steps:

1. If the DataTransferp872 object is no longer associated with a drag data storep871, return. Nothing happens.

2. If the drag data storep871 's modep872 is not the read/write modep872, return. Nothing happens.

3. If the method was called with no arguments, remove each item in the drag data store item listp871 whose kindp871 is Plain
Unicode string, and return.

4. Set format to format, converted to ASCII lowercase.

5. If format equals "text", change it to "text/plain".

If format equals "url", change it to "text/uri-list".

6. Remove the item in the drag data store item listp871 whose kindp871 is text and whose type stringp872 is equal to format, if
there is one.

The files attribute must return a livep47 FileList sequence consisting of File objects representing the files found by the following
steps. Furthermore, for a given FileList object and a given underlying file, the same File object must be used each time.

1. Start with an empty list L.

2. If the DataTransferp872 object is no longer associated with a drag data storep871, the FileList is empty. Return the empty
list L.

3. If the drag data storep871 's modep872 is the protected modep872, return the empty list L.

4. For each item in the drag data store item listp871 whose kindp871 is File, add the item's data (the file, in particular its name and
contents, as well as its typep872) to the list L.

5. The files found by these steps are those in the list L.

Each DataTransferp872 object is associated with a DataTransferItemListp875 object.

[Exposed=Window]
interface DataTransferItemList {

readonly attribute unsigned long length;
getter DataTransferItem (unsigned long index);
DataTransferItem? add(DOMString data, DOMString type);
DataTransferItem? add(File data);
undefined remove(unsigned long index);
undefined clear();

};

The clearData()p875 method does not affect whether any files were included in the drag, so the typesp874 attribute's list might still
not be empty after calling clearData()p875 (it would still contain the "Files" string if any files were included in the drag).

Note

This version of the API does not expose the types of the files during the drag.
Note

6.11.3.1 The DataTransferItemListp875 interface §p87

5

For web developers (non-normative)

IDL

✔ MDN

875

https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#filelist-section
https://w3c.github.io/FileAPI/#dfn-file

While the DataTransferItemListp875 object's DataTransferp872 object is associated with a drag data storep871, the
DataTransferItemListp875 object's mode is the same as the drag data store modep872. When the DataTransferItemListp875 object's
DataTransferp872 object is not associated with a drag data storep871, the DataTransferItemListp875 object's mode is the disabled
mode. The drag data storep871 referenced in this section (which is used only when the DataTransferItemListp875 object is not in the
disabled mode) is the drag data storep871 with which the DataTransferItemListp875 object's DataTransferp872 object is associated.

The length attribute must return zero if the object is in the disabled mode; otherwise it must return the number of items in the drag
data store item listp871.

When a DataTransferItemListp875 object is not in the disabled mode, its supported property indices are the indices of the drag data
store item listp871.

To determine the value of an indexed property i of a DataTransferItemListp875 object, the user agent must return a
DataTransferItemp877 object representing the ith item in the drag data storep871. The same object must be returned each time a
particular item is obtained from this DataTransferItemListp875 object. The DataTransferItemp877 object must be associated with the
same DataTransferp872 object as the DataTransferItemListp875 object when it is first created.

The add() method must run the following steps:

1. If the DataTransferItemListp875 object is not in the read/write modep872, return null.

2. Jump to the appropriate set of steps from the following list:

↪ If the first argument to the method is a string
If there is already an item in the drag data store item listp871 whose kindp871 is text and whose type stringp872 is equal
to the value of the method's second argument, converted to ASCII lowercase, then throw a "NotSupportedError"
DOMException.

Otherwise, add an item to the drag data store item listp871 whose kindp871 is text, whose type stringp872 is equal to the
value of the method's second argument, converted to ASCII lowercase, and whose data is the string given by the
method's first argument.

↪ If the first argument to the method is a File
Add an item to the drag data store item listp871 whose kindp871 is File, whose type stringp872 is the type of the File,
converted to ASCII lowercase, and whose data is the same as the File's data.

3. Determine the value of the indexed propertyp876 corresponding to the newly added item, and return that value (a newly
created DataTransferItemp877 object).

The remove(index) method must run these steps:

1. If the DataTransferItemListp875 object is not in the read/write modep872, throw an "InvalidStateError" DOMException.

2. If the drag data storep871 does not contain an indexth item, then return.

3. Remove the indexth item from the drag data storep871.

The clear() method, if the DataTransferItemListp875 object is in the read/write modep872, must remove all the items from the drag

items.lengthp876

Returns the number of items in the drag data storep871.

items[index]
Returns the DataTransferItemp877 object representing the indexth entry in the drag data storep871.

items.removep876(index)
Removes the indexth entry in the drag data storep871.

items.clearp876()
Removes all the entries in the drag data storep871.

items.addp876(data)
items.addp876(data, type)

Adds a new entry for the given data to the drag data storep871. If the data is plain text then a type string has to be provided also.

876

https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-get-the-indices
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-an-indexed-property
https://infra.spec.whatwg.org/#ascii-lowercase
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-type
https://w3c.github.io/FileAPI/#dfn-file
https://infra.spec.whatwg.org/#ascii-lowercase
https://w3c.github.io/FileAPI/#dfn-file
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

data storep871. Otherwise, it must do nothing.

Each DataTransferItemp877 object is associated with a DataTransferp872 object.

[Exposed=Window]
interface DataTransferItem {

readonly attribute DOMString kind;
readonly attribute DOMString type;
undefined getAsString(FunctionStringCallback? _callback);
File? getAsFile();

};

callback FunctionStringCallback = undefined (DOMString data);

While the DataTransferItemp877 object's DataTransferp872 object is associated with a drag data storep871 and that drag data storep871 's
drag data store item listp871 still contains the item that the DataTransferItemp877 object represents, the DataTransferItemp877 object's
mode is the same as the drag data store modep872. When the DataTransferItemp877 object's DataTransferp872 object is not associated
with a drag data storep871, or if the item that the DataTransferItemp877 object represents has been removed from the relevant drag
data store item listp871, the DataTransferItemp877 object's mode is the disabled mode. The drag data storep871 referenced in this
section (which is used only when the DataTransferItemp877 object is not in the disabled mode) is the drag data storep871 with which
the DataTransferItemp877 object's DataTransferp872 object is associated.

The kind attribute must return the empty string if the DataTransferItemp877 object is in the disabled mode; otherwise it must return
the string given in the cell from the second column of the following table from the row whose cell in the first column contains the drag
data item kindp871 of the item represented by the DataTransferItemp877 object:

Kind String

Text "string"
File "file"

The type attribute must return the empty string if the DataTransferItemp877 object is in the disabled mode; otherwise it must return
the drag data item type stringp872 of the item represented by the DataTransferItemp877 object.

The getAsString(callback) method must run the following steps:

1. If the callback is null, return.

2. If the DataTransferItemp877 object is not in the read/write modep872 or the read-only modep872, return. The callback is never
invoked.

3. If the drag data item kindp871 is not text, then return. The callback is never invoked.

4. Otherwise, queue a taskp1125 to invoke callback, passing the actual data of the item represented by the
DataTransferItemp877 object as the argument.

The getAsFile() method must run the following steps:

6.11.3.2 The DataTransferItemp877 interface §p87

7

item.kindp877

Returns the drag data item kindp871, one of: "string", "file".

item.typep877

Returns the drag data item type stringp872.

item.getAsStringp877(callback)
Invokes the callback with the string data as the argument, if the drag data item kindp871 is text.

file = item.getAsFilep877()
Returns a File object, if the drag data item kindp871 is File.

For web developers (non-normative)

IDL

✔ MDN

877

https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-file

1. If the DataTransferItemp877 object is not in the read/write modep872 or the read-only modep872, then return null.

2. If the drag data item kindp871 is not File, then return null.

3. Return a new File object representing the actual data of the item represented by the DataTransferItemp877 object.

The drag-and-drop processing model involves several events. They all use the DragEventp878 interface.

[Exposed=Window]
interface DragEvent : MouseEvent {

constructor(DOMString type, optional DragEventInit eventInitDict = {});

readonly attribute DataTransfer? dataTransfer;
};

dictionary DragEventInit : MouseEventInit {
DataTransfer? dataTransfer = null;

};

The dataTransfer attribute of the DragEventp878 interface must return the value it was initialized to. It represents the context
information for the event.

When a user agent is required to fire a DND event named e at an element, using a particular drag data storep871, and optionally with
a specific related target, the user agent must run the following steps:

1. Let dataDragStoreWasChanged be false.

2. If no specific related target was provided, set related target to null.

3. Let window be the relevant global objectp1083 of the Documentp130 object of the specified target element.

4. If e is dragstartp884, then set the drag data store modep872 to the read/write modep872 and set dataDragStoreWasChanged to
true.

If e is dropp885, set the drag data store modep872 to the read-only modep872.

5. Let dataTransfer be a newly created DataTransferp872 object associated with the given drag data storep871.

6. Set the effectAllowedp874 attribute to the drag data storep871 's drag data store allowed effects statep872.

7. Set the dropEffectp874 attribute to "nonep874" if e is dragstartp884, dragp884, or dragleavep884; to the value corresponding to
the current drag operationp882 if e is dropp885 or dragendp885; and to a value based on the effectAllowedp874 attribute's value
and the drag-and-drop source, as given by the following table, otherwise (i.e. if e is dragenterp884 or dragoverp884):

effectAllowedp874 dropEffectp874

"nonep874" "nonep874"
"copyp874" "copyp874"
"copyLinkp874" "copyp874", or, if appropriatep879, "linkp874"
"copyMovep874" "copyp874", or, if appropriatep879, "movep874"

event.dataTransferp878

Returns the DataTransferp872 object for the event.

For web developers (non-normative)

Although, for consistency with other event interfaces, the DragEventp878 interface has a constructor, it is not particularly useful. In
particular, there's no way to create a useful DataTransferp872 object from script, as DataTransferp872 objects have a processing
and security model that is coordinated by the browser during drag-and-drops.

Note

IDL

6.11.4 The DragEventp878 interface §p87

8

✔ MDN

878

https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/uievents/#mouseevent
https://w3c.github.io/uievents/#dictdef-mouseeventinit

effectAllowedp874 dropEffectp874

"allp874" "copyp874", or, if appropriatep879, either "linkp874" or
"movep874"

"linkp874" "linkp874"
"linkMovep874" "linkp874", or, if appropriatep879, "movep874"
"movep874" "movep874"
"uninitializedp874" when what is being dragged is a selection from a text control "movep874", or, if appropriatep879, either "copyp874" or

"linkp874"
"uninitializedp874" when what is being dragged is a selection "copyp874", or, if appropriatep879, either "linkp874" or

"movep874"
"uninitializedp874" when what is being dragged is an ap257 element with an hrefp303

attribute
"linkp874", or, if appropriatep879, either "copyp874" or
"movep874"

Any other case "copyp874", or, if appropriatep879, either "linkp874" or
"movep874"

Where the table above provides possibly appropriate alternatives, user agents may instead use the listed alternative
values if platform conventions dictate that the user has requested those alternate effects.

8. Let event be the result of creating an event using DragEventp878.

9. Initialize event's type attribute to e, its bubbles attribute to true, its view attribute to window, its relatedTarget attribute
to related target, and its dataTransferp878 attribute to dataTransfer.

10. If e is not dragleavep884 or dragendp885, then initialize event's cancelable attribute to true.

11. Initialize event's mouse and key attributes initialized according to the state of the input devices as they would be for user
interaction events.

If there is no relevant pointing device, then initialize event's screenX, screenY, clientX, clientY, and button attributes to
0.

12. Dispatch event at the specified target element.

13. Set the drag data store allowed effects statep872 to the current value of dataTransfer's effectAllowedp874 attribute. (It can
only have changed value if e is dragstartp884.)

14. If dataDragStoreWasChanged is true, then set the drag data store modep872 back to the protected modep872.

15. Break the association between dataTransfer and the drag data storep871.

When the user attempts to begin a drag operation, the user agent must run the following steps. User agents must act as if these steps
were run even if the drag actually started in another document or application and the user agent was not aware that the drag was
occurring until it intersected with a document under the user agent's purview.

1. Determine what is being dragged, as follows:

If the drag operation was invoked on a selection, then it is the selection that is being dragged.

Otherwise, if the drag operation was invoked on a Documentp130, it is the first element, going up the ancestor chain, starting
at the node that the user tried to drag, that has the IDL attribute draggablep885 set to true. If there is no such element, then
nothing is being dragged; return, the drag-and-drop operation is never started.

Otherwise, the drag operation was invoked outside the user agent's purview. What is being dragged is defined by the
document or application where the drag was started.

For example, Windows platform conventions are such that dragging while holding the "alt" key indicates a preference for
linking the data, rather than moving or copying it. Therefore, on a Windows system, if "linkp874" is an option according to
the table above while the "alt" key is depressed, the user agent could select that instead of "copyp874" or "movep874".

Example

6.11.5 Processing model §p87

9

879

https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-bubbles
https://w3c.github.io/uievents/#dom-uievent-view
https://w3c.github.io/uievents/#dom-mouseevent-relatedtarget
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-dispatch

2. Create a drag data storep872. All the DND events fired subsequently by the steps in this section must use this drag data
storep871.

3. Establish which DOM node is the source node, as follows:

If it is a selection that is being dragged, then the source nodep880 is the Text node that the user started the drag on (typically
the Text node that the user originally clicked). If the user did not specify a particular node, for example if the user just told
the user agent to begin a drag of "the selection", then the source nodep880 is the first Text node containing a part of the
selection.

Otherwise, if it is an element that is being dragged, then the source nodep880 is the element that is being dragged.

Otherwise, the source nodep880 is part of another document or application. When this specification requires that an event be
dispatched at the source nodep880 in this case, the user agent must instead follow the platform-specific conventions relevant
to that situation.

4. Determine the list of dragged nodes, as follows:

If it is a selection that is being dragged, then the list of dragged nodesp880 contains, in tree order, every node that is partially
or completely included in the selection (including all their ancestors).

Otherwise, the list of dragged nodesp880 contains only the source nodep880, if any.

5. If it is a selection that is being dragged, then add an item to the drag data store item listp871, with its properties set as
follows:

The drag data item type stringp872

"text/plain"

The drag data item kindp871

Text

The actual data
The text of the selection

Otherwise, if any files are being dragged, then add one item per file to the drag data store item listp871, with their properties
set as follows:

The drag data item type stringp872

The MIME type of the file, if known, or "application/octet-stream" otherwise.

The drag data item kindp871

File

The actual data
The file's contents and name.

If the drag initiated outside of the application, the user agent must add items to the drag data store item listp871 as
appropriate for the data being dragged, honoring platform conventions where appropriate; however, if the platform
conventions do not use MIME types to label dragged data, the user agent must make a best-effort attempt to map the types
to MIME types, and, in any case, all the drag data item type stringsp872 must be converted to ASCII lowercase.

User agents may also add one or more items representing the selection or dragged element(s) in other forms, e.g. as HTML.

6. If the list of dragged nodesp880 is not empty, then extract the microdata from those nodes into a JSON formp821, and add one
item to the drag data store item listp871, with its properties set as follows:

imgp346 elements and ap257 elements with an hrefp303 attribute have their draggablep885 attribute set to true by default.
Note

Multiple events are fired on the source nodep880 during the course of the drag-and-drop operation.
Note

Dragging files can currently only happen from outside a navigablep989, for example from a file system manager
application.

Note

880

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-tree-order
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#ascii-lowercase

The drag data item type stringp872

application/microdata+jsonp1448

The drag data item kindp871

Text

The actual data
The resulting JSON string.

7. Run the following substeps:

1. Let urls be « ».

2. For each node in the list of dragged nodesp880:

If the node is an ap257 element with an hrefp303 attribute
Add to urls the result of encoding-parsing-and-serializing a URLp97 given the element's hrefp303 content
attribute's value, relative to the element's node document.

If the node is an imgp346 element with a srcp347 attribute
Add to urls the result of encoding-parsing-and-serializing a URLp97 given the element's srcp347 content
attribute's value, relative to the element's node document.

3. If urls is still empty, then return.

4. Let url string be the result of concatenating the strings in urls, in the order they were added, separated by a
U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF).

5. Add one item to the drag data store item listp871, with its properties set as follows:

The drag data item type stringp872

text/uri-listp1474

The drag data item kindp871

Text

The actual data
url string

8. Update the drag data store default feedbackp872 as appropriate for the user agent (if the user is dragging the selection, then
the selection would likely be the basis for this feedback; if the user is dragging an element, then that element's rendering
would be used; if the drag began outside the user agent, then the platform conventions for determining the drag feedback
should be used).

9. Fire a DND eventp878 named dragstartp884 at the source nodep880.

If the event is canceled, then the drag-and-drop operation should not occur; return.

10. Fire a pointer event at the source nodep880 named pointercancel, and fire any other follow-up events as required by Pointer
Events. [POINTEREVENTS]p1481

11. Initiate the drag-and-drop operationp881 in a manner consistent with platform conventions, and as described below.

The drag-and-drop feedback must be generated from the first of the following sources that is available:

1. The drag data store bitmapp872, if any. In this case, the drag data store hot spot coordinatep872 should be used as
hints for where to put the cursor relative to the resulting image. The values are expressed as distances in CSS
pixels from the left side and from the top side of the image respectively. [CSS]p1476

2. The drag data store default feedbackp872.

From the moment that the user agent is to initiate the drag-and-drop operation, until the end of the drag-and-drop operation,
device input events (e.g. mouse and keyboard events) must be suppressed.

Since events with no event listeners registered are, almost by definition, never canceled, drag-and-drop is always
available to the user if the author does not specifically prevent it.

Note

881

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/pointerevents/#dfn-fire-a-pointer-event
https://w3c.github.io/pointerevents/#the-pointercancel-event
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

During the drag operation, the element directly indicated by the user as the drop target is called the immediate user selection.
(Only elements can be selected by the user; other nodes must not be made available as drop targets.) However, the immediate user
selectionp882 is not necessarily the current target element, which is the element currently selected for the drop part of the drag-and-
drop operation.

The immediate user selectionp882 changes as the user selects different elements (either by pointing at them with a pointing device, or
by selecting them in some other way). The current target elementp882 changes when the immediate user selectionp882 changes, based
on the results of event listeners in the document, as described below.

Both the current target elementp882 and the immediate user selectionp882 can be null, which means no target element is selected. They
can also both be elements in other (DOM-based) documents, or other (non-web) programs altogether. (For example, a user could drag
text to a word-processor.) The current target elementp882 is initially null.

In addition, there is also a current drag operation, which can take on the values "none", "copy", "link", and "move". Initially, it has
the value "nonep882". It is updated by the user agent as described in the steps below.

User agents must, as soon as the drag operation is initiatedp881 and every 350ms (±200ms) thereafter for as long as the drag
operation is ongoing, queue a taskp1125 to perform the following steps in sequence:

1. If the user agent is still performing the previous iteration of the sequence (if any) when the next iteration becomes due,
return for this iteration (effectively "skipping missed frames" of the drag-and-drop operation).

2. Fire a DND eventp878 named dragp884 at the source nodep880. If this event is canceled, the user agent must set the current
drag operationp882 to "nonep882" (no drag operation).

3. If the dragp884 event was not canceled and the user has not ended the drag-and-drop operation, check the state of the drag-
and-drop operation, as follows:

1. If the user is indicating a different immediate user selectionp882 than during the last iteration (or if this is the first
iteration), and if this immediate user selectionp882 is not the same as the current target elementp882, then update
the current target elementp882 as follows:

↪ If the new immediate user selectionp882 is null
Set the current target elementp882 to null also.

↪ If the new immediate user selectionp882 is in a non-DOM document or application
Set the current target elementp882 to the immediate user selectionp882.

↪ Otherwise
Fire a DND eventp878 named dragenterp884 at the immediate user selectionp882.

If the event is canceled, then set the current target elementp882 to the immediate user selectionp882.

Otherwise, run the appropriate step from the following list:

↪ If the immediate user selectionp882 is a text control (e.g., textareap579, or an inputp520 element
whose typep523 attribute is in the Textp527 state) or an editing hostp855 or editable element,
and the drag data store item listp871 has an item with the drag data item type stringp872

"text/plain" and the drag data item kindp871 text
Set the current target elementp882 to the immediate user selectionp882 anyway.

↪ If the immediate user selectionp882 is the body elementp136

Leave the current target elementp882 unchanged.

↪ Otherwise
Fire a DND eventp878 named dragenterp884 at the body elementp136, if there is one, or at the
Documentp130 object, if not. Then, set the current target elementp882 to the body elementp136,
regardless of whether that event was canceled or not.

2. If the previous step caused the current target elementp882 to change, and if the previous target element was not
null or a part of a non-DOM document, then fire a DND eventp878 named dragleavep884 at the previous target
element, with the new current target elementp882 as the specific related target.

3. If the current target elementp882 is a DOM element, then fire a DND eventp878 named dragoverp884 at this current
target elementp882.

882

https://w3c.github.io/editing/docs/execCommand/#editable
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3

If the dragoverp884 event is not canceled, run the appropriate step from the following list:

↪ If the current target elementp882 is a text control (e.g., textareap579, or an inputp520 element whose
typep523 attribute is in the Textp527 state) or an editing hostp855 or editable element, and the drag
data store item listp871 has an item with the drag data item type stringp872 "text/plain" and the
drag data item kindp871 text

Set the current drag operationp882 to either "copyp882" or "movep882", as appropriate given the platform
conventions.

↪ Otherwise
Reset the current drag operationp882 to "nonep882".

Otherwise (if the dragoverp884 event is canceled), set the current drag operationp882 based on the values of the
effectAllowedp874 and dropEffectp874 attributes of the DragEventp878 object's dataTransferp878 object as they
stood after the event dispatch finished, as per the following table:

effectAllowedp874 dropEffectp874 Drag operation

"uninitializedp874", "copyp874", "copyLinkp874", "copyMovep874", or "allp874" "copyp874" "copyp882"
"uninitializedp874", "linkp874", "copyLinkp874", "linkMovep874", or "allp874" "linkp874" "linkp882"
"uninitializedp874", "movep874", "copyMovep874", "linkMovep874", or "allp874" "movep874" "movep882"
Any other case "nonep882"

4. Otherwise, if the current target elementp882 is not a DOM element, use platform-specific mechanisms to determine
what drag operation is being performed (none, copy, link, or move), and set the current drag operationp882

accordingly.

5. Update the drag feedback (e.g. the mouse cursor) to match the current drag operationp882, as follows:

Drag operation Feedback

"copyp882" Data will be copied if dropped here.
"linkp882" Data will be linked if dropped here.
"movep882" Data will be moved if dropped here.
"nonep882" No operation allowed, dropping here will cancel the drag-and-drop operation.

4. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the mouse button in a mouse-driven drag-and-
drop interface), or if the dragp884 event was canceled, then this will be the last iteration. Run the following steps, then stop
the drag-and-drop operation:

1. If the current drag operationp882 is "nonep882" (no drag operation), or, if the user ended the drag-and-drop operation
by canceling it (e.g. by hitting the Escape key), or if the current target elementp882 is null, then the drag operation
failed. Run these substeps:

1. Let dropped be false.

2. If the current target elementp882 is a DOM element, fire a DND eventp878 named dragleavep884 at it;
otherwise, if it is not null, use platform-specific conventions for drag cancelation.

3. Set the current drag operationp882 to "nonep882".

Otherwise, the drag operation might be a success; run these substeps:

1. Let dropped be true.

2. If the current target elementp882 is a DOM element, fire a DND eventp878 named dropp885 at it; otherwise,
use platform-specific conventions for indicating a drop.

3. If the event is canceled, set the current drag operationp882 to the value of the dropEffectp874 attribute of
the DragEventp878 object's dataTransferp878 object as it stood after the event dispatch finished.

Otherwise, the event is not canceled; perform the event's default action, which depends on the exact
target as follows:

↪ If the current target elementp882 is a text control (e.g., textareap579, or an inputp520

element whose typep523 attribute is in the Textp527 state) or an editing hostp855 or editable
element, and the drag data store item listp871 has an item with the drag data item type

883

https://w3c.github.io/editing/docs/execCommand/#editable
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#concept-event-dispatch
https://w3c.github.io/editing/docs/execCommand/#editable

stringp872 "text/plain" and the drag data item kindp871 text
Insert the actual data of the first item in the drag data store item listp871 to have a drag data item
type stringp872 of "text/plain" and a drag data item kindp871 that is text into the text control or
editing hostp855 or editable element in a manner consistent with platform-specific conventions
(e.g. inserting it at the current mouse cursor position, or inserting it at the end of the field).

↪ Otherwise
Reset the current drag operationp882 to "nonep882".

2. Fire a DND eventp878 named dragendp885 at the source nodep880.

3. Run the appropriate steps from the following list as the default action of the dragendp885 event:

↪ If dropped is true, the current target elementp882 is a text control (see below), the current drag
operationp882 is "movep882", and the source of the drag-and-drop operation is a selection in the DOM
that is entirely contained within an editing hostp855

Delete the selection.

↪ If dropped is true, the current target elementp882 is a text control (see below), the current drag
operationp882 is "movep882", and the source of the drag-and-drop operation is a selection in a text
control

The user agent should delete the dragged selection from the relevant text control.

↪ If dropped is false or if the current drag operationp882 is "nonep882"
The drag was canceled. If the platform conventions dictate that this be represented to the user (e.g. by
animating the dragged selection going back to the source of the drag-and-drop operation), then do so.

↪ Otherwise
The event has no default action.

For the purposes of this step, a text control is a textareap579 element or an inputp520 element whose typep523

attribute is in one of the Textp527, Searchp527, Telp528, URLp529, Emailp530, Passwordp531, or Numberp537 states.

This section is non-normative.

The following events are involved in the drag-and-drop model.

Event
name

Target Cancelable? Drag data store
modep872

dropEffectp874 Default Action

dragstart Source nodep880 ✓ Cancelable Read/write
modep872

"nonep874" Initiate the drag-and-drop operation

drag Source nodep880 ✓ Cancelable Protected modep872 "nonep874" Continue the drag-and-drop operation
dragenter Immediate user selectionp882 or the

body elementp136
✓ Cancelable Protected modep872 Based on

effectAllowed
valuep878

Reject immediate user selectionp882 as potential
target elementp882

dragleave Previous target elementp882 — Protected modep872 "nonep874" None
dragover Current target elementp882 ✓ Cancelable Protected modep872 Based on

effectAllowed
valuep878

Reset the current drag operationp882 to "none"

User agents are encouraged to consider how to react to drags near the edge of scrollable regions. For example, if a user drags a
link to the bottom of the viewport on a long page, it might make sense to scroll the page so that the user can drop the link lower
on the page.

Note

This model is independent of which Documentp130 object the nodes involved are from; the events are fired as described above and
the rest of the processing model runs as described above, irrespective of how many documents are involved in the operation.

Note

6.11.6 Events summary §p88

4

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

884

https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://w3c.github.io/editing/docs/execCommand/#editable
https://w3c.github.io/editing/docs/execCommand/#delete-the-selection
https://drafts.csswg.org/css2/#viewport

Event
name

Target Cancelable? Drag data store
modep872

dropEffectp874 Default Action

drop Current target elementp882 ✓ Cancelable Read-only modep872 Current drag
operationp882

Varies

dragend Source nodep880 — Protected modep872 Current drag
operationp882

Varies

All of these events bubble, are composed, and the effectAllowedp874 attribute always has the value it had after the dragstartp884

event, defaulting to "uninitializedp874" in the dragstartp884 event.

All HTML elementsp45 may have the draggable content attribute set. The draggablep885 attribute is an enumerated attributep76 with
the following keywords and states:

Keyword State Brief description

true true The element will be draggable.
false false The element will not be draggable.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the auto state. The auto state uses the default behavior
of the user agent.

An element with a draggablep885 attribute should also have a titlep157 attribute that names the element for the purpose of non-visual
interactions.

The draggable IDL attribute, whose value depends on the content attribute's in the way described below, controls whether or not the
element is draggable. Generally, only text selections are draggable, but elements whose draggablep885 IDL attribute is true become
draggable as well.

If an element's draggablep885 content attribute has the state truep885, the draggablep885 IDL attribute must return true.

Otherwise, if the element's draggablep885 content attribute has the state falsep885, the draggablep885 IDL attribute must return false.

Otherwise, the element's draggablep885 content attribute has the state autop885. If the element is an imgp346 element, an objectp402

element that representsp141 an image, or an ap257 element with an hrefp303 content attribute, the draggablep885 IDL attribute must
return true; otherwise, the draggablep885 IDL attribute must return false.

If the draggablep885 IDL attribute is set to the value false, the draggablep885 content attribute must be set to the literal value "false".
If the draggablep885 IDL attribute is set to the value true, the draggablep885 content attribute must be set to the literal value "true".

User agents must not make the data added to the DataTransferp872 object during the dragstartp884 event available to scripts until the
dropp885 event, because otherwise, if a user were to drag sensitive information from one document to a second document, crossing a
hostile third document in the process, the hostile document could intercept the data.

For the same reason, user agents must consider a drop to be successful only if the user specifically ended the drag operation — if any
scripts end the drag operation, it must be considered unsuccessful (canceled) and the dropp885 event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script actions. For example, in a mouse-and-window
environment, if a script moves a window while the user has their mouse button depressed, the UA would not consider that to start a
drag. This is important because otherwise UAs could cause data to be dragged from sensitive sources and dropped into hostile
documents without the user's consent.

element.draggablep885 [= value]
Returns true if the element is draggable; otherwise, returns false.
Can be set, to override the default and set the draggablep885 content attribute.

For web developers (non-normative)

6.11.7 The draggablep885 attribute §p88

5

6.11.8 Security risks in the drag-and-drop model §p88

5

✔ MDN

✔ MDN

✔ MDN

885

User agents should filter potentially active (scripted) content (e.g. HTML) when it is dragged and when it is dropped, using a safelist of
known-safe features. Similarly, relative URLs should be turned into absolute URLs to avoid references changing in unexpected ways.
This specification does not specify how this is performed.

All HTML elementsp45 may have the popover content attribute set. When specified, the element won't be rendered until it becomes
shown, at which point it will be rendered on top of other page content.

When using popoverp886 on elements without accessibility semantics, for instance the divp256 element, authors should use the
appropriate ARIA attributes to ensure the popover is accessible.

Consider a hostile page providing some content and getting the user to select and drag and drop (or indeed, copy and paste) that
content to a victim page's contenteditablep853 region. If the browser does not ensure that only safe content is dragged,
potentially unsafe content such as scripts and event handlers in the selection, once dropped (or pasted) into the victim site, get
the privileges of the victim site. This would thus enable a cross-site scripting attack.

Example

6.12 The popoverp886 attribute §p88

6

The popoverp886 attribute is a global attribute that allows authors flexibility to ensure popover functionality can be applied to
elements with the most relevant semantics.

The following demonstrates how one might create a popover sub-navigation list of links, within the global navigation for a website.

All Products
<button popovertarget=sub-nav>

</button>
<ul popover id=sub-nav>
Shirts
Shoes
Hats etc.

<!-- other list items and links here -->

Example

The following shows the baseline markup to create a custom menu popover, where the first menuitem will receive keyboard focus
when the popover is invoked due to the use of the autofocus attribute. Navigating the menuitems with arrow keys and activation
behaviors would still need author scripting. Additional requirements for building custom menus widgets are defined in the WAI-ARIA
specification.

<button popovertarget=m>Actions</button>
<div role=menu id=m popover>

<button role=menuitem tabindex=-1 autofocus>Edit</button>
<button role=menuitem tabindex=-1>Hide</button>
<button role=menuitem tabindex=-1>Delete</button>

</div>

A popover can be useful for rendering a status message, confirming the action performed by the user. The following demonstrates
how one could reveal a popover in an outputp584 element.

<button id=submit>Submit</button>

Example

✔ MDN

886

https://url.spec.whatwg.org/#syntax-url-relative
https://w3c.github.io/aria/#menu
https://w3c.github.io/aria/#menu

The popoverp886 attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

auto auto Closes other popovers when opened; has light dismissp896 and responds to close requestsp863.
(the empty string)
manual manual Does not close other popovers; does not light dismissp896 or respond to close requestsp863.

The attribute's missing value defaultp76 is the no popover state, and its invalid value defaultp76 is the manualp887 state.

The popover IDL attribute must reflectp104 the popoverp886 attribute, limited to only known valuesp105.

Every HTML elementp45 has a popover visibility state, initially hiddenp887, with these potential values:

• hidden

• showing

The Documentp130 has a popover pointerdown target, which is an HTML elementp45 or null, initially null.

Every HTML elementp45 has a popover invoker, which is an HTML elementp45 or null, initially set to null.

Every HTML elementp45 has a popover showing or hiding, which is a boolean, initially set to false.

Every HTML elementp45 popover toggle task tracker, which is a toggle task trackerp833 or null, initially null.

Every HTML elementp45 has a popover close watcher, which is a close watcherp865 or null, initially null.

The following attribute change steps, given element, localName, oldValue, value, and namespace, are used for all HTML elementsp45:

<p><output></output></p>

<script>
const sBtn = document.getElementById("submit");
const outSpan = document.querySelector("output [popover=manual]");
let successMessage;
let errorMessage;

/* define logic for determining success of action
and determining the appropriate success or error
messages to use */

sBtn.addEventListener("click", ()=> {
if (success) {
outSpan.textContent = successMessage;

}
else {
outSpan.textContent = errorMessage;

}
outSpan.showPopover();

setTimeout(function () {
outSpan.hidePopover();

}, 10000);
});

</script>

Inserting a popover element into an outputp584 element will generally cause screen readers to announce the content when it
becomes visible. Depending on the complexity or frequency of the content, this could be either useful or annoying to users of
these assistive technologies. Keep this in mind when using the outputp584 element or other ARIA live regions to ensure the best
user experience.

Note

✔ MDN

887

https://dom.spec.whatwg.org/#concept-element-attributes-change-ext

1. If namespace is not null, then return.

2. If localName is not popoverp886, then return.

3. If element's popover visibility statep887 is in the showing statep887 and oldValue and value are in different statesp886, then run
the hide popover algorithmp890 given element, true, true, and false.

The showPopover(options) method steps are:

1. Let invoker be options["sourcep142"] if it exists; otherwise, null.

2. Run show popoverp888 given this, true, and invoker.

To show popover, given an HTML elementp45 element, a boolean throwExceptions, and an HTML elementp45 or null invoker:

1. If the result of running check popover validityp893 given element, false, throwExceptions, and null is false, then return.

2. Let document be element's node document.

3. Assert: element's popover invokerp887 is null.

4. Assert: element is not in document's top layer.

5. Let nestedShow be element's popover showing or hidingp887.

6. Set element's popover showing or hidingp887 to true.

7. Let cleanupShowingFlag be the following steps:

1. If nestedShow is false, then set element's popover showing or hidingp887 to false.

8. If the result of firing an event named beforetogglep1471, using ToggleEventp833, with the cancelable attribute initialized to
true, the oldStatep833 attribute initialized to "closed", and the newStatep833 attribute initialized to "open" at element is false,
then run cleanupShowingFlag and return.

9. If the result of running check popover validityp893 given element, false, throwExceptions, and document is false, then run
cleanupShowingFlag and return.

10. Let shouldRestoreFocus be false.

11. If element's popoverp886 attribute is in the autop887 state, then:

1. Let originalType be the value of element's popoverp886 attribute.

2. Let ancestor be the result of running the topmost popover ancestorp892 algorithm given element, invoker, and true.

3. If ancestor is null, then set ancestor to document.

4. Run hide all popovers untilp891 given ancestor, false, and not nestedShow.

5. If originalType is not equal to the value of element's popoverp886 attribute, then:

element.showPopoverp888()
Shows the popover element by adding it to the top layer. If element's popoverp886 attribute is in the autop887 state, then this will
also close all other autop887 popovers unless they are an ancestor of element according to the topmost popover ancestorp892

algorithm.

element.hidePopoverp889()
Hides the popover element by removing it from the top layer and applying display: none to it.

element.togglePopoverp891()
If the popover element is not showing, then this method shows it. Otherwise, this method hides it. This method returns true if
the popover is open after calling it, otherwise false.

For web developers (non-normative)

Check popover validityp893 is called again because firing the beforetogglep1471 event could have disconnected this
element or changed its popoverp886 attribute.

Note

✔ MDN

888

https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://drafts.csswg.org/css-position-4/#document-top-layer
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

1. If throwExceptions is true, then throw a "InvalidStateError" DOMException.

2. Return.

6. If the result of running check popover validityp893 given element, false, throwExceptions, and document is false,
then run cleanupShowingFlag and return.

7. If the result of running topmost auto popoverp893 on document is null, then set shouldRestoreFocus to true.

8. Set element's popover close watcherp887 to the result of establishing a close watcherp865 given element's relevant
global objectp1083, with:

▪ cancelActionp865 being to return true.

▪ closeActionp865 being to hide a popoverp890 given element, true, true, and false.

12. Set element's previously focused elementp652 to null.

13. Let originallyFocusedElement be document's focused area of the documentp836 's DOM anchorp835.

14. Add an element to the top layer given element.

15. Set element's popover visibility statep887 to showingp887.

16. Set element's popover invokerp887 to invoker.

17. Set element's implicit anchor element to invoker.

18. Run the popover focusing stepsp893 given element.

19. If shouldRestoreFocus is true and element's popoverp886 attribute is not in the no popoverp887 state, then set element's
previously focused elementp652 to originallyFocusedElement.

20. Queue a popover toggle event taskp889 given element, "closed", and "open".

21. Run cleanupShowingFlag.

To queue a popover toggle event task given an element element, a string oldState, and a string newState:

1. If element's popover toggle task trackerp887 is not null, then:

1. Set oldState to element's popover toggle task trackerp887 's old statep833.

2. Remove element's popover toggle task trackerp887 's taskp833 from its task queuep1123.

3. Set element's popover toggle task trackerp887 to null.

2. Queue an element taskp1125 given the DOM manipulation task sourcep1134 and element to run the following steps:

1. Fire an event named togglep1472 at element, using ToggleEventp833, with the oldStatep833 attribute initialized to
oldState and the newStatep833 attribute initialized to newState.

2. Set element's popover toggle task trackerp887 to null.

3. Set element's popover toggle task trackerp887 to a struct with taskp833 set to the just-queued taskp1124 and old statep833 set to
oldState.

The hidePopover() method steps are:

1. Run the hide popover algorithmp890 given this, true, true, and true.

Check popover validityp893 is called again because running hide all popovers untilp891 above could have fired
the beforetogglep1471 event, and an event handler could have disconnected this element or changed its
popoverp886 attribute.

Note

This ensures that focus is returned to the previously-focused element only for the first popover in a stack.
Note

✔ MDN

889

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-position-4/#add-an-element-to-the-top-layer
https://drafts.csswg.org/css-anchor-position/#implicit-anchor-element
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this

To hide a popover given an HTML elementp45 element, a boolean focusPreviousElement, a boolean fireEvents, and a boolean
throwExceptions:

1. If the result of running check popover validityp893 given element, true, throwExceptions, and null is false, then return.

2. Let document be element's node document.

3. Let nestedHide be element's popover showing or hidingp887.

4. Set element's popover showing or hidingp887 to true.

5. If nestedHide is true, then set fireEvents to false.

6. Let cleanupSteps be the following steps:

1. If nestedHide is false, then set element's popover showing or hidingp887 to false.

2. If element's popover close watcherp887 is not null, then:

1. Destroyp866 element's popover close watcherp887.

2. Set element's popover close watcherp887 to null.

7. If element's popoverp886 attribute is in the autop887 state, then:

1. Run hide all popovers untilp891 given element, focusPreviousElement, and fireEvents.

2. If the result of running check popover validityp893 given element, true, and throwExceptions is false, then run
cleanupSteps and return.

8. Let autoPopoverListContainsElement be true if document's showing auto popover listp894 's last item is element, otherwise
false.

9. Set element's popover invokerp887 to null.

10. If fireEvents is true:

1. Fire an event named beforetogglep1471, using ToggleEventp833, with the oldStatep833 attribute initialized to "open"
and the newStatep833 attribute initialized to "closed" at element.

2. If autoPopoverListContainsElement is true and document's showing auto popover listp894 's last item is not element,
then run hide all popovers untilp891 given element, focusPreviousElement, and false.

3. If the result of running check popover validityp893 given element, true, throwExceptions, and null is false, then run
cleanupSteps and return.

4. Request an element to be removed from the top layer given element.

5. Set element's implicit anchor element to null.

11. Otherwise, remove an element from the top layer immediately given element.

12. Set element's popover visibility statep887 to hiddenp887.

13. If fireEvents is true, then queue a popover toggle event taskp889 given element, "open", and "closed".

14. Let previouslyFocusedElement be element's previously focused elementp652.

15. If previouslyFocusedElement is not null, then:

1. Set element's previously focused elementp652 to null.

Check popover validityp893 is called again because running hide all popovers untilp891 could have disconnected
element or changed its popoverp886 attribute.

Note

Check popover validityp893 is called again because firing the beforetogglep1471 event could have disconnected
element or changed its popoverp886 attribute.

Note

890

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-position-4/#request-an-element-to-be-removed-from-the-top-layer
https://drafts.csswg.org/css-anchor-position/#implicit-anchor-element
https://drafts.csswg.org/css-position-4/#remove-an-element-from-the-top-layer-immediately

2. If focusPreviousElement is true and document's focused area of the documentp836 's DOM anchorp835 is a shadow-
including inclusive descendant of element, then run the focusing stepsp842 for previouslyFocusedElement; the
viewport should not be scrolled by doing this step.

16. Run cleanupSteps.

The togglePopover(options) method steps are:

1. Let force be null.

2. If options is a boolean, set force to options.

3. Otherwise, if options["forcep142"] exists, set force to options["forcep142"].

4. Let invoker be options["sourcep142"] if it exists; otherwise, null.

5. If this's popover visibility statep887 is showingp887, and force is null or false, then run the hide popover algorithmp890 given this,
true, true, and true.

6. Otherwise, if force is null or true, then run show popoverp888 given this, true, and invoker.

7. Otherwise:

1. Let expectedToBeShowing be true if this's popover visibility statep887 is showingp887; otherwise false.

2. Run check popover validityp893 given expectedToBeShowing, true, and null.

8. Return true if this's popover visibility statep887 is showingp887; otherwise false.

To hide all popovers until, given an HTML elementp45 or Documentp130 endpoint, a boolean focusPreviousElement, and a boolean
fireEvents:

1. If endpoint is an HTML elementp45 and endpoint is not in the popover showing statep887, then return.

2. Let document be endpoint's node document.

3. Let closeAllOpenPopovers be an algorithm which performs the following steps:

1. Let popover be document's topmost auto popoverp893.

2. While popover is not null:

1. Run the hide popover algorithmp890 given popover, focusPreviousElement, fireEvents, and false.

2. Set popover to document's topmost auto popoverp893.

4. If endpoint is a Documentp130, then run closeAllOpenPopovers and return.

5. Assert: endpoint's popoverp886 attribute is in the autop887 state.

6. Let repeatingHide be false.

7. Perform the following steps at least once:

1. Let lastToHide be null.

2. Let foundEndpoint be false.

3. For each popover of document's showing auto popover listp894:

1. If popover is endpoint, then set foundEndpoint to true.

2. Otherwise, if foundEndpoint is true, then set lastToHide to popover and break.

4. If foundEndpoint is false, then run closeAllOpenPopovers and return.

5. While lastToHide is not null and lastToHide's popover visibility statep887 is showingp887 and document's showing auto
popover listp894 is not empty:

1. Run the hide popover algorithmp890 given document's showing auto popover listp894 's last element,
focusPreviousElement, fireEvents, and false.

✔ MDN

891

https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#iteration-break

6. Set repeatingHide to true if document's showing auto popover listp894 contains endpoint and document's showing
auto popover listp894 's last element is not endpoint, otherwise false.

7. If repeatingHide is true, then set fireEvents to false.

and keep performing them while repeatingHide is true.

To find the topmost popover ancestor, given a Node newPopoverOrTopLayerElement, an HTML elementp45 or null invoker, and a
boolean isPopover, perform the following steps. They return an HTML elementp45 or null.

1. If isPopover is true:

1. Assert: newPopoverOrTopLayerElement is an HTML elementp45.

2. Assert: newPopoverOrTopLayerElement's popoverp886 attribute is not in the no popover statep887 or the manualp887

state.

3. Assert: newPopoverOrTopLayerElement's popover visibility statep887 is not in the popover showing statep887.

2. Otherwise:

1. Assert: invoker is null.

3. Let popoverPositions be an empty ordered map.

4. Let index be 0.

5. Let document be newPopoverOrTopLayerElement's node document.

6. For each popover of document's showing auto popover listp894:

1. Set popoverPositions[popover] to index.

2. Increment index by 1.

7. If isPopover is true, then set popoverPositions[newPopoverOrTopLayerElement] to index.

8. Increment index by 1.

The hide all popovers until algorithmp891 is used in several cases to hide all popovers that don't stay open when something
happens. For example, during light-dismiss of a popover, this algorithm ensures that we close only the popovers that aren't related
to the node clicked by the user.

Note

The topmost popover ancestorp892 algorithm will return the topmost (latest in the showing auto popover listp894) ancestor popover
for the provided popover or top layer element. Popovers can be related to each other in several ways, creating a tree of popovers.
There are two paths through which one popover (call it the "child" popover) can have a topmost ancestor popover (call it the
"parent" popover):

1. The popovers are nested within each other in the node tree. In this case, the descendant popover is the "child" and its
topmost ancestor popover is the "parent".

2. An invoking element (e.g., a buttonp566) has a popovertargetp894 attribute pointing to a popover. In this case, the
popover is the "child", and the popover subtree the invoking element is in is the "parent". The invoker has to be in a
popover and reference an open popover.

In each of the relationships formed above, the parent popover has to be strictly earlier in the showing auto popover listp894 than
the child popover, or it does not form a valid ancestral relationship. This eliminates non-showing popovers and self-pointers (e.g., a
popover containing an invoking element that points back to the containing popover), and it allows for the construction of a well-
formed tree from the (possibly cyclic) graph of connections. Only autop887 popovers are considered.

If the provided element is a top layer element such as a dialogp646 which is not showing as a popover, then topmost popover
ancestorp892 will only look in the node tree to find the first popover.

Note

892

https://infra.spec.whatwg.org/#iteration-while
https://dom.spec.whatwg.org/#interface-node
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#ordered-map
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#map-set

9. Let topmostPopoverAncestor be null.

10. Let checkAncestor be an algorithm which performs the following steps given candidate:

1. If candidate is null, then return.

2. Let candidateAncestor be the result of running nearest inclusive open popoverp893 given candidate.

3. If candidateAncestor is null, then return.

4. Let candidatePosition be popoverPositions[candidateAncestor].

5. If topmostPopoverAncestor is null or popoverPositions[topmostPopoverAncestor] is less than candidatePosition,
then set topmostPopoverAncestor to candidateAncestor.

11. Run checkAncestor given newPopoverOrTopLayerElement's parent node within the flat tree.

12. Run checkAncestor given invoker.

13. Return topmostPopoverAncestor.

To find the nearest inclusive open popover given a Node node, perform the following steps. They return an HTML elementp45 or null.

1. Let currentNode be node.

2. While currentNode is not null:

1. If currentNode's popoverp886 attribute is in the autop887 state and currentNode's popover visibility statep887 is
showingp887, then return currentNode.

2. Set currentNode to currentNode's parent in the flat tree.

3. Return null.

To find the topmost auto popover given a Documentp130 document, perform the following steps. They return an HTML elementp45 or
null.

1. If document's showing auto popover listp894 is not empty, then return document's showing auto popover listp894 's last
element.

2. Return null.

To perform the popover focusing steps for an HTML elementp45 subject:

1. If subject is a dialogp646 element, then run the dialog focusing stepsp650 given subject and return.

2. If subject has the autofocusp848 attribute, then let control be subject.

3. Otherwise, let control be the autofocus delegatep841 for subject given "other".

4. If control is null, then return.

5. Run the focusing stepsp842 given control.

6. Let topDocument be the active documentp998 of control's node document's browsing contextp999 's top-level browsing
contextp1001.

7. If control's node document's origin is not the samep899 as the origin of topDocument, then return.

8. Empty topDocument's autofocus candidatesp848.

9. Set topDocument's autofocus processed flagp848 to true.

To check popover validity for an HTML elementp45 element given a boolean expectedToBeShowing, a boolean throwExceptions, and
a Documentp130 or null expectedDocument perform the following steps. They throw an exception or return a boolean.

1. If element's popoverp886 attribute is in the no popoverp887 state, then:

1. If throwExceptions is true, then throw a "NotSupportedError" DOMException.

893

https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#interface-node
https://drafts.csswg.org/css-scoping/#flat-tree
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-empty
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException

2. Return false.

2. If any of the following are true:

◦ expectedToBeShowing is true and element's popover visibility statep887 is not showingp887; or

◦ expectedToBeShowing is false and element's popover visibility statep887 is not hiddenp887,

then return false.

3. If any of the following are true:

◦ element is not connected;

◦ element's node document is not fully activep1003;

◦ expectedDocument is not null and element's node document is not expectedDocument;

◦ element is a dialogp646 element and its is modalp652 flag is set to true; or

◦ element's fullscreen flag is set,

then:

1. If throwExceptions is true, then throw a "InvalidStateError" DOMException.

2. Return false.

4. Return true.

To get the showing auto popover list for a Documentp130 document:

1. Let popovers be « ».

2. For each Element element in document's top layer: if element's popoverp886 attribute is in the auto statep887 and element's
popover visibility statep887 is showingp887, then append element to popovers.

3. Return popovers.

Buttonsp514 may have the following content attributes:

• popovertarget

• popovertargetaction

If specified, the popovertargetp894 attribute value must be the ID of an element with a popoverp886 attribute in the same tree as the
buttonp514 with the popovertargetp894 attribute.

The popovertargetactionp894 attribute is an enumerated attributep76 with the following keywords and states:

Keyword State Brief description

toggle toggle Shows or hides the targeted popover element.
show show Shows the targeted popover element.
hide hide Hides the targeted popover element.

The attribute's missing value defaultp76 and invalid value defaultp76 are both the togglep894 state.

Whenever possible ensure the popover element is placed immediately after its triggering element in the DOM. Doing so will help
ensure that the popover is exposed in a logical programmatic reading order for users of assistive technology, such as screen
readers.

Note

Example

6.12.1 The popover target attributes §p89

4

894

https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://fullscreen.spec.whatwg.org/#fullscreen-flag
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#interface-element
https://drafts.csswg.org/css-position-4/#document-top-layer
https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree

DOM interfacep147:

interface mixin PopoverInvokerElement {
[CEReactions] attribute Element? popoverTargetElement;
[CEReactions] attribute DOMString popoverTargetAction;

};

The popoverTargetElement IDL attribute must reflectp104 the popovertargetp894 attribute.

The popoverTargetAction IDL attribute must reflectp104 the popovertargetactionp894 attribute, limited to only known valuesp105.

To run the popover target attribute activation behavior given a Node node and a Node eventTarget:

1. Let popover be node's popover target elementp895.

2. If popover is null, then return.

3. If eventTarget is a shadow-including inclusive descendant of popover and popover is a shadow-including descendant of node,
then return.

4. If node's popovertargetactionp894 attribute is in the showp894 state and popover's popover visibility statep887 is showingp887,
then return.

5. If node's popovertargetactionp894 attribute is in the hidep894 state and popover's popover visibility statep887 is hiddenp887,
then return.

6. If popover's popover visibility statep887 is showingp887, then run the hide popover algorithmp890 given popover, true, true, and
false.

7. Otherwise, if popover's popover visibility statep887 is hiddenp887 and the result of running check popover validityp893 given
popover, false, false, and null is true, then run show popoverp888 given popover, false, and node.

To get the popover target element given a Node node, perform the following steps. They return an HTML elementp45 or null.

1. If node is not a buttonp514, then return null.

2. If node is disabledp601, then return null.

3. If node has a form ownerp598 and node is a submit buttonp514, then return null.

4. Let popoverElement be the result of running node's get the popovertarget-associated elementp108.

The following shows how the popovertargetp894 attribute in combination with the popovertargetactionp894 attribute can be used
to show and close a popover:

<button popovertarget="foo" popovertargetaction="show">
Show a popover

</button>

<article popover="auto" id="foo">
This is a popover article!
<button popovertarget="foo" popovertargetaction="hide">Close</button>

</article>

If a popovertargetactionp894 attribute is not specified, the default action will be to toggle the associated popover. The following
shows how only specifying the popovertargetp894 attribute on its invoking button can toggle a manual popover between its
opened and closed states. A manual popover will not respond to light dismissp896 or close requestsp863:

<input type="button" popovertarget="foo" value="Toggle the popover">

<div popover=manual id="foo">
This is a popover!

</div>

IDL

✔ MDN
✔ MDN

895

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#interface-node

5. If popoverElement is null, then return null.

6. If popoverElement's popoverp886 attribute is in the no popoverp887 state, then return null.

7. Return popoverElement.

To light dismiss open popovers, given an Event event:

1. Assert: event's isTrusted attribute is true.

2. Let target be event's target.

3. Let document be target's node document.

4. Let topmostPopover be the result of running topmost auto popoverp893 given document.

5. If topmostPopover is null, then return.

6. If event is a PointerEvent and event's type is "pointerdown", then: set document's popover pointerdown targetp887 to the
result of running topmost clicked popoverp896 given target.

7. If event is a PointerEvent and event's type is "pointerup", then:

1. Let ancestor be the result of running topmost clicked popoverp896 given target.

2. Let sameTarget be true if ancestor is document's popover pointerdown targetp887.

3. Set document's popover pointerdown targetp887 to null.

4. If ancestor is null, then set ancestor to document.

5. If sameTarget is true, then run hide all popovers untilp891 given ancestor, false, and true.

Light dismiss open popoversp896 will be called by the Pointer Events spec when the user clicks or touches anywhere on the page.

To find the topmost clicked popover, given a Node node:

1. Let clickedPopover be the result of running nearest inclusive open popoverp893 given node.

2. Let invokerPopover be the result of running nearest inclusive target popover for invokerp896 given node.

3. Let getStackPosition be an algorithm which performs the following steps given an HTML elementp45 popover:

1. Let popoverList be popover's node document's showing auto popover listp894.

2. If popover is in popoverList, then return the index of popover in popoverList + 1.

3. Return 0.

4. If the result of running getStackPosition given clickedPopover is greater than the result of running getStackPosition given
invokerPopover, then return clickedPopover.

5. Return invokerPopover.

To find the nearest inclusive target popover for invoker given a Node node:

1. Let currentNode be node.

2. While currentNode is not null:

"Light dismiss" means that clicking outside of a popover whose popoverp886 attribute is in the autop887 state will close the popover.
This is in addition to how such popovers respond to close requestsp863.

Note

6.12.2 Popover light dismiss §p89

6

896

https://dom.spec.whatwg.org/#interface-event
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#dom-event-istrusted
https://dom.spec.whatwg.org/#concept-event-target
https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/pointerevents/#pointerevent-interface
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/pointerevents/#the-pointerdown-event
https://w3c.github.io/pointerevents/#pointerevent-interface
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/pointerevents/#the-pointerup-event
https://github.com/w3c/pointerevents/pull/460
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-node

1. Let targetPopover be currentNode's popover target elementp895.

2. If targetPopover is not null and targetPopover's popoverp886 attribute is in the autop887 state and targetPopover's
popover visibility statep887 is showingp887, then return targetPopover.

3. Set currentNode to currentNode's ancestor in the flat tree.

897

https://drafts.csswg.org/css-scoping/#flat-tree

This section describes features that apply most directly to web browsers. Having said that, except where specified otherwise, the
requirements defined in this section do apply to all user agents, whether they are web browsers or not.

Origins are the fundamental currency of the web's security model. Two actors in the web platform that share an origin are assumed to
trust each other and to have the same authority. Actors with differing origins are considered potentially hostile versus each other, and
are isolated from each other to varying degrees.

An origin is one of the following:

An opaque origin
An internal value, with no serialization it can be recreated from (it is serialized as "null" per serialization of an originp898), for which
the only meaningful operation is testing for equality.

A tuple origin
A tuplep898 consists of:

• A scheme (an ASCII string).
• A host (a host).
• A port (null or a 16-bit unsigned integer).
• A domain (null or a domain). Null unless stated otherwise.

The effective domain of an originp898 origin is computed as follows:

1. If origin is an opaque originp898, then return null.

2. If origin's domainp898 is non-null, then return origin's domainp898.

3. Return origin's hostp898.

The serialization of an origin is the string obtained by applying the following algorithm to the given originp898 origin:

1. If origin is an opaque originp898, then return "null".

2. Otherwise, let result be origin's schemep898.

3. Append "://" to result.

4. Append origin's hostp898, serialized, to result.

5. If origin's portp898 is non-null, append a U+003A COLON character (:), and origin's portp898, serialized, to result.

6. Return result.

7 Loading web pages §p89

8

7.1 Supporting concepts §p89

8

For example, if Example Bank's web site, hosted at bank.example.com, tries to examine the DOM of Example Charity's web site,
hosted at charity.example.org, a "SecurityError" DOMException will be raised.

Example

Originsp898 can be shared, e.g., among multiple Documentp130 objects. Furthermore, originsp898 are generally immutable. Only the
domainp898 of a tuple originp898 can be changed, and only through the document.domainp901 API.

Note

7.1.1 Origins §p89

8

898

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-string
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#concept-domain
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#serialize-an-integer

Two originsp898, A and B, are said to be same origin if the following algorithm returns true:

1. If A and B are the same opaque originp898, then return true.

2. If A and B are both tuple originsp898 and their schemesp898, hostsp898, and portp898 are identical, then return true.

3. Return false.

Two originsp898, A and B, are said to be same origin-domain if the following algorithm returns true:

1. If A and B are the same opaque originp898, then return true.

2. If A and B are both tuple originsp898:

1. If A and B's schemesp898 are identical, and their domainsp898 are identical and non-null, then return true.

2. Otherwise, if A and B are same originp899 and their domainsp898 are both null, return true.

3. Return false.

A scheme-and-host is a tuple of a scheme (an ASCII string) and a host (a host).

A site is an opaque originp898 or a scheme-and-hostp899.

To obtain a site, given an origin origin, run these steps:

1. If origin is an opaque originp898, then return origin.

2. If origin's hostp898 's registrable domain is null, then return (origin's schemep898, origin's hostp898).

3. Return (origin's schemep898, origin's hostp898 's registrable domain).

Two sitesp899, A and B, are said to be same site if the following algorithm returns true:

1. If A and B are the same opaque originp898, then return true.

2. If A or B is an opaque originp898, then return false.

3. If A's and B's schemep899 values are different, then return false.

4. If A's and B's hostp899 values are not equal, then return false.

5. Return true.

The serialization of a site is the string obtained by applying the following algorithm to the given sitep899 site:

The serializationp898 of ("https", "xn--maraa-rta.example", null, null) is "https://xn--maraa-rta.example".
Example

There used to also be a Unicode serialization of an origin. However, it was never widely adopted.
Note

A B same originp899 same origin-domainp899

("https", "example.org", null, null) ("https", "example.org", null, null) ✅ ✅

("https", "example.org", 314, null) ("https", "example.org", 420, null) ❌ ❌

("https", "example.org", 314, "example.org") ("https", "example.org", 420, "example.org") ❌ ✅

("https", "example.org", null, null) ("https", "example.org", null, "example.org") ✅ ❌

("https", "example.org", null, "example.org") ("http", "example.org", null, "example.org") ❌ ❌

Example

7.1.1.1 Sites §p89

9

899

https://infra.spec.whatwg.org/#tuple
https://infra.spec.whatwg.org/#ascii-string
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#concept-host-equals

1. If site is an opaque originp898, then return "null".

2. Let result be site[0].

3. Append "://" to result.

4. Append site[1], serialized, to result.

5. Return result.

Two originsp898, A and B, are said to be schemelessly same site if the following algorithm returns true:

1. If A and B are the same opaque originp898, then return true.

2. If A and B are both tuple originsp898, then:

1. Let hostA be A's hostp898, and let hostB be B's hostp898.

2. If hostA equals hostB and hostA's registrable domain is null, then return true.

3. If hostA's registrable domain equals hostB's registrable domain and is non-null, then return true.

3. Return false.

Two originsp898, A and B, are said to be same site if the following algorithm returns true:

1. Let siteA be the result of obtaining a sitep899 given A.

2. Let siteB be the result of obtaining a sitep899 given B.

3. If siteA is same sitep899 with siteB, then return true.

4. Return false.

It needs to be clear from context that the serialized value is a site, not an origin, as there is not necessarily a
syntactic difference between the two. For example, the origin ("https", "shop.example", null, null) and the site
("https", "shop.example") have the same serialization: "https://shop.example".

⚠Warning!

Unlike the same originp899 and same origin-domainp899 concepts, for schemelessly same sitep900 and same sitep900, the portp898 and
domainp898 components are ignored.

Note

For the reasons explained in URL, the same sitep900 and schemelessly same sitep900 concepts should be avoided
when possible, in favor of same originp899 checks.

⚠Warning!

Given that wildlife.museum, museum, and com are public suffixes and that example.com is not:

A B schemelessly same sitep900 same sitep900

("https", "example.com") ("https", "sub.example.com") ✅ ✅

("https", "example.com") ("https", "sub.other.example.com") ✅ ✅

("https", "example.com") ("http", "non-secure.example.com") ✅ ❌

("https", "r.wildlife.museum") ("https", "sub.r.wildlife.museum") ✅ ✅

("https", "r.wildlife.museum") ("https", "sub.other.r.wildlife.museum") ✅ ✅

("https", "r.wildlife.museum") ("https", "other.wildlife.museum") ❌ ❌

("https", "r.wildlife.museum") ("https", "wildlife.museum") ❌ ❌

("https", "wildlife.museum") ("https", "wildlife.museum") ✅ ✅

("https", "example.com") ("https", "example.com.") ❌ ❌

(Here we have omitted the portp898 and domainp898 components since they are not considered.)

Example

900

https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#host-registrable-domain
https://url.spec.whatwg.org/#warning-avoid-psl
https://url.spec.whatwg.org/#host-public-suffix

Avoid using the document.domainp901 setter. It undermines the security protections provided by the same-origin policy. This is
especially acute when using shared hosting; for example, if an untrusted third party is able to host an HTTP server at the same IP
address but on a different port, then the same-origin protection that normally protects two different sites on the same host will
fail, as the ports are ignored when comparing origins after the document.domainp901 setter has been used.

Because of these security pitfalls, this feature is in the process of being removed from the web platform. (This is a long process
that takes many years.)

Instead, use postMessage()p1201 or MessageChannelp1204 objects to communicate across origins in a safe manner.

The domain getter steps are:

1. Let effectiveDomain be this's origin's effective domainp898.

2. If effectiveDomain is null, then return the empty string.

3. Return effectiveDomain, serialized.

The domainp901 setter steps are:

1. If this's browsing contextp999 is null, then throw a "SecurityError" DOMException.

2. If this's active sandboxing flag setp917 has its sandboxed document.domain browsing context flagp915 set, then throw a
"SecurityError" DOMException.

3. Let effectiveDomain be this's origin's effective domainp898.

4. If effectiveDomain is null, then throw a "SecurityError" DOMException.

5. If the given value is not a registrable domain suffix of and is not equal top901 effectiveDomain, then throw a "SecurityError"
DOMException.

6. If the surrounding agent's agent cluster's is origin-keyedp1073 is true, then return.

7. Set this's origin's domainp898 to the result of parsing the given value.

To determine if a scalar value string hostSuffixString is a registrable domain suffix of or is equal to a host originalHost:

1. If hostSuffixString is the empty string, then return false.

2. Let hostSuffix be the result of parsing hostSuffixString.

3. If hostSuffix is failure, then return false.

4. If hostSuffix does not equal originalHost, then:

1. If hostSuffix or originalHost is not a domain, then return false.

2. If hostSuffix, prefixed by U+002E (.), does not match the end of originalHost, then return false.

7.1.1.2 Relaxing the same-origin restriction §p90

1

document.domainp901 [= domain]
Returns the current domain used for security checks.
Can be set to a value that removes subdomains, to change the originp898 's domainp898 to allow pages on other subdomains of
the same domain (if they do the same thing) to access each other. This enables pages on different hosts of a domain to
synchronously access each other's DOMs.
In sandboxed iframep390s, Documentp130s with opaque originsp898, and Documentp130s without a browsing contextp999, the setter
will throw a "SecurityError" exception. In cases where crossOriginIsolatedp1149 or originAgentClusterp903 return true, the
setter will do nothing.

For web developers (non-normative)

This excludes hosts that are IP addresses.
Note

901

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-host-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-host-parser
https://infra.spec.whatwg.org/#scalar-value-string
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#concept-host-parser
https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#concept-domain
https://url.spec.whatwg.org/#concept-host
https://url.spec.whatwg.org/#ip-address

3. If any of the following are true:

▪ hostSuffix equals hostSuffix's public suffix; or

▪ hostSuffix, prefixed by U+002E (.), matches the end of originalHost's public suffix,

then return false. [URL]p1483

4. Assert: originalHost's public suffix, prefixed by U+002E (.), matches the end of hostSuffix.

5. Return true.

A Documentp130 delivered over a secure contextp1084 can request that it be placed in an originp898-keyedp1073 agent cluster, by using the
`Origin-Agent-Cluster` HTTP response header. This header is a structured header whose value must be a boolean. [STRUCTURED-
FIELDS]p1482

Per the processing model in the create and initialize a new Document objectp1056, values that are not the structured header boolean true
value (i.e., `?1`) will be ignored.

The consequences of using this header are that the resulting Documentp130 's agent cluster keyp1073 is its origin, instead of the
corresponding sitep899. In terms of observable effects, this means that attempting to relax the same-origin restrictionp901 using
document.domainp901 will instead do nothing, and it will not be possible to send WebAssembly.Module objects to cross-origin
Documentp130s (even if they are same sitep900). Behind the scenes, this isolation can allow user agents to allocate implementation-
specific resources corresponding to agent clusters, such as processes or threads, more efficiently.

Note that within a browsing context groupp1002, the `Origin-Agent-Clusterp902` header can never cause same-origin Documentp130

objects to end up in different agent clusters, even if one sends the header and the other doesn't. This is prevented by means of the
historical agent cluster key mapp1002.

hostSuffixString originalHost Outcome of is a registrable
domain suffix of or is equal top901

Notes

"0.0.0.0" 0.0.0.0 ✅

"0x10203" 0.1.2.3 ✅

"[0::1]" ::1 ✅

"example.com" example.com ✅

"example.com" example.com. ❌ Trailing dot is significant.
"example.com." example.com ❌

"example.com" www.example.com ✅

"com" example.com ❌ At the time of writing, com is a public
suffix.

"example" example ✅

"compute.amazonaws.com" example.compute.amazonaws.com ❌ At the time of writing,
*.compute.amazonaws.com is a public
suffix.

"example.compute.amazonaws.com" www.example.compute.amazonaws.com ❌

"amazonaws.com" www.example.compute.amazonaws.com ❌

"amazonaws.com" test.amazonaws.com ✅ At the time of writing, amazonaws.com
is a registrable domain.

Example

window.originAgentClusterp903

Returns true if this Windowp922 belongs to an agent cluster which is originp898-keyedp1073, in the manner described in this section.

For web developers (non-normative)

This means that the originAgentClusterp903 getter can return false, even if the header is set, if the header was omitted on a
previously-loaded same-origin page in the same browsing context groupp1002. Similarly, it can return true even when the header is
not set.

Note

7.1.2 Origin-keyed agent clusters §p90

2

902

https://url.spec.whatwg.org/#concept-host-equals
https://url.spec.whatwg.org/#host-public-suffix
https://url.spec.whatwg.org/#host-public-suffix
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#host-public-suffix
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://httpwg.org/specs/rfc8941.html
https://httpwg.org/specs/rfc8941.html#boolean
https://httpwg.org/specs/rfc8941.html#boolean
https://dom.spec.whatwg.org/#concept-document-origin
https://webassembly.github.io/spec/js-api/#module
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters

The originAgentCluster getter steps are to return the surrounding agent's agent cluster's is origin-keyedp1073.

An opener policy value allows a document which is navigated to in a top-level browsing contextp1001 to force the creation of a new
top-level browsing contextp1001, and a corresponding groupp1002. The possible values are:

"unsafe-none"
This is the (current) default and means that the document will occupy the same top-level browsing contextp1001 as its predecessor,
unless that document specified a different opener policyp904.

"same-origin-allow-popups"
This forces the creation of a new top-level browsing contextp1001 for the document, unless its predecessor specified the same opener
policyp904 and they are same originp899.

"same-origin"
This behaves the same as "same-origin-allow-popupsp903", with the addition that any auxiliary browsing contextp999 created
needs to contain same originp899 documents that also have the same opener policyp904 or it will appear closed to the opener.

"same-origin-plus-COEP"
This behaves the same as "same-originp903", with the addition that it sets the (new) top-level browsing contextp1001 's groupp1002 's
cross-origin isolation modep1002 to one of "logicalp1002" or "concretep1002".

"noopener-allow-popups"
This forces the creation of a new top-level browsing contextp1001 for the document, regardless of its predecessor.

Documentp130s with an opaque originp898 can be considered unconditionally origin-keyed; for them the header has no effect, and the
originAgentClusterp903 getter will always return true.

Note

Similarly, Documentp130s whose agent cluster's cross-origin isolation modep1073 is not "nonep1002" are automatically origin-keyed. The
`Origin-Agent-Clusterp902` header might be useful as an additional hint to implementations about resource allocation, since the
`Cross-Origin-Opener-Policyp904` and `Cross-Origin-Embedder-Policyp913` headers used to achieve cross-origin isolation are
more about ensuring that everything in the same address space opts in to being there. But adding it would have no additional
observable effects on author code.

Note

"same-origin-plus-COEPp903" cannot be directly set via the `Cross-Origin-Opener-Policyp904` header, but results from a
combination of setting both `Cross-Origin-Opener-Policyp904: same-originp903` and a `Cross-Origin-Embedder-
Policyp913` header whose value is compatible with cross-origin isolationp912 together.

Note

While including a noopener-allow-popupsp903 value severs the opener relationship between the document on which it is
applied and its opener, it does not create a robust security boundary between those same-origin documents.

Other risks from same-origin applications include:

• Same-origin requests fetching the document's content — could be mitigated through Fetch Metadata filtering.
[FETCHMETADATA]p1478

• Same-origin framing - could be mitigated through X-Frame-Optionsp1068 or CSP frame-ancestors.

• JavaScript accessible cookies - can be mitigated by ensuring all cookies are httponly.

• localStoragep1255 access to sensitive data.

• Service worker installation.

Note

7.1.3 Cross-origin opener policies §p90

3

903

https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://w3c.github.io/webappsec-csp/#frame-ancestors

An opener policy consists of:

• A value, which is an opener policy valuep903, initially "unsafe-nonep903".

• A reporting endpoint, which is string or null, initially null.

• A report-only value, which is an opener policy valuep903, initially "unsafe-nonep903".

• A report-only reporting endpoint, which is a string or null, initially null.

To match opener policy values, given an opener policy valuep903 documentCOOP, an originp898 documentOrigin, an opener policy
valuep903 responseCOOP, and an originp898 responseOrigin:

1. If documentCOOP is "unsafe-nonep903" and responseCOOP is "unsafe-nonep903", then return true.

2. If documentCOOP is "unsafe-nonep903" or responseCOOP is "unsafe-nonep903", then return false.

3. If documentCOOP is responseCOOP and documentOrigin is same originp899 with responseOrigin, then return true.

4. Return false.

A Documentp130 's cross-origin opener policyp131 is derived from the `Cross-Origin-Opener-Policy` and `Cross-Origin-Opener-
Policy-Report-Only` HTTP response headers. These headers are structured headers whose value must be a token. [STRUCTURED-
FIELDS]p1482

The valid token values are the opener policy valuesp903. The token may also have attached parameters; of these, the "report-to"
parameter can have a valid URL string identifying an appropriate reporting endpoint. [REPORTING]p1480

To obtain an opener policy given a response response and an environmentp1075 reservedEnvironment:

1. Let policy be a new opener policyp904.

2. If reservedEnvironment is a non-secure contextp1084, then return policy.

3. Let parsedItem be the result of getting a structured field value given `Cross-Origin-Opener-Policyp904` and "item" from
response's header list.

4. If parsedItem is not null, then:

1. If parsedItem[0] is "same-originp903", then:

1. Let coep be the result of obtaining a cross-origin embedder policyp913 from response and
reservedEnvironment.

• Cache API manipulation or access to sensitive data. [SW]p1482

• postMessage or BroadcastChannelp1209 messaging that exposes sensitive information.

• Autofill which may not require user interaction for same-origin documents.

Developers using noopener-allow-popupsp903 need to make sure that their sensitive applications don't rely on client-side
features accessible to other same-origin documents, e.g., localStoragep1255 and other client-side storage APIs,
BroadcastChannelp1209 and related same-origin communication mechanisms. They also need to make sure that their server-side
endpoints don't return sensitive data to non-navigation requests, whose response content is accessible to same-origin
documents.

7.1.3.1 The headers §p90

4

Per the processing model described below, user agents will ignore this header if it contains an invalid value. Likewise, user agents
will ignore this header if the value cannot be parsed as a token.

Note

✔ MDN

904

https://w3c.github.io/ServiceWorker/#cache
https://httpwg.org/specs/rfc8941.html
https://httpwg.org/specs/rfc8941.html#token
https://httpwg.org/specs/rfc8941.html#token
https://httpwg.org/specs/rfc8941.html#param
https://url.spec.whatwg.org/#valid-url-string
https://httpwg.org/specs/rfc8941.html#token
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list

2. If coep's valuep912 is compatible with cross-origin isolationp912, then set policy's valuep904 to "same-
origin-plus-COEPp903".

3. Otherwise, set policy's valuep904 to "same-originp903".

2. If parsedItem[0] is "same-origin-allow-popupsp903", then set policy's valuep904 to "same-origin-allow-
popupsp903".

3. If parsedItem[0] is "noopener-allow-popupsp903", then set policy's valuep904 to "noopener-allow-popupsp903".

4. If parsedItem[1]["report-top904"] exists and it is a string, then set policy's reporting endpointp904 to
parsedItem[1]["report-top904"].

5. Set parsedItem to the result of getting a structured field value given `Cross-Origin-Opener-Policy-Report-Onlyp904` and
"item" from response's header list.

6. If parsedItem is not null, then:

1. If parsedItem[0] is "same-originp903", then:

1. Let coep be the result of obtaining a cross-origin embedder policyp913 from response and
reservedEnvironment.

2. If coep's valuep912 is compatible with cross-origin isolationp912 or coep's report-only valuep912 is
compatible with cross-origin isolationp912, then set policy's report-only valuep904 to "same-origin-plus-
COEPp903".

3. Otherwise, set policy's report-only valuep904 to "same-originp903".

2. If parsedItem[0] is "same-origin-allow-popupsp903", then set policy's report-only valuep904 to "same-origin-
allow-popupsp903".

3. If parsedItem[1]["report-top904"] exists and it is a string, then set policy's report-only reporting endpointp904 to
parsedItem[1]["report-top904"].

7. Return policy.

To check if popup COOP values require a browsing context group switch, given two originsp898 responseOrigin and
activeDocumentNavigationOrigin, and two opener policy valuesp904 responseCOOPValue and activeDocumentCOOPValue:

1. responseCOOPValue is "noopener-allow-popupsp903", then return true.

2. If all of the following are true:

◦ activeDocumentCOOPValue's valuep904 is "same-origin-allow-popupsp903" or "noopener-allow-popupsp903"; and

◦ responseCOOPValue is "unsafe-nonep903",

then return false.

3. If the result of matchingp904 activeDocumentCOOPValue, activeDocumentNavigationOrigin, responseCOOPValue, and
responseOrigin is true, then return false.

4. Return true.

To check if COOP values require a browsing context group switch, given a boolean isInitialAboutBlank, two originsp898

responseOrigin and activeDocumentNavigationOrigin, and two opener policy valuesp904 responseCOOPValue and
activeDocumentCOOPValue:

1. If isInitialAboutBlank is true, then return the result of checking if popup COOP values requires a browsing context group

Report only COOP also considers report-only COEP to assign the special "same-origin-plus-
COEPp903" value. This allows developers more freedom in the order of deployment of COOP and COEP.

Note

7.1.3.2 Browsing context group switches due to opener policy §p90

5

905

https://infra.spec.whatwg.org/#map-exists
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#map-exists

switchp905 with responseOrigin, activeDocumentNavigationOrigin, responseCOOPValue, and activeDocumentCOOPValue.

2.

If the result of matchingp904 activeDocumentCOOPValue, activeDocumentNavigationOrigin, responseCOOPValue, and
responseOrigin is true, then return false.

3. Return true.

To check if enforcing report-only COOP would require a browsing context group switch, given a boolean isInitialAboutBlank,
two originsp898 responseOrigin, activeDocumentNavigationOrigin, and two opener policiesp904 responseCOOP and
activeDocumentCOOP:

1. If the result of checking if COOP values require a browsing context group switchp905 given isInitialAboutBlank, responseOrigin,
activeDocumentNavigationOrigin, responseCOOP's report-only valuep904 and activeDocumentCOOPReportOnly's report-only
valuep904 is false, then return false.

2. If the result of checking if COOP values require a browsing context group switchp905 given isInitialAboutBlank, responseOrigin,
activeDocumentNavigationOrigin, responseCOOP's valuep904 and activeDocumentCOOPReportOnly's report-only valuep904 is
true, then return true.

3. If the result of checking if COOP values require a browsing context group switchp905 given isInitialAboutBlank, responseOrigin,
activeDocumentNavigationOrigin, responseCOOP's report-only valuep904 and activeDocumentCOOPReportOnly's valuep904 is
true, then return true.

4. Return false.

An opener policy enforcement result is a struct with the following items:

• A boolean needs a browsing context group switch, initially false.

• A boolean would need a browsing context group switch due to report-only, initially false.

• A URL url.

• An originp898 origin.

• An opener policyp904 opener policy.

• A boolean current context is navigation source, initially false.

To enforce a response's opener policy, given a browsing contextp998 browsingContext, a URL responseURL, an originp898

responseOrigin, an opener policyp904 responseCOOP, an opener policy enforcement resultp906 currentCOOPEnforcementResult, and a
referrer referrer:

1. Let newCOOPEnforcementResult be a new opener policy enforcement resultp906 with
needs a browsing context group switchp906

currentCOOPEnforcementResult's needs a browsing context group switchp906

would need a browsing context group switch due to report-onlyp906

currentCOOPEnforcementResult's would need a browsing context group switch due to report-onlyp906

urlp906

responseURL
originp906

responseOrigin
opener policyp906

responseCOOP
current context is navigation sourcep906

true

2. Let isInitialAboutBlank be browsingContext's active documentp998 's is initial about:blankp131.

Here we are dealing with a non-popup navigation.
Note

Matching report-only policies allows a website to specify the same report-only opener policy on all its pages and not
receive violation reports for navigations between these pages.

Note

906

https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-referrer

3. If isInitialAboutBlank is true and browsingContext's initial URLp998 is null, set browsingContext's initial URLp998 to
responseURL.

4. If the result of checking if COOP values require a browsing context group switchp905 given isInitialAboutBlank,
currentCOOPEnforcementResult's opener policyp906 's valuep904, currentCOOPEnforcementResult's originp906, responseCOOP's
valuep904, and responseOrigin is true, then:

1. Set newCOOPEnforcementResult's needs a browsing context group switchp906 to true.

2. If browsingContext's groupp1002 's browsing context setp1002 's size is greater than 1, then:

1. Queue a violation report for browsing context group switch when navigating to a COOP responsep909 with
responseCOOP, "enforce", responseURL, currentCOOPEnforcementResult's urlp906,
currentCOOPEnforcementResult's originp906, responseOrigin, and referrer.

2. Queue a violation report for browsing context group switch when navigating away from a COOP
responsep909 with currentCOOPEnforcementResult's opener policyp906, "enforce",
currentCOOPEnforcementResult's urlp906, responseURL, currentCOOPEnforcementResult's originp906,
responseOrigin, and currentCOOPEnforcementResult's current context is navigation sourcep906.

5. If the result of checking if enforcing report-only COOP would require a browsing context group switchp906 given
isInitialAboutBlank, responseOrigin, currentCOOPEnforcementResult's originp906, responseCOOP, and
currentCOOPEnforcementResult's opener policyp906, is true, then:

1. Set result's would need a browsing context group switch due to report-onlyp906 to true.

2. If browsingContext's groupp1002 's browsing context setp1002 's size is greater than 1, then:

1. Queue a violation report for browsing context group switch when navigating to a COOP responsep909 with
responseCOOP, "reporting", responseURL, currentCOOPEnforcementResult's urlp906,
currentCOOPEnforcementResult's originp906, responseOrigin, and referrer.

2. Queue a violation report for browsing context group switch when navigating away from a COOP
responsep909 with currentCOOPEnforcementResult's opener policyp906, "reporting",
currentCOOPEnforcementResult's urlp906, responseURL, currentCOOPEnforcementResult's originp906,
responseOrigin, and currentCOOPEnforcementResult's current context is navigation sourcep906.

6. Return newCOOPEnforcementResult.

To obtain a browsing context to use for a navigation response, given a browsing contextp998 browsingContext, a sandboxing flag
setp914 sandboxFlags, an opener policyp904 navigationCOOP, and an opener policy enforcement resultp906 coopEnforcementResult:

1. If browsingContext is not a top-level browsing contextp1001, then return browsingContext.

2. If coopEnforcementResult's needs a browsing context group switchp906 is false, then:

1. If coopEnforcementResult's would need a browsing context group switch due to report-onlyp906 is true, set browsing
context's virtual browsing context group IDp998 to a new unique identifier.

2. Return browsingContext.

3. Let newBrowsingContext be the first return value of creating a new top-level browsing context and documentp1000.

4. If navigationCOOP's valuep904 is "same-origin-plus-COEPp903", then set newBrowsingContext's groupp1002 's cross-origin
isolation modep1002 to either "logicalp1002" or "concretep1002". The choice of which is implementation-defined.

5. If sandboxFlags is not empty, then:

In this case we are going to perform a browsing context group swap. browsingContext will not be used by the new
Documentp130 that we are about to createp1056. If it is not used by other Documentp130s either (such as ones in the back/
forward cache), then the user agent might destroy itp1003 at this point.

Note

It is difficult on some platforms to provide the security properties required by the cross-origin isolated capabilityp1076.
"concretep1002" grants access to it and "logicalp1002" does not.

Note

907

https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#implementation-defined

1. Assert: navigationCOOP's valuep904 is "unsafe-nonep903".

2. Assert: newBrowsingContext's popup sandboxing flag setp917 is empty.

3. Set newBrowsingContext's popup sandboxing flag setp917 to a clone of sandboxFlags.

6. Return newBrowsingContext.

An accessor-accessed relationship is an enum that describes the relationship between two browsing contextsp998 between which an
access happened. It can take the following values:

accessor is opener
The accessor browsing contextp998 or one of its ancestorsp1001 is the opener browsing contextp998 of the accessed browsing
contextp998 's top-level browsing contextp1001.

accessor is openee
The accessed browsing contextp998 or one of its ancestorsp1001 is the opener browsing contextp998 of the accessor browsing
contextp998 's top-level browsing contextp1001.

none
There is no opener relationship between the accessor browsing contextp998, the accessor browsing contextp998, or any of their
ancestorsp1001.

To check if an access between two browsing contexts should be reported, given two browsing contextsp998 accessor and
accessed, a JavaScript property name P, and an environment settings objectp1076 environment:

1. If P is not a cross-origin accessible window property namep920, then return.

2. Assert: accessor's active documentp998 and accessed's active documentp998 are both fully activep1003.

3. Let accessorTopDocument be accessor's top-level browsing contextp1001 's active documentp998.

4. Let accessorInclusiveAncestorOrigins be the list obtained by taking the origin of the active documentp989 of each of
accessor's active documentp998 's inclusive ancestor navigablesp994.

5. Let accessedTopDocument be accessed's top-level browsing contextp1001 's active documentp998.

6. Let accessedInclusiveAncestorOrigins be the list obtained by taking the origin of the active documentp989 of each of
accessed's active documentp998 's inclusive ancestor navigablesp994.

7. If any of accessorInclusiveAncestorOrigins are not same originp899 with accessorTopDocument's origin, or if any of
accessedInclusiveAncestorOrigins are not same originp899 with accessedTopDocument's origin, then return.

8. If accessor's top-level browsing contextp1001 's virtual browsing context group IDp998 is accessed's top-level browsing
contextp1001 's virtual browsing context group IDp998, then return.

9. Let accessorAccessedRelationship be a new accessor-accessed relationshipp908 with value nonep908.

10. If accessed's top-level browsing contextp1001 's opener browsing contextp998 is accessor or is an ancestorp1001 of accessor, then
set accessorAccessedRelationship to accessor is openerp908.

11. If accessor's top-level browsing contextp1001 's opener browsing contextp998 is accessed or is an ancestorp1001 of accessed, then
set accessorAccessedRelationship to accessor is openeep908.

12. Queue violation reports for accessesp909, given accessorAccessedRelationship, accessorTopDocument's opener policyp131,
accessedTopDocument's opener policyp131, accessor's active documentp998 's URL, accessed's active documentp998 's URL,
accessor's top-level browsing contextp1001 's initial URLp998, accessed's top-level browsing contextp1001 's initial URLp998,
accessor's active documentp998 's origin, accessed's active documentp998 's origin, accessor's top-level browsing contextp1001 's
opener origin at creationp998, accessed's top-level browsing contextp1001 's opener origin at creationp998,

7.1.3.3 Reporting §p90

8

This avoids leaking information about cross-origin iframes to a top level frame with opener policy reporting.
Note

908

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin

accessorTopDocument's referrerp132, accessedTopDocument's referrerp132, P, and environment.

To sanitize a URL to send in a report given a URL url:

1. Let sanitizedURL be a copy of url.

2. Set the username given sanitizedURL and the empty string.

3. Set the password given sanitizedURL and the empty string.

4. Return the serialization of sanitizedURL with exclude fragment set to true.

To queue a violation report for browsing context group switch when navigating to a COOP response given an opener
policyp904 coop, a string disposition, a URL coopURL, a URL previousResponseURL, two originsp898 coopOrigin and
previousResponseOrigin, and a referrer referrer:

1. If coop's reporting endpointp904 is null, return.

2. Let coopValue be coop's valuep904.

3. If disposition is "reporting", then set coopValue to coop's report-only valuep904.

4. Let serializedReferrer be an empty string.

5. If referrer is a URL, set serializedReferrer to the serialization of referrer.

6. Let body be a new object containing the following properties:

key value

disposition disposition

effectivePolicy coopValue

previousResponseURL If coopOrigin and previousResponseOrigin are same originp899 this is the sanitizationp909 of previousResponseURL, null
otherwise.

referrer serializedReferrer

type "navigation-to-response"

7. Queue body as "coop" for coop's reporting endpointp904 with coopURL.

To queue a violation report for browsing context group switch when navigating away from a COOP response given an
opener policyp904 coop, a string disposition, a URL coopURL, a URL nextResponseURL, two originsp898 coopOrigin and
nextResponseOrigin, and a boolean isCOOPResponseNavigationSource:

1. If coop's reporting endpointp904 is null, return.

2. Let coopValue be coop's valuep904.

3. If disposition is "reporting", then set coopValue to coop's report-only valuep904.

4. Let body be a new object containing the following properties:

key value

disposition disposition

effectivePolicy coopValue

nextResponseURL If coopOrigin and nextResponseOrigin are same originp899 or isCOOPResponseNavigationSource is true, this is the sanitizationp909

of previousResponseURL, null otherwise.
type "navigation-from-response"

5. Queue body as "coop" for coop's reporting endpointp904 with coopURL.

To queue violation reports for accesses, given an accessor-accessed relationshipp908 accessorAccessedRelationship, two opener
policiesp904 accessorCOOP and accessedCOOP, four URLs accessorURL, accessedURL, accessorInitialURL, accessedInitialURL, four
originsp898 accessorOrigin, accessedOrigin, accessorCreatorOrigin and accessedCreatorOrigin, two referrersp132 accessorReferrer and
accessedReferrer, a string propertyName, and an environment settings objectp1076 environment:

1. If coop's reporting endpointp904 is null, return.

2. Let coopValue be coop's valuep904.
909

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#set-the-username
https://url.spec.whatwg.org/#set-the-password
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#url-serializer-exclude-fragment
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-referrer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url

3. If disposition is "reporting", then set coopValue to coop's report-only valuep904.

4. If accessorAccessedRelationship is accessor is openerp908:

1. Queue a violation report for access to an opened windowp910, given accessorCOOP, accessorURL, accessedURL,
accessedInitialURL, accessorOrigin, accessedOrigin, accessedCreatorOrigin, propertyName, and environment.

2. Queue a violation report for access from the openerp911, given accessedCOOP, accessedURL, accessorURL,
accessedOrigin, accessorOrigin, propertyName, and accessedReferrer.

5. Otherwise, if accessorAccessedRelationship is accessor is openeep908:

1. Queue a violation report for access to the openerp910, given accessorCOOP, accessorURL, accessedURL,
accessorOrigin, accessedOrigin, propertyName, accessorReferrer, and environment.

2. Queue a violation report for access from an opened windowp911, given accessedCOOP, accessedURL, accessorURL,
accessorInitialURL, accessedOrigin, accessorOrigin, accessorCreatorOrigin, and propertyName.

6. Otherwise:

1. Queue a violation report for access to another windowp910, given accessorCOOP, accessorURL, accessedURL,
accessorOrigin, accessedOrigin, propertyName, and environment

2. Queue a violation report for access from another windowp912, given accessedCOOP, accessedURL, accessorURL,
accessedOrigin, accessorOrigin, and propertyName.

To queue a violation report for access to the opener, given an opener policyp904 coop, two URLs coopURL and openerURL, two
originsp898 coopOrigin and openerOrigin, a string propertyName, a referrer referrer, and an environment settings objectp1076

environment:

1. Let sourceFile, lineNumber and columnNumber be the relevant script URL and problematic position which triggered this
report.

2. Let serializedReferrer be an empty string.

3. If referrer is a URL, set serializedReferrer to the serialization of referrer.

4. Let body be a new object containing the following properties:

key value

disposition "reporting"
effectivePolicy coop's report-only valuep904

property propertyName

openerURL If coopOrigin and openerOrigin are same originp899, this is the sanitizationp909 of openerURL, null otherwise.
referrer serializedReferrer

sourceFile sourceFile

lineNumber lineNumber

columnNumber columnNumber

type "access-to-opener"

5. Queue body as "coop" for coop's reporting endpointp904 with coopURL and environment.

To queue a violation report for access to an opened window, given an opener policyp904 coop, three URLs coopURL,
openedWindowURL and initialWindowURL, three originsp898 coopOrigin, openedWindowOrigin, and openerInitialOrigin, a string
propertyName, and an environment settings objectp1076 environment:

1. Let sourceFile, lineNumber and columnNumber be the relevant script URL and problematic position which triggered this
report.

2. Let body be a new object containing the following properties:

key value

disposition "reporting"
effectivePolicy coop's report-only valuep904

property propertyName

openedWindowURL If coopOrigin and openedWindowOrigin are same originp899, this is the sanitizationp909 of openedWindowURL, null otherwise.

910

https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-referrer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url

key value

openedWindowInitialURL If coopOrigin and openerInitialOrigin are same originp899, this is the sanitizationp909 of initialWindowURL, null otherwise.
sourceFile sourceFile

lineNumber lineNumber

columnNumber columnNumber

type "access-to-opener"

3. Queue body as "coop" for coop's reporting endpointp904 with coopURL and environment.

To queue a violation report for access to another window, given an opener policyp904 coop, two URLs coopURL and otherURL, two
originsp898 coopOrigin and otherOrigin, a string propertyName, and an environment settings objectp1076 environment:

1. Let sourceFile, lineNumber and columnNumber be the relevant script URL and problematic position which triggered this
report.

2. Let body be a new object containing the following properties:

key value

disposition "reporting"
effectivePolicy coop's report-only valuep904

property propertyName

otherURL If coopOrigin and otherOrigin are same originp899, this is the sanitizationp909 of otherURL, null otherwise.
sourceFile sourceFile

lineNumber lineNumber

columnNumber columnNumber

type "access-to-opener"

3. Queue body as "coop" for coop's reporting endpointp904 with coopURL and environment.

To queue a violation report for access from the opener, given an opener policyp904 coop, two URLs coopURL and openerURL, two
originsp898 coopOrigin and openerOrigin, a string propertyName, and a referrer referrer:

1. If coop's reporting endpointp904 is null, return.

2. Let serializedReferrer be an empty string.

3. If referrer is a URL, set serializedReferrer to the serialization of referrer.

4. Let body be a new object containing the following properties:

key value

disposition "reporting"
effectivePolicy coop's report-only valuep904

property propertyName

openerURL If coopOrigin and openerOrigin are same originp899, this is the sanitizationp909 of openerURL, null otherwise.
referrer serializedReferrer

type "access-to-opener"

5. Queue body as "coop" for coop's reporting endpointp904 with coopURL.

To queue a violation report for access from an opened window, given an opener policyp904 coop, three URLs coopURL,
openedWindowURL and initialWindowURL, three originsp898 coopOrigin, openedWindowOrigin, and openerInitialOrigin, and a string
propertyName:

1. If coop's reporting endpointp904 is null, return.

2. Let body be a new object containing the following properties:

key value

disposition "reporting"
effectivePolicy coopValue

property coop's report-only valuep904

openedWindowURL If coopOrigin and openedWindowOrigin are same originp899, this is the sanitizationp909 of openedWindowURL, null otherwise.

911

https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-referrer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url

key value

openedWindowInitialURL If coopOrigin and openerInitialOrigin are same originp899, this is the sanitizationp909 of initialWindowURL, null otherwise.
type "access-to-opener"

3. Queue body as "coop" for coop's reporting endpointp904 with coopURL.

To queue a violation report for access from another window, given an opener policyp904 coop, two URLs coopURL and otherURL,
two originsp898 coopOrigin and otherOrigin, and a string propertyName:

1. If coop's reporting endpointp904 is null, return.

2. Let body be a new object containing the following properties:

key value

disposition "reporting"
effectivePolicy coop's report-only valuep904

property propertyName

otherURL If coopOrigin and otherOrigin are same originp899, this is the sanitizationp909 of otherURL, null otherwise.
type access-to-opener

3. Queue body as "coop" for coop's reporting endpointp904 with coopURL.

An embedder policy value is one of three strings that controls the fetching of cross-origin resources without explicit permission from
resource owners.

"unsafe-none"
This is the default value. When this value is used, cross-origin resources can be fetched without giving explicit permission through
the CORS protocol or the `Cross-Origin-Resource-Policy` header.

"require-corp"
When this value is used, fetching cross-origin resources requires the server's explicit permission through the CORS protocol or the
`Cross-Origin-Resource-Policy` header.

"credentialless"
When this value is used, fetching cross-origin no-CORS resources omits credentials. In exchange, an explicit `Cross-Origin-
Resource-Policy` header is not required. Other requests sent with credentials require the server's explicit permission through the
CORS protocol or the `Cross-Origin-Resource-Policy` header.

An embedder policy valuep912 is compatible with cross-origin isolation if it is "credentiallessp912" or "require-corpp912".

An embedder policy consists of:

• A value, which is an embedder policy valuep912, initially "unsafe-nonep912".

• A reporting endpoint string, initially the empty string.

• A report only value, which is an embedder policy valuep912, initially "unsafe-nonep912".

• A report only reporting endpoint string, initially the empty string.

The "coep" report type is a report type whose value is "coep". It is visible to ReportingObservers.

Before supporting "credentiallessp912", implementers are strongly encouraged to support both:

• Private Network Access
• Opaque Response Blocking

Otherwise, it would allow attackers to leverage the client's network position to read non public resources, using the
cross-origin isolated capabilityp1076.

⚠Warning!

7.1.4 Cross-origin embedder policies §p91

2

✔ MDN

912

https://w3c.github.io/reporting/#queue-report
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/reporting/#queue-report
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://fetch.spec.whatwg.org/#http-cors-protocol
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://wicg.github.io/private-network-access/
https://github.com/annevk/orb
https://w3c.github.io/reporting/#report-type
https://w3c.github.io/reporting/#visible-to-reportingobservers

The `Cross-Origin-Embedder-Policy` and `Cross-Origin-Embedder-Policy-Report-Only` HTTP response headers allow a server
to declare an embedder policyp912 for an environment settings objectp1076. These headers are structured headers whose values must be
token. [STRUCTURED-FIELDS]p1482

The valid token values are the embedder policy valuesp912. The token may also have attached parameters; of these, the "report-to"
parameter can have a valid URL string identifying an appropriate reporting endpoint. [REPORTING]p1480

To obtain an embedder policy from a response response and an environmentp1075 environment:

1. Let policy be a new embedder policyp912.

2. If environment is a non-secure contextp1084, then return policy.

3. Let parsedItem be the result of getting a structured field value with `Cross-Origin-Embedder-Policyp913` and "item" from
response's header list.

4. If parsedItem is non-null and parsedItem[0] is compatible with cross-origin isolationp912:

1. Set policy's valuep912 to parsedItem[0].

2. If parsedItem[1]["report-top913"] exists, then set policy's endpointp912 to parsedItem[1]["report-top913"].

5. Set parsedItem to the result of getting a structured field value with `Cross-Origin-Embedder-Policy-Report-Onlyp913` and
"item" from response's header list.

6. If parsedItem is non-null and parsedItem[0] is compatible with cross-origin isolationp912:

1. Set policy's report only valuep912 to parsedItem[0].

2. If parsedItem[1]["report-top913"] exists, then set policy's endpointp912 to parsedItem[1]["report-top913"].

7. Return policy.

To check a navigation response's adherence to its embedder policy given a response response, a navigablep989 navigable, and
an embedder policyp912 responsePolicy:

1. If navigable is not a child navigablep992, then return true.

2. Let parentPolicy be navigable's container documentp992 's policy containerp131 's embedder policyp917.

3. If parentPolicy's report-only valuep912 is compatible with cross-origin isolationp912 and responsePolicy's valuep912 is not, then
queue a cross-origin embedder policy inheritance violationp914 with response, "navigation", parentPolicy's report only

7.1.4.1 The headers §p91

3

The processing modelp913 fails open (by defaulting to "unsafe-nonep912") in the presence of a header that cannot be parsed as a
token. This includes inadvertent lists created by combining multiple instances of the `Cross-Origin-Embedder-Policyp913` header
present in a given response:

`Cross-Origin-Embedder-Policyp913` Final embedder policy valuep912

No header delivered "unsafe-nonep912"

`require-corp` "require-corpp912"

`unknown-value` "unsafe-nonep912"

`require-corp, unknown-value` "unsafe-nonep912"

`unknown-value, unknown-value` "unsafe-nonep912"

`unknown-value, require-corp` "unsafe-nonep912"

`require-corp, require-corp` "unsafe-nonep912"

(The same applies to `Cross-Origin-Embedder-Policy-Report-Onlyp913`.)

Note

7.1.4.2 Embedder policy checks §p91

3

913

https://httpwg.org/specs/rfc8941.html
https://httpwg.org/specs/rfc8941.html#token
https://httpwg.org/specs/rfc8941.html#token
https://httpwg.org/specs/rfc8941.html#param
https://url.spec.whatwg.org/#valid-url-string
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#map-exists
https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#map-exists
https://fetch.spec.whatwg.org/#concept-response

reporting endpointp912, "reporting", and navigable's container documentp992 's relevant settings objectp1083.

4. If parentPolicy's valuep912 is not compatible with cross-origin isolationp912 or responsePolicy's valuep912 is compatible with
cross-origin isolationp912, then return true.

5. Queue a cross-origin embedder policy inheritance violationp914 with response, "navigation", parentPolicy's reporting
endpointp912, "enforce", and navigable's container documentp992 's relevant settings objectp1083.

6. Return false.

To check a global object's embedder policy given a WorkerGlobalScopep1228 workerGlobalScope, an environment settings
objectp1076 owner, and a response response:

1. If workerGlobalScope is not a DedicatedWorkerGlobalScopep1230 object, then return true.

2. Let policy be workerGlobalScope's embedder policyp1229.

3. Let ownerPolicy be owner's policy containerp1076 's embedder policyp917.

4. If ownerPolicy's report-only valuep912 is compatible with cross-origin isolationp912 and policy's valuep912 is not, then queue a
cross-origin embedder policy inheritance violationp914 with response, "worker initialization", ownerPolicy's report only
reporting endpointp912, "reporting", and owner.

5. If ownerPolicy's valuep912 is not compatible with cross-origin isolationp912 or policy's valuep912 is compatible with cross-origin
isolationp912, then return true.

6. Queue a cross-origin embedder policy inheritance violationp914 with response, "worker initialization", ownerPolicy's
reporting endpointp912, "enforce", and owner.

7. Return false.

To queue a cross-origin embedder policy inheritance violation given a response response, a string type, a string endpoint, a
string disposition, and an environment settings objectp1076 settings:

1. Let serialized be the result of serializing a response URL for reporting with response.

2. Let body be a new object containing the following properties:

key value

type type

blockedURL serialized

disposition disposition

3. Queue body as the "coep" report typep912 for endpoint on settings.

A sandboxing flag set is a set of zero or more of the following flags, which are used to restrict the abilities that potentially untrusted
resources have:

The sandboxed navigation browsing context flag
This flag prevents content from navigating browsing contexts other than the sandboxed browsing context itselfp1015 (or browsing
contexts further nested inside it), auxiliary browsing contextsp999 (which are protected by the sandboxed auxiliary navigation
browsing context flagp915 defined next), and the top-level browsing contextp1001 (which is protected by the sandboxed top-level
navigation without user activation browsing context flagp915 and sandboxed top-level navigation with user activation browsing
context flagp915 defined below).

If the sandboxed auxiliary navigation browsing context flagp915 is not set, then in certain cases the restrictions nonetheless allow
popups (new top-level browsing contextsp1001) to be opened. These browsing contextsp998 always have one permitted sandboxed
navigator, set when the browsing context is created, which allows the browsing contextp998 that created them to actually navigate
them. (Otherwise, the sandboxed navigation browsing context flagp914 would prevent them from being navigated even if they were
opened.)

7.1.5 Sandboxing §p91

4

914

https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#serialize-a-response-url-for-reporting
https://w3c.github.io/reporting/#queue-report

The sandboxed auxiliary navigation browsing context flag
This flag prevents content from creating new auxiliary browsing contextsp997, e.g. using the targetp303 attribute or the
window.open()p926 method.

The sandboxed top-level navigation without user activation browsing context flag
This flag prevents content from navigating their top-level browsing contextp1015 and prevents content from closing their top-level
browsing contextp928. It is consulted only when the sandboxed browsing context's active windowp998 does not have transient
activationp830.

When the sandboxed top-level navigation without user activation browsing context flagp915 is not set, content can navigate its top-
level browsing contextp1001, but other browsing contextsp998 are still protected by the sandboxed navigation browsing context flagp914

and possibly the sandboxed auxiliary navigation browsing context flagp915.

The sandboxed top-level navigation with user activation browsing context flag
This flag prevents content from navigating their top-level browsing contextp1015 and prevents content from closing their top-level
browsing contextp928. It is consulted only when the sandboxed browsing context's active windowp998 has transient activationp830.

As with the sandboxed top-level navigation without user activation browsing context flagp915, this flag only affects the top-level
browsing contextp1001; if it is not set, other browsing contextsp998 might still be protected by other flags.

The sandboxed origin browsing context flag
This flag forces content into an opaque originp1001, thus preventing it from accessing other content from the same originp898.

This flag also prevents script from reading from or writing to the document.cookie IDL attributep132, and blocks access to
localStoragep1255.

The sandboxed forms browsing context flag
This flag blocks form submissionp629.

The sandboxed pointer lock browsing context flag
This flag disables the Pointer Lock API. [POINTERLOCK]p1481

The sandboxed scripts browsing context flag
This flag blocks script executionp1083.

The sandboxed automatic features browsing context flag
This flag blocks features that trigger automatically, such as automatically playing a videop435 or automatically focusing a form
controlp848.

The sandboxed document.domain browsing context flag
This flag prevents content from using the document.domainp901 setter.

The sandbox propagates to auxiliary browsing contexts flag
This flag prevents content from escaping the sandbox by ensuring that any auxiliary browsing contextp999 it creates inherits the
content's active sandboxing flag setp917.

The sandboxed modals flag
This flag prevents content from using any of the following features to produce modal dialogs:

• window.alert()p1167

• window.confirm()p1168

• window.print()p1169

• window.prompt()p1168

• the beforeunloadp1471 event

The sandboxed orientation lock browsing context flag
This flag disables the ability to lock the screen orientation. [SCREENORIENTATION]p1482

The sandboxed presentation browsing context flag
This flag disables the Presentation API. [PRESENTATION]p1481

915

The sandboxed downloads browsing context flag
This flag prevents content from initiating or instantiating downloads, whether through downloading hyperlinksp310 or through
navigationp1031 that gets handled as a downloadp311.

The sandboxed custom protocols navigation browsing context flag
This flag prevents navigations toward non fetch schemes from being handed off to external softwarep1024.

When the user agent is to parse a sandboxing directive, given a string input, a sandboxing flag setp914 output, it must run the
following steps:

1. Split input on ASCII whitespace, to obtain tokens.

2. Let output be empty.

3. Add the following flags to output:

◦ The sandboxed navigation browsing context flagp914.

◦ The sandboxed auxiliary navigation browsing context flagp915, unless tokens contains the allow-popups keyword.

◦ The sandboxed top-level navigation without user activation browsing context flagp915, unless tokens contains the
allow-top-navigation keyword.

◦ The sandboxed top-level navigation with user activation browsing context flagp915, unless tokens contains either
the allow-top-navigation-by-user-activation keyword or the allow-top-navigationp916 keyword.

◦ The sandboxed origin browsing context flagp915, unless the tokens contains the allow-same-origin keyword.

◦ The sandboxed forms browsing context flagp915, unless tokens contains the allow-forms keyword.

◦ The sandboxed pointer lock browsing context flagp915, unless tokens contains the allow-pointer-lock keyword.

◦ The sandboxed scripts browsing context flagp915, unless tokens contains the allow-scripts keyword.

◦ The sandboxed automatic features browsing context flagp915, unless tokens contains the allow-scriptsp916

keyword (defined above).

◦ The sandboxed document.domain browsing context flagp915.

◦ The sandbox propagates to auxiliary browsing contexts flagp915, unless tokens contains the allow-popups-to-
escape-sandbox keyword.

◦ The sandboxed modals flagp915, unless tokens contains the allow-modals keyword.

◦ The sandboxed orientation lock browsing context flagp915, unless tokens contains the allow-orientation-lock
keyword.

This means that if the allow-top-navigationp916 is present, the allow-top-navigation-by-user-
activationp916 keyword will have no effect. For this reason, specifying both is a document conformance error.

Note

The allow-same-originp916 keyword is intended for two cases.

First, it can be used to allow content from the same site to be sandboxed to disable scripting, while still
allowing access to the DOM of the sandboxed content.

Second, it can be used to embed content from a third-party site, sandboxed to prevent that site from opening
popups, etc, without preventing the embedded page from communicating back to its originating site, using the
database APIs to store data, etc.

Note

This flag is relaxed by the same keyword as scripts, because when scripts are enabled these features are
trivially possible anyway, and it would be unfortunate to force authors to use script to do them when
sandboxed rather than allowing them to use the declarative features.

Note

916

https://fetch.spec.whatwg.org/#fetch-scheme
https://infra.spec.whatwg.org/#split-on-ascii-whitespace

◦ The sandboxed presentation browsing context flagp915, unless tokens contains the allow-presentation keyword.

◦ The sandboxed downloads browsing context flagp916, unless tokens contains the allow-downloads keyword.

◦ The sandboxed custom protocols navigation browsing context flagp916, unless tokens contains either the allow-
top-navigation-to-custom-protocols keyword, the allow-popupsp916 keyword, or the allow-top-
navigationp916 keyword.

Every top-level browsing contextp1001 has a popup sandboxing flag set, which is a sandboxing flag setp914. When a browsing
contextp998 is created, its popup sandboxing flag setp917 must be empty. It is populated by the rules for choosing a navigablep997 and
the obtain a browsing context to use for a navigation responsep907 algorithm.

Every iframep390 element has an iframe sandboxing flag set, which is a sandboxing flag setp914. Which flags in an iframe
sandboxing flag setp917 are set at any particular time is determined by the iframep390 element's sandboxp395 attribute.

Every Documentp130 has an active sandboxing flag set, which is a sandboxing flag setp914. When the Documentp130 is created, its
active sandboxing flag setp917 must be empty. It is populated by the navigation algorithmp1014.

Every CSP list cspList has CSP-derived sandboxing flags, which is a sandboxing flag setp914. It is the return value of the following
algorithm:

1. Let directives be an empty ordered set.

2. For each policy in cspList:

1. If policy's disposition is not "enforce", then continue.

2. If policy's directive set contains a directive whose name is "sandbox", then append that directive to directives.

3. If directives is empty, then return an empty sandboxing flag setp914.

4. Let directive be directives[directives's size − 1].

5. Return the result of parsing the sandboxing directivep916 directive.

To determine the creation sandboxing flags for a browsing contextp999 browsing context, given null or an element embedder,
return the union of the flags that are present in the following sandboxing flag setsp914:

• If embedder is null, then: the flags set on browsing context's popup sandboxing flag setp917.

• If embedder is an element, then: the flags set on embedder's iframe sandboxing flag setp917.

• If embedder is an element, then: the flags set on embedder's node document's active sandboxing flag setp917.

A policy container is a struct containing policies that apply to a Documentp130, a WorkerGlobalScopep1228, or a
WorkletGlobalScopep1245. It has the following items:

• A CSP list, which is a CSP list. It is initially empty.

• An embedder policy, which is an embedder policyp912. It is initially a new embedder policyp912.

• A referrer policy, which is a referrer policy. It is initially the default referrer policy.

Move other policies into the policy container.

To clone a policy container given a policy containerp917 policyContainer:

1. Let clone be a new policy containerp917.

2. For each policy in policyContainer's CSP listp917, append a copy of policy into clone's CSP listp917.

7.1.6 Policy containers §p91

7

917

https://w3c.github.io/webappsec-csp/#csp-list
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://w3c.github.io/webappsec-csp/#policy-disposition
https://infra.spec.whatwg.org/#iteration-continue
https://w3c.github.io/webappsec-csp/#policy-directive-set
https://infra.spec.whatwg.org/#list-contain
https://w3c.github.io/webappsec-csp/#directives
https://w3c.github.io/webappsec-csp/#sandbox
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#set-union
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://w3c.github.io/webappsec-csp/#csp-list
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#default-referrer-policy
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append

3. Set clone's embedder policyp917 to a copy of policyContainer's embedder policyp917.

4. Set clone's referrer policyp917 to policyContainer's referrer policyp917.

5. Return clone.

To determine whether a URL url requires storing the policy container in history:

1. If url's scheme is "blob", then return false.

2. If url is local, then return true.

3. Return false.

To create a policy container from a fetch response given a response response and an environmentp1075-or-null environment:

1. If response's URL's scheme is "blob", then return a clonep917 of response's URL's blob URL entry's environment's policy
containerp917.

2. Let result be a new policy containerp917.

3. Set result's CSP listp917 to the result of parsing a response's Content Security Policies given response.

4. If environment is non-null, then set result's embedder policyp917 to the result of obtaining an embedder policyp913 given
response and environment. Otherwise, set it to "unsafe-nonep912".

5. Set result's referrer policyp917 to the result of parsing the `Referrer-Policy` header given response. [REFERRERPOLICY]p1481

6. Return result.

To determine navigation params policy container given a URL responseURL and four policy containerp917-or-nulls
historyPolicyContainer, initiatorPolicyContainer, parentPolicyContainer, and responsePolicyContainer:

1. If historyPolicyContainer is not null, then:

1. Assert: responseURL requires storing the policy container in historyp918.

2. Return a clonep917 of historyPolicyContainer.

2. If responseURL is about:srcdocp96, then:

1. Assert: parentPolicyContainer is not null.

2. Return a clonep917 of parentPolicyContainer.

3. If responseURL is local and initiatorPolicyContainer is not null, then return a clonep917 of initiatorPolicyContainer.

4. If responsePolicyContainer is not null, then return responsePolicyContainer.

5. Return a new policy containerp917.

To initialize a worker global scope's policy container given a WorkerGlobalScopep1228 workerGlobalScope, a response response,
and an environmentp1075 environment:

1. If workerGlobalScope's urlp1229 is local but its scheme is not "blob":

1. Assert: workerGlobalScope's owner setp1228 's size is 1.

2. Set workerGlobalScope's policy containerp1229 to a clonep917 of workerGlobalScope's owner setp1228[0]'s relevant
settings objectp1083 's policy containerp1076.

2. Otherwise, set workerGlobalScope's policy containerp1229 to the result of creating a policy container from a fetch responsep918

given response and environment.

918

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#is-local
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-blob-entry
https://w3c.github.io/FileAPI/#blob-url-entry-environment
https://w3c.github.io/webappsec-csp/#parse-response-csp
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://fetch.spec.whatwg.org/#is-local
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#is-local
https://url.spec.whatwg.org/#concept-url-scheme
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-size

Although typically objects cannot be accessed across originsp898, the web platform would not be true to itself if it did not have some
legacy exceptions to that rule that the web depends upon.

This section uses the terminology and typographic conventions from the JavaScript specification. [JAVASCRIPT]p1479

When perform a security check is invoked, with a platformObject, identifier, and type, run these steps:

1. If platformObject is not a Windowp922 or Locationp937 object, then return.

2. For each e of CrossOriginPropertiesp919(platformObject):

1. If SameValue(e.[[Property]], identifier) is true, then:

1. If type is "method" and e has neither [[NeedsGet]] nor [[NeedsSet]], then return.

2. Otherwise, if type is "getter" and e.[[NeedsGet]] is true, then return.

3. Otherwise, if type is "setter" and e.[[NeedsSet]] is true, then return.

3. If IsPlatformObjectSameOriginp920(platformObject) is false, then throw a "SecurityError" DOMException.

Windowp922 and Locationp937 objects both have a [[CrossOriginPropertyDescriptorMap]] internal slot, whose value is initially an
empty map.

The [[CrossOriginPropertyDescriptorMap]]p919 internal slot contains a map with entries whose keys are (currentGlobal, objectGlobal,
propertyKey)-tuples and values are property descriptors, as a memoization of what is visible to scripts when currentGlobal inspects a
Windowp922 or Locationp937 object from objectGlobal. It is filled lazily by CrossOriginGetOwnPropertyHelperp920, which consults it on
future lookups.

User agents should allow a value held in the map to be garbage collected along with its corresponding key when nothing holds a
reference to any part of the value. That is, as long as garbage collection is not observable.

User agents may have an optimization whereby they remove key-value pairs from the map when document.domainp901 is set. This is
not observable as document.domainp901 cannot revisit an earlier value.

1. Assert: O is a Locationp937 or Windowp922 object.

2. If O is a Locationp937 object, then return « { [[Property]]: "href", [[NeedsGet]]: false, [[NeedsSet]]: true }, { [[Property]]:

7.2 APIs related to navigation and session history §p91

9

7.2.1.1 Integration with IDL §p91

9

7.2.1.2 Shared internal slot: [[CrossOriginPropertyDescriptorMap]] §p91

9

For example, with const href = Object.getOwnPropertyDescriptor(crossOriginLocation, "href").set the value and its
corresponding key in the map cannot be garbage collected as that would be observable.

Example

For example, setting document.domainp901 to "example.com" on www.example.com means user agents can remove all key-value
pairs from the map where part of the key is www.example.com, as that can never be part of the originp898 again and therefore the
corresponding value could never be retrieved from the map.

Example

7.2.1.3 Shared abstract operations §p91

9

7.2.1.3.1 CrossOriginProperties (O) §p91

9

7.2.1 Security infrastructure for Windowp922, WindowProxyp934, and Locationp937 objects §p91

9

919

https://webidl.spec.whatwg.org/#dfn-perform-a-security-check
https://tc39.es/ecma262/#sec-samevalue
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#assert

"replace" } ».

3. Return « { [[Property]]: "window", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "self", [[NeedsGet]]: true,
[[NeedsSet]]: false }, { [[Property]]: "location", [[NeedsGet]]: true, [[NeedsSet]]: true }, { [[Property]]: "close" }, {
[[Property]]: "closed", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "focus" }, { [[Property]]: "blur" }, {
[[Property]]: "frames", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "length", [[NeedsGet]]: true, [[NeedsSet]]:
false }, { [[Property]]: "top", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "opener", [[NeedsGet]]: true,
[[NeedsSet]]: false }, { [[Property]]: "parent", [[NeedsGet]]: true, [[NeedsSet]]: false }, { [[Property]]: "postMessage" } ».

A JavaScript property name P is a cross-origin accessible window property name if it is "window", "self", "location", "close",
"closed", "focus", "blur", "frames", "length", "top", "opener", "parent", "postMessage", or an array index property name.

1. If P is "then", %Symbol.toStringTag%p57, %Symbol.hasInstance%p57, or %Symbol.isConcatSpreadable%p57, then return
PropertyDescriptor{ [[Value]]: undefined, [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

2. Throw a "SecurityError" DOMException.

1. Return true if the current settings objectp1083 's originp1076 is same origin-domainp899 with O's relevant settings objectp1083 's
originp1076, and false otherwise.

1. Let crossOriginKey be a tuple consisting of the current settings objectp1083, O's relevant settings objectp1083, and P.

2. For each e of CrossOriginPropertiesp919(O):

1. If SameValue(e.[[Property]], P) is true, then:

1. If the value of the [[CrossOriginPropertyDescriptorMap]]p919 internal slot of O contains an entry whose key
is crossOriginKey, then return that entry's value.

2. Let originalDesc be OrdinaryGetOwnProperty(O, P).

This abstract operation does not return a Completion Record.
Note

Indexed properties do not need to be safelisted in this algorithm, as they are handled directly by the WindowProxyp934 object.
Note

7.2.1.3.2 CrossOriginPropertyFallback (P) §p92

0

7.2.1.3.3 IsPlatformObjectSameOrigin (O) §p92

0

This abstract operation does not return a Completion Record.
Note

Here the current settings objectp1083 roughly corresponds to the "caller", because this check occurs before the execution context
for the getter/setter/method in question makes its way onto the JavaScript execution context stack. For example, in the code
w.document, this step is invoked before the documentp923 getter is reached as part of the [[Get]]p935 algorithm for the
WindowProxyp934 w.

Note

7.2.1.3.4 CrossOriginGetOwnPropertyHelper (O, P) §p92

0

If this abstract operation returns undefined and there is no custom behavior, the caller needs to throw a "SecurityError"
DOMException. In practice this is handled by the caller calling CrossOriginPropertyFallbackp920.

Note

920

https://tc39.es/ecma262/#sec-completion-record-specification-type
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-samevalue
https://tc39.es/ecma262/#sec-ordinarygetownproperty

3. Let crossOriginDesc be undefined.

4. If e.[[NeedsGet]] and e.[[NeedsSet]] are absent, then:

1. Let value be originalDesc.[[Value]].

2. If IsCallable(value) is true, then set value to an anonymous built-in function, created in the
current realm, that performs the same steps as the IDL operation P on object O.

3. Set crossOriginDesc to PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: false, [[Writable]]:
false, [[Configurable]]: true }.

5. Otherwise:

1. Let crossOriginGet be undefined.

2. If e.[[NeedsGet]] is true, then set crossOriginGet to an anonymous built-in function, created in
the current realm, that performs the same steps as the getter of the IDL attribute P on object
O.

3. Let crossOriginSet be undefined.

4. If e.[[NeedsSet]] is true, then set crossOriginSet to an anonymous built-in function, created in
the current realm, that performs the same steps as the setter of the IDL attribute P on object O.

5. Set crossOriginDesc to PropertyDescriptor{ [[Get]]: crossOriginGet, [[Set]]: crossOriginSet,
[[Enumerable]]: false, [[Configurable]]: true }.

6. Create an entry in the value of the [[CrossOriginPropertyDescriptorMap]]p919 internal slot of O with key
crossOriginKey and value crossOriginDesc.

7. Return crossOriginDesc.

3. Return undefined.

1. Let desc be ? O.[[GetOwnProperty]](P).

2. Assert: desc is not undefined.

3. If IsDataDescriptor(desc) is true, then return desc.[[Value]].

4. Assert: IsAccessorDescriptor(desc) is true.

5. Let getter be desc.[[Get]].

6. If getter is undefined, then throw a "SecurityError" DOMException.

7. Return ? Call(getter, Receiver).

This abstract operation does not return a Completion Record.
Note

The reason that the property descriptors produced here are configurable is to preserve the invariants of the essential internal
methods required by the JavaScript specification. In particular, since the value of the property can change as a consequence of
navigation, it is required that the property be configurable. (However, see tc39/ecma262 issue #672 and references to it elsewhere
in this specification for cases where we are not able to preserve these invariants, for compatibility with existing web content.)
[JAVASCRIPT]p1479

Note

The reason the property descriptors are non-enumerable, despite this mismatching the same-origin behavior, is for compatibility
with existing web content. See issue #3183 for details.

Note

7.2.1.3.5 CrossOriginGet (O, P, Receiver) §p92

1

921

https://tc39.es/ecma262/#sec-iscallable
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://github.com/tc39/ecma262/issues/672
https://github.com/whatwg/html/issues/3183
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-isdatadescriptor
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-isaccessordescriptor
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-call

1. Let desc be ? O.[[GetOwnProperty]](P).

2. Assert: desc is not undefined.

3. If desc.[[Set]] is present and its value is not undefined, then:

1. Perform ? Call(setter, Receiver, « V »).

2. Return true.

4. Throw a "SecurityError" DOMException.

1. Let keys be a new empty List.

2. For each e of CrossOriginPropertiesp919(O), append e.[[Property]] to keys.

3. Return the concatenation of keys and « "then", %Symbol.toStringTag%p57, %Symbol.hasInstance%p57,
%Symbol.isConcatSpreadable%p57 ».

[Global=Window,
Exposed=Window,
LegacyUnenumerableNamedProperties]

interface Window : EventTarget {
// the current browsing context
[LegacyUnforgeable] readonly attribute WindowProxy window;
[Replaceable] readonly attribute WindowProxy self;
[LegacyUnforgeable] readonly attribute Document document;
attribute DOMString name;
[PutForwards=href, LegacyUnforgeable] readonly attribute Location location;
readonly attribute History history;
readonly attribute Navigation navigation;
readonly attribute CustomElementRegistry customElements;
[Replaceable] readonly attribute BarProp locationbar;
[Replaceable] readonly attribute BarProp menubar;
[Replaceable] readonly attribute BarProp personalbar;
[Replaceable] readonly attribute BarProp scrollbars;
[Replaceable] readonly attribute BarProp statusbar;
[Replaceable] readonly attribute BarProp toolbar;
attribute DOMString status;
undefined close();
readonly attribute boolean closed;
undefined stop();
undefined focus();
undefined blur();

// other browsing contexts
[Replaceable] readonly attribute WindowProxy frames;
[Replaceable] readonly attribute unsigned long length;
[LegacyUnforgeable] readonly attribute WindowProxy? top;

7.2.1.3.6 CrossOriginSet (O, P, V, Receiver) §p92

2

7.2.1.3.7 CrossOriginOwnPropertyKeys (O) §p92

2

This abstract operation does not return a Completion Record.
Note

IDL

7.2.2 The Windowp922 object §p92

2

✔ MDN

922

https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-call
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties
https://dom.spec.whatwg.org/#interface-eventtarget
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable

attribute any opener;
[Replaceable] readonly attribute WindowProxy? parent;
readonly attribute Element? frameElement;
WindowProxy? open(optional USVString url = "", optional DOMString target = "_blank", optional

[LegacyNullToEmptyString] DOMString features = "");

// Since this is the global object, the IDL named getter adds a NamedPropertiesObject exotic
// object on the prototype chain. Indeed, this does not make the global object an exotic object.
// Indexed access is taken care of by the WindowProxy exotic object.
getter object (DOMString name);

// the user agent
readonly attribute Navigator navigator;
[Replaceable] readonly attribute Navigator clientInformation; // legacy alias of .navigator
readonly attribute boolean originAgentCluster;

// user prompts
undefined alert();
undefined alert(DOMString message);
boolean confirm(optional DOMString message = "");
DOMString? prompt(optional DOMString message = "", optional DOMString default = "");
undefined print();

undefined postMessage(any message, USVString targetOrigin, optional sequence<object> transfer = []);
undefined postMessage(any message, optional WindowPostMessageOptions options = {});

// also has obsolete members
};
Window includes GlobalEventHandlers;
Window includes WindowEventHandlers;

dictionary WindowPostMessageOptions : StructuredSerializeOptions {
USVString targetOrigin = "/";

};

The Windowp922 object has an associated Document, which is a Documentp130 object. It is set when the Windowp922 object is created, and
only ever changed during navigationp1014 from the initial about:blankp131 Documentp130.

A Windowp922 's browsing context is its associated Documentp923 's browsing contextp999. It is either null or a browsing
contextp998.

A Windowp922 's navigable is the navigablep989 whose active documentp989 is the Windowp922 's associated Documentp923 's, or null if there
is no such navigablep989.

The window, frames, and self getter steps are to return this's relevant realmp1083.[[GlobalEnv]].[[GlobalThisValue]].

The document getter steps are to return this's associated Documentp923.

window.windowp923

window.framesp923

window.selfp923

These attributes all return window.

window.documentp923

Returns the Documentp130 associated with window.

document.defaultViewp924

Returns the Windowp922 associated with document, if there is one, or null otherwise.

For web developers (non-normative)

Note

923

https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The defaultView getter steps are:

1. If this's browsing contextp999 is null, then return null.

2. Return this's browsing contextp999 's WindowProxyp934 object.

For historical reasons, Windowp922 objects must also have a writable, configurable, non-enumerable property named HTMLDocument
whose value is the Documentp130 interface object.

To get noopener for window open, given a Documentp130 sourceDocument, an ordered map tokenizedFeatures, and a URL record url,
perform the following steps. They return a boolean.

1. If url's scheme is "blob":

1. Let blobOrigin be url's blob URL entry's environment's originp1076.

2. Let topLevelOrigin be sourceDocument's relevant settings objectp1083 's top-level originp1076.

3. If blobOrigin is not same sitep900 with topLevelOrigin, then return true.

2. Let noopener be false.

The Documentp130 object associated with a Windowp922 object can change in exactly one case: when the navigatep1014 algorithm
creates a new Document objectp1056 for the first page loaded in a browsing contextp998. In that specific case, the Windowp922 object of
the initial about:blankp131 page is reused and gets a new Documentp130 object.

Note

7.2.2.1 Opening and closing windows §p92

4

window = window.openp926([url [, target [, features]]])
Opens a window to show url (defaults to "about:blankp53"), and returns it. target (defaults to "_blank") gives the name of the
new window. If a window already exists with that name, it is reused. The features argument can contain a set of comma-
separated tokensp95:
"noopener"
"noreferrer"

These behave equivalently to the noopenerp325 and noreferrerp325 link types on hyperlinksp302.
"popup"

Encourages user agents to provide a minimal web browser user interface for the new window. (Impacts the visiblep932

getter on all BarPropp932 objects as well.)

window.namep927 [= value]
Returns the name of the window.
Can be set, to change the name.

window.closep928()
Closes the window.

window.closedp928

Returns true if the window has been closed, false otherwise.

window.stopp928()
Cancels the document load.

globalThis.open("https://email.example/message/
CAOOOkFcWW97r8yg=SsWg7GgCmp4suVX9o85y8BvNRqMjuc5PXg", undefined, "noopener,popup");

Example

For web developers (non-normative)

✔ MDN

924

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-interface-object
https://infra.spec.whatwg.org/#ordered-map
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-blob-entry
https://w3c.github.io/FileAPI/#blob-url-entry-environment

3. If tokenizedFeatures["noopener"] exists, then set noopener to the result of parsing tokenizedFeatures["noopener"] as a
boolean featurep927.

4. Return noopener.

The window open steps, given a string url, a string target, and a string features, are as follows:

1. If the event loopp1123 's termination nesting levelp1064 is nonzero, then return null.

2. Let sourceDocument be the entry global objectp1080 's associated Documentp923.

3. Let urlRecord be null.

4. If url is not the empty string, then:

1. Set urlRecord to the result of encoding-parsing a URLp97 given url, relative to sourceDocument.

2. If urlRecord is failure, then throw a "SyntaxError" DOMException.

5. If target is the empty string, then set target to "_blank".

6. Let tokenizedFeatures be the result of tokenizingp926 features.

7. Let noreferrer be false.

8. If tokenizedFeatures["noreferrer"] exists, then set noreferrer to the result of parsing tokenizedFeatures["noreferrer"] as a
boolean featurep927.

9. Let noopener be the result of getting noopener for window openp924 with sourceDocument, tokenizedFeatures, and urlRecord.

10. Remove tokenizedFeatures["noopener"] and tokenizedFeatures["noreferrer"].

11. Let referrerPolicy be the empty string.

12. If noreferrer is true, then set noopener to true and set referrerPolicy to "no-referrer".

13. Let targetNavigable and windowType be the result of applying the rules for choosing a navigablep997 given target,
sourceDocument's node navigablep989, and noopener.

14. If targetNavigable is null, then return null.

15. If windowType is either "new and unrestricted" or "new with no opener", then:

1. Set targetNavigable's active browsing contextp989 's is popupp998 to the result of checking if a popup window is
requestedp927, given tokenizedFeatures.

2. Set up browsing context features for targetNavigable's active browsing contextp989 given tokenizedFeatures.
[CSSOMVIEW]p1477

3. If urlRecord is null, then set urlRecord to a URL record representing about:blankp53.

4. If urlRecord matches about:blankp96, then perform the URL and history update stepsp1028 given targetNavigable's
active documentp989 and urlRecord.

5. Otherwise, navigatep1014 targetNavigable to urlRecord using sourceDocument, with referrerPolicyp1014 set to
referrerPolicy and exceptionsEnabledp1014 set to true.

16. Otherwise:

1. If urlRecord is not null, then navigatep1014 targetNavigable to urlRecord using sourceDocument, with

If there is a user agent that supports control-clicking a link to open it in a new tab, and the user control-clicks on an
element whose onclickp1144 handler uses the window.open()p926 API to open a page in an iframep390 element, the user
agent could override the selection of the target browsing context to instead target a new tab.

Example

This is necessary in case url is something like about:blank?foo. If url is just plain about:blank, this will do
nothing.

Note

925

https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove
https://drafts.csswg.org/cssom-view/#set-up-browsing-context-features
https://url.spec.whatwg.org/#concept-url

referrerPolicyp1014 set to referrerPolicy and exceptionsEnabledp1014 set to true.

2. If noopener is false, then set targetNavigable's active browsing contextp989 's opener browsing contextp998 to
sourceDocument's browsing contextp999.

17. If noopener is true or windowType is "new with no opener", then return null.

18. Return targetNavigable's active WindowProxyp989.

The open(url, target, features) method steps are to run the window open stepsp925 with url, target, and features.

To tokenize the features argument:

1. Let tokenizedFeatures be a new ordered map.

2. Let position point at the first code point of features.

3. While position is not past the end of features:

1. Let name be the empty string.

2. Let value be the empty string.

3. Collect a sequence of code points that are feature separatorsp927 from features given position. This skips past
leading separators before the name.

4. Collect a sequence of code points that are not feature separatorsp927 from features given position. Set name to the
collected characters, converted to ASCII lowercase.

5. Set name to the result of normalizing the feature namep927 name.

6. While position is not past the end of features and the code point at position in features is not U+003D (=):

1. If the code point at position in features is U+002C (,), or if it is not a feature separatorp927, then break.

2. Advance position by 1.

7. If the code point at position in features is a feature separatorp927:

1. While position is not past the end of features and the code point at position in features is a feature
separatorp927:

1. If the code point at position in features is U+002C (,), then break.

2. Advance position by 1.

2. Collect a sequence of code points that are not feature separatorsp927 code points from features given
position. Set value to the collected code points, converted to ASCII lowercase.

8. If name is not the empty string, then set tokenizedFeatures[name] to value.

4. Return tokenizedFeatures.

To check if a window feature is set, given tokenizedFeatures, featureName, and defaultValue:

1. If tokenizedFeatures[featureName] exists, then return the result of parsing tokenizedFeatures[featureName] as a boolean
featurep927.

The method provides a mechanism for navigatingp1014 an existing browsing contextp998 or opening and navigating an auxiliary
browsing contextp999.

Note

This skips to the first U+003D (=) but does not skip past a U+002C (,) or a non-separator.
Note

This skips to the first non-separator but does not skip past a U+002C (,).
Note

926

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#map-exists

2. Return defaultValue.

To check if a popup window is requested, given tokenizedFeatures:

1. If tokenizedFeatures is empty, then return false.

2. If tokenizedFeatures["popup"] exists, then return the result of parsing tokenizedFeatures["popup"] as a boolean featurep927.

3. Let location be the result of checking if a window feature is setp926, given tokenizedFeatures, "location", and false.

4. Let toolbar be the result of checking if a window feature is setp926, given tokenizedFeatures, "toolbar", and false.

5. If location and toolbar are both false, then return true.

6. Let menubar be the result of checking if a window feature is setp926, given tokenizedFeatures, "menubar", and false.

7. If menubar is false, then return true.

8. Let resizable be the result of checking if a window feature is setp926, given tokenizedFeatures, "resizable", and true.

9. If resizable is false, then return true.

10. Let scrollbars be the result of checking if a window feature is setp926, given tokenizedFeatures, "scrollbars", and false.

11. If scrollbars is false, then return true.

12. Let status be the result of checking if a window feature is setp926, given tokenizedFeatures, "status", and false.

13. If status is false, then return true.

14. Return false.

A code point is a feature separator if it is ASCII whitespace, U+003D (=), or U+002C (,).

For legacy reasons, there are some aliases of some feature names. To normalize a feature name name, switch on name:

↪ "screenx"
Return "left".

↪ "screeny"
Return "top".

↪ "innerwidth"
Return "width".

↪ "innerheight"
Return "height".

↪ Anything else
Return name.

To parse a boolean feature given a string value:

1. If value is the empty string, then return true.

2. If value is "yes", then return true.

3. If value is "true", then return true.

4. Let parsed be the result of parsing value as an integerp76.

5. If parsed is an error, then set it to 0.

6. Return false if parsed is 0, and true otherwise.

The name getter steps are:

1. If this's navigablep923 is null, then return the empty string.

2. Return this's navigablep923 's target namep989.
927

https://infra.spec.whatwg.org/#map-is-empty
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#string-is
https://infra.spec.whatwg.org/#string-is
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The namep927 setter steps are:

1. If this's navigablep923 is null, then return.

2. Set this's navigablep923 's active session history entryp989 's document statep1005 's navigable target namep1007 to the given
value.

The close() method steps are:

1. Let thisTraversable be this's navigablep923.

2. If thisTraversable is not a top-level traversablep990, then return.

3. If thisTraversable's is closingp989 is true, then return.

4. Let browsingContext be thisTraversable's active browsing contextp989.

5. Let sourceSnapshotParams be the result of snapshotting source snapshot paramsp1012 given thisTraversable's active
documentp989.

6. If all the following are true:

◦ thisTraversable is script-closablep928;

◦ the incumbent global objectp1081 's browsing contextp923 is familiar withp1002 browsingContext; and

◦ the incumbent global objectp1081 's navigablep923 is allowed by sandboxing to navigatep1025 thisTraversable, given
sourceSnapshotParams,

then:

1. Set thisTraversable's is closingp989 to true.

2. Queue a taskp1125 on the DOM manipulation task sourcep1134 to definitely closep996 thisTraversable.

A navigablep989 is script-closable if its active browsing contextp989 is an auxiliary browsing contextp999 that was created by a script (as
opposed to by an action of the user), or if it is a top-level traversablep990 whose session history entriesp990 's size is 1.

The closed getter steps are to return true if this's browsing contextp923 is null or its is closingp989 is true; otherwise false.

The stop() method steps are:

1. If this's navigablep923 is null, then return.

2. Stop loadingp1067 this's navigablep923.

The length getter steps are to return this's associated Documentp923 's document-tree child navigablesp995 's size.

The name gets resetp1018 when the navigable is navigatedp1014 to another originp898.
Note

7.2.2.2 Indexed access on the Windowp922 object §p92

8

window.lengthp928

Returns the number of document-tree child navigablesp995.

window[index]
Returns the WindowProxyp934 corresponding to the indicated document-tree child navigablesp995.

For web developers (non-normative)

Indexed access to document-tree child navigablesp995 is defined through the [[GetOwnProperty]]p934 internal method of the
Note

928

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size

The document-tree child navigable target name property set of a Windowp922 object window is the return value of running these
steps:

1. Let children be the document-tree child navigablesp995 of window's associated Documentp923.

2. Let firstNamedChildren be an empty ordered set.

3. For each navigable of children:

1. Let name be navigable's target namep989.

2. If name is the empty string, then continue.

3. If firstNamedChildren contains a navigablep989 whose target namep989 is name, then continue.

4. Append navigable to firstNamedChildren.

4. Let names be an empty ordered set.

5. For each navigable of firstNamedChildren:

1. Let name be navigable's target namep989.

2. If navigable's active documentp989 's origin is same originp899 with window's relevant settings objectp1083 's originp1076,
then append name to names.

6. Return names.

The Windowp922 object supports named properties. The supported property names of a Windowp922 object window at any moment consist
of the following, in tree order according to the element that contributed them, ignoring later duplicates:

• window's document-tree child navigable target name property setp929;

• the value of the name content attribute for all embedp399, formp514, imgp346, and objectp402 elements that have a non-empty
name content attribute and are in a document tree with window's associated Documentp923 as their root; and

• the value of the idp154 content attribute for all HTML elementsp45 that have a non-empty idp154 content attribute and are in a
document tree with window's associated Documentp923 as their root.

To determine the value of a named property name in a Windowp922 object window, the user agent must return the value obtained using
the following steps:

WindowProxyp934 object.

7.2.2.3 Named access on the Windowp922 object §p92

9

window[name]
Returns the indicated element or collection of elements.
As a general rule, relying on this will lead to brittle code. Which IDs end up mapping to this API can vary over time, as new
features are added to the web platform, for example. Instead of this, use document.getElementById() or
document.querySelector().

For web developers (non-normative)

The two seperate iterations mean that in the following example, hosted on https://example.org/, assuming
https://elsewhere.example/ sets window.namep927 to "spices", evaluating window.spices after everything has loaded will yield
undefined:

<iframe src=https://elsewhere.example.com/></iframe>
<iframe name=spices></iframe>

Example

929

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#dfn-support-named-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://webidl.spec.whatwg.org/#dfn-determine-the-value-of-a-named-property

1. Let objects be the list of named objectsp930 of window with the name name.

2. If objects contains a navigablep989, then:

1. Let container be the first navigable containerp991 in window's associated Documentp923 's descendants whose content
navigablep991 is in objects.

2. Return container's content navigablep991 's active WindowProxyp989.

3. Otherwise, if objects has only one element, return that element.

4. Otherwise, return an HTMLCollection rooted at window's associated Documentp923, whose filter matches only named
objectsp930 of window with the name name. (By definition, these will all be elements.)

Named objects of Windowp922 object window with the name name, for the purposes of the above algorithm, consist of the following:

• document-tree child navigablesp995 of window's associated Documentp923 whose target namep989 is name;

• embedp399, formp514, imgp346, or objectp402 elements that have a name content attribute whose value is name and are in a
document tree with window's associated Documentp923 as their root; and

• HTML elementsp45 that have an idp154 content attribute whose value is name and are in a document tree with window's
associated Documentp923 as their root.

The top getter steps are:

1. If this's navigablep923 is null, then return null.

2. Return this's navigablep923 's top-level traversablep990 's active WindowProxyp989.

The opener getter steps are:

1. Let current be this's browsing contextp923.

2. If current is null, then return null.

3. If current's opener browsing contextp998 is null, then return null.

There will be at least one such object, since the algorithm would otherwise not have been invoked by Web IDL.
Note

Since the Windowp922 interface has the [Global] extended attribute, its named properties follow the rules for named properties
objects rather than legacy platform objects.

Note

7.2.2.4 Accessing related windows §p93

0

window.topp930

Returns the WindowProxyp934 for the top-level traversablep990.

window.openerp930 [= value]
Returns the WindowProxyp934 for the opener browsing contextp998.
Returns null if there isn't one or if it has been set to null.
Can be set to null.

window.parentp931

Returns the WindowProxyp934 for the parent navigablep989.

window.frameElementp931

Returns the navigable containerp991 element.
Returns null if there isn't one, and in cross-origin situations.

For web developers (non-normative)

930

https://webidl.spec.whatwg.org/#named-properties-object-getownproperty
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://webidl.spec.whatwg.org/#Global
https://webidl.spec.whatwg.org/#dfn-named-properties-object
https://webidl.spec.whatwg.org/#dfn-named-properties-object
https://webidl.spec.whatwg.org/#dfn-legacy-platform-object
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

4. Return current's opener browsing contextp998 's WindowProxyp934 object.

The openerp930 setter steps are:

1. If the given value is null and this's browsing contextp923 is non-null, then set this's browsing contextp923 's opener browsing
contextp998 to null.

2. If the given value is non-null, then perform ? DefinePropertyOrThrow(this, "opener", { [[Value]]: the given value, [[Writable]]:
true, [[Enumerable]]: true, [[Configurable]]: true }).

The parent getter steps are:

1. Let navigable be this's navigablep923.

2. If navigable is null, then return null.

3. If navigable's parentp989 is not null, then set navigable to navigable's parentp989.

4. Return navigable's active WindowProxyp989.

The frameElement getter steps are:

1. Let current be this's node navigablep989.

2. If current is null, then return null.

3. Let container be current's containerp991.

4. If container is null, then return null.

5. If container's node document's origin is not same origin-domainp899 with the current settings objectp1083 's originp1076, then
return null.

6. Return container.

Setting window.openerp930 to null clears the opener browsing contextp998 reference. In practice, this prevents future scripts from
accessing their opener browsing contextp998 's Windowp922 object.

By default, scripts can access their opener browsing contextp998 's Windowp922 object through the window.openerp930 getter. E.g., a
script can set window.opener.location, causing the opener browsing contextp998 to navigate.

Note

An example of when these properties can return null is as follows:

<!DOCTYPE html>
<iframe></iframe>

<script>
"use strict";
const element = document.querySelector("iframe");
const iframeWindow = element.contentWindow;
element.remove();

console.assert(iframeWindow.top === null);
console.assert(iframeWindow.parent === null);
console.assert(iframeWindow.frameElement === null);
</script>

Here the browsing contextp998 corresponding to iframeWindow was nulled outp1066 when element was removed from the document.

Example

931

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://tc39.es/ecma262/#sec-definepropertyorthrow
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin

For historical reasons, the Windowp922 interface had some properties that represented the visibility of certain web browser interface
elements.

For privacy and interoperability reasons, those properties now return values that represent whether the Windowp922 's browsing
contextp923 's is popupp998 property is true or false.

Each interface element is represented by a BarPropp932 object:

[Exposed=Window]
interface BarProp {

readonly attribute boolean visible;
};

The visible getter steps are:

1. Let browsingContext be this's relevant global objectp1083 's browsing contextp923.

2. If browsingContext is null, then return true.

3. Return the negation of browsingContext's top-level browsing contextp1001 's is popupp998.

The following BarPropp932 objects must exist for each Windowp922 object:

The location bar BarProp object
Historically represented the user interface element that contains a control that displays the browser's location bar.

The menu bar BarProp object
Historically represented the user interface element that contains a list of commands in menu form, or some similar interface
concept.

The personal bar BarProp object
Historically represented the user interface element that contains links to the user's favorite pages, or some similar interface
concept.

The scrollbar BarProp object
Historically represented the user interface element that contains a scrolling mechanism, or some similar interface concept.

The status bar BarProp object
Historically represented a user interface element found immediately below or after the document, as appropriate for the user's
media, which typically provides information about ongoing network activity or information about elements that the user's pointing
device is currently indicating.

The toolbar BarProp object
Historically represented the user interface element found immediately above or before the document, as appropriate for the user's
media, which typically provides session history traversalp1040 controls (back and forward buttons, reload buttons, etc.).

The locationbar attribute must return the location bar BarProp objectp932.

The menubar attribute must return the menu bar BarProp objectp932.

The personalbar attribute must return the personal bar BarProp objectp932.

The scrollbars attribute must return the scrollbar BarProp objectp932.

7.2.2.5 Historical browser interface element APIs §p93

2

window.locationbarp932.visiblep932

window.menubarp932.visiblep932

window.personalbarp932.visiblep932

window.scrollbarsp932.visiblep932

window.statusbarp933.visiblep932

window.toolbarp933.visiblep932

Returns true if the Windowp922 is not a popup; otherwise, returns false.

For web developers (non-normative)

IDL

✔ MDN

✔ MDN

932

https://webidl.spec.whatwg.org/#this

The statusbar attribute must return the status bar BarProp objectp932.

The toolbar attribute must return the toolbar BarProp objectp932.

For historical reasons, the status attribute on the Windowp922 object must, on getting, return the last string it was set to, and on
setting, must set itself to the new value. When the Windowp922 object is created, the attribute must be set to the empty string. It does
not do anything else.

To set up a window environment settings object, given a URL creationURL, a JavaScript execution context execution context, null
or an environmentp1075 reservedEnvironment, a URL topLevelCreationURL, and an originp898 topLevelOrigin, run these steps:

1. Let realm be the value of execution context's Realm component.

2. Let window be realm's global objectp1077.

3. Let settings object be a new environment settings objectp1076 whose algorithms are defined as follows:

The realm execution contextp1076

Return execution context.

The module mapp1076

Return the module mapp131 of window's associated Documentp923.

The API base URLp1076

Return the current base URLp96 of window's associated Documentp923.

The originp1076

Return the origin of window's associated Documentp923.

The policy containerp1076

Return the policy containerp131 of window's associated Documentp923.

The cross-origin isolated capabilityp1076

Return true if both of the following hold, and false otherwise:

◦ realm's agent cluster's cross-origin-isolation modep1073 is "concretep1002", and

◦ window's associated Documentp923 is allowed to usep398 the "cross-origin-isolatedp75" feature.

The time originp1076

Return window's associated Documentp923 's load timing infop134 's navigation start timep134.

4. If reservedEnvironment is non-null, then:

1. Set settings object's idp1075 to reservedEnvironment's idp1075, target browsing contextp1076 to reservedEnvironment's
target browsing contextp1076, and active service workerp1076 to reservedEnvironment's active service workerp1076.

2. Set reservedEnvironment's idp1075 to the empty string.

5. Otherwise, set settings object's idp1075 to a new unique opaque string, settings object's target browsing contextp1076 to null,
and settings object's active service workerp1076 to null.

6. Set settings object's creation URLp1075 to creationURL, settings object's top-level creation URLp1075 to topLevelCreationURL,
and settings object's top-level originp1076 to topLevelOrigin.

7.2.2.6 Script settings for Windowp922 objects §p93

3

The identity of the reserved environment is considered to be fully transferred to the created environment
settings objectp1076. The reserved environment is not searchable by the environmentp1075’s idp1075 from this
point on.

Note

933

https://url.spec.whatwg.org/#concept-url
https://tc39.es/ecma262/#sec-execution-contexts
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-origin
https://tc39.es/ecma262/#sec-agent-clusters

7. Set realm's [[HostDefined]] field to settings object.

A WindowProxy is an exotic object that wraps a Windowp922 ordinary object, indirecting most operations through to the wrapped object.
Each browsing contextp998 has an associated WindowProxyp934 object. When the browsing contextp998 is navigatedp1014, the Windowp922

object wrapped by the browsing contextp998 's associated WindowProxyp934 object is changed.

The WindowProxyp934 exotic object must use the ordinary internal methods except where it is explicitly specified otherwise below.

There is no WindowProxyp934 interface object.

Every WindowProxyp934 object has a [[Window]] internal slot representing the wrapped Windowp922 object.

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. If IsPlatformObjectSameOriginp920(W) is true, then return ! OrdinaryGetPrototypeOf(W).

3. Return null.

1. Return ! SetImmutablePrototype(this, V).

1. Return true.

1. Return false.

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. If P is an array index property name, then:

1. Let index be ! ToUint32(P).

2. Let children be the document-tree child navigablesp995 of W's associated Documentp923.

3. Let value be undefined.

4. If index is less than children's size, then:

Although WindowProxyp934 is named as a "proxy", it does not do polymorphic dispatch on its target's internal methods as a real
proxy would, due to a desire to reuse machinery between WindowProxyp934 and Locationp937 objects. As long as the Windowp922

object remains an ordinary object this is unobservable and can be implemented either way.

Note

7.2.3.1 [[GetPrototypeOf]] () §p93

4

7.2.3.2 [[SetPrototypeOf]] (V) §p93

4

7.2.3.3 [[IsExtensible]] () §p93

4

7.2.3.4 [[PreventExtensions]] () §p93

4

7.2.3.5 [[GetOwnProperty]] (P) §p93

4

7.2.3 The WindowProxyp934 exotic object §p93

4

934

https://webidl.spec.whatwg.org/#dfn-interface-object
https://tc39.es/ecma262/#sec-ordinarygetprototypeof
https://tc39.es/ecma262/#sec-set-immutable-prototype
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-touint32
https://infra.spec.whatwg.org/#list-size

1. Sort children in ascending order, with navigableA being less than navigableB if navigableA's containerp991

was inserted into W's associated Documentp923 earlier than navigableB's containerp991 was.

2. Set value to children[index]'s active WindowProxyp989.

5. If value is undefined, then:

1. If IsPlatformObjectSameOriginp920(W) is true, then return undefined.

2. Throw a "SecurityError" DOMException.

6. Return PropertyDescriptor{ [[Value]]: value, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: true }.

3. If IsPlatformObjectSameOriginp920(W) is true, then return ! OrdinaryGetOwnProperty(W, P).

4. Let property be CrossOriginGetOwnPropertyHelperp920(W, P).

5. If property is not undefined, then return property.

6. If property is undefined and P is in W's document-tree child navigable target name property setp929, then:

1. Let value be the active WindowProxyp989 of the named objectp930 of W with the name P.

2. Return PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: false, [[Writable]]: false, [[Configurable]]: true }.

7. Return ? CrossOriginPropertyFallbackp920(P).

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. If IsPlatformObjectSameOriginp920(W) is true, then:

1. If P is an array index property name, return false.

2. Return ? OrdinaryDefineOwnProperty(W, P, Desc).

3. Throw a "SecurityError" DOMException.

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. Check if an access between two browsing contexts should be reportedp908, given the current global objectp1083 's browsing
contextp923, W's browsing contextp923, P, and the current settings objectp1083.

3. If IsPlatformObjectSameOriginp920(W) is true, then return ? OrdinaryGet(this, P, Receiver).

This is a willful violationp28 of the JavaScript specification's invariants of the essential internal methods to maintain
compatibility with existing web content. See tc39/ecma262 issue #672 for more information. [JAVASCRIPT]p1479

Note

The reason the property descriptors are non-enumerable, despite this mismatching the same-origin behavior, is
for compatibility with existing web content. See issue #3183 for details.

Note

7.2.3.6 [[DefineOwnProperty]] (P, Desc) §p93

5

This is a willful violationp28 of the JavaScript specification's invariants of the essential internal methods to
maintain compatibility with existing web content. See tc39/ecma262 issue #672 for more information.
[JAVASCRIPT]p1479

Note

7.2.3.7 [[Get]] (P, Receiver) §p93

5

935

https://infra.spec.whatwg.org/#list-sort-in-ascending-order
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://tc39.es/ecma262/#sec-ordinarygetownproperty
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://github.com/tc39/ecma262/issues/672
https://tc39.es/ecma262/#sec-property-descriptor-specification-type
https://github.com/whatwg/html/issues/3183
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://tc39.es/ecma262/#sec-invariants-of-the-essential-internal-methods
https://github.com/tc39/ecma262/issues/672
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-ordinaryget

4. Return ? CrossOriginGetp921(this, P, Receiver).

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. Check if an access between two browsing contexts should be reportedp908, given the current global objectp1083 's browsing
contextp998, W's browsing contextp998, P, and the current settings objectp1083.

3. If IsPlatformObjectSameOriginp920(W) is true, then:

1. If P is an array index property name, then return false.

2. Return ? OrdinarySet(W, P, V, Receiver).

4. Return ? CrossOriginSetp922(this, P, V, Receiver).

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. If IsPlatformObjectSameOriginp920(W) is true, then:

1. If P is an array index property name, then:

1. Let desc be ! this.[[GetOwnProperty]](P).

2. If desc is undefined, then return true.

3. Return false.

2. Return ? OrdinaryDelete(W, P).

3. Throw a "SecurityError" DOMException.

1. Let W be the value of the [[Window]]p934 internal slot of this.

2. Let maxProperties be W's associated Documentp923 's document-tree child navigablesp995 's size.

3. Let keys be the range 0 to maxProperties, exclusive.

4. If IsPlatformObjectSameOriginp920(W) is true, then return the concatenation of keys and OrdinaryOwnPropertyKeys(W).

5. Return the concatenation of keys and ! CrossOriginOwnPropertyKeysp922(W).

Each Windowp922 object is associated with a unique instance of a Locationp937 object, allocated when the Windowp922 object is created.

this is passed rather than W as OrdinaryGet and CrossOriginGetp921 will invoke the [[GetOwnProperty]]p934 internal method.
Note

7.2.3.8 [[Set]] (P, V, Receiver) §p93

6

this is passed rather than W as CrossOriginSetp922 will invoke the [[GetOwnProperty]]p934 internal method.
Note

7.2.3.9 [[Delete]] (P) §p93

6

7.2.3.10 [[OwnPropertyKeys]] () §p93

6

7.2.4 The Locationp937 interface §p93

6

✔ MDN

936

https://tc39.es/ecma262/#sec-ordinaryget
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-ordinaryset
https://webidl.spec.whatwg.org/#dfn-array-index-property-name
https://tc39.es/ecma262/#sec-ordinarydelete
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#the-exclusive-range
https://tc39.es/ecma262/#sec-ordinaryownpropertykeys

To create a Locationp937 object, run these steps:

1. Let location be a new Locationp937 platform object.

2. Let valueOf be location's relevant realmp1083.[[Intrinsics]].[[%Object.prototype.valueOf%]].

3. Perform ! location.[[DefineOwnProperty]]("valueOf", { [[Value]]: valueOf, [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }).

4. Perform ! location.[[DefineOwnProperty]](%Symbol.toPrimitive%p57, { [[Value]]: undefined, [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }).

5. Set the value of the [[DefaultProperties]]p943 internal slot of location to location.[[OwnPropertyKeys]]().

6. Return location.

The Documentp130 object's location getter steps are to return this's relevant global objectp1083 's Locationp937 object, if this is fully
activep1003, and null otherwise.

The Windowp922 object's location getter steps are to return this's Locationp937 object.

Locationp937 objects provide a representation of the URL of their associated Documentp130, as well as methods for navigatingp1014 and
reloadingp1027 the associated navigablep989.

[Exposed=Window]
interface Location { // but see also additional creation steps and overridden internal methods

[LegacyUnforgeable] stringifier attribute USVString href;
[LegacyUnforgeable] readonly attribute USVString origin;
[LegacyUnforgeable] attribute USVString protocol;
[LegacyUnforgeable] attribute USVString host;
[LegacyUnforgeable] attribute USVString hostname;
[LegacyUnforgeable] attribute USVString port;
[LegacyUnforgeable] attribute USVString pathname;
[LegacyUnforgeable] attribute USVString search;
[LegacyUnforgeable] attribute USVString hash;

[LegacyUnforgeable] undefined assign(USVString url);
[LegacyUnforgeable] undefined replace(USVString url);
[LegacyUnforgeable] undefined reload();

[LegacyUnforgeable, SameObject] readonly attribute DOMStringList ancestorOrigins;
};

The Locationp937 exotic object is defined through a mishmash of IDL, invocation of JavaScript internal methods post-
creation, and overridden JavaScript internal methods. Coupled with its scary security policy, please take extra care
while implementing this excrescence.

⚠Warning!

The addition of valueOf and %Symbol.toPrimitive%p57 own data properties, as well as the fact that all of Locationp937 's IDL
attributes are marked [LegacyUnforgeable], is required by legacy code that consulted the Locationp937 interface, or stringified it,
to determine the document URL, and then used it in a security-sensitive way. In particular, the valueOf, %Symbol.toPrimitive%p57,
and [LegacyUnforgeable] stringifier mitigations ensure that code such as foo[location] = bar or location + "" cannot be
misdirected.

Note

document.locationp937 [= value]
window.locationp937 [= value]

Returns a Locationp937 object with the current page's location.
Can be set, to navigate to another page.

For web developers (non-normative)

IDL

937

https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-object.prototype.valueof
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable
https://webidl.spec.whatwg.org/#LegacyUnforgeable

A Locationp937 object has an associated relevant Document, which is its relevant global objectp1083 's browsing contextp923 's active
documentp998, if this Locationp937 object's relevant global objectp1083 's browsing contextp923 is non-null, and null otherwise.

A Locationp937 object has an associated url, which is this Locationp937 object's relevant Documentp938 's URL, if this Locationp937

object's relevant Documentp938 is non-null, and about:blankp53 otherwise.

A Locationp937 object has an associated ancestor origins list. When a Locationp937 object is created, its ancestor origins listp938 must
be set to a DOMStringListp116 object whose associated list is the list of strings that the following steps would produce:

1. Let output be a new list of strings.

2. Let current be the Locationp937 object's relevant Documentp938.

3. While current's container documentp992 is non-null:

location.toString()
location.hrefp939

Returns the Locationp937 object's URL.
Can be set, to navigate to the given URL.

location.originp939

Returns the Locationp937 object's URL's origin.

location.protocolp939

Returns the Locationp937 object's URL's scheme.
Can be set, to navigate to the same URL with a changed scheme.

location.hostp940

Returns the Locationp937 object's URL's host and port (if different from the default port for the scheme).
Can be set, to navigate to the same URL with a changed host and port.

location.hostnamep940

Returns the Locationp937 object's URL's host.
Can be set, to navigate to the same URL with a changed host.

location.portp940

Returns the Locationp937 object's URL's port.
Can be set, to navigate to the same URL with a changed port.

location.pathnamep941

Returns the Locationp937 object's URL's path.
Can be set, to navigate to the same URL with a changed path.

location.searchp941

Returns the Locationp937 object's URL's query (includes leading "?" if non-empty).
Can be set, to navigate to the same URL with a changed query (ignores leading "?").

location.hashp942

Returns the Locationp937 object's URL's fragment (includes leading "#" if non-empty).
Can be set, to navigate to the same URL with a changed fragment (ignores leading "#").

location.assignp942(url)
Navigates to the given URL.

location.replacep942(url)
Removes the current page from the session history and navigates to the given URL.

location.reloadp942()
Reloads the current page.

location.ancestorOriginsp943

Returns a DOMStringListp116 object listing the origins of the ancestor navigablesp994 ' active documentsp989.

For web developers (non-normative)

938

https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list

1. Set current to current's container documentp992.

2. Append the serializationp898 of current's origin to output.

4. Return output.

To Location-object navigate a Locationp937 object location to a URL url, optionally given a NavigationHistoryBehaviorp952

historyHandling (default "autop1014"):

1. Let navigable be location's relevant global objectp1083 's navigablep923.

2. Let sourceDocument be the incumbent global objectp1081 's associated Documentp923.

3. If location's relevant Documentp938 is not yet completely loadedp1063, and the incumbent global objectp1081 does not have
transient activationp830, then set historyHandling to "replacep1014".

4. Navigatep1014 navigable to url using sourceDocument, with exceptionsEnabledp1014 set to true and historyHandlingp1014 set to
historyHandling.

The href getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. Return this's urlp938, serialized.

The hrefp939 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. Let url be the result of encoding-parsing a URLp97 given the given value, relative to the entry settings objectp1080.

3. If url is failure, then throw a "SyntaxError" DOMException.

4. Location-object navigatep939 this to url.

The origin getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. Return the serializationp898 of this's urlp938 's origin.

The protocol getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. Return this's urlp938 's scheme, followed by ":".

The protocolp939 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. Let possibleFailure be the result of basic URL parsing the given value, followed by ":", with copyURL as url and scheme start
state as state override.

The hrefp939 setter intentionally has no security check.
Note

Because the URL parser ignores multiple consecutive colons, providing a value of "https:" (or even "https::::") is the
Note

939

https://infra.spec.whatwg.org/#list-append
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-origin
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-scheme
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#scheme-start-state
https://url.spec.whatwg.org/#scheme-start-state
https://url.spec.whatwg.org/#basic-url-parser-state-override

5. If possibleFailure is failure, then throw a "SyntaxError" DOMException.

6. If copyURL's scheme is not an HTTP(S) scheme, then terminate these steps.

7. Location-object navigatep939 this to copyURL.

The host getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. Let url be this's urlp938.

3. If url's host is null, return the empty string.

4. If url's port is null, return url's host, serialized.

5. Return url's host, serialized, followed by ":" and url's port, serialized.

The hostp940 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. If copyURL has an opaque path, then return.

5. Basic URL parse the given value, with copyURL as url and host state as state override.

6. Location-object navigatep939 this to copyURL.

The hostname getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. If this's urlp938 's host is null, return the empty string.

3. Return this's urlp938 's host, serialized.

The hostnamep940 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. If copyURL has an opaque path, then return.

5. Basic URL parse the given value, with copyURL as url and hostname state as state override.

6. Location-object navigatep939 this to copyURL.

The port getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. If this's urlp938 's port is null, return the empty string.

3. Return this's urlp938 's port, serialized.

same as providing a value of "https".

940

https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#host-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#hostname-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-port
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer

The portp940 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. If copyURL cannot have a username/password/port, then return.

5. If the given value is the empty string, then set copyURL's port to null.

6. Otherwise, basic URL parse the given value, with copyURL as url and port state as state override.

7. Location-object navigatep939 this to copyURL.

The pathname getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. Return the result of URL path serializing this Locationp937 object's urlp938.

The pathnamep941 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. If copyURL has an opaque path, then return.

5. Set copyURL's path to the empty list.

6. Basic URL parse the given value, with copyURL as url and path start state as state override.

7. Location-object navigatep939 this to copyURL.

The search getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. If this's urlp938 's query is either null or the empty string, return the empty string.

3. Return "?", followed by this's urlp938 's query.

The searchp941 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. If the given value is the empty string, set copyURL's query to null.

5. Otherwise, run these substeps:

1. Let input be the given value with a single leading "?" removed, if any.

2. Set copyURL's query to the empty string.

3. Basic URL parse input, with null, the relevant Documentp938 's document's character encoding, copyURL as url, and
query state as state override.

6. Location-object navigatep939 this to copyURL.
941

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#cannot-have-a-username-password-port
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#port-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#url-path-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#url-opaque-path
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#path-start-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-query
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-query
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-basic-url-parser
https://dom.spec.whatwg.org/#concept-document-encoding
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#query-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://webidl.spec.whatwg.org/#this

The hash getter steps are:

1. If this's relevant Documentp938 is non-null and its origin is not same origin-domainp899 with the entry settings objectp1080 's
originp1076, then throw a "SecurityError" DOMException.

2. If this's urlp938 's fragment is either null or the empty string, return the empty string.

3. Return "#", followed by this's urlp938 's fragment.

The hashp942 setter steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let copyURL be a copy of this's urlp938.

4. Let input be the given value with a single leading "#" removed, if any.

5. Set copyURL's fragment to the empty string.

6. Basic URL parse input, with copyURL as url and fragment state as state override.

7. If copyURL's fragment is this's urlp938 's fragment, then return.

8. Location-object navigatep939 this to copyURL.

The assign(url) method steps are:

1. If this's relevant Documentp938 is null, then return.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Let urlRecord be the result of encoding-parsing a URLp97 given url, relative to the entry settings objectp1080.

4. If urlRecord is failure, then throw a "SyntaxError" DOMException.

5. Location-object navigatep939 this to urlRecord.

The replace(url) method steps are:

1. If this's relevant Documentp938 is null, then return.

2. Let urlRecord be the result of encoding-parsing a URLp97 given url, relative to the entry settings objectp1080.

3. If urlRecord is failure, then throw a "SyntaxError" DOMException.

4. Location-object navigatep939 this to urlRecord given "replacep1014".

The reload() method steps are:

This bailout is necessary for compatibility with deployed content, which redundantly sets location.hash on scroll. It
does not apply to other mechanisms of fragment navigation, such as the location.hrefp939 setter or
location.assign()p942.

Note

Unlike the equivalent API for the ap257 and areap471 elements, the hashp942 setter does not special case the empty string, to remain
compatible with deployed scripts.

Note

The replace()p942 method intentionally has no security check.
Note

942

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-basic-url-parser
https://url.spec.whatwg.org/#basic-url-parser-url
https://url.spec.whatwg.org/#fragment-state
https://url.spec.whatwg.org/#basic-url-parser-state-override
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-fragment
https://bugzilla.mozilla.org/show_bug.cgi?id=1733797#c2
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

1. Let document be this's relevant Documentp938.

2. If document is null, then return.

3. If document's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then throw a
"SecurityError" DOMException.

4. Reloadp1027 document's node navigablep989.

The ancestorOrigins getter steps are:

1. If this's relevant Documentp938 is null, then return an empty list.

2. If this's relevant Documentp938 's origin is not same origin-domainp899 with the entry settings objectp1080 's originp1076, then
throw a "SecurityError" DOMException.

3. Otherwise, return this's ancestor origins listp938.

As explained earlier, the Locationp937 exotic object requires additional logic beyond IDL for security purposes. The Locationp937 object
must use the ordinary internal methods except where it is explicitly specified otherwise below.

Also, every Locationp937 object has a [[DefaultProperties]] internal slot representing its own properties at time of its creation.

1. If IsPlatformObjectSameOriginp920(this) is true, then return ! OrdinaryGetPrototypeOf(this).

2. Return null.

1. Return ! SetImmutablePrototype(this, V).

1. Return true.

1. Return false.

1. If IsPlatformObjectSameOriginp920(this) is true, then:

1. Let desc be OrdinaryGetOwnProperty(this, P).

2. If the value of the [[DefaultProperties]]p943 internal slot of this contains P, then set desc.[[Configurable]] to true.

3. Return desc.

The details of how the ancestorOriginsp943 attribute works are still controversial and might change. See issue #1918
for more information.

⚠Warning!

7.2.4.1 [[GetPrototypeOf]] () §p94

3

7.2.4.2 [[SetPrototypeOf]] (V) §p94

3

7.2.4.3 [[IsExtensible]] () §p94

3

7.2.4.4 [[PreventExtensions]] () §p94

3

7.2.4.5 [[GetOwnProperty]] (P) §p94

3

943

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://github.com/whatwg/html/issues/1918
https://tc39.es/ecma262/#sec-ordinarygetprototypeof
https://tc39.es/ecma262/#sec-set-immutable-prototype
https://tc39.es/ecma262/#sec-ordinarygetownproperty

2. Let property be CrossOriginGetOwnPropertyHelperp920(this, P).

3. If property is not undefined, then return property.

4. Return ? CrossOriginPropertyFallbackp920(P).

1. If IsPlatformObjectSameOriginp920(this) is true, then:

1. If the value of the [[DefaultProperties]]p943 internal slot of this contains P, then return false.

2. Return ? OrdinaryDefineOwnProperty(this, P, Desc).

2. Throw a "SecurityError" DOMException.

1. If IsPlatformObjectSameOriginp920(this) is true, then return ? OrdinaryGet(this, P, Receiver).

2. Return ? CrossOriginGetp921(this, P, Receiver).

1. If IsPlatformObjectSameOriginp920(this) is true, then return ? OrdinarySet(this, P, V, Receiver).

2. Return ? CrossOriginSetp922(this, P, V, Receiver).

1. If IsPlatformObjectSameOriginp920(this) is true, then return ? OrdinaryDelete(this, P).

2. Throw a "SecurityError" DOMException.

1. If IsPlatformObjectSameOriginp920(this) is true, then return OrdinaryOwnPropertyKeys(this).

2. Return CrossOriginOwnPropertyKeysp922(this).

enum ScrollRestoration { "auto", "manual" };

[Exposed=Window]
interface History {

readonly attribute unsigned long length;
attribute ScrollRestoration scrollRestoration;
readonly attribute any state;
undefined go(optional long delta = 0);
undefined back();
undefined forward();

7.2.4.6 [[DefineOwnProperty]] (P, Desc) §p94

4

7.2.4.7 [[Get]] (P, Receiver) §p94

4

7.2.4.8 [[Set]] (P, V, Receiver) §p94

4

7.2.4.9 [[Delete]] (P) §p94

4

7.2.4.10 [[OwnPropertyKeys]] () §p94

4

IDL

7.2.5 The Historyp944 interface §p94

4

✔ MDN

944

https://tc39.es/ecma262/#sec-ordinarydefineownproperty
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-ordinaryget
https://tc39.es/ecma262/#sec-ordinaryset
https://tc39.es/ecma262/#sec-ordinarydelete
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-ordinaryownpropertykeys

undefined pushState(any data, DOMString unused, optional USVString? url = null);
undefined replaceState(any data, DOMString unused, optional USVString? url = null);

};

A Documentp130 has a history object, a Historyp944 object.

The history getter steps are to return this's associated Documentp923 's history objectp945.

historyp945.lengthp946

Returns the number of overall session history entriesp990 for the current traversable navigablep990.

historyp945.scrollRestorationp946

Returns the scroll restoration modep1005 of the active session history entryp989.

historyp945.scrollRestorationp946 = value
Set the scroll restoration modep1005 of the active session history entryp989 to value.

historyp945.statep946

Returns the classic history API statep1005 of the active session history entryp989, deserialized into a JavaScript value.

historyp945.gop946()
Reloads the current page.

historyp945.gop946(delta)
Goes back or forward the specified number of steps in the overall session history entriesp990 list for the current traversable
navigablep990.
A zero delta will reload the current page.
If the delta is out of range, does nothing.

historyp945.backp946()
Goes back one step in the overall session history entriesp990 list for the current traversable navigablep990.
If there is no previous page, does nothing.

historyp945.forwardp946()
Goes forward one step in the overall session history entriesp990 list for the current traversable navigablep990.
If there is no next page, does nothing.

historyp945.pushStatep946(data, "")
Adds a new entry into session history with its classic history API statep1005 set to a serialization of data. The active history
entryp989 's URLp1005 will be copied over and used for the new entry's URL.
(The second parameter exists for historical reasons, and cannot be omitted; passing the empty string is traditional.)

historyp945.pushStatep946(data, "", url)
Adds a new entry into session history with its classic history API statep1005 set to a serialization of data, and with its URLp1005 set
to url.
If the current Documentp130 cannot have its URL rewrittenp947 to url, a "SecurityError" DOMException will be thrown.
(The second parameter exists for historical reasons, and cannot be omitted; passing the empty string is traditional.)

historyp945.replaceStatep946(data, "")
Updates the classic history API statep1005 of the active session history entryp989 to a structured clone of data.
(The second parameter exists for historical reasons, and cannot be omitted; passing the empty string is traditional.)

historyp945.replaceStatep946(data, "", url)
Updates the classic history API statep1005 of the active session history entryp989 to a structured clone of data, and its URLp1005 to
url.
If the current Documentp130 cannot have its URL rewrittenp947 to url, a "SecurityError" DOMException will be thrown.
(The second parameter exists for historical reasons, and cannot be omitted; passing the empty string is traditional.)

For web developers (non-normative)

945

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

Each Historyp944 object has state, initially null.

Each Historyp944 object has a length, a non-negative integer, initially 0.

Each Historyp944 object has an index, a non-negative integer, initially 0.

The length getter steps are:

1. If this's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then throw a "SecurityError"
DOMException.

2. Return this's lengthp946.

The scrollRestoration getter steps are:

1. If this's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then throw a "SecurityError"
DOMException.

2. Return this's node navigablep989 's active session history entryp989 's scroll restoration modep1005.

The scrollRestorationp946 setter steps are:

1. If this's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then throw a "SecurityError"
DOMException.

2. Set this's node navigablep989 's active session history entryp989 's scroll restoration modep1005 to the given value.

The state getter steps are:

1. If this's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then throw a "SecurityError"
DOMException.

2. Return this's statep946.

The go(delta) method steps are to delta traversep946 this given delta.

The back() method steps are to delta traversep946 this given −1.

The forward() method steps are to delta traversep946 this given +1.

To delta traverse a Historyp944 object history given an integer delta:

1. Let document be history's relevant global objectp1083 's associated Documentp923.

2. If document is not fully activep1003, then throw a "SecurityError" DOMException.

3. If delta is 0, then reloadp1027 document's node navigablep989, and return.

4. Traverse the history by a deltap1028 given document's node navigablep989 's traversable navigablep990, delta, and with
sourceDocumentp1028 set to document.

The pushState(data, unused, url) method steps are to run the shared history push/replace state stepsp946 given this, data, url, and
"pushp1014".

The replaceState(data, unused, url) method steps are to run the shared history push/replace state stepsp946 given this, data, url,
and "replacep1014".

The shared history push/replace state steps, given a Historyp944 history, a value data, a scalar value string-or-null url, and a
history handling behaviorp1014 historyHandling, are:

1. Let document be history's associated Documentp130.

Although the indexp946 is not directly exposed, it can be inferred from changes to the lengthp946 during synchronous navigations. In
fact, that is what it's used for.

Note

946

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#scalar-value-string

2. If document is not fully activep1003, then throw a "SecurityError" DOMException.

3. Optionally, return. (For example, the user agent might disallow calls to these methods that are invoked on a timer, or from
event listeners that are not triggered in response to a clear user action, or that are invoked in rapid succession.)

4. Let serializedData be StructuredSerializeForStoragep122(data). Rethrow any exceptions.

5. Let newURL be document's URL.

6. If url is not null or the empty string, then:

1. Set newURL to the result of encoding-parsing a URLp97 given url, relative to the relevant settings objectp1083 of
history.

2. If newURL is failure, then throw a "SecurityError" DOMException.

3. If document cannot have its URL rewrittenp947 to newURL, then throw a "SecurityError" DOMException.

7. Let navigation be history's relevant global objectp1083 's navigation APIp952.

8. Let continue be the result of firing a push/replace/reload navigate eventp974 at navigation with navigationTypep974 set to
historyHandling, isSameDocumentp974 set to true, destinationURLp974 set to newURL, and classicHistoryAPIStatep975 set to
serializedData.

9. If continue is false, then return.

10. Run the URL and history update stepsp1028 given document and newURL, with serializedDatap1028 set to serializedData and
historyHandlingp1028 set to historyHandling.

User agents may limit the number of state objects added to the session history per page. If a page hits the implementation-defined
limit, user agents must remove the entry immediately after the first entry for that Documentp130 object in the session history after
having added the new entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer for navigation.)

A Documentp130 document can have its URL rewritten to a URL targetURL if the following algorithm returns true:

1. Let documentURL be document's URL.

2. If targetURL and documentURL differ in their scheme, username, password, host, or port components, then return false.

3. If targetURL's scheme is an HTTP(S) scheme, then return true.

4. If targetURL's scheme is "file", then:

1. If targetURL and documentURL differ in their path component, then return false.

2. Return true.

5. If targetURL and documentURL differ in their path component or query components, then return false.

6. Return true.

The special case for the empty string here is historical, and leads to different resulting URLs when comparing code such
as location.href = "" (which performs URL parsing on the empty string) versus history.pushState(null, "", "")
(which bypasses it).

Note

Differences in path, query, and fragment are allowed for http: and https: URLs.
Note

Differences in query and fragment are allowed for file: URLs.
Note

Only differences in fragment are allowed for other types of URLs.
Note

Example

947

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-username
https://url.spec.whatwg.org/#concept-url-password
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://httpwg.org/specs/rfc7230.html#http.uri
https://httpwg.org/specs/rfc7230.html#https.uri
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-path
https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment

document's URL targetURL can have its URL
rewrittenp947

https://example.com/home https://example.com/home#about ✅

https://example.com/home https://example.com/home?page=shop ✅

https://example.com/home https://example.com/shop ✅

https://example.com/home https://user:pass@example.com/home ❌

https://example.com/home http://example.com/home ❌

file:///path/to/x file:///path/to/x#hash ✅

file:///path/to/x file:///path/to/x?search ✅

file:///path/to/x file:///path/to/y ❌

about:blank about:blank#hash ✅

about:blank about:blank?search ❌

about:blank about:srcdoc ❌

data:text/html,foo data:text/html,foo#hash ✅

data:text/html,foo data:text/html,foo?search ❌

data:text/html,foo data:text/html,bar ❌

data:text/html,foo data:bar ❌

blob:https://example.com/
77becafe-657b-4fdc-8bd3-e83aaa5e8f43

blob:https://example.com/
77becafe-657b-4fdc-8bd3-e83aaa5e8f43#hash

✅

blob:https://example.com/
77becafe-657b-4fdc-8bd3-e83aaa5e8f43

blob:https://example.com/
77becafe-657b-4fdc-8bd3-e83aaa5e8f43?search

❌

blob:https://example.com/
77becafe-657b-4fdc-8bd3-e83aaa5e8f43

blob:https://example.com/anything ❌

blob:https://example.com/
77becafe-657b-4fdc-8bd3-e83aaa5e8f43

blob:path ❌

Note how only the URL of the Documentp130 matters, and not its origin. They can mismatch in cases like about:blankp53

Documentp130s with inherited origins, in sandboxed iframep390s, or when the document.domainp901 setter has been used.

Consider a game where the user can navigate along a line, such that the user is always at some coordinate, and such that the user
can bookmark the page corresponding to a particular coordinate, to return to it later.

A static page implementing the x=5 position in such a game could look like the following:

<!DOCTYPE HTML>
<!-- this is https://example.com/line?x=5 -->
<html lang="en">
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
Advance to 6 or
retreat to 4?

</p>

The problem with such a system is that each time the user clicks, the whole page has to be reloaded. Here instead is another way
of doing it, using script:

<!DOCTYPE HTML>
<!-- this starts off as https://example.com/line?x=5 -->
<html lang="en">
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
Advance to 6 or
retreat to 4?

</p>
<script>

Example

948

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin

This section is non-normative.

The navigation API, provided by the global navigationp952 property, provides a modern and web application-focused way of managing
navigations and history entries. It is a successor to the classic locationp937 and historyp945 APIs.

One ability the API provides is inspecting session history entriesp1005. For example, the following will display the entries' URLs in an
ordered list:

const ol = document.createElement("ol");
ol.start = 0; // so that the list items' ordinal values match up with the entry indices

for (const entry of navigation.entries()) {
const li = document.createElement("li");

var currentPage = 5; // prefilled by server
function go(d) {

setupPage(currentPage + d);
history.pushState(currentPage, "", '?x=' + currentPage);

}
onpopstate = function(event) {

setupPage(event.state);
}
function setupPage(page) {

currentPage = page;
document.title = 'Line Game - ' + currentPage;
document.getElementById('coord').textContent = currentPage;
document.links[0].href = '?x=' + (currentPage+1);
document.links[0].textContent = 'Advance to ' + (currentPage+1);
document.links[1].href = '?x=' + (currentPage-1);
document.links[1].textContent = 'retreat to ' + (currentPage-1);

}
</script>

In systems without script, this still works like the previous example. However, users that do have script support can now navigate
much faster, since there is no network access for the same experience. Furthermore, contrary to the experience the user would
have with just a naïve script-based approach, bookmarking and navigating the session history still work.

In the example above, the data argument to the pushState()p946 method is the same information as would be sent to the server,
but in a more convenient form, so that the script doesn't have to parse the URL each time the user navigates.

Most applications want to use the same scroll restoration modep1006 value for all of their history entries. To achieve this they can set
the scrollRestorationp946 attribute as soon as possible (e.g., in the first scriptp652 element in the document's headp173 element)
to ensure that any entry added to the history session gets the desired scroll restoration mode.

<head>
<script>

if ('scrollRestoration' in history)
history.scrollRestoration = 'manual';

</script>
</head>

Example

7.2.6.1 Introduction §p94

9

7.2.6 The navigation API §p94

9

949

if (entry.index < navigation.currentEntry.index) {
li.className = "backward";

} else if (entry.index > navigation.currentEntry.index) {
li.className = "forward";

} else {
li.className = "current";

}

li.textContent = entry.url;
ol.append(li);

}

The navigation.entries()p958 array contains NavigationHistoryEntryp956 instances, which have other useful properties in addition
to the urlp957 and indexp957 properties shown here. Note that the array only contains NavigationHistoryEntryp956 objects that
represent the current navigablep989, and thus its contents are not impacted by navigations inside navigable containersp991 such as
iframep390s, or by navigations of the parent navigablep989 in cases where the navigation API is itself being used inside an iframep390.
Additionally, it only contains NavigationHistoryEntryp956 objects representing same-originp898 session history entriesp1005, meaning
that if the user has visited other origins before or after the current one, there will not be corresponding NavigationHistoryEntryp956s.

The navigation API can also be used to navigate, reload, or traverse through the history:

<button onclick="navigation.reload()">Reload</button>

<input type="url" id="navigationURL">
<button onclick="navigation.navigate(navigationURL.value)">Navigate</button>

<button id="backButton" onclick="navigation.back()">Back</button>
<button id="forwardButton" onclick="navigation.forward()">Forward</button>

<select id="traversalDestinations"></select>
<button id="goButton" onclick="navigation.traverseTo(traversalDestinations.value)">Traverse To</button>

<script>
backButton.disabled = !navigation.canGoBack;
forwardButton.disabled = !navigation.canGoForward;

for (const entry of navigation.entries()) {
traversalDestinations.append(new Option(entry.url, entry.key));

}
</script>

Note that traversals are again limited to same-originp898 destinations, meaning that, for example, navigation.canGoBackp959 will be
false if the previous session history entryp1005 is for a page from another origin.

The most powerful part of the navigation API is the navigatep1472 event, which fires whenever almost any navigation or traversal
occurs in the current navigablep989:

navigation.onnavigate = event => {
console.log(event.navigationType); // "push", "replace", "reload", or "traverse"
console.log(event.destination.url);
console.log(event.userInitiated);
// ... and other useful properties

};

(The event will not fire for location bar-initiated navigationsp1069, or navigations initiated from other windows, when the destination of
the navigation is a new document.)

Much of the time, the event's cancelable property will be true, meaning this event can be canceled using preventDefault():

950

https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-preventdefault

navigation.onnavigate = event => {
if (event.cancelable && isDisallowedURL(event.destination.url)) {

alert(`Please don't go to ${event.destination.url}!`);
event.preventDefault();

}
};

The cancelable property will be false for some "traversep954" navigations, such as those taking place inside child navigablesp992,
those crossing to new origins, or when the user attempts to traverse again shortly after a previous call to preventDefault()
prevented them from doing so.

The NavigateEventp970 's intercept()p972 method allows intercepting a navigation and converting it into a same-document navigation:

navigation.addEventListener("navigate", e => {
// Some navigations, e.g. cross-origin navigations, we cannot intercept.
// Let the browser handle those normally.
if (!e.canIntercept) {

return;
}

// Similarly, don't intercept fragment navigations or downloads.
if (e.hashChange || e.downloadRequest !== null) {

return;
}

const url = new URL(event.destination.url);

if (url.pathname.startsWith("/articles/")) {
e.intercept({

async handler() {
// The URL has already changed, so show a placeholder while
// fetching the new content, such as a spinner or loading page.
renderArticlePagePlaceholder();

// Fetch the new content and display when ready.
const articleContent = await getArticleContent(url.pathname, { signal: e.signal });
renderArticlePage(articleContent);

}
});

}
});

Note that the handlerp970 function can return a promise to represent the asynchronous progress, and success or failure, of the
navigation. While the promise is still pending, browser UI can treat the navigation as ongoing (e.g., by presenting a loading spinner).
Other parts of the navigation API are also sensitive to these promises, such as the return value of navigation.navigate()p960:

const { committed, finished } = await navigation.navigate("/articles/the-navigation-api-is-cool");

// The committed promise will fulfill once the URL has changed, which happens
// immediately (as long as the NavigateEvent wasn't canceled).
await committed;

// The finished promise will fulfill once the Promise returned by handler() has
// fulfilled, which happens once the article is downloaded and rendered. (Or,
// it will reject, if handler() fails along the way).
await finished;

951

https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-preventdefault

[Exposed=Window]
interface Navigation : EventTarget {

sequence<NavigationHistoryEntry> entries();
readonly attribute NavigationHistoryEntry? currentEntry;
undefined updateCurrentEntry(NavigationUpdateCurrentEntryOptions options);
readonly attribute NavigationTransition? transition;
readonly attribute NavigationActivation? activation;

readonly attribute boolean canGoBack;
readonly attribute boolean canGoForward;

NavigationResult navigate(USVString url, optional NavigationNavigateOptions options = {});
NavigationResult reload(optional NavigationReloadOptions options = {});

NavigationResult traverseTo(DOMString key, optional NavigationOptions options = {});
NavigationResult back(optional NavigationOptions options = {});
NavigationResult forward(optional NavigationOptions options = {});

attribute EventHandler onnavigate;
attribute EventHandler onnavigatesuccess;
attribute EventHandler onnavigateerror;
attribute EventHandler oncurrententrychange;

};

dictionary NavigationUpdateCurrentEntryOptions {
required any state;

};

dictionary NavigationOptions {
any info;

};

dictionary NavigationNavigateOptions : NavigationOptions {
any state;
NavigationHistoryBehavior history = "auto";

};

dictionary NavigationReloadOptions : NavigationOptions {
any state;

};

dictionary NavigationResult {
Promise<NavigationHistoryEntry> committed;
Promise<NavigationHistoryEntry> finished;

};

enum NavigationHistoryBehavior {
"auto",
"push",
"replace"

};

Each Windowp922 has an associated navigation API, which is a Navigationp952 object. Upon creation of the Windowp922 object, its
navigation APIp952 must be set to a new Navigationp952 object created in the Windowp922 object's relevant realmp1083.

The navigation getter steps are to return this's navigation APIp952.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the Navigationp952 interface:

7.2.6.2 The Navigationp952 interface §p95

2

IDL

952

https://dom.spec.whatwg.org/#interface-eventtarget
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#this

Event handlerp1136 Event handler event typep1139

onnavigate navigatep1472

onnavigatesuccess navigatesuccessp1472

onnavigateerror navigateerrorp1472

oncurrententrychange currententrychangep1471

Each Navigationp952 has an associated entry list, a list of NavigationHistoryEntryp956 objects, initially empty.

Each Navigationp952 has an associated current entry index, an integer, initially −1.

The current entry of a Navigationp952 navigation is the result of running the following steps:

1. If navigation has entries and events disabledp953, then return null.

2. Assert: navigation's current entry indexp953 is not −1.

3. Return navigation's entry listp953[navigation's current entry indexp953].

A Navigationp952 navigation has entries and events disabled if the following steps return true:

1. Let document be navigation's relevant global objectp1083 's associated Documentp923.

2. If document is not fully activep1003, then return true.

3. If document's is initial about:blankp131 is true, then return true.

4. If document's origin is opaquep898, then return true.

5. Return false.

To get the navigation API entry index of a session history entryp1005 she within a Navigationp952 navigation:

1. Let index be 0.

2. For each nhe of navigation's entry listp953:

1. If nhe's session history entryp957 is equal to she, then return index.

2. Increment index by 1.

3. Return −1.

A key type used throughout the navigation API is the NavigationTypep953 enumeration:

enum NavigationType {
"push",
"replace",
"reload",
"traverse"

};

This captures the main web developer-visible types of "navigations", which (as noted elsewherep1012) do not exactly correspond to this
standard's singular navigatep1014 algorithm. The meaning of each value is the following:

"push"
Corresponds to calls to navigatep1014 where the history handling behaviorp1014 ends up as "pushp1014", or to
history.pushState()p946.

"replace"
Corresponds to calls to navigatep1014 where the history handling behaviorp1014 ends up as "replacep1014", or to

7.2.6.3 Core infrastructure §p95

3

IDL

953

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-iterate

history.replaceState()p946.

"reload"
Corresponds to calls to reloadp1027.

"traverse"
Corresponds to calls to traverse the history by a deltap1028.

To initialize the navigation API entries for a new document given a Navigationp952 navigation, a list of session history
entriesp1005 newSHEs, and a session history entryp1005 initialSHE:

1. Assert: navigation's entry listp953 is empty.

2. Assert: navigation's current entry indexp953 is −1.

3. If navigation has entries and events disabledp953, then return.

4. For each newSHE of newSHEs:

1. Let newNHE be a new NavigationHistoryEntryp956 created in the relevant realmp1083 of navigation.

2. Set newNHE's session history entryp957 to newSHE.

3. Append newNHE to navigation's entry listp953.

5. Set navigation's current entry indexp953 to the result of getting the navigation API entry indexp953 of initialSHE within
navigation.

To update the navigation API entries for reactivation given a Navigationp952 navigation, a list of session history entriesp1005

newSHEs, and a session history entryp1005 reactivatedSHE:

1. If navigation has entries and events disabledp953, then return.

2. Let newNHEs be a new empty list.

3. Let oldNHEs be a clone of navigation's entry listp953.

4. For each newSHE of newSHEs:

1. Let newNHE be null.

2. If oldNHEs contains a NavigationHistoryEntryp956 matchingOldNHE whose session history entryp957 is newSHE,
then:

1. Set newNHE to matchingOldNHE.

2. Remove matchingOldNHE from oldNHEs.

3. Otherwise:

1. Set newNHE to a new NavigationHistoryEntryp956 created in the relevant realmp1083 of navigation.

2. Set newNHE's session history entryp957 to newSHE.

4. Append newNHE to newNHEs.

The value space of the NavigationTypep953 enumeration is a superset of the value space of the specification-internal history
handling behaviorp1014 type. Several parts of this standard make use of this overlap, by passing in a history handling behaviorp1014

to an algorithm that expects a NavigationTypep953.

Note

7.2.6.4 Initializing and updating the entry list §p95

4

newSHEs will have originally come from getting session history entries for the navigation APIp1011, and thus each newSHE
will be contiguous samep899 originp1006 with initialSHE.

Note

954

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#new
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://webidl.spec.whatwg.org/#new
https://infra.spec.whatwg.org/#list-append

5. Set navigation's entry listp632 to newNHEs.

6. Set navigation's current entry indexp953 to the result of getting the navigation API entry indexp953 of reactivatedSHE within
navigation.

7. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigation's relevant global objectp1083 to run
the following steps:

1. For each disposedNHE of oldNHEs:

1. Fire an event named disposep1471 at disposedNHE.

To update the navigation API entries for a same-document navigation given a Navigationp952 navigation, a session history
entryp1005 destinationSHE, and a NavigationTypep953 navigationType:

1. If navigation has entries and events disabledp953, then return.

2. Let oldCurrentNHE be the current entryp953 of navigation.

3. Let disposedNHEs be a new empty list.

4. If navigationType is "traversep954", then:

1. Set navigation's current entry indexp953 to the result of getting the navigation API entry indexp953 of destinationSHE
within navigation.

2. Assert: navigation's current entry indexp953 is not −1.

5. Otherwise, if navigationType is "pushp953", then:

1. Set navigation's current entry indexp953 to navigation's current entry indexp953 + 1.

2. Let i be navigation's current entry indexp953.

3. While i < navigation's entry listp953 's size:

1. Append navigation's entry listp953[i] to disposedNHEs.

2. Set i to i + 1.

4. Remove all items in disposedNHEs from navigation's entry listp953.

6. Otherwise, if navigationType is "replacep953", then:

1. Append oldCurrentNHE to disposedNHEs.

7. If navigationType is "pushp953" or "replacep953", then:

newSHEs will have originally come from getting session history entries for the navigation APIp1011, and thus each newSHE
will be contiguous samep899 originp1006 with reactivatedSHE.

Note

By the end of this loop, all NavigationHistoryEntryp956s that remain in oldNHEs represent session history entriesp1005

which have been disposed while the Documentp130 was in bfcachep1006.

Note

We delay these steps by a task to ensure that disposep1471 events will fire after the pageshowp1472 event. This ensures
that pageshowp1472 is the first event a page receives upon reactivationp1051.

(However, the rest of this algorithm runs before the pageshowp1472 event fires. This ensures that
navigation.entries()p958 and navigation.currentEntryp958 will have correctly-updated values during any
pageshowp1472 event handlers.)

Note

This algorithm is only called for same-document traversals. Cross-document traversals will instead call either initialize
the navigation API entries for a new documentp954 or update the navigation API entries for reactivationp954.

Note

955

https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#iteration-while
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-append

1. Let newNHE be a new NavigationHistoryEntryp956 created in the relevant realmp1083 of navigation.

2. Set newNHE's session history entryp957 to destinationSHE.

3. Set navigation's entry listp953[navigation's current entry indexp953] to newNHE.

8. If navigation's ongoing API method trackerp964 is non-null, then notify about the committed-to entryp966 given navigation's
ongoing API method trackerp964 and the current entryp953 of navigation.

9. Prepare to run scriptp1097 given navigation's relevant settings objectp1083.

10. Fire an event named currententrychangep1471 at navigation using NavigationCurrentEntryChangeEventp980, with its
navigationTypep980 attribute initialized to navigationType and its fromp980 initialized to oldCurrentNHE.

11. For each disposedNHE of disposedNHEs:

1. Fire an event named disposep1471 at disposedNHE.

12. Clean up after running scriptp1097 given navigation's relevant settings objectp1083.

In implementations, same-document navigations can cause session history entriesp1005 to be disposed by falling off the back of the
session history entry list. This is not yet handled by the above algorithm (or by any other part of this standard). See issue #8620
to track progress on defining the correct behavior in such cases.

[Exposed=Window]
interface NavigationHistoryEntry : EventTarget {

readonly attribute USVString? url;
readonly attribute DOMString key;
readonly attribute DOMString id;
readonly attribute long long index;
readonly attribute boolean sameDocument;

any getState();

attribute EventHandler ondispose;
};

It is important to do this before firing the disposep1471 or currententrychangep1471 events, since event handlers could
start another navigation, or otherwise change the value of navigation's ongoing API method trackerp964.

Note

See the discussion for other navigation API eventsp977 to understand why we do this.
Note

7.2.6.5 The NavigationHistoryEntryp956 interface §p95

6

entry.urlp957

The URL of this navigation history entry.
This can return null if the entry corresponds to a different Documentp130 than the current one (i.e., if sameDocumentp957 is false),
and that Documentp130 was fetched with a referrer policy of "no-referrer" or "origin", since that indicates the Documentp130 in
question is hiding its URL even from other same-origin pages.

entry.keyp957

A user agent-generated random UUID string representing this navigation history entry's place in the navigation history list. This
value will be reused by other NavigationHistoryEntryp956 instances that replace this one due to "replacep953" navigations,
and will survive reloads and session restores.
This is useful for navigating back to this entry in the navigation history list, using navigation.traverseTo(key)p962.

For web developers (non-normative)

IDL

956

https://webidl.spec.whatwg.org/#new
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-event-fire
https://github.com/whatwg/html/issues/8620
https://dom.spec.whatwg.org/#interface-eventtarget
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy

Each NavigationHistoryEntryp956 has an associated session history entry, which is a session history entryp1005.

The key of a NavigationHistoryEntryp956 nhe is given by the return value of the following algorithm:

1. If nhe's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then return the empty string.

2. Return nhe's session history entryp957 's navigation API keyp1005.

The ID of a NavigationHistoryEntryp956 nhe is given by the return value of the following algorithm:

1. If nhe's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then return the empty string.

2. Return nhe's session history entryp957 's navigation API IDp1005.

The index of a NavigationHistoryEntryp956 nhe is given by the return value of the following algorithm:

1. If nhe's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then return −1.

2. Return the result of getting the navigation API entry indexp953 of this's session history entryp957 within this's relevant global
objectp1083 's navigation APIp952.

The url getter steps are:

1. Let document be this's relevant global objectp1083 's associated Documentp923.

2. If document is not fully activep1003, then return the empty string.

3. Let she be this's session history entryp957.

4. If she's documentp1005 does not equal document, and she's document statep1005 's request referrer policyp1006 is "no-referrer"
or "origin", then return null.

5. Return she's URLp1005, serialized.

The key getter steps are to return this's keyp957.

The id getter steps are to return this's IDp957.

The index getter steps are to return this's indexp957.

The sameDocument getter steps are:

1. Let document be this's relevant global objectp1083 's associated Documentp923.

entry.idp957

A user agent-generated random UUID string representing this specific navigation history entry. This value will not be reused by
other NavigationHistoryEntryp956 instances. This value will survive reloads and session restores.
This is useful for associating data with this navigation history entry using other storage APIs.

entry.indexp957

The index of this NavigationHistoryEntryp956 within navigation.entries()p958, or −1 if the entry is not in the navigation
history entry list.

entry.sameDocumentp957

Indicates whether or not this navigation history entry is for the same Documentp130 as the current one, or not. This will be true,
for example, when the entry represents a fragment navigation or single-page app navigation.

entry.getStatep958()
Returns the deserializationp122 of the state stored in this entry, which was added to the entry using navigation.navigate()p960

or navigation.updateCurrentEntry()p958. This state survives reloads and session restores.
Note that in general, unless the state value is a primitive, entry.getState() !== entry.getState(), since a fresh
deserialization is returned each time.
This state is unrelated to the classic history API's history.statep946.

957

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

2. If document is not fully activep1003, then return false.

3. Return true if this's session history entryp957 's documentp1005 equals document, and false otherwise.

The getState() method steps are:

1. If this's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then return undefined.

2. Return StructuredDeserializep122(this's session history entryp957 's navigation API statep1005). Rethrow any exceptions.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the NavigationHistoryEntryp956 interface:

Event handlerp1136 Event handler event typep1139

ondispose disposep1471

The entries() method steps are:

1. If this has entries and events disabledp953, then return the empty list.

2. Return this's entry listp953.

The currentEntry getter steps are to return the current entryp953 of this.

The updateCurrentEntry(options) method steps are:

This can in theory throw an exception, if attempting to deserialize a large ArrayBuffer when not enough memory is
available.

Note

7.2.6.6 The history entry list §p95

8

entries = navigationp952.entries()p958

Returns an array of NavigationHistoryEntryp956 instances represent the current navigation history entry list, i.e., all session
history entriesp1005 for this navigablep989 that are same originp899 and contiguous to the current session history entryp989.

navigationp952.currentEntryp958

Returns the NavigationHistoryEntryp956 corresponding to the current session history entryp989.

navigationp952.updateCurrentEntryp958({ statep952 })
Updates the navigation API statep1005 of the current session history entryp989, without performing a navigation like
navigation.reload()p961 would do.
This method is best used to capture updates to the page that have already happened, and need to be reflected into the
navigation API state. For cases where the state update is meant to drive a page update, instead use
navigation.navigate()p960 or navigation.reload()p961, which will trigger a navigatep1472 event.

navigationp952.canGoBackp959

Returns true if the current current session history entryp989 (i.e., currentEntryp958) is not the first one in the navigation history
entry list (i.e., in entries()p958). This means that there is a previous session history entryp1005 for this navigablep989, and its
document statep1005 's originp1006 is same originp899 with the current Documentp130 's origin.

navigationp952.canGoForwardp959

Returns true if the current current session history entryp989 (i.e., currentEntryp958) is not the last one in the navigation history
entry list (i.e., in entries()p958). This means that there is a next session history entryp1005 for this navigablep989, and its
document statep1005 's originp1006 is same originp899 with the current Documentp130 's origin.

For web developers (non-normative)

Recall that because of Web IDL's sequence type conversion rules, this will create a new JavaScript array object on each
call. That is, navigation.entries()p958 !== navigation.entries()p958.

Note

958

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

1. Let current be the current entryp953 of this.

2. If current is null, then throw an "InvalidStateError" DOMException.

3. Let serializedState be StructuredSerializeForStoragep122(options["statep952"]), rethrowing any exceptions.

4. Set current's session history entryp957 's navigation API statep1005 to serializedState.

5. Fire an event named currententrychangep1471 at this using NavigationCurrentEntryChangeEventp980, with its
navigationTypep980 attribute initialized to null and its fromp980 initialized to current.

The canGoBack getter steps are:

1. If this has entries and events disabledp953, then return false.

2. Assert: this's current entry indexp953 is not −1.

3. If this's current entry indexp953 is 0, then return false.

4. Return true.

The canGoForward getter steps are:

1. If this has entries and events disabledp953, then return false.

2. Assert: this's current entry indexp953 is not −1.

3. If this's current entry indexp953 is equal to this's entry listp953 's size − 1, then return false.

4. Return true.

7.2.6.7 Initiating navigations §p95

9

{ committedp952, finishedp952 } = navigationp952.navigatep960(url)
{ committedp952, finishedp952 } = navigationp952.navigatep960(url, options)

Navigatesp1014 the current page to the given url. options can contain the following values:

• historyp952 can be set to "replacep1014" to replace the current session history entry, instead of pushing a new one.

• infop952 can be set to any value; it will populate the infop972 property of the corresponding NavigateEventp970.

• statep952 can be set to any serializablep117 value; it will populate the state retrieved by
navigation.currentEntry.getState()p958 once the navigation completes, for same-document navigations. (It will
be ignored for navigations that end up cross-document.)

By default this will perform a full navigation (i.e., a cross-document navigation, unless the given URL differs only in a fragment
from the current one). The navigateEvent.intercept()p972 method can be used to convert it into a same-document
navigation.
The returned promises will behave as follows:

• For navigations that get aborted, both promises will reject with an "AbortError" DOMException.

• For same-document navigations created by using the navigateEvent.intercept()p972 method, committedp952 will
fulfill immediately, and finishedp952 will fulfill or reject according to any promsies returned by handlers passed to
intercept()p972.

• For other same-document navigations (e.g., non-intercepted fragment navigationsp1021), both promises will fulfill
immediately.

• For cross-document navigations, or navigations that result in 204 or 205 statuses or `Content-Disposition:
attachment` header fields from the server (and thus do not actually navigate), both promises will never settle.

In all cases, when the returned promises fulfill, it will be with the NavigationHistoryEntryp956 that was navigated to.

For web developers (non-normative)

959

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-response-status
https://httpwg.org/specs/rfc6266.html
https://httpwg.org/specs/rfc6266.html

The navigate(url, options) method steps are:

1. Let urlRecord be the result of parsing a URLp97 given url, relative to this's relevant settings objectp1083.

2. If urlRecord is failure, then return an early error resultp963 for a "SyntaxError" DOMException.

3. Let document be this's relevant global objectp1083 's associated Documentp923.

{ committedp952, finishedp952 } = navigationp952.reloadp961(options)
Reloadsp1027 the current page. options can contain infop952 and statep952, which behave as described above.
The default behavior of performing a from-network-or-cache reload of the current page can be overriden by the using the
navigateEvent.intercept()p972 method. Doing so will mean this call only updates state or passes along the appropriate
infop952, plus performing whater actions the navigatep1472 event handlers see fit to carry out.
The returned promises will behave as follows:

• If the reload is intercepted by using the navigateEvent.intercept()p972 method, committedp952 will fulfill
immediately, and finishedp952 will fulfill or reject according to any promsies returned by handlers passed to
intercept()p972.

• Otherwise, both promises will never settle.

{ committedp952, finishedp952 } = navigationp952.traverseTop962(key)
{ committedp952, finishedp952 } = navigationp952.traverseTop962(key, { infop952 })

Traversesp1040 to the closest session history entryp1005 that matches the NavigationHistoryEntryp956 with the given key.
infop952 can be set to any value; it will populate the infop972 property of the corresponding NavigateEventp970.
If a traversal to that session history entryp1005 is already in progress, then this will return the promises for that original traversal,
and infop972 will be ignored.
The returned promises will behave as follows:

• If there is no NavigationHistoryEntryp956 in navigation.entries()p958 whose keyp957 matches key, both promises
will reject with an "InvalidStateError" DOMException.

• For same-document traversals intercepted by the navigateEvent.intercept()p972 method, committedp952 will fulfill
as soon as the traversal is processed and navigation.currentEntryp958 is updated, and finishedp952 will fulfill or
reject according to any promsies returned by the handlers passed to intercept()p972.

• For non-intercepted same-document travesals, both promises will fulfill as soon as the traversal is processed and
navigation.currentEntryp958 is updated.

• For cross-document traversals, including attempted cross-document traversals that end up resulting in a 204 or 205
statuses or `Content-Disposition: attachment` header fields from the server (and thus do not actually traverse),
both promises will never settle.

{ committedp952, finishedp952 } = navigationp952.backp962(key)
{ committedp952, finishedp952 } = navigationp952.backp962(key, { infop952 })

Traverses to the closest previous session history entryp1005 which results in this navigablep989 traversing, i.e., which corresponds
to a different NavigationHistoryEntryp956 and thus will cause navigation.currentEntryp958 to change. infop952 can be set to
any value; it will populate the infop972 property of the corresponding NavigateEventp970.
If a traversal to that session history entryp1005 is already in progress, then this will return the promises for that original traversal,
and infop972 will be ignored.
The returned promises behave equivalently to those returned by traverseTo()p962.

{ committedp952, finishedp952 } = navigationp952.forwardp962(key)
{ committedp952, finishedp952 } = navigationp952.forwardp962(key, { infop952 })

Traverses to the closest forward session history entryp1005 which results in this navigablep989 traversing, i.e., which corresponds
to a different NavigationHistoryEntryp956 and thus will cause navigation.currentEntryp958 to change. infop952 can be set to
any value; it will populate the infop972 property of the corresponding NavigateEventp970.
If a traversal to that session history entryp1005 is already in progress, then this will return the promises for that original traversal,
and infop972 will be ignored.
The returned promises behave equivalently to those returned by traverseTo()p962.

960

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-response-status
https://httpwg.org/specs/rfc6266.html
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

4. If options["historyp952"] is "pushp1014", and the navigation must be a replacep1014 given urlRecord and document, then return
an early error resultp963 for a "NotSupportedError" DOMException.

5. Let state be options["statep952"], if it exists; otherwise, undefined.

6. Let serializedState be StructuredSerializeForStoragep122(state). If this throws an exception, then return an early error
resultp963 for that exception.

7. If document is not fully activep1003, then return an early error resultp963 for an "InvalidStateError" DOMException.

8. If document's unload counterp1064 is greater than 0, then return an early error resultp963 for an "InvalidStateError"
DOMException.

9. Let info be options["infop952"], if it exists; otherwise, undefined.

10. Let apiMethodTracker be the result of maybe setting the upcoming non-traverse API method trackerp964 for this given info
and serializedState.

11. Navigatep1014 document's node navigablep989 to urlRecord using document, with historyHandlingp1014 set to
options["historyp952"] and navigationAPIStatep1014 set to serializedState.

12. If this's upcoming non-traverse API method trackerp964 is apiMethodTracker, then:

1. Set this's upcoming non-traverse API method trackerp964 to null.

2. Return an early error resultp963 for an "AbortError" DOMException.

13. Return a navigation API method tracker-derived resultp963 for apiMethodTracker.

The reload(options) method steps are:

1. Let document be this's relevant global objectp1083 's associated Documentp923.

2. Let serializedState be StructuredSerializeForStoragep122(undefined).

3. If options["statep952"] exists, then set serializedState to StructuredSerializeForStoragep122(options["statep952"]). If this throws
an exception, then return an early error resultp963 for that exception.

4. Otherwise:

1. Let current be the current entryp953 of this.

2. If current is not null, then set serializedState to current's session history entryp957 's navigation API statep1005.

5. If document is not fully activep1003, then return an early error resultp963 for an "InvalidStateError" DOMException.

It is importantly to perform this step early, since serialization can invoke web developer code, which in turn might change
various things we check in later steps.

Note

Unlike location.assign()p942 and friends, which are exposed across origin-domainp899 boundaries,
navigation.navigate()p960 can only be accessed by code with direct synchronous access to the window.navigationp952

property. Thus, we avoid the complications about attributing the source document of the navigation, and we don't need
to deal with the allowed by sandboxing to navigatep1025 check and its acccompanying exceptionsEnabledp1014 flag. We
just treat all navigations as if they come from the Documentp130 corresponding to this Navigationp952 object itself (i.e.,
document).

Note

If the upcoming non-traverse API method trackerp964 is still apiMethodTracker, this means that the navigatep1014 algorithm
bailed out before ever getting to the inner navigate event firing algorithmp975 which would promote that upcoming API
method tracker to ongoingp966.

Note

It is importantly to perform this step early, since serialization can invoke web developer code, which in turn might change
various things we check in later steps.

Note

961

https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

6. If document's unload counterp1064 is greater than 0, then return an early error resultp963 for an "InvalidStateError"
DOMException.

7. Let info be options["infop952"], if it exists; otherwise, undefined.

8. Let apiMethodTracker be the result of maybe setting the upcoming non-traverse API method trackerp964 for this given info
and serializedState.

9. Reloadp1027 document's node navigablep989 with navigationAPIStatep1027 set to serializedState.

10. Return a navigation API method tracker-derived resultp963 for apiMethodTracker.

The traverseTo(key, options) method steps are:

1. If this's current entry indexp953 is −1, then return an early error resultp963 for an "InvalidStateError" DOMException.

2. If this's entry listp953 does not contain a NavigationHistoryEntryp956 whose session history entryp957 's navigation API
keyp1005 equals key, then return an early error resultp963 for an "InvalidStateError" DOMException.

3. Return the result of performing a navigation API traversalp962 given this, key, and options.

The back(options) method steps are:

1. If this's current entry indexp953 is −1 or 0, then return an early error resultp963 for an "InvalidStateError" DOMException.

2. Let key be this's entry listp953[this's current entry indexp953 − 1]'s session history entryp957 's navigation API keyp1005.

3. Return the result of performing a navigation API traversalp962 given this, key, and options.

The forward(options) method steps are:

1. If this's current entry indexp953 is −1 or is equal to this's entry listp953 's size − 1, then return an early error resultp963 for an
"InvalidStateError" DOMException.

2. Let key be this's entry listp953[this's current entry indexp953 + 1]'s session history entryp957 's navigation API keyp1005.

3. Return the result of performing a navigation API traversalp962 given this, key, and options.

To perform a navigation API traversal given a Navigationp952 navigation, a string key, and a NavigationOptionsp952 options:

1. Let document be navigation's relevant global objectp1083 's associated Documentp923.

2. If document is not fully activep1003, then return an early error resultp963 for an "InvalidStateError" DOMException.

3. If document's unload counterp1064 is greater than 0, then return an early error resultp963 for an "InvalidStateError"
DOMException.

4. Let current be the current entryp953 of navigation.

5. If key equals current's session history entryp957 's navigation API keyp1005, then return «["committedp952" → a promise resolved
with current, "finishedp952" → a promise resolved with current]».

6. If navigation's upcoming traverse API method trackersp964[key] exists, then return a navigation API method tracker-derived
resultp963 for navigation's upcoming traverse API method trackersp964[key].

7. Let info be options["infop952"], if it exists; otherwise, undefined.

8. Let apiMethodTracker be the result of adding an upcoming traverse API method trackerp965 for navigation given key and info.

9. Let navigable be document's node navigablep989.

10. Let traversable be navigable's traversable navigablep990.

11. Let sourceSnapshotParams be the result of snapshotting source snapshot paramsp1012 given document.

12. Append the following session history traversal stepsp1008 to traversable:

1. Let navigableSHEs be the result of getting session history entriesp1010 given navigable.

2. Let targetSHE be the session history entryp1005 in navigableSHEs whose navigation API keyp1005 is key. If no such

962

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-resolved-with
https://webidl.spec.whatwg.org/#a-promise-resolved-with
https://webidl.spec.whatwg.org/#a-promise-resolved-with
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists

entry exists, then:

1. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigation's relevant
global objectp1083 to reject the finished promisep967 for apiMethodTracker with an "InvalidStateError"
DOMException.

2. Abort these steps.

3. If targetSHE is navigable's active session history entryp989, then abort these steps.

4. Let result be the result of applying the traverse history stepp1040 given by targetSHE's stepp1005 to traversable, given
sourceSnapshotParams, navigable, and "nonep1014".

5. If result is "canceled-by-beforeunload", then queue a global taskp1125 on the navigation and traversal task
sourcep1134 given navigation's relevant global objectp1083 to reject the finished promisep967 for apiMethodTracker
with a new "AbortError" DOMException created in navigation's relevant realmp1083.

6. If result is "initiator-disallowed", then queue a global taskp1125 on the navigation and traversal task sourcep1134

given navigation's relevant global objectp1083 to reject the finished promisep967 for apiMethodTracker with a new
"SecurityError" DOMException created in navigation's relevant realmp1083.

13. Return a navigation API method tracker-derived resultp963 for apiMethodTracker.

An early error result for an exception e is a NavigationResultp952 dictionary instance given by «["committedp952" → a promise
rejected with e, "finishedp952" → a promise rejected with e]».

A navigation API method tracker-derived result for a navigation API method trackerp964 is a NavigationResultp952 dictionary
instance given by «["committedp952" → apiMethodTracker's committed promisep964, "finishedp952" → apiMethodTracker's finished
promisep964]».

During any given navigation (in the broad sense of the wordp953), the Navigationp952 object needs to keep track of the following:

For all navigations
State Duration Explanation

The NavigateEventp970 For the duration of event firing So that if the navigation is canceled while the event is
firing, we can cancel the event

The event's abort controllerp972 Until all promises returned from handlers passed to intercept()p972

have settled
So that if the navigation is canceled, we can signal
abort

Whether a new element was
focusedp842

Until all promises returned from handlers passed to intercept()p972

have settled
So that if one was, focus is not resetp979

The NavigationHistoryEntryp956

being navigated to
From when it is determined, until all promises returned from handlers
passed to intercept()p972 have settled

So that we know what to resolve any committedp952

and finishedp952 promises with
Any finishedp952 promise that Until all promises returned from handlers passed to intercept()p972 So that we can resolve or reject it appropriately

This path is taken if navigation's entry listp953 was outdated compared to navigableSHEs, which can occur for
brief periods while all the relevant threads and processes are being synchronized in reaction to a history
change.

Note

This can occur if a previously queuedp1008 traversal already took us to this session history entryp1005. In that
case the previous traversal will have dealt with apiMethodTracker already.

Note

When result is "canceled-by-beforeunload" or "initiator-disallowed", the navigatep1472 event was never
fired, aborting the ongoing navigationp967 would not be correct; it would result in a navigateerrorp1472 event
without a preceding navigatep1472 event.

In the "canceled-by-navigate" case, navigatep1472 is fired, but the inner navigate event firing algorithmp975

will take care of aborting the ongoing navigationp967.

Note

7.2.6.8 Ongoing navigation tracking §p96

3

963

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#abortcontroller-signal-abort
https://dom.spec.whatwg.org/#abortcontroller-signal-abort

State Duration Explanation

was returned have settled

For non-"traversep954" navigations
State Duration Explanation

Any
statep952

For the duration of event
firing

So that we can update the current entry's navigation API statep1005 if the event finishes firing without being
canceled

For "traversep954" navigations
State Duration Explanation

Any infop952 Until the task is queued to fire the
navigatep1472 event

So that we can use it to fire the navigatep1472 after the trip through the session
history traversal queuep990.

Any committedp952 promise that
was returned

Until the session history is updated (inside
that same task)

So that we can resolve or reject it appropriately

Whether intercept()p972 was
called

Until the session history is updated (inside
that same task)

So that we can suppress the normal scroll restoration logic in favor of the behavior
given by the scrollp970 option

We also cannot assume there is only a single navigation requested at any given time, due to web developer code such as:

const p1 = navigation.navigate(url1).finished;
const p2 = navigation.navigate(url2).finished;

That is, in this scenario, we need to ensure that while navigating to url2, we still have the promise p1 around so that we can reject it.
We can't just get rid of any ongoing navigation promises the moment the second call to navigate()p960 happens.

We end up accomplishing all this by associating the following with each Navigationp952:

• Ongoing navigate event, a NavigateEventp970 or null, initially null.

• Focus changed during ongoing navigation, a boolean, initially false.

• Suppress normal scroll restoration during ongoing navigation, a boolean, initially false.

• Ongoing API method tracker, a navigation API method trackerp964 or null, initially null.

• Upcoming non-traverse API method tracker, a navigation API method trackerp964 or null, initially null.

• Upcoming traverse API method trackers, an ordered map from strings to navigation API method trackersp964, initially
empty.

A navigation API method tracker is a struct with the following items:

• A navigation object, a Navigationp952

• A key, a string or null

• An info, a JavaScript value

• A serialized state, a serialized statep1006 or null

• A committed-to entry, a NavigationHistoryEntryp956 or null

• A committed promise, a promise

• A finished promise, a promise

All this state is then managed via the following algorithms.

To maybe set the upcoming non-traverse API method tracker given a Navigationp952 navigation, a JavaScript value info, and a
serialized statep1006-or-null serializedState:

1. Let committedPromise and finishedPromise be new promises created in navigation's relevant realmp1083.

The state here that is not stored in navigation API method trackersp964 is state which needs to be tracked even for navigations that
are not initiated via navigation API methods.

Note

964

https://dom.spec.whatwg.org/#canceled-flag
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item

2. Mark as handled finishedPromise.

3. Let apiMethodTracker be a new navigation API method trackerp964 with:
navigation objectp964

navigation
keyp964

null
infop964

info
serialized statep964

serializedState
comitted-to entryp964

null
comitted promisep964

committedPromise
finished promisep964

finishedPromise

4. Assert: navigation's upcoming non-traverse API method trackerp964 is null.

5. If navigation does not have entries and events disabledp953, then set navigation's upcoming non-traverse API method
trackerp964 to apiMethodTracker.

6. Return apiMethodTracker.

To add an upcoming traverse API method tracker given a Navigationp952 navigation, a string destinationKey, and a JavaScript
value info:

1. Let committedPromise and finishedPromise be new promises created in navigation's relevant realmp1083.

2. Mark as handled finishedPromise.

3. Let apiMethodTracker be a new navigation API method trackerp964 with:
navigation objectp964

navigation
keyp964

destinationKey
infop964

info

The web developer doesn’t necessarily care about finishedPromise being rejected:

◦ They might only care about committedPromise.

◦ They could be doing multiple synchronous navigations within the same task, in which case all but the last will
be aborted (causing their finishedPromise to reject). This could be an application bug, but also could just be an
emergent feature of disparate parts of the application overriding each others' actions.

◦ They might prefer to listen to other transition-failure signals instead of finishedPromise, e.g., the
navigateerrorp1472 event, or the navigation.transition.finishedp969 promise.

As such, we mark it as handled to ensure that it never triggers unhandledrejectionp1472 events.

Note

If navigation has entries and events disabledp953, then committedPromise and finishedPromise will never fulfill (since we
never create a NavigationHistoryEntryp956 object for such Documentp130s, and so we have nothing to resolve them
with); there is no NavigationHistoryEntryp956 to apply serializedState to; and there is no navigatep1472 event to include
info with. So, we don't need to track this API method call after all.

Note

See the previous discussionp965 about why this is done.
Note

965

https://webidl.spec.whatwg.org/#mark-a-promise-as-handled
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#mark-a-promise-as-handled

serialized statep964

null
comitted-to entryp964

null
comitted promisep964

committedPromise
finished promisep964

finishedPromise

4. Set navigation's upcoming traverse API method trackersp964[key] to apiMethodTracker.

5. Return apiMethodTracker.

To promote an upcoming API method tracker to ongoing given a Navigationp952 navigation and a string-or-null destinationKey:

1. Assert: navigation's ongoing API method trackerp964 is null.

2. If destinationKey is not null, then:

1. Assert: navigation's upcoming non-traverse API method trackerp964 is null.

2. If navigation's upcoming traverse API method trackersp964[destinationKey] exists, then:

1. Set navigation's ongoing API method trackerp964 to navigation's upcoming traverse API method
trackersp964[destinationKey].

2. Remove navigation's upcoming traverse API method trackersp964[destinationKey].

3. Otherwise:

1. Set navigation's ongoing API method trackerp964 to navigation's upcoming non-traverse API method trackerp964.

2. Set navigation's upcoming non-traverse API method trackerp964 to null.

To clean up a navigation API method trackerp964 apiMethodTracker:

1. Let navigation be apiMethodTracker's navigation objectp964.

2. If navigation's ongoing API method trackerp964 is apiMethodTracker, then set navigation's ongoing API method trackerp964 to
null.

3. Otherwise:

1. Let key be apiMethodTracker's keyp964.

2. Assert: key is not null.

3. Assert: navigation's upcoming traverse API method trackersp964[key] exists.

4. Remove navigation's upcoming traverse API method trackersp964[key].

To notify about the committed-to entry given a navigation API method trackerp964 apiMethodTracker and a
NavigationHistoryEntryp956 nhe:

1. Set apiMethodTracker's committed-to entryp964 to nhe.

2. If apiMethodTracker's serialized statep964 is not null, then set nhe's session history entryp957 's navigation API statep1005 to
apiMethodTracker's serialized statep964.

3. Resolve apiMethodTracker's committed promisep964 with nhe.

If it's null, then we're traversing to nhe via navigation.traverseTo()p962, which does not allow changing the state.
Note

At this point, apiMethodTracker's serialized statep964 is no longer needed. Implementations might want to clear it out to
avoid keeping it alive for the lifetime of the navigation API method trackerp964.

Note

966

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove

To resolve the finished promise for a navigation API method trackerp964 apiMethodTracker:

1. Resolve apiMethodTracker's committed promisep964 with its committed-to entryp964.

2. Resolve apiMethodTracker's finished promisep964 with its committed-to entryp964.

3. Clean upp966 apiMethodTracker.

To reject the finished promise for a navigation API method trackerp964 apiMethodTracker with a JavaScript value exception:

1. Reject apiMethodTracker's committed promisep964 with exception.

2. Reject apiMethodTracker's finished promisep964 with exception.

3. Clean upp966 apiMethodTracker.

To abort the ongoing navigation given a Navigationp952 navigation and an optional DOMException error:

1. Let event be navigation's ongoing navigate eventp964.

2. Assert: event is not null.

3. Set navigation's focus changed during ongoing navigationp964 to false.

4. Set navigation's suppress normal scroll restoration during ongoing navigationp964 to false.

5. If error was not given, then let error be a new "AbortError" DOMException created in navigation's relevant realmp1083.

6. If event's dispatch flag is set, then set event's canceled flag to true.

7. Signal abort on event's abort controllerp972 given error.

8. Set navigation's ongoing navigate eventp964 to null.

9. Let errorInfo be the result of extracting error informationp1098 from error.

10. Fire an event named navigateerrorp1472 at navigation using ErrorEventp1099, with additional attributes initialized according
to errorInfo.

11. If navigation's ongoing API method trackerp964 is non-null, then reject the finished promisep967 for apiMethodTracker with
error.

12. If navigation's transitionp968 is not null, then:

1. Reject navigation's transitionp968 's finished promisep968 with error.

2. Set navigation's transitionp968 to null.

To inform the navigation API about aborting navigation in a navigablep989 navigable:

At this point, apiMethodTracker's committed promisep964 is only needed in cases where it has not yet been returned to
author code. Implementations might want to clear it out to avoid keeping it alive for the lifetime of the navigation API
method trackerp964.

Note

Usually, notify about the committed-to entryp966 has previously been called on apiMethodTracker, and so this will do
nothing. However, in some cases resolve the finished promisep967 is called directly, in which case this step is necessary.

Note

This will do nothing if apiMethodTracker's committed promisep964 was previously resolved via notify about the committed-
to entryp966.

Note

For example, if this algorithm is reached because of a call to window.stop()p928, these properties would probably end up
initialized based on the line of script that called window.stop()p928. But if it's because the user clicked the stop button,
these properties would probably end up with default values like the empty string or 0.

Note

967

https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#dispatch-flag
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#abortcontroller-signal-abort
https://dom.spec.whatwg.org/#concept-event-fire

1. If this algorithm is running on navigable's active windowp989 's relevant agentp1073 's event loopp1123, then continue on to the
following steps. Otherwise, queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigable's active
windowp989 to run the following steps.

2. Let navigation be navigable's active windowp989 's navigation APIp952.

3. If navigation's ongoing navigate eventp964 is null, then return.

4. Abort the ongoing navigationp967 given navigation.

To inform the navigation API about child navigable destruction given a navigablep989 navigable:

1. Inform the navigation API about aborting navigationp967 in navigable.

2. Let navigation be navigable's active windowp989 's navigation APIp952.

3. Let traversalAPIMethodTrackers be a clone of navigation's upcoming traverse API method trackersp964.

4. For each apiMethodTracker of traversalAPIMethodTrackers: reject the finished promisep967 for apiMethodTracker with a new
"AbortError" DOMException created in navigation's relevant realmp1083.

The ongoing navigation concept is most-directly exposed to web developers through the navigation.transitionp968 property, which
is an instance of the NavigationTransitionp968 interface:

[Exposed=Window]
interface NavigationTransition {

readonly attribute NavigationType navigationType;
readonly attribute NavigationHistoryEntry from;
readonly attribute Promise<undefined> finished;

};

Each Navigationp952 has a transition, which is a NavigationTransitionp968 or null, initially null.

The transition getter steps are to return this's transitionp968.

Each NavigationTransitionp968 has an associated navigation type, which is a NavigationTypep953.

Each NavigationTransitionp968 has an associated from entry, which is a NavigationHistoryEntryp956.

Each NavigationTransitionp968 has an associated finished promise, which is a promise.

The navigationType getter steps are to return this's navigation typep968.

The from getter steps are to return this's from entryp968.

navigationp952.transitionp968

A NavigationTransitionp968 representing any ongoing navigation that hasn't yet reached the navigatesuccessp1472 or
navigateerrorp1472 stage, if one exists; or null, if there is no such transition ongoing.
Since navigation.currentEntryp958 (and other properties like location.hrefp939) are updated immediately upon navigation,
this navigation.transitionp968 property is useful for determining when such navigations are not yet fully settled, according to
any handlers passed to navigateEvent.intercept()p972.

navigationp952.transitionp968.navigationTypep968

One of "pushp953", "replacep953", "reloadp954", or "traversep954", indicating what type of navigation this transition is for.

navigationp952.transitionp968.fromp968

The NavigationHistoryEntryp956 from which the transition is coming. This can be useful to compare against
navigation.currentEntryp958.

navigationp952.transitionp968.finishedp969

A promise which fulfills at the same time as the navigatesuccessp1472 fires, or rejects at the same time the navigateerrorp1472

event fires.

For web developers (non-normative)

IDL

968

https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The finished getter steps are to return this's finished promisep968.

[Exposed=Window]
interface NavigationActivation {

readonly attribute NavigationHistoryEntry? from;
readonly attribute NavigationHistoryEntry entry;
readonly attribute NavigationType navigationType;

};

Each Navigationp952 has an associated activation, which is null or a NavigationActivationp969 object, initially null.

Each NavigationActivationp969 has:

• old entry, null or a NavigationHistoryEntryp956.

• new entry, null or a NavigationHistoryEntryp956.

• navigation type, a NavigationTypep953.

The activation getter steps are to return this's activationp969.

The from getter steps are to return this's old entryp969.

The entry getter steps are to return this's new entryp969.

The navigationType getter steps are to return this's navigation typep969.

A major feature of the navigation API is the navigatep1472 event. This event is fired on any navigation (in the broad sense of the
wordp953), allowing web developers to monitor such outgoing navigations. In many cases, the event is cancelable, which allows
preventing the navigation from happening. And in others, the navigation can be intercepted and replaced with a same-document
navigation by using the intercept()p972 method of the NavigateEventp970 class.

7.2.6.9 The NavigationActivationp969 interface §p96

9

navigationp952.activationp969

A NavigationActivationp969 containing information about the most recent cross-document navigation, the navigation that
"activated" this Documentp130.
While navigation.currentEntryp958 and the Documentp130 's URL can be updated regularly due to same-document navigations,
navigation.activationp969 stays constant, and its properties are only updated if the Documentp130 is reactivatedp1051 from
history.

navigationp952.activationp969.entryp969

A NavigationHistoryEntryp956, equivalent to the value of the navigation.currentEntryp958 property at the moment the
Documentp130 was activated.

navigationp952.activationp969.fromp969

A NavigationHistoryEntryp956, representing the Documentp130 that was active right before the current Documentp130. This will
have a value null in case the previous Documentp130 was not same originp899 with this one or if it was the initial about:blankp131

Documentp130.
There are some cases in which either the fromp969 or entryp969 NavigationHistoryEntryp956 objects would not be viable targets
for the traverseTo()p962 method, as they might not be retained in history. For example, the Documentp130 can be activated using
location.replace()p942 or its initial entry could be replaced by history.replaceState()p946. However, those entries' urlp957

property and getState()p958 method are still accessible.

navigationp952.activationp969.navigationTypep969

One of "pushp953", "replacep953", "reloadp954", or "traversep954", indicating what type of navigation activated this Documentp130.

For web developers (non-normative)

7.2.6.10 The navigatep1472 event §p96

9

IDL

969

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#dom-event-cancelable

[Exposed=Window]
interface NavigateEvent : Event {

constructor(DOMString type, NavigateEventInit eventInitDict);

readonly attribute NavigationType navigationType;
readonly attribute NavigationDestination destination;
readonly attribute boolean canIntercept;
readonly attribute boolean userInitiated;
readonly attribute boolean hashChange;
readonly attribute AbortSignal signal;
readonly attribute FormData? formData;
readonly attribute DOMString? downloadRequest;
readonly attribute any info;
readonly attribute boolean hasUAVisualTransition;

undefined intercept(optional NavigationInterceptOptions options = {});
undefined scroll();

};

dictionary NavigateEventInit : EventInit {
NavigationType navigationType = "push";
required NavigationDestination destination;
boolean canIntercept = false;
boolean userInitiated = false;
boolean hashChange = false;
required AbortSignal signal;
FormData? formData = null;
DOMString? downloadRequest = null;
any info;
boolean hasUAVisualTransition = false;

};

dictionary NavigationInterceptOptions {
NavigationInterceptHandler handler;
NavigationFocusReset focusReset;
NavigationScrollBehavior scroll;

};

enum NavigationFocusReset {
"after-transition",
"manual"

};

enum NavigationScrollBehavior {
"after-transition",
"manual"

};

callback NavigationInterceptHandler = Promise<undefined> ();

7.2.6.10.1 The NavigateEventp970 interface §p97

0

event.navigationTypep972

One of "pushp953", "replacep953", "reloadp954", or "traversep954", indicating what type of navigation this is.

event.destinationp972

A NavigationDestinationp973 representing the destination of the navigation.

event.canInterceptp972

True if intercept()p972 can be called to intercept this navigation and convert it into a same-document navigation, replacing its

For web developers (non-normative)

IDL

970

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#abortsignal
https://xhr.spec.whatwg.org/#formdata
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#abortsignal
https://xhr.spec.whatwg.org/#formdata
https://webidl.spec.whatwg.org/#idl-promise

usual behavior; false otherwise.
Generally speaking, this will be true whenever the current Documentp130 can have its URL rewrittenp947 to the destination URL,
except for in the case of cross-document "traversep954" navigations, where it will always be false.

event.userInitiatedp972

True if this navigation was due to a user clicking on an ap257 element, submitting a formp514 element, or using the browser UIp1069

to navigate; false otherwise.

event.hashChangep972

True for a fragment navigationp1021; false otherwise.

event.signalp972

An AbortSignal which will become aborted if the navigation gets canceled, e.g., by the user pressing their browser's "Stop"
button, or by another navigation interrupting this one.
The expected pattern is for developers to pass this along to any async operations, such as fetch(), which they perform as part
of handling this navigation.

event.formDatap972

The FormData representing the submitted form entries for this navigation, if this navigation is a "pushp953" or "replacep953"
navigation representing a POST form submissionp629; null otherwise.
(Notably, this will be null even for "reloadp954" or "traversep954" navigations that are revisiting a session history entryp1005 that
was originally created from a form submission.)

event.downloadRequestp972

Represents whether or not this navigation was requested to be a download, by using an ap257 or areap471 element's downloadp303

attribute:

• If a download was not requested, then this property is null.

• If a download was requested, returns the filename that was supplied as the downloadp303 attribute's value. (This could
be the empty string.)

Note that a download being requested does not always mean that a download will happen: for example, a download might be
blocked by browser security policies, or end up being treated as a "pushp1014" navigation for unspecified reasons .
Similarly, a navigation might end up being a download even if it was not requested to be one, due to the destination server
responding with a `Content-Disposition: attachment` header.
Finally, note that the navigatep1472 event will not fire at all for downloads initiated using browser UI affordances, e.g., those
created by right-clicking and choosing to save the target of a link.

event.infop972

An arbitrary JavaScript value passed via one of the navigation API methodsp959 which initiated this navigation, or undefined if
the navigation was initiated by the user or by a different API.

event.hasUAVisualTransitionp972

Returns true if the user agent performed a visual transition for this navigation before dispatching this event. If true, the best
user experience will be given if the author synchronously updates the DOM to the post-navigation state.

event.interceptp972({ handlerp970, focusResetp970, scrollp970 })
Intercepts this navigation, preventing its normal handling and instead converting it into a same-document navigation of the
same type to the destination URL.
The handlerp970 option can be a function that returns a promise. The handler function will run after the navigatep1472 event has
finished firing, and the navigation.currentEntryp958 property has been synchronously updated. This returned promise is used
to signal the duration, and success or failure, of the navigation. After it settles, the browser signals to the user (e.g., via a
loading spinner UI, or assistive technology) that the navigation is finished. Additionally, it fires navigatesuccessp1472 or
navigateerrorp1472 events as appropriate, which other parts of the web application can respond to.
By default, using this method will cause focus to reset when any handlers' returned promises settle. Focus will be reset to the
first element with the autofocusp848 attribute set, or the body elementp136 if the attribute isn't present. The focusResetp970

option can be set to "manualp970" to avoid this behavior.
By default, using this method will delay the browser's scroll restoration logic for "traversep954" or "reloadp954" navigations, or
its scroll-reset/scroll-to-a-fragment logic for "pushp953" or "replacep953" navigations, until any handlers' returned promises settle.
The scrollp970 option can be set to "manualp970" to turn off any browser-driven scroll behavior entirely for this navigation, or

971

https://dom.spec.whatwg.org/#abortsignal
https://fetch.spec.whatwg.org/#dom-global-fetch
https://xhr.spec.whatwg.org/#formdata
https://github.com/whatwg/html/issues/7718
https://httpwg.org/specs/rfc6266.html

Each NavigateEventp970 has an interception state, which is either "none", "intercepted", "committed", "scrolled", or "finished",
initially "none".

Each NavigateEventp970 has a navigation handler list, a list of NavigationInterceptHandlerp970 callbacks, initially empty.

Each NavigateEventp970 has a focus reset behavior, a NavigationFocusResetp970-or-null, initially null.

Each NavigateEventp970 has a scroll behavior, a NavigationScrollBehaviorp970-or-null, initially null.

Each NavigateEventp970 has an abort controller, an AbortController-or-null, initially null.

Each NavigateEventp970 has a classic history API state, a serialized statep1006 or null. It is only used in some cases where the event's
navigationTypep972 is "pushp953" or "replacep953", and is set appropriately when the event is fired.

The navigationType, destination, canIntercept, userInitiated, hashChange, signal, formData, downloadRequest, info, and
hasUAVisualTransition attributes must return the values they are initialized to.

The intercept(options) method steps are:

1. Perform shared checksp973 given this.

2. If this's canInterceptp972 attribute was initialized to false, then throw a "SecurityError" DOMException.

3. If this's dispatch flag is unset, then throw an "InvalidStateError" DOMException.

4. Assert: this's interception statep972 is either "none" or "intercepted".

5. Set this's interception statep972 to "intercepted".

6. If options["handlerp970"] exists, then append it to this's navigation handler listp972.

7. If options["focusResetp970"] exists, then:

1. If this's focus reset behaviorp972 is not null, and it is not equal to options["focusResetp970"], then the user agent
may report a warning to the console indicating that the focusResetp970 option for a previous call to
intercept()p972 was overridden by this new value, and the previous value will be ignored.

2. Set this's focus reset behaviorp972 to options["focusResetp970"].

8. If options["scrollp970"] exists, then:

1. If this's scroll behaviorp972 is not null, and it is not equal to options["scrollp970"], then the user agent may report a
warning to the console indicating that the scrollp970 option for a previous call to intercept()p972 was overridden
by this new value, and the previous value will be ignored.

2. Set this's scroll behaviorp972 to options["scrollp970"].

The scroll() method steps are:

1. Perform shared checksp973 given this.

2. If this's interception statep972 is not "committed", then throw an "InvalidStateError" DOMException.

scroll()p972 can be called before the promise settles to trigger this behavior early.
This method will throw a "SecurityError" DOMException if canInterceptp972 is false, or if isTrusted is false. It will throw an
"InvalidStateError" DOMException if not called synchronously, during event dispatch.

event.scrollp972()
For "traversep954" or "reloadp954" navigations, restores the scroll position using the browser's usual scroll restoration logic.
For "pushp953" or "replacep953" navigations, either resets the scroll position to the top of the document or scrolls to the fragment
specified by destination.urlp974 if there is one.
If called more than once, or called after automatic post-transition scroll processing has happened due to the scrollp970 option
being left as "after-transitionp970", or called before the navigation has committed, this method will throw an
"InvalidStateError" DOMException.

972

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#dom-event-istrusted
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#abortcontroller
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#dispatch-flag
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

3. Process scroll behaviorp980 given this.

To perform shared checks for a NavigateEventp970 event:

1. If event's relevant global objectp1083 's associated Documentp923 is not fully activep1003, then throw an "InvalidStateError"
DOMException.

2. If event's isTrusted attribute was initialized to false, then throw a "SecurityError" DOMException.

3. If event's canceled flag is set, then throw an "InvalidStateError" DOMException.

[Exposed=Window]
interface NavigationDestination {

readonly attribute USVString url;
readonly attribute DOMString key;
readonly attribute DOMString id;
readonly attribute long long index;
readonly attribute boolean sameDocument;

any getState();
};

Each NavigationDestinationp973 has a URL, which is a URL.

Each NavigationDestinationp973 has an entry, which is a NavigationHistoryEntryp956 or null.

7.2.6.10.2 The NavigationDestinationp973 interface §p97

3

event.destinationp972.urlp974

The URL being navigated to.

event.destinationp972.keyp974

The value of the keyp957 property of the destination NavigationHistoryEntryp956, if this is a "traversep954" navigation, or the
empty string otherwise.

event.destinationp972.idp974

The value of the idp957 property of the destination NavigationHistoryEntryp956, if this is a "traversep954" navigation, or the
empty string otherwise.

event.destinationp972.indexp974

The value of the indexp957 property of the destination NavigationHistoryEntryp956, if this is a "traversep954" navigation, or −1
otherwise.

event.destinationp972.sameDocumentp974

Indicates whether or not this navigation is to the same Documentp130 as the current one, or not. This will be true, for example, in
the case of fragment navigations or history.pushState()p946 navigations.
Note that this property indicates the original nature of the navigation. If a cross-document navigation is converted into a same-
document navigation using navigateEvent.intercept()p972, that will not change the value of this property.

event.destinationp972.getStatep974()
For "traversep954" navigations, returns the deserializationp122 of the state stored in the destination session history entryp1005.
For "pushp953" or "replacep953" navigations, returns the deserializationp122 of the state passed to navigation.navigate()p960, if
the navigation was initiated by that method, or undefined it if it wasn't.
For "reloadp954" navigations, returns the deserializationp122 of the state passed to navigation.reload()p961, if the reload was
initiated by that method, or undefined it if it wasn't.

For web developers (non-normative)

It will be non-null if and only if the NavigationDestinationp973 corresponds to a "traversep954" navigation.
Note

IDL

973

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#dom-event-istrusted
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#canceled-flag
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url

Each NavigationDestinationp973 has a state, which is a serialized statep1006.

Each NavigationDestinationp973 has an is same document, which is a boolean.

The url getter steps are to return this's URLp973, serialized.

The key getter steps are:

1. If this's entryp973 is null, then return the empty string.

2. Return this's entryp973 's keyp957.

The id getter steps are:

1. If this's entryp973 is null, then return the empty string.

2. Return this's entryp973 's IDp957.

The index getter steps are:

1. If this's entryp973 is null, then return −1.

2. Return this's entryp973 's indexp957.

The sameDocument getter steps are to return this's is same documentp974.

The getState() method steps are to return StructuredDeserializep122(this's statep974).

Other parts of the standard fire the navigatep1472 event, through a series of wrapper algorithms given in this section.

To fire a traverse navigate event at a Navigationp952 navigation given a session history entryp1005 destinationSHE and an optional
user navigation involvementp1014 userInvolvement (default "nonep1014"):

1. Let event be the result of creating an event given NavigateEventp970, in navigation's relevant realmp1083.

2. Set event's classic history API statep972 to null.

3. Let destination be a new NavigationDestinationp973 created in navigation's relevant realmp1083.

4. Set destination's URLp973 to destinationSHE's URLp1005.

5. Let destinationNHE be the NavigationHistoryEntryp956 in navigation's entry listp953 whose session history entryp957 is
destinationSHE, or null if no such NavigationHistoryEntryp956 exists.

6. If destinationNHE is non-null, then:

1. Set destination's entryp973 to destinationNHE.

2. Set destination's statep974 to destinationSHE's navigation API statep1005.

7. Otherwise,

1. Set destination's entryp973 to null.

2. Set destination's statep974 to StructuredSerializeForStoragep122(null).

8. Set destination's is same documentp974 to true if destinationSHE's documentp1005 is equal to navigation's relevant global
objectp1083 's associated Documentp923; otherwise false.

9. Return the result of performing the inner navigate event firing algorithmp975 given navigation, "traversep954", event,
destination, userInvolvement, null, and null.

To fire a push/replace/reload navigate event at a Navigationp952 navigation given a NavigationTypep953 navigationType, a URL
destinationURL, a boolean isSameDocument, an optional user navigation involvementp1014 userInvolvement (default "nonep1014"),

7.2.6.10.3 Firing the event §p97

4

974

https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-event-create
https://webidl.spec.whatwg.org/#new
https://url.spec.whatwg.org/#concept-url

an optional entry listp632-or-null formDataEntryList (default null), an optional serialized statep1006 navigationAPIState (default
StructuredSerializeForStoragep122(null)), and an optional serialized statep1006-or-null classicHistoryAPIState (default null):

1. Let event be the result of creating an event given NavigateEventp970, in navigation's relevant realmp1083.

2. Set event's classic history API statep972 to classicHistoryAPIState.

3. Let destination be a new NavigationDestinationp973 created in navigation's relevant realmp1083.

4. Set destination's URLp973 to destinationURL.

5. Set destination's entryp973 to null.

6. Set destination's statep974 to navigationAPIState.

7. Set destination's is same documentp974 to isSameDocument.

8. Return the result of performing the inner navigate event firing algorithmp975 given navigation, navigationType, event,
destination, userInvolvement, formDataEntryList, and null.

To fire a download request navigate event at a Navigationp952 navigation given a URL destinationURL, a user navigation
involvementp1014 userInvolvement, and a string filename:

1. Let event be the result of creating an event given NavigateEventp970, in navigation's relevant realmp1083.

2. Set event's classic history API statep972 to null.

3. Let destination be a new NavigationDestinationp973 created in navigation's relevant realmp1083.

4. Set destination's URLp973 to destinationURL.

5. Set destination's entryp973 to null.

6. Set destination's statep974 to StructuredSerializeForStoragep122(null).

7. Set destination's is same documentp974 to false.

8. Return the result of performing the inner navigate event firing algorithmp975 given navigation, "pushp953", event, destination,
userInvolvement, null, and filename.

The inner navigate event firing algorithm consists of the following steps, given a Navigationp952 navigation, a NavigationTypep953

navigationType, a NavigateEventp970 event, a NavigationDestinationp973 destination, a user navigation involvementp1014

userInvolvement, an entry listp632-or-null formDataEntryList, and a string-or-null downloadRequestFilename:

1. If navigation has entries and events disabledp953, then:

1. Assert: navigation's ongoing API method trackerp964 is null.

2. Assert: navigation's upcoming non-traverse API method trackerp964 is null.

3. Assert: navigation's upcoming traverse API method trackersp964 is empty.

4. Return true.

2. Let destinationKey be null.

3. If destination's entryp973 is non-null, then set destinationKey to destination's entryp973 's keyp957.

4. Assert: destinationKey is not the empty string.

5. Promote an upcoming API method tracker to ongoingp966 given navigation and destinationKey.

6. Let apiMethodTracker be navigation's ongoing API method trackerp964.

7. Let navigable be navigation's relevant global objectp1083 's navigablep923.

These assertions holds because traverseTo()p962, back()p962, and forward()p962 will immediately fail when entries and
events are disabled (since there are no entries to traverse to), and if our starting point is instead navigate()p960 or
reload()p961, then we avoidedp965 setting the upcoming non-traverse API method trackerp964 in the first place.

Note

975

https://dom.spec.whatwg.org/#concept-event-create
https://webidl.spec.whatwg.org/#new
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-event-create
https://webidl.spec.whatwg.org/#new
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#assert

8. Let document be navigation's relevant global objectp1083 's associated Documentp923.

9. If document can have its URL rewrittenp947 to destination's URLp973, and either destination's is same documentp974 is true or
navigationType is not "traversep954", then initialize event's canInterceptp972 to true. Otherwise, initialize it to false.

10. Let traverseCanBeCanceled be true if all of the following are true:

◦ navigable is a top-level traversablep990;

◦ destination's is same documentp974 is true; and

◦ either userInvolvement is not "browser UIp1014", or navigation's relevant global objectp1083 has history-action
activationp830.

Otherwise, let it be false.

11. If either:

◦ navigationType is not "traversep954"; or

◦ traverseCanBeCanceled is true,

then initialize event's cancelable to true. Otherwise, initialize it to false.

12. Initialize event's type to "navigatep1472".

13. Initialize event's navigationTypep972 to navigationType.

14. Initialize event's destinationp972 to destination.

15. Initialize event's downloadRequestp972 to downloadRequestFilename.

16. If apiMethodTracker is not null, then initialize event's infop972 to apiMethodTracker's infop964. Otherwise, initialize it to
undefined.

17. Initialize event's hasUAVisualTransitionp972 to true if a visual transition, to display a cached rendered state of the
document's latest entryp1008, was done by the user agent. Otherwise, initialize it to false.

18. Set event's abort controllerp972 to a new AbortController created in navigation's relevant realmp1083.

19. Initialize event's signalp972 to event's abort controllerp972 's signal.

20. Let currentURL be document's URL.

21. If all of the following are true:

◦ event's classic history API statep972 is null;

◦ destination's is same documentp974 is true;

◦ destination's URLp973 equals currentURL with exclude fragments set to true; and

◦ destination's URLp973 's fragment is not identical to currentURL's fragment,

then initialize event's hashChangep972 to true. Otherwise, initialize it to false.

22. If userInvolvement is not "nonep1014", then initialize event's userInitiatedp972 to true. Otherwise, initialize it to false.

23. If formDataEntryList is not null, then initialize event's formDatap972 to a new FormData created in navigation's relevant
realmp1083, associated to formDataEntryList. Otherwise, initialize it to null.

24. Assert: navigation's ongoing navigate eventp964 is null.

At this point apiMethodTracker's infop964 is no longer needed and can be nulled out instead of keeping it alive for the
lifetime of the navigation API method trackerp964.

Note

The first condition here means that hashChangep972 will be true for fragment navigationsp1021, but false for cases like
history.pushState(undefined, "", "#fragment").

Note

976

https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-type
https://webidl.spec.whatwg.org/#new
https://dom.spec.whatwg.org/#abortcontroller
https://dom.spec.whatwg.org/#abortcontroller-signal
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-equals
https://url.spec.whatwg.org/#url-equals-exclude-fragments
https://url.spec.whatwg.org/#concept-url-fragment
https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#concept-url-fragment
https://webidl.spec.whatwg.org/#new
https://xhr.spec.whatwg.org/#formdata
https://infra.spec.whatwg.org/#assert

25. Set navigation's ongoing navigate eventp964 to event.

26. Set navigation's focus changed during ongoing navigationp964 to false.

27. Set navigation's suppress normal scroll restoration during ongoing navigationp964 to false.

28. Let dispatchResult be the result of dispatching event at navigation.

29. If dispatchResult is false:

1. If navigationType is "traversep954", then consume history-action user activationp831 given navigation's relevant
global objectp1083.

2. If event's abort controllerp972 's signal is not aborted, then abort the ongoing navigationp967 given navigation.

3. Return false.

30. Let endResultIsSameDocument be true if event's interception statep972 is not "none" or event's destinationp972 's is same
documentp974 is true.

31. Prepare to run scriptp1097 given navigation's relevant settings objectp1083.

32. If event's interception statep972 is not "none":

1. Set event's interception statep972 to "committed".

2. Let fromNHE be the current entryp953 of navigation.

3. Assert: fromNHE is not null.

4. Set navigation's transitionp968 to a new NavigationTransitionp968 created in navigation's relevant realmp1083,
whose navigation typep968 is navigationType, whose from entryp968 is fromNHE, and whose finished promisep968 is a
new promise created in navigation's relevant realmp1083.

5. Mark as handled navigation's transitionp968 's finished promisep968.

6. If navigationType is "traversep954", then set navigation's suppress normal scroll restoration during ongoing
navigationp964 to true.

7. If navigationType is "pushp953" or "replacep953", then run the URL and history update stepsp1028 given document and
event's destinationp972 's URLp974, with serialiedDatap1028 set to event's classic history API statep972 and
historyHandlingp1028 set to navigationType.

This is done to avoid the JavaScript execution context stack becoming empty right after any currententrychangep1471

event handlers run as a result of the URL and history update stepsp1028 that could soon happen. If the stack were to
become empty at that time, then it would immediately perform a microtask checkpointp1131, causing various promise
fulfillment handlers to run interleaved with the event handlers and before any handlers passed to
navigateEvent.intercept()p972. This is undesirable since it means promise handler ordering vs.
currententrychangep1471 event handler ordering vs. intercept()p972 handler ordering would be dependent on whether
the navigation is happening with an empty JavaScript execution context stack (e.g., because the navigation was user-
initiated) or with a nonempty one (e.g., because the navigation was caused by a JavaScript API call).

By inserting an otherwise-unnecessary JavaScript execution context onto the stack in this step, we essentially suppress
the perform a microtask checkpointp1131 algorithm until later, thus ensuring that the sequence is always:
currententrychangep1471 event handlers, then intercept()p972 handlers, then promise handlers.

Note

See the discussion about other finished promisesp965 to understand why this is done.
Note

If event's scroll behaviorp972 was set to "after-transitionp970", then scroll restoration will happen as part of
finishingp979 the relevant NavigateEventp970. Otherwise, there will be no scroll restoration. That is, no
navigation which is intercepted by intercept()p972 goes through the normal scroll restoration process; scroll
restoration for such navigations is either done manually, by the web developer, or is done after the transition.

Note

977

https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#abortcontroller-signal
https://dom.spec.whatwg.org/#abortsignal-aborted
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-execution-contexts
https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#mark-a-promise-as-handled

33. If endResultIsSameDocument is true:

1. Let promisesList be an empty list.

2. For each handler of event's navigation handler listp972:

1. Append the result of invoking handler with an empty arguments list to promisesList.

3. If promisesList's size is 0, then set promisesList to « a promise resolved with undefined ».

4. Wait for all of promisesList, with the following success steps:

1. If event's relevant global objectp1083 is not fully activep1003, then abort these steps.

2. If event's abort controllerp972 's signal is aborted, then abort these steps.

3. Assert: event equals navigation's ongoing navigate eventp964.

4. Set navigation's ongoing navigate eventp964 to null.

5. Finishp979 event given true.

6. Fire an event named navigatesuccessp1472 at navigation.

7. If apiMethodTracker is non-null, then resolve the finished promisep967 for apiMethodTracker.

8. If navigation's transitionp968 is not null, then resolve navigation's transitionp968 's finished promisep968 with
undefined.

9. Set navigation's transitionp968 to null.

and the following failure steps given reason rejectionReason:

1. If event's relevant global objectp1083 is not fully activep1003, then abort these steps.

2. If event's abort controllerp972 's signal is aborted, then abort these steps.

3. Assert: event equals navigation's ongoing navigate eventp964.

4. Set navigation's ongoing navigate eventp964 to null.

5. Finishp979 event given false.

6. Let errorInfo be the result of extracting error informationp1098 from rejectionReason.

7. Fire an event named navigateerrorp1472 at navigation using ErrorEventp1099, with additional attributes
initialized according to errorInfo.

8. If apiMethodTracker is non-null, then reject the finished promisep967 for apiMethodTracker with
rejectionReason.

9. If navigation's transitionp968 is not null, then reject navigation's transitionp968 's finished promisep968 with

If navigationType is "reloadp954", then we are converting a reloadp1027 into a "same-document reload", for
which the URL and history update stepsp1028 are not appropriate. Navigation API-related stuff still happens,
such as updating the active session history entryp989 's navigation API statep1005 if this was caused by a call to
navigation.reload()p961, and all the ongoing navigation trackingp963.

If navigationType is "traversep954", then this event firing is happening as part of the traversal processp1040, and
that process will take care of performing the appropriate session history entry updates.

Note

There is a subtle timing difference between how waiting for all schedules its success and failure steps when
given zero promises versus ≥1 promises. For most uses of waiting for all, this does not matter. However, with
this API, there are so many events and promise handlers which could fire around the same time that the
difference is pretty easily observable: it can cause the event/promise handler sequence to vary. (Some of the
events and promises involved include: navigatesuccessp1472 / navigateerrorp1472, currententrychangep1471,
disposep1471, apiMethodTracker's promises, and the navigation.transition.finishedp969 promise.)

Note

978

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#a-promise-resolved-with
https://webidl.spec.whatwg.org/#wait-for-all
https://webidl.spec.whatwg.org/#wait-for-all
https://webidl.spec.whatwg.org/#wait-for-all
https://dom.spec.whatwg.org/#abortcontroller-signal
https://dom.spec.whatwg.org/#abortsignal-aborted
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#abortcontroller-signal
https://dom.spec.whatwg.org/#abortsignal-aborted
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-event-fire

rejectionReason.

10. Set navigation's transitionp968 to null.

34. Otherwise, if apiMethodTracker is non-null, then clean upp966 apiMethodTracker.

35. Clean up after running scriptp1097 given navigation's relevant settings objectp1083.

36. If event's interception statep972 is "none", then return true.

37. Return false.

By calling navigateEvent.intercept()p972, web developers can suppress the normal scroll and focus behavior for same-document
navigations, instead invoking cross-document navigation-like behavior at a later time. The algorithms in this section are called at those
appropriate later points.

To finish a NavigateEventp970 event, given a boolean didFulfill:

1. Assert: event's interception statep972 is not "intercepted" or "finished".

2. If event's interception statep972 is "none", then return.

3. Potentially reset the focusp979 given event.

4. If didFulfill is true, then potentially process scroll behaviorp979 given event.

5. Set event's interception statep972 to "finished".

To potentially reset the focus given a NavigateEventp970 event:

1. Assert: event's interception statep972 is "committed" or "scrolled".

2. Let navigation be event's relevant global objectp1083 's navigation APIp952.

3. Let focusChanged be navigation's focus changed during ongoing navigationp964.

4. Set navigation's focus changed during ongoing navigationp964 to false.

5. If focusChanged is true, then return.

6. If event's focus reset behaviorp972 is "manualp970", then return.

7. Let document be event's relevant global objectp1083 's associated Documentp923.

8. Let focusTarget be the autofocus delegatep841 for document.

9. If focusTarget is null, then set focusTarget to document's body elementp136.

10. If focusTarget is null, then set focusTarget to document's document element.

11. Run the focusing stepsp842 for focusTarget, with document's viewport as the fallback target.

12. Move the sequential focus navigation starting pointp844 to focusTarget.

To potentially process scroll behavior given a NavigateEventp970 event:

1. Assert: event's interception statep972 is "committed" or "scrolled".

Per the previous notep977, this stops suppressing any potential promise handler microtasks, causing them to run at this
point or later.

Note

7.2.6.10.4 Scroll and focus behavior §p97

9

If it was left as null, then we treat that as "after-transitionp970", and continue onward.
Note

979

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#document-element
https://drafts.csswg.org/css2/#viewport
https://infra.spec.whatwg.org/#assert

2. If event's interception statep972 is "scrolled", then return.

3. If event's scroll behaviorp972 is "manualp970", then return.

4. Process scroll behaviorp980 given event.

To process scroll behavior given a NavigateEventp970 event:

1. Assert: event's interception statep972 is "committed".

2. Set event's interception statep972 to "scrolled".

3. If event's navigationTypep972 was initialized to "traversep954" or "reloadp954", then restore scroll position datap1055 given
event's relevant global objectp1083 's navigablep923 's active session history entryp989.

4. Otherwise:

1. Let document be event's relevant global objectp1083 's associated Documentp923.

2. If document's indicated partp1054 is null, then scroll to the beginning of the document given document.
[CSSOMVIEW]p1477

3. Otherwise, scroll to the fragmentp1054 given document.

[Exposed=Window]
interface NavigationCurrentEntryChangeEvent : Event {

constructor(DOMString type, NavigationCurrentEntryChangeEventInit eventInitDict);

readonly attribute NavigationType? navigationType;
readonly attribute NavigationHistoryEntry from;

};

dictionary NavigationCurrentEntryChangeEventInit : EventInit {
NavigationType? navigationType = null;
required NavigationHistoryEntry from;

};

The navigationType and from attributes must return the values they were initialized to.

If it was left as null, then we treat that as "after-transitionp970", and continue onward.
Note

The NavigateEventp970 interface has its own dedicated sectionp969, due to its complexity.
Note

7.2.7.1 The NavigationCurrentEntryChangeEventp980 interface §p98

0

event.navigationTypep980

Returns the type of navigation which caused the current entry to change, or null if the change is due to
navigation.updateCurrentEntry()p958.

event.fromp980

Returns the previous value of navigation.currentEntryp958, before the current entry changed.
If navigationTypep980 is null or "reloadp954", then this value will be the same as navigation.currentEntryp958. In that case,
the event signifies that the contents of the entry changed, even if we did not move to a new entry or replace the current one.

For web developers (non-normative)

IDL

7.2.7 Event interfaces §p98

0

980

https://infra.spec.whatwg.org/#assert
https://drafts.csswg.org/cssom-view/#scroll-to-the-beginning-of-the-document
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit

[Exposed=Window]
interface PopStateEvent : Event {

constructor(DOMString type, optional PopStateEventInit eventInitDict = {});

readonly attribute any state;
readonly attribute boolean hasUAVisualTransition;

};

dictionary PopStateEventInit : EventInit {
any state = null;
boolean hasUAVisualTransition = false;

};

The state attribute must return the value it was initialized to. It represents the context information for the event, or null, if the state
represented is the initial state of the Documentp130.

The hasUAVisualTransition attribute must return the value it was initialized to.

[Exposed=Window]
interface HashChangeEvent : Event {

constructor(DOMString type, optional HashChangeEventInit eventInitDict = {});

readonly attribute USVString oldURL;
readonly attribute USVString newURL;

};

dictionary HashChangeEventInit : EventInit {
USVString oldURL = "";
USVString newURL = "";

};

The oldURL attribute must return the value it was initialized to. It represents context information for the event, specifically the URL of
the session history entryp1005 that was traversed from.

The newURL attribute must return the value it was initialized to. It represents context information for the event, specifically the URL of
the session history entryp1005 that was traversed to.

7.2.7.2 The PopStateEventp981 interface §p98

1

event.statep981

Returns a copy of the information that was provided to pushState()p946 or replaceState()p946.

event.hasUAVisualTransitionp981

Returns true if the user agent performed a visual transition for this navigation before dispatching this event. If true, the best
user experience will be given if the author synchronously updates the DOM to the post-navigation state.

For web developers (non-normative)

7.2.7.3 The HashChangeEventp981 interface §p98

1

event.oldURLp981

Returns the URL of the session history entryp1005 that was previously current.

event.newURLp981

Returns the URL of the session history entryp1005 that is now current.

For web developers (non-normative)

IDL

IDL

✔ MDN

✔ MDN

981

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

[Exposed=Window]
interface PageSwapEvent : Event {

constructor(DOMString type, optional PageSwapEventInit eventInitDict = {});
readonly attribute NavigationActivation? activation;
readonly attribute ViewTransition? viewTransition;

};

dictionary PageSwapEventInit : EventInit {
NavigationActivation? activation = null;
ViewTransition? viewTransition = null;

};

The activation and viewTransition attributes must return the values they were initialized to.

[Exposed=Window]
interface PageRevealEvent : Event {

constructor(DOMString type, optional PageRevealEventInit eventInitDict = {});
readonly attribute ViewTransition? viewTransition;

};

dictionary PageRevealEventInit : EventInit {
ViewTransition? viewTransition = null;

};

The viewTransition attribute must return the value it was initialized to.

7.2.7.4 The PageSwapEventp982 interface §p98

2

event.activationp982

A NavigationActivationp969 object representing the destination and type of the cross-document navigation. This would be null
for cross-origin navigations.

event.activationp982.entryp969

A NavigationHistoryEntryp956, representing the Documentp130 that is about to become active.

event.activationp982.fromp969

A NavigationHistoryEntryp956, equivalent to the value of the navigation.currentEntryp958 property at the moment the
event is fired.

event.activationp982.navigationTypep969

One of "pushp953", "replacep953", "reloadp954", or "traversep954", indicating what type of navigation that is about to result in a
page swap.

event.viewTransitionp982

Returns the ViewTransition object that represents an outbound cross-document view transition, if such transition is active
when the event is fired. Otherwise, returns null.

For web developers (non-normative)

7.2.7.5 The PageRevealEventp982 interface §p98

2

event.viewTransitionp982

Returns the ViewTransition object that represents an inbound cross-document view transition, if such transition is active when
the event is fired. Otherwise, returns null.

For web developers (non-normative)

IDL

IDL

982

https://dom.spec.whatwg.org/#interface-event
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://dom.spec.whatwg.org/#dictdef-eventinit
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://dom.spec.whatwg.org/#interface-event
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://dom.spec.whatwg.org/#dictdef-eventinit
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://drafts.csswg.org/css-view-transitions/#viewtransition

[Exposed=Window]
interface PageTransitionEvent : Event {

constructor(DOMString type, optional PageTransitionEventInit eventInitDict = {});

readonly attribute boolean persisted;
};

dictionary PageTransitionEventInit : EventInit {
boolean persisted = false;

};

The persisted attribute must return the value it was initialized to. It represents the context information for the event.

To fire a page transition event named eventName at a Windowp922 window with a boolean persisted, fire an event named
eventName at window, using PageTransitionEventp983, with the persistedp983 attribute initialized to persisted, the cancelable
attribute initialized to true, the bubbles attribute initialized to true, and legacy target override flag set.

[Exposed=Window]
interface BeforeUnloadEvent : Event {

attribute DOMString returnValue;
};

The BeforeUnloadEventp983 interface is a legacy interface which allows checking if unloading is canceledp1025 to be controlled not only
by canceling the event, but by setting the returnValuep983 attribute to a value besides the empty string. Authors should use the
preventDefault() method, or other means of canceling events, instead of using returnValuep983.

The returnValue attribute controls the process of checking if unloading is canceledp1025. When the event is created, the attribute must
be set to the empty string. On getting, it must return the last value it was set to. On setting, the attribute must be set to the new
value.

7.2.7.6 The PageTransitionEventp983 interface §p98

3

event.persistedp983

For the pageshowp1472 event, returns false if the page is newly being loaded (and the loadp1471 event will fire). Otherwise, returns
true.
For the pagehidep1472 event, returns false if the page is going away for the last time. Otherwise, returns true, meaning that the
page might be reused if the user navigates back to this page (if the Documentp130 's salvageablep1064 state stays true).
Things that can cause the page to be unsalvageable include:

• The user agent decided to not keep the Documentp130 alive in a session history entryp1005 after unloadp1064

• Having iframep390s that are not salvageablep1064

• Active WebSocket objects

• Aborting a Documentp1067

For web developers (non-normative)

The values for cancelable and bubbles don't make any sense, since canceling the event does nothing and it's not possible to
bubble past the Windowp922 object. They are set to true for historical reasons.

Note

7.2.7.7 The BeforeUnloadEventp983 interface §p98

3

There are no BeforeUnloadEventp983-specific initialization methods.
Note

IDL

IDL

✔ MDN

✔ MDN

983

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit
https://websockets.spec.whatwg.org/#websocket
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dom-event-preventdefault

[Exposed=Window]
interface NotRestoredReasonDetails {

readonly attribute DOMString reason;
[Default] object toJSON();

};

[Exposed=Window]
interface NotRestoredReasons {

readonly attribute DOMString? src;
readonly attribute DOMString? id;
readonly attribute DOMString? name;
readonly attribute DOMString? url;
readonly attribute FrozenArray<NotRestoredReasonDetails>? reasons;
readonly attribute FrozenArray<NotRestoredReasons>? children;
[Default] object toJSON();

};

A NotRestoredReasonDetailsp984 object has a backing struct, a not restored reason detailsp985 or null, initially null.

The reason getter steps are to return this's backing structp984 's reasonp985.

To create a NotRestoredReasonDetails object given a not restored reason detailsp985 backingStruct and a realm realm:

1. Let notRestoredReasonDetails be a new NotRestoredReasonDetailsp984 object created in realm.

2. Set notRestoredReasonDetails's backing structp984 to backingStruct.

This attribute is a DOMString only for historical reasons. Any value besides the empty string will be treated as a request to ask the
user for confirmation.

Note

notRestoredReasonDetails.reasonp984

Returns a string that explains the reason that prevented the document from being served from back/forward cachep1006. See the
definition of bfcache blocking detailsp131 for the possible string values.

notRestoredReasons.srcp987

Returns the srcp391 attribute of the document's node navigablep989 's containerp991 if it is an iframep390 element. This can be null
if not set or if it is not an iframep390 element.

notRestoredReasons.idp987

Returns the idp154 attribute of the document's node navigablep989 's containerp991 if it is an iframep390 element. This can be null if
not set or if it is not an iframep390 element.

notRestoredReasons.namep987

Returns the namep395 attribute of the document's node navigablep989 's containerp991 if it is an iframep390 element. This can be null
if not set or if it is not an iframep390 element.

notRestoredReasons.urlp987

Returns the document's URL, or null if the document is in a cross-origin iframep390. This is reported in addition to srcp987

because it is possible iframep390 navigated since the original srcp391 was set.

notRestoredReasons.reasonsp987

Returns an array of NotRestoredReasonDetailsp984 for the document. This is null if the document is in a cross-origin iframep390.

notRestoredReasons.childrenp987

Returns an array of NotRestoredReasonsp984 that are for the document’s children. This is null if the document is in a cross-origin
iframep390.

For web developers (non-normative)

IDL

7.2.8 The NotRestoredReasonsp984 interface §p98

4

984

https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#this
https://tc39.es/ecma262/#sec-code-realms

3. Return notRestoredReasonDetails.

A not restored reason details is a struct with the following items:

• reason, a string, initially empty.

The reasonp985 is a string that represents the reason that prevented the page from being restored from back/forward cachep1006. The
string is one of the following:

"fetch"
While unloadingp1064, a fetch initiated by this Documentp130 was still ongoing and was canceled, so the page was not in a state that
could be stored in the back/forward cachep1006.

"navigation-failure"
The original navigation that created this Documentp130 errored, so storing the resulting error document in the back/forward cachep1006

was prevented.

"parser-aborted"
The Documentp130 never finished its initial HTML parsing, so storing the unfinished document in the back/forward cachep1006 was
prevented.

"websocket"
While unloadingp1064, an open WebSocket connection was shut down, so the page was not in a state that could be stored in the back/
forward cachep1006. [WEBSOCKETS]p1484

"lock"
While unloadingp1064, held locks and lock requests were terminated, so the page was not in a state that could be stored in the back/
forward cachep1006. [WEBLOCKS]p1484

"masked"
This Documentp130 has children that are in a cross-origin iframep390, and they prevented back/forward cachep1006; or this Documentp130

could not be back/forward cachedp1006 for user agent-specific reasons, and the user agent has chosen not to use one of the more
specific reasons from the list of user-agent specific blocking reasonsp985.

In addition to the list above, a user agent might choose to expose a reason that prevented the page from being restored from back/
forward cache for user-agent specific blocking reasons. These are one of the following strings:

"audio-capture"
The Documentp130 requested audio capture permission by using Media Capture and Streams's getUserMedia() with audio.
[MEDIASTREAM]p1480

"background-work"
The Documentp130 requested background work by calling SyncManager's register() method, PeriodicSyncManager's register()
method, or BackgroundFetchManager's fetch() method.

"broadcastchannel-message"
While the page was stored in back/forward cachep1006, a BroadcastChannelp1209 connection on the page received a message and
messagep1471 event was fired.

"idbversionchangeevent"
The Documentp130 had a pending IDBVersionChangeEvent while unloadingp1064. [INDEXEDDB]p1478

"idledetector"
The Documentp130 had an active IdleDetector while unloadingp1064.

"keyboardlock"
While unloadingp1064, keyboard lock was still active because Keyboard's lock() method was called.

"mediastream"
A MediaStreamTrack was in the live state upon unloadingp1064. [MEDIASTREAM]p1480

"midi"
The Documentp130 requested a MIDI permission by calling navigator.requestMIDIAccess().

"modals"
User promptsp1167 were shown while unloadingp1064.

985

https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://websockets.spec.whatwg.org/#websocket
https://w3c.github.io/web-locks/#lock-concept
https://w3c.github.io/web-locks/#lock-request
http://0.0.0.0:8080/note-bfcache
http://0.0.0.0:8080/note-bfcache
https://w3c.github.io/mediacapture-main/getusermedia.html#dom-mediadevices-getusermedia
https://wicg.github.io/background-sync/spec/#syncmanager
https://wicg.github.io/background-sync/spec/#dom-syncmanager-register
https://wicg.github.io/periodic-background-sync/#periodicsyncmanager
https://wicg.github.io/periodic-background-sync/#dom-periodicsyncmanager-register
https://wicg.github.io/background-fetch/#backgroundfetchmanager
https://wicg.github.io/background-fetch/#dom-backgroundfetchmanager-fetch
https://w3c.github.io/IndexedDB/#idbversionchangeevent
https://wicg.github.io/idle-detection/#idledetector
https://wicg.github.io/keyboard-lock/#keyboard
https://wicg.github.io/keyboard-lock/#dom-keyboard-lock
https://w3c.github.io/mediacapture-main/getusermedia.html#mediastreamtrack
https://w3c.github.io/mediacapture-main/getusermedia.html#idl-def-MediaStreamTrackState.live
https://webaudio.github.io/web-midi-api/#dom-navigator-requestmidiaccess

"navigating"
While unloadingp1064, loading was still ongoing, and so the Documentp130 was not in a state that could be stored in back/forward
cachep1006.

"navigation-canceled"
The navigation request was canceled by calling window.stop()p928 and the page was not in a state to be stored in back/forward
cache.

"non-trivial-browsing-context-group"
The browsing context groupp1002 of this Documentp130 had more than one top-level browsing contextp1001.

"otpcredential"
The Documentp130 created an OTPCredential.

"outstanding-network-request"
While unloadingp1064, the Documentp130 had outstanding network requests and was not in a state that could be stored in back/forward
cachep1006.

"paymentrequest"
The Documentp130 had an active PaymentRequest while unloadingp1064. [PAYMENTREQUEST]p1480

"pictureinpicturewindow"
The Documentp130 had an active PictureInPictureWindow while unloadingp1064. [PICTUREINPICTURE]p1480

"plugins"
The Documentp130 contained pluginsp47.

"request-method-not-get"
The Documentp130 was created from an HTTP request whose method was not `GET`. [FETCH]p1478

"response-auth-required"
The Documentp130 was created from an HTTP response that required HTTP authentication.

"response-cache-control-no-store"
The Documentp130 was created from an HTTP response whose `Cache-Control` header included the "no-store" token. [HTTP]p1478

"response-cache-control-no-cache"
The Documentp130 was created from an HTTP response whose `Cache-Control` header included the "no-cache" token. [HTTP]p1478

"response-keep-alive"
The Documentp130 was created from an HTTP response that contained a `Keep-Alive` header.

"response-scheme-not-http-or-https"
The Documentp130 was created from a response whose URL's scheme was not an HTTP(S) scheme. [FETCH]p1478

"response-status-not-ok"
The Documentp130 was created from an HTTP response whose status was not an ok status. [FETCH]p1478

"rtc"
While unloadingp1064, a RTCPeerConnection or RTCDataChannel was shut down, so the page was not in a state that could be stored
in the back/forward cachep1006. [WEBRTC]p1484

"sensors"
The Documentp130 requested sensor access.

"serviceworker-added"
The Documentp130 's service worker client started to be controlled by a ServiceWorker while the page was in back/forward cachep1006.
[SW]p1482

"serviceworker-claimed"
The Documentp130 's service worker client's active service workerp1076 was claimed while the page was in back/forward cachep1006.
[SW]p1482

"serviceworker-postmessage"
The Documentp130 's service worker client's active service workerp1076 received a message while the page was in back/forward
cachep1006. [SW]p1482

986

http://0.0.0.0:8080/note-bfcache
http://0.0.0.0:8080/note-bfcache
https://wicg.github.io/web-otp/#otpcredential
https://w3c.github.io/payment-request/#dom-paymentrequest
https://w3c.github.io/picture-in-picture/#pictureinpicturewindow
https://fetch.spec.whatwg.org/#concept-request-method
https://httpwg.org/specs/rfc7234.html#header.cache-control
https://httpwg.org/specs/rfc7234.html#header.cache-control
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://w3c.github.io/webrtc-pc/#dom-rtcpeerconnection
https://w3c.github.io/webrtc-pc/#dom-rtcdatachannel
https://w3c.github.io/sensors/#request-sensor-access
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/ServiceWorker/#dfn-control
https://w3c.github.io/ServiceWorker/#serviceworker
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client

"serviceworker-version-activated"
The Documentp130 's service worker client's active service workerp1076 's version was activated while the page was in back/forward
cachep1006. [SW]p1482

"serviceworker-unregistered"
The Documentp130 's service worker client's active service workerp1076 's service worker registration was unregistered while the page
was in back/forward cachep1006. [SW]p1482

"sharedworker"
This Documentp130 was in the owner setp1228 of a SharedWorkerGlobalScopep1230.

"smartcardconnection"
The Documentp130 had an active SmartCardConnection while unloadingp1064.

"speechrecognition"
The Documentp130 had an active SpeechRecognition while unloadingp1064.

"storageaccess"
The Documentp130 requested storage access permission by using the Storage Access API.

"unload-listener"
The Documentp130 registered an event listener for the unloadp1472 event.

"video-capture"
The Documentp130 requested video capture permission by using Media Capture and Streams's getUserMedia() with video.
[MEDIASTREAM]p1480

"webhid"
The Documentp130 called the WebHID API's requestDevice() method.

"webshare"
The Documentp130 used the Web Share API's navigator.share() method.

"webtransport"
While unloadingp1064, an open WebTransport connection was shut down, so the page was not in a state that could be stored in the
back/forward cachep1006. [WEBTRANSPORT]p1484

"webxrdevice"
The Documentp130 created a XRSystem.

A NotRestoredReasonsp984 object has a backing struct, a not restored reasonsp988 or null, initially null.

A NotRestoredReasonsp984 object has a reasons array, a FrozenArray<NotRestoredReasonDetailsp984> or null, initially null.

A NotRestoredReasonsp984 object has a children array, a FrozenArray<NotRestoredReasonsp984> or null, initially null.

The src getter steps are to return this's backing structp987 's srcp988.

The id getter steps are to return this's backing structp987 's idp988.

The name getter steps are to return this's backing structp987 's namep988.

The url getter steps are:

1. If this's backing structp987 's URLp988 is null, then return null.

2. Return this's backing structp987 's URLp988, serialized.

The reasons getter steps are to return this's reasons arrayp987.

The children getter steps are to return this's children arrayp987.

To create a NotRestoredReasons object given a not restored reasonsp988 backingStruct and a realm realm:

1. Let notRestoredReasons be a new NotRestoredReasonsp984 object created in realm.

987

https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/service-workers/#dfn-service-worker-registration
https://w3c.github.io/service-workers/#navigator-service-worker-unregister
https://wicg.github.io/web-smart-card/#dom-smartcardconnection
https://wicg.github.io/speech-api/#speechrecognition
https://dom.spec.whatwg.org/#concept-event-listener
https://w3c.github.io/mediacapture-main/getusermedia.html#dom-mediadevices-getusermedia
https://wicg.github.io/webhid/#requestdevice-method
https://w3c.github.io/web-share/#share-method
https://w3c.github.io/webtransport/#webtransport
https://immersive-web.github.io/webxr/#xrsystem
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://tc39.es/ecma262/#sec-code-realms

2. Set notRestoredReasons's backing structp987 to backingStruct.

3. If backingStruct's reasonsp988 is null, set notRestoredReasons's reasons arrayp987 to null.

4. Otherwise:

1. Let reasonsArray be an empty list.

2. For each reason of backingStruct's reasonsp988:

1. Create a NotRestoredReasonDetails objectp984 given reason and realm, and append it to reasonsArray.

3. Set notRestoredReasons's reasons arrayp987 to the result of creating a frozen array given reasonsArray.

5. If backingStruct's childrenp988 is null, set notRestoredReasons's children arrayp987 to null.

6. Otherwise:

1. Let childrenArray be an empty list.

2. For each child of backingStruct's childrenp988:

1. Create a NotRestoredReasons objectp987 given child and realm and append it to childrenArray.

3. Set notRestoredReasons's children arrayp987 to the result of creating a frozen array given childrenArray.

7. Return notRestoredReasons.

A not restored reasons is a struct with the following items:

• src, a string or null, initially null.

• id, a string or null, initially null.

• name, a string or null, initially null.

• url, a URL or null, initially null.

• reasons, null or a list of not restored reason detailsp985, initially null.

• children, null or a list of not restored reasonsp988, initially null.

A Document's not restored reasons is its node navigablep989 's active session history entryp989 's document statep1005 's not restored
reasonsp1007, if Documentp130 's node navigablep989 is a top-level traversablep990; otherwise null.

This standard contains several related concepts for grouping sequences of documents. As a brief, non-normative summary:

• Navigablesp989 are a user-facing representation of a sequence of documents, i.e., they represent something that can be
navigated between documents. Typical examples are tabs or windows in a web browser, or iframep390s, or framep1433s in a
framesetp1433.

• Traversable navigablesp990 are a special type of navigable which control the session history of themselves and of their
descendant navigables. That is, in addition to their own series of documents, they represent a tree of further series of
documents, plus the ability to linearly traverse back and forward through a flattened view of this tree.

• Browsing contextsp998 are a developer-facing representation of a series of documents. They correspond 1:1 with
WindowProxyp934 objects. Each navigable can present a series of browsing contexts, with switchesp905 between those
browsing contexts occuring under certain well-defined circumstances.

Most of this standard works in the language of navigables, but certain APIs expose the existence of browsing context switches, and so
some parts of the standard need to work in terms of browsing contexts.

7.3 Infrastructure for sequences of documents §p98

8

988

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#dfn-create-frozen-array
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#dfn-create-frozen-array
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list

A navigable presents a Documentp130 to the user via its active session history entryp989. Each navigable has:

• An id, a new unique internal valuep96.

• A parent, a navigablep989 or null.

• A current session history entry, a session history entryp1005.

This can only be modified within the session history traversal queuep990 of the parent traversable navigablep990.

• An active session history entry, a session history entryp1005.

This can only be modified from the event loop of the active session history entryp989 's documentp1005.

• An is closing boolean, initially false.

• An is delaying load events boolean, initially false.

The current session history entryp989 and the active session history entryp989 are usually the same, but they get out of sync when:

• Synchronous navigations are performed. This causes the active session history entryp989 to temporarily step ahead of the
current session history entryp989.

• A non-displayable, non-error response is received when applying the history stepp1041. This updates the current session
history entryp989 but leaves the active session history entryp989 as-is.

A navigablep989 's active document is its active session history entryp989 's documentp1005.

A navigablep989 's active browsing context is its active documentp989 's browsing contextp999. If this navigablep989 is a traversable
navigablep990, then its active browsing contextp989 will be a top-level browsing contextp1001.

A navigablep989 's active WindowProxy is its active browsing contextp989 's associated WindowProxyp934.

A navigablep989 's active window is its active WindowProxyp989 's [[Window]]p934.

A navigablep989 's target name is its active session history entryp989 's document statep1005 's navigable target namep1007.

To get the node navigable of a node node, return the navigablep989 whose active documentp989 is node's node document, or null if
there is no such navigablep989.

To initialize the navigable navigablep989 navigable, given a document statep1006 documentState and an optional navigablep989-or-null
parent (default null):

1. Assert: documentState's documentp1006 is non-null.

This is only ever set to true for top-level traversable navigablesp990.
Note

This is only ever set to true in cases where the navigable's parentp989 is non-null.
Note

This can be safely read from within the session history traversal queuep990 of the navigable's top-level traversablep990. Although a
navigablep989 's active history entryp989 can change synchronously, the new entry will always have the same Documentp130.

Note

This will always equal the navigable's active documentp989 's relevant global objectp1083; this is kept in sync by the make activep1051

algorithm.

Note

7.3.1 Navigables §p98

9

989

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert

2. Let entry be a new session history entryp1005, with
URLp1005

documentState's documentp1006 's URL
document statep1005

documentState

3. Set navigable's current session history entryp989 to entry.

4. Set navigable's active session history entryp989 to entry.

5. Set navigable's parentp989 to parent.

A traversable navigable is a navigablep989 that also controls which session history entryp1005 should be the current session history
entryp989 and active session history entryp989 for itself and its descendant navigablesp989.

In addition to the properties of a navigablep989, a traversable navigablep990 has:

• A current session history step, a number, initially 0.

• Session history entries, a list of session history entriesp1005, initially a new list.

• A session history traversal queue, a session history traversal parallel queuep1008, the result of starting a new session
history traversal parallel queuep1008.

• A running nested apply history step boolean, initially false.

• A system visibility state, which is either "hidden" or "visible".

See the page visibilityp826 section for the requirements on this item.

To get the traversable navigable of a navigablep989 inputNavigable:

1. Let navigable be inputNavigable.

2. While navigable is not a traversable navigablep990, set navigable to navigable's parentp989.

3. Return navigable.

A top-level traversable is a traversable navigablep990 with a null parentp989.

A user agent holds a top-level traversable set (a set of top-level traversablesp990). These are typically presented to the user in the
form of browser windows or browser tabs.

To get the top-level traversable of a navigablep989 inputNavigable:

1. Let navigable be inputNavigable.

2. While navigable's parentp989 is not null, set navigable to navigable's parentp989.

3. Return navigable.

The caller of this algorithm is responsible for initializing entry's stepp1005; it will be left as "pending" until that is complete.
Note

7.3.1.1 Traversable navigables §p99

0

7.3.1.2 Top-level traversables §p99

0

Currently, all traversable navigablesp990 are top-level traversablesp990. Future proposals envision introducing non-top-level
traversables.

Note

990

https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#ordered-set

To create a new top-level traversable given a browsing contextp998-or-null opener, a string targetName, and an optional
navigablep989 openerNavigableForWebDriver:

1. Let document be null.

2. If opener is null, then set document to the second return value of creating a new top-level browsing context and
documentp1000.

3. Otherwise, set document to the second return value of creating a new auxiliary browsing context and documentp1000 given
opener.

4. Let documentState be a new document statep1006, with
documentp1006

document
initiator originp1006

null if opener is null; otherwise, document's origin
originp1006

document's origin
navigable target namep1007

targetName
about base URLp1007

document's about base URLp131

5. Let traversable be a new traversable navigablep990.

6. Initialize the navigablep989 traversable given documentState.

7. Let initialHistoryEntry be traversable's active session history entryp989.

8. Set initialHistoryEntry's stepp1005 to 0.

9. Append initialHistoryEntry to traversable's session history entriesp990.

10. If opener is non-null, then legacy-clone a traversable storage shed given opener's top-level traversablep998 and traversable.
[STORAGE]p1482

11. Append traversable to the user agent's top-level traversable setp990.

12. Invoke WebDriver BiDi navigable created with traversable and openerNavigableForWebDriver.

13. Return traversable.

To create a fresh top-level traversable given a URL initialNavigationURL and an optional POST resourcep1007-or-null
initialNavigationPostResource (default null):

1. Let traversable be the result of creating a new top-level traversablep991 given null and the empty string.

2. Navigatep1014 traversable to initialNavigationURL using traversable's active documentp989, with documentResourcep1014 set to
initialNavigationPostResource.

3. Return traversable.

Certain elements (for example, iframep390 elements) can present a navigablep989 to the user. These elements are called navigable
containers.

Each navigable containerp991 has a content navigable, which is either a navigablep989 or null. It is initially null.

The container of a navigablep989 navigable is the navigable containerp991 whose content navigablep991 is navigable, or null if there is
no such element.

We treat these initial navigations as traversable navigating itself, which will ensure all relevant security checks pass.
Note

7.3.1.3 Child navigables §p99

1

991

https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-append
https://storage.spec.whatwg.org/#legacy-clone-a-traversable-storage-shed
https://infra.spec.whatwg.org/#list-append
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigable-created
https://url.spec.whatwg.org/#concept-url

The container document of a navigablep989 navigable is the result of running these steps:

1. If navigable's containerp991 is null, then return null.

2. Return navigable's containerp991 's node document.

The container document of a Documentp130 document is the result of running these steps:

1. If document's node navigablep989 is null, then return null.

2. Return document's node navigablep989 's container documentp992.

A navigablep989 navigable is a child navigable of another navigable potentialParent when navigable's parentp989 is potentialParent. We
can also just say that a navigablep989 "is a child navigablep992", which means that its parentp989 is non-null.

The content document of a navigable containerp991 container is the result of running these steps:

1. If container's content navigablep991 is null, then return null.

2. Let document be container's content navigablep991 's active documentp989.

3. If document's origin and container's node document's origin are not same origin-domainp899, then return null.

4. Return document.

The content window of a navigable containerp991 container is the result of running these steps:

1. If container's content navigablep991 is null, then return null.

2. Return container's content navigablep991 's active WindowProxyp989 's object.

To create a new child navigable, given an element element:

1. Let parentNavigable be element's node navigablep989.

2. Let group be element's node document's browsing contextp999 's top-level browsing contextp1001 's groupp1002.

3. Let browsingContext and document be the result of creating a new browsing context and documentp999 given element's node
document, element, and group.

4. Let targetName be null.

5. If element has a name content attribute, then set targetName to the value of that attribute.

6. Let documentState be a new document statep1006, with
documentp1006

document
initiator originp1006

document's origin
originp1006

document's origin
navigable target namep1007

targetName
about base URLp1007

document's about base URLp131

7. Let navigable be a new navigablep989.

8. Initialize the navigablep989 navigable given documentState and parentNavigable.

This is equal to navigable's containerp991 's shadow-including root as navigable's containerp991 has to be connected.
Note

All child navigablesp992 are the content navigablep991 of their containerp991.
Note

992

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-shadow-including-root
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin

9. Set element's content navigablep991 to navigable.

10. Let historyEntry be navigable's active session history entryp989.

11. Let traversable be parentNavigable's traversable navigablep990.

12. Append the following session history traversal stepsp1008 to traversable:

1. Let parentDocState be parentNavigable's active session history entryp989 's document statep1005.

2. Let parentNavigableEntries be the result of getting session history entriesp1010 for parentNavigable.

3. Let targetStepSHE be the first session history entryp1005 in parentNavigableEntries whose document statep1005

equals parentDocState.

4. Set historyEntry's stepp1005 to targetStepSHE's stepp1005.

5. Let nestedHistory be a new nested historyp1007 whose idp1007 is navigable's idp989 and entries listp1007 is «
historyEntry ».

6. Append nestedHistory to parentDocState's nested historiesp1007.

7. Update for navigable creation/destructionp1040 given traversable.

13. Invoke WebDriver BiDi navigable created with traversable.

A useful method for visualizing sequences of documents, and in particular navigablesp989 and their session history entriesp1005, is the
Jake diagram. A typical Jake diagram is the following:

0 1 2 3 4

top /t-a /t-a#foo /t-b
frames[0] /i-0-a /i-0-b

frames[1] /i-1-a /i-1-b

Here, each numbered column denotes a possible value for the traversable's session history stepp990. Each labeled row depicts a
navigablep989, as it transitions between different URLs and documents. The first, labeled top, being the top-level traversablep990, and
the others being child navigablesp992. The documents are given by the background color of each cell, with a new background color
indicating a new document in that navigablep989. The URLs are given by the text content of the cells; usually they are given as relative
URLs for brevity, unless a cross-origin case is specifically under investigation. A given navigable might not exist at a given step, in
which case the corresponding cells are empty. The bold-italic step number depicts the current session history stepp990 of the
traversable, and all cells with bold-italic URLs represent the current session history entryp989 for that row's navigable.

Thus, the above Jake diagram depicts the following sequence of events:

0. A top-level traversablep990 is created, starting a the URL /t-a, with two child navigablesp992 starting at /i-0-a and /i-1-a
respectively.

1. The first child navigable is navigatedp1014 to another document, with URL /i-0-b.

2. The second child navigable is navigatedp1014 to another document, with URL /i-1-b.

3. The top-level traversable is navigatedp1014 to the same document, updating its URL to /t-a#foo.

4. The top-level traversable is navigatedp1014 to another document, with URL /t-b. (Notice how this document, of course, does
not carry over the old document's child navigables.)

5. The traversable was traversed by a deltap1028 of −3, back to step 1.

Jake diagramsp993 are a powerful tool for visualizing the interactions of multiple navigables, navigations, and traversals. They cannot
capture every possible interaction — for example, they only work with a single level of nesting — but we will have ocassion to use
them to illustrate several complex situations throughout this standard.

7.3.1.4 Jake diagrams §p99

3

993

https://infra.spec.whatwg.org/#list-append
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigable-created
https://url.spec.whatwg.org/#syntax-url-relative
https://url.spec.whatwg.org/#syntax-url-relative

It is often helpful in this standard's algorithms to look at collections of navigablesp989 starting at a given Documentp130. This section
contains a curated set of algorithms for collecting those navigables.

The ancestor navigables of a Documentp130 document are given by these steps:

1. Let navigable be document's node navigablep989 's parentp989.

2. Let ancestors be an empty list.

3. While navigable is not null:

1. Prepend navigable to ancestors.

2. Set navigable to navigable's parentp989.

4. Return ancestors.

The inclusive ancestor navigables of a Documentp130 document are given by these steps:

1. Let navigables be document's ancestor navigablesp994.

2. Append document's node navigablep989 to navigables.

3. Return navigables.

The descendant navigables of a Documentp130 document are given by these steps:

1. Let navigables be new list.

2. Let navigableContainers be a list of all shadow-including descendants of document that are navigable containersp991, in
shadow-including tree order.

3. For each navigableContainer of navigableContainers:

1. If navigableContainer's content navigablep991 is null, then continue.

2. Extend navigables with navigableContainer's content navigablep991 's active documentp989 's inclusive descendant
navigablesp994.

4. Return navigables.

The inclusive descendant navigables of a Documentp130 document are given by these steps:

1. Let navigables be « document's node navigablep989 ».

2. Extend navigables with document's descendant navigablesp994.

3. Return navigables.

Jake diagramsp993 are named after their creator, the inimitable Jake Archibald.
Note

7.3.1.5 Related navigable collections §p99

4

The return values of these algorithms are ordered so that parents appears before their children. Callers rely on this ordering.
Note

Starting with a Documentp130, rather than a navigablep989, is generally better because it makes the caller cognizant of whether they
are starting with a fully activep1003 Documentp130 or not. Although non-fully activep1003 Documentp130s do have ancestor and
descendant navigables, they often behave as if they don't (e.g., in the window.parentp931 getter).

Note

994

https://infra.spec.whatwg.org/#list-prepend
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-shadow-including-descendant
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-extend
https://infra.spec.whatwg.org/#list-extend

The document-tree child navigables of a Documentp130 document are given by these steps:

1. If document's node navigablep989 is null, then return the empty list.

2. Let navigables be new list.

3. Let navigableContainers be a list of all descendants of document that are navigable containersp991, in tree order.

4. For each navigableContainer of navigableContainers:

1. If navigableContainer's content navigablep991 is null, then continue.

2. Append navigableContainer's content navigablep991 to navigables.

5. Return navigables.

To destroy a child navigable given a navigable containerp991 container:

1. Let navigable be container's content navigablep991.

2. If navigable is null, then return.

3. Set container's content navigablep991 to null.

4. Inform the navigation API about child navigable destructionp968 given navigable.

5. Destroy a document and its descendantsp1066 given navigable's active documentp989.

6. Let parentDocState be container's node navigablep989 's active session history entryp989 's document statep1005.

7. Remove the nested historyp1007 from parentDocState's nested historiesp1007 whose idp1007 equals navigable's idp989.

8. Let traversable be container's node navigablep989 's traversable navigablep990.

9. Append the following session history traversal stepsp1008 to traversable:

1. Update for navigable creation/destructionp1040 given traversable.

10. Invoke WebDriver BiDi navigable destroyed with navigable.

To destroy a top-level traversablep990 traversable:

1. Let browsingContext be traversable's active browsing contextp989.

2. For each historyEntry in traversable's session history entriesp990 in what order? :

1. Let document be historyEntry's documentp1005.

2. If document is not null, then destroy a document and its descendantsp1066 given document.

3. Removep1003 browsingContext.

4. Remove traversable from the user interface (e.g., close or hide its tab in a tabbed browser).

5. Remove traversable from the user agent's top-level traversable setp990.

6. Invoke WebDriver BiDi navigable destroyed with traversable.

User agents may destroy a top-level traversablep995 at any time (typically, in response to user requestsp1069).

To close a top-level traversablep990 traversable:

These descendant-collecting algorithms are described as looking at the DOM tree of descendant Documentp130 objects. In reality,
this is often not feasible since the DOM tree can be in another process from the caller of the algorithm. Instead, implementations
generally replicate the appropriate trees across processes.

Note

7.3.1.6 Navigable destruction §p99

5

995

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-tree-descendant
https://dom.spec.whatwg.org/#concept-tree-order
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-remove
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigable-destroyed
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-remove
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigable-destroyed

1. If traversable's is closingp989 is true, then return.

2. Definitely closep996 traversable.

To definitely close a top-level traversablep990 traversable:

1. Let toUnload be traversable's active documentp989 's inclusive descendant navigablesp994.

2. If the result of checking if unloading is canceledp1025 for toUnload is true, then return.

3. Append the following session history traversal stepsp1008 to traversable:

1. Let afterAllUnloads be an algorithm step which destroysp995 traversable.

2. Unload a document and its descendantsp1065 given traversable's active documentp989, null, and afterAllUnloads.

Navigablesp989 can be given target namesp989, which are strings allowing certain APIs (such as window.open()p926 or the ap257 element's
targetp303 attribute) to target navigationsp1014 at that navigable.

A valid navigable target name is any string with at least one character that does not contain both an ASCII tab or newline and a
U+003C (<), and it does not start with a U+005F (_). (Names starting with a U+005F (_) are reserved for special keywords.)

A valid navigable target name or keyword is any string that is either a valid navigable target namep996 or that is an ASCII case-
insensitive match for one of: _blank, _self, _parent, or _top.

These values have different meanings based on whether the page is sandboxed or not, as summarized in the following (non-normative)
table. In this table, "current" means the navigablep989 that the link or script is in, "parent" means the parentp989 of the navigablep989

that the link or script is in, "top" means the top-level traversablep990 of the navigablep989 that the link or script is in, "new" means a new
traversable navigablep990 with a null parentp989 (which may use an auxiliary browsing contextp999, subject to various user preferences
and user agent policies), "none" means that nothing will happen, and "maybe new" means the same as "new" if the "allow-
popupsp916" keyword is also specified on the sandboxp395 attribute (or if the user overrode the sandboxing), and the same as "none"
otherwise.

Keyword Ordinary effect Effect in an iframep390 with...
sandbox="" sandbox="allow-top-

navigation"

none specified, for links and form submissions current current current
empty string current current current
_blank new maybe new maybe new
_self current current current
_parent if there isn't a parent current current current
_parent if parent is also top parent/top none parent/top
_parent if there is one and it's not top parent none none
_top if top is current current current current
_top if top is not current top none top
name that doesn't exist new maybe new maybe new
name that exists and is a descendant specified

descendant
specified
descendant

specified descendant

name that exists and is current current current current
name that exists and is an ancestor that is top specified ancestor none specified ancestor/top
name that exists and is an ancestor that is not top specified ancestor none none
other name that exists with common top specified none none
name that exists with different top, if familiarp1002 and one permitted sandboxed
navigatorp914

specified specified specified

The closep995 vs. definitely closep996 separation allows other specifications to call closep995 and have it be a no-op if the top-level
traversable is already closing due to JavaScript code calling window.close()p928.

Note

7.3.1.7 Navigable target names §p99

6

996

https://infra.spec.whatwg.org/#ascii-tab-or-newline
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

Keyword Ordinary effect Effect in an iframep390 with...
sandbox="" sandbox="allow-top-

navigation"

name that exists with different top, if familiarp1002 but not one permitted sandboxed
navigatorp914

specified none none

name that exists with different top, not familiarp1002 new maybe new maybe new

Most of the restrictions on sandboxed browsing contexts are applied by other algorithms, e.g. the navigationp1014 algorithm, not the rules for choosing
a navigablep997 given below.

The rules for choosing a navigable, given a string name, a navigablep989 currentNavigable, and a boolean noopener are as follows:

1. Let chosen be null.

2. Let windowType be "existing or none".

3. Let sandboxingFlagSet be currentNavigable's active documentp989 's active sandboxing flag setp917.

4. If name is the empty string or an ASCII case-insensitive match for "_self", then set chosen to currentNavigable.

5. Otherwise, if name is an ASCII case-insensitive match for "_parent", set chosen to currentNavigable's parentp989, if any, and
currentNavigable otherwise.

6. Otherwise, if name is an ASCII case-insensitive match for "_top", set chosen to currentNavigable's traversable navigablep990.

7. Otherwise, if name is not an ASCII case-insensitive match for "_blank", there exists a navigablep989 whose target namep989 is
the same as name, currentNavigable's active browsing contextp989 is familiar withp1002 that navigablep989 's active browsing
contextp989, and the user agent determines that the two browsing contexts are related enough that it is ok if they reach each
other, set chosen to that navigable. If there are multiple matching navigablesp989, the user agent should pick one in some
arbitrary consistent manner, such as the most recently opened, most recently focused, or more closely related, and set
chosen to it.

This will be made more precise in issue #313.

8. Otherwise, a new top-level traversablep990 is being requested, and what happens depends on the user agent's configuration
and abilities — it is determined by the rules given for the first applicable option from the following list:

↪ If currentNavigable's active windowp989 does not have transient activationp830 and the user agent has been
configured to not show popups (i.e., the user agent has a "popup blocker" enabled)

The user agent may inform the user that a popup has been blocked.

↪ If sandboxingFlagSet has the sandboxed auxiliary navigation browsing context flagp915 set
The user agent may report to a developer console that a popup has been blocked.

↪ If the user agent has been configured such that in this instance it will create a new top-level traversablep990

1. Consume user activationp831 of currentNavigable's active windowp989.

2. Set windowType to "new and unrestricted".

3. Let currentDocument be currentNavigable's active documentp989.

4. If currentDocument's opener policyp131 's valuep904 is "same-originp903" or "same-origin-plus-COEPp903",
and currentDocument's origin is not same originp899 with currentDocument's relevant settings objectp1083 's
top-level originp1076, then:

1. Set noopener to true.

2. Set name to "_blank".

3. Set windowType to "new with no opener".

In the presence of an opener policyp904, nested documents that are cross-origin with their top-level
browsing context's active document always set noopener to true.

Note

997

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://github.com/whatwg/html/issues/313
https://dom.spec.whatwg.org/#concept-document-origin

5. Let chosen be null.

6. Let targetName be the empty string.

7. If name is not an ASCII case-insensitive match for "_blank", then set targetName to name.

8. If noopener is true, then set chosen to the result of creating a new top-level traversablep991 given null,
targetName, and currentNavigable.

9. Otherwise:

1. Set chosen to the result of creating a new top-level traversablep991 given currentNavigable's active
browsing contextp989, targetName, and currentNavigable.

2. If sandboxingFlagSet's sandboxed navigation browsing context flagp914 is set, then set chosen's
active browsing contextp989 's one permitted sandboxed navigatorp914 to currentNavigable's active
browsing contextp989.

10. If sandboxingFlagSet's sandbox propagates to auxiliary browsing contexts flagp915 is set, then all the flags
that are set in sandboxingFlagSet must be set in chosen's active browsing contextp989 's popup sandboxing
flag setp917.

↪ If the user agent has been configured such that in this instance it will choose currentNavigable
Set chosen to currentNavigable.

↪ If the user agent has been configured such that in this instance it will not find a navigable
Do nothing.

9. Return chosen and windowType.

A browsing context is a programmatic representation of a series of documents, multiple of which can live within a single
navigablep989. Each browsing contextp998 has a corresponding WindowProxyp934 object, as well as the following:

• An opener browsing context, a browsing contextp998 or null, initially null.

• An opener origin at creation, an originp898 or null, initially null.

• An is popup boolean, initially false.

• An is auxiliary boolean, initially false.

• An initial URL, a URL or null, initially null.

• A virtual browsing context group ID integer, initially 0. This is used by opener policy reportingp904, to keep track of the
browsing context group switches that would have happened if the report-only policy had been enforced.

A browsing contextp998 's active window is its WindowProxyp934 object's [[Window]]p934 internal slot value. A browsing contextp998 's
active document is its active windowp998 's associated Documentp923.

A browsing contextp998 's top-level traversable is its active documentp998 's node navigablep989 's top-level traversablep990.

If the newly created navigablep989 chosen is immediately navigatedp1014, then the navigation will be done as a
"replacep1014" navigation.

Note

User agents are encouraged to provide a way for users to configure the user agent to always choose currentNavigable.
Note

The only mandatory impact in this specification of is popupp998 is on the visiblep932 getter of the relevant BarPropp932

objects. However, user agents might also use it for user interface considerationsp1069.

Note

7.3.2 Browsing contexts §p99

8

998

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#concept-url

A browsing contextp998 whose is auxiliaryp998 is true is known as an auxiliary browsing context. Auxiliary browsing contexts are
always top-level browsing contextsp1001.

It's unclear whether a separate is auxiliaryp998 concept is necessary. In issue #5680, it is indicated that we may be able to simplify
this by using whether or not the opener browsing contextp998 is null.

A Document's browsing context is a browsing contextp998 or null, initially null.

To create a new browsing context and document, given null or a Documentp130 object creator, null or an element embedder, and a
browsing context groupp1002 group:

1. Let browsingContext be a new browsing contextp998.

2. Let unsafeContextCreationTime be the unsafe shared current time.

3. Let creatorOrigin be null.

4. Let creatorBaseURL be null.

5. If creator is non-null, then:

1. Set creatorOrigin to creator's origin.

2. Set creatorBaseURL to creator's document base URLp96.

3. Set browsingContext's virtual browsing context group IDp998 to creator's browsing contextp999 's top-level browsing
contextp1001 's virtual browsing context group IDp998.

6. Let sandboxFlags be the result of determining the creation sandboxing flagsp917 given browsingContext and embedder.

7. Let origin be the result of determining the originp1001 given about:blankp53, sandboxFlags, and creatorOrigin.

8. Let permissionsPolicy be the result of creating a permissions policy given embedder and origin. [PERMISSIONSPOLICY]p1480

9. Let agent be the result of obtaining a similar-origin window agentp1073 given origin, group, and false.

10. Let realm execution context be the result of creating a new realmp1077 given agent and the following customizations:

◦ For the global object, create a new Windowp922 object.

◦ For the global this binding, use browsingContext's WindowProxyp934 object.

Modern specifications should avoid using the browsing contextp998 concept in most cases, unless they are dealing
with the subtleties of browsing context group switchesp905 and agent cluster allocationp1002. Instead, the Documentp130

and navigablep989 concepts are usually more appropriate.

⚠Warning!

A Documentp130 does not necessarily have a non-null browsing contextp999. In particular, data mining tools are likely to never
instantiate browsing contexts. A Documentp130 created using an API such as createDocument() never has a non-null browsing
contextp999. And the Documentp130 originally created for an iframep390 element, which has since been removed from the
documentp46, has no associated browsing context, since that browsing context was nulled outp1066.

Note

In general, there is a 1-to-1 mapping from the Windowp922 object to the Documentp130 object, as long as the Documentp130 object has
a non-null browsing contextp999. There is one exception. A Windowp922 can be reused for the presentation of a second Documentp130

in the same browsing contextp998, such that the mapping is then 1-to-2. This occurs when a browsing contextp998 is navigatedp1014

from the initial about:blankp131 Documentp130 to another, which will be done with replacementp1014.

Note

7.3.2.1 Creating browsing contexts §p99

9

999

https://github.com/whatwg/html/issues/5680
https://dom.spec.whatwg.org/#dom-domimplementation-createdocument
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://dom.spec.whatwg.org/#concept-document-origin
https://w3c.github.io/webappsec-feature-policy/#create-for-navigable

11. Let topLevelCreationURL be about:blankp53 if embedder is null; otherwise embedder's relevant settings objectp1083 's top-
level creation URLp1075.

12. Let topLevelOrigin be origin if embedder is null; otherwise embedder's relevant settings objectp1083 's top-level originp1076.

13. Set up a window environment settings objectp933 with about:blankp53, realm execution context, null, topLevelCreationURL,
and topLevelOrigin.

14. Let loadTimingInfo be a new document load timing infop134 with its navigation start timep134 set to the result of calling
coarsen time with unsafeContextCreationTime and the new environment settings objectp1076 's cross-origin isolated
capabilityp1076.

15. Let document be a new Documentp130, with:
type

"html"
content type

"text/htmlp1444"
mode

"quirks"
origin

origin
browsing contextp999

browsingContext
permissions policyp131

permissionsPolicy
active sandboxing flag setp917

sandboxFlags
load timing infop134

loadTimingInfo
is initial about:blankp131

true
about base URLp131

creatorBaseURL
allow declarative shadow roots

true

16. If creator is non-null, then:

1. Set document's referrerp130 to the serialization of creator's URL.

2. Set document's policy containerp131 to a clonep917 of creator's policy containerp131.

3. If creator's origin is same originp899 with creator's relevant settings objectp1083 's top-level originp1076, then set
document's opener policyp131 to creator's browsing contextp999 's top-level browsing contextp1001 's active
documentp998 's opener policyp131.

17. Assert: document's URL and document's relevant settings objectp1083 's creation URLp1075 are about:blankp53.

18. Mark document as ready for post-load tasksp1359.

19. Populate with html/head/bodyp1059 given document.

20. Make activep1051 document.

21. Completely finish loadingp1063 document.

22. Return browsingContext and document.

To create a new top-level browsing context and document:

1. Let group and document be the result of creating a new browsing context group and documentp1003.

2. Return group's browsing context setp1002[0] and document.

To create a new auxiliary browsing context and document, given a browsing contextp998 opener:

1. Let openerTopLevelBrowsingContext be opener's top-level traversablep998 's active browsing contextp989.
1000

https://w3c.github.io/hr-time/#dfn-coarsen-time
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#concept-document-mode
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-allow-declarative-shadow-roots
https://url.spec.whatwg.org/#concept-url-serializer
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-url

2. Let group be openerTopLevelBrowsingContext's groupp1002.

3. Assert: group is non-null, as navigatingp1014 invokes this directly.

4. Let browsingContext and document be the result of creating a new browsing context and documentp999 with opener's active
documentp989, null, and group.

5. Set browsingContext's is auxiliaryp998 to true.

6. Appendp1003 browsingContext to group.

7. Set browsingContext's opener browsing contextp998 to opener.

8. Set browsingContext's virtual browsing context group IDp998 to openerTopLevelBrowsingContext's virtual browsing context
group IDp998.

9. Set browsingContext's opener origin at creationp998 to opener's active documentp989 's origin.

10. Return browsingContext and document.

To determine the origin, given a URL url, a sandboxing flag setp914 sandboxFlags, and an originp898-or-null sourceOrigin:

1. If sandboxFlags has its sandboxed origin browsing context flagp915 set, then return a new opaque originp898.

2. If url is null, then return a new opaque originp898.

3. If url is about:srcdocp96, then:

1. Assert: sourceOrigin is non-null.

2. Return sourceOrigin.

4. If url matches about:blankp96 and sourceOrigin is non-null, then return sourceOrigin.

5. Return url's origin.

A browsing contextp998 potentialDescendant is said to be an ancestor of a browsing context potentialAncestor if the following
algorithm returns true:

1. Let potentialDescendantDocument be potentialDescendant's active documentp998.

2. If potentialDescendantDocument is not fully activep1003, then return false.

3. Let ancestorBCs be the list obtained by taking the browsing contextp999 of the active documentp989 of each member of
potentialDescendantDocument's ancestor navigablesp994.

4. If ancestorBCs contains potentialAncestor, then return true.

5. Return false.

A top-level browsing context is a browsing contextp998 whose active documentp998 's node navigablep989 is a traversable
navigablep990.

The top-level browsing context of a browsing contextp998 start is the result of the following algorithm:

1. If start's active documentp998 is not fully activep1003, then return null.

The cases that return sourceOrigin result in two Documentp130s that end up with the same underlying origin, meaning that
document.domainp901 affects both.

Note

7.3.2.2 Related browsing contexts §p10

01

It is not required to be a top-level traversablep990.
Note

1001

https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-contain

2. Let navigable be start's active documentp998 's node navigablep989.

3. While navigable's parentp989 is not null, set navigable to navigable's parentp989.

4. Return navigable's active browsing contextp989.

A browsing contextp998 A is familiar with a second browsing contextp998 B if the following algorithm returns true:

1. If A's active documentp998 's origin is same originp899 with B's active documentp998 's origin, then return true.

2. If A's top-level browsing contextp1001 is B, then return true.

3. If B is an auxiliary browsing contextp999 and A is familiar withp1002 B's opener browsing contextp998, then return true.

4. If there exists an ancestor browsing contextp1001 of B whose active documentp998 has the samep899 origin as the active
documentp998 of A, then return true.

5. Return false.

A top-level browsing contextp1001 has an associated group (null or a browsing context groupp1002). It is initially null.

A user agent holds a browsing context group set (a set of browsing context groupsp1002).

A browsing context group holds a browsing context set (a set of top-level browsing contextsp1001).

A browsing context groupp1002 has an associated agent cluster map (a weak map of agent cluster keysp1073 to agent clusters). User
agents are responsible for collecting agent clusters when it is deemed that nothing can access them anymore.

A browsing context groupp1002 has an associated historical agent cluster key map, which is a map of originsp898 to agent cluster
keysp1073. This map is used to ensure the consistency of the origin-keyed agent clustersp902 feature by recording what agent cluster
keys were previously used for a given origin.

A browsing context groupp1002 has a cross-origin isolation mode, which is a cross-origin isolation modep1002. It is initially "nonep1002".

A cross-origin isolation mode is one of three possible values: "none", "logical", or "concrete".

The terms ancestor browsing contextp1001 and top-level browsing contextp1001 are rarely useful, since browsing
contextsp998 in general are usually the inappropriate specification concept to usep999. Note in particular that when a
browsing contextp998 's active documentp998 is not fully activep1003, it never counts as an ancestor or top-level
browsing context, and as such these concepts are not useful when bfcachep1006 is in play.

Instead, use concepts such as the ancestor navigablesp994 collection, the parent navigablep989, or a navigable's top-
level traversablep990.

⚠Warning!

This includes the case where A is an ancestor browsing contextp1001 of B.
Note

7.3.2.3 Groupings of browsing contexts §p10

02

A top-level browsing contextp1001 is added to the groupp1002 when the group is createdp1003. All subsequent top-level browsing
contextsp1001 added to the groupp1002 will be auxiliary browsing contextsp999.

Note

The historical agent cluster key mapp1002 only ever gains entries over the lifetime of the browsing context group.
Note

Note

1002

https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-agent-clusters
https://infra.spec.whatwg.org/#ordered-map

To create a new browsing context group and document:

1. Let group be a new browsing context groupp1002.

2. Append group to the user agent's browsing context group setp1002.

3. Let browsingContext and document be the result of creating a new browsing context and documentp999 with null, null, and
group.

4. Appendp1003 browsingContext to group.

5. Return group and document.

To append a top-level browsing contextp1001 browsingContext to a browsing context groupp1002 group:

1. Append browsingContext to group's browsing context setp1002.

2. Set browsingContext's groupp1002 to group.

To remove a top-level browsing contextp1001 browsingContext:

1. Assert: browsingContext's groupp1002 is non-null.

2. Let group be browsingContext's groupp1002.

3. Set browsingContext's groupp1002 to null.

4. Remove browsingContext from group's browsing context setp1002.

5. If group's browsing context setp1002 is empty, then remove group from the user agent's browsing context group setp1002.

When there are no Documentp130 objects whose browsing contextp999 equals a given browsing contextp998 (i.e., all such Documentp130s
have been destroyedp1066), and that browsing contextp998 's WindowProxyp934 is eligible for garbage collection, then the browsing
contextp998 will never be accessed again. If it is a top-level browsing contextp1001, then at this point the user agent must removep1003 it.

A Documentp130 d is said to be fully active when d is the active documentp989 of a navigablep989 navigable, and either navigable is a
top-level traversablep990 or navigable's container documentp992 is fully activep1003.

Because they are associated with an element, child navigablesp992 are always tied to a specific Documentp130, their container
documentp992, in their parent navigablep989. User agents must not allow the user to interact with child navigablesp992 whose container
documentsp992 are not themselves fully activep1003.

"logicalp1002" and "concretep1002" are similar. They are both used for browsing context groupsp1002 where:

• every top-level Documentp130 has `Cross-Origin-Opener-Policyp904: same-originp903`, and

• every Documentp130 has a `Cross-Origin-Embedder-Policyp913` header whose value is compatible with cross-origin
isolationp912.

On some platforms, it is difficult to provide the security properties required to grant safe access to the APIs gated by the cross-
origin isolated capabilityp1076. As a result, only "concretep1002" can grant access that capability. "logicalp1002" is used on platform
not supporting this capability, where various restrictions imposed by cross-origin isolation will still apply, but the capability is not
granted.

Appendp1003 and removep1003 are primitive operations that help define the lifetime of a browsing context groupp1002. They are called
by higher-level creation and destruction operations for Documentp130s and browsing contextsp998.

Note

Example

7.3.3 Fully active documents §p10

03

1003

https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-remove

Welcome to the dragon's maw. Navigation, session history, and the traversal through that session history are some of the most
complex parts of this standard.

The basic concept may not seem so difficult:

• The user is looking at a navigablep989 that is presenting its active documentp989. They navigatep1014 it to another URL.

• The browser fetches the given URL from the network, using it to populatep1029 a new session history entryp1005 with a
newly-createdp1056 Documentp130.

• The browser updates the navigablep989 's active session history entryp989 to the newly-populated one, and thus updates the
active documentp989 that it is showing to the user.

• At some point later, the user presses the browser back buttonp1028 to go back to the previous session history entryp1005.

• The browser looks at the URLp1005 stored in that session history entryp1005, and uses it to re-fetch and populatep1029 that
entry's documentp1005.

• The browser again updates the navigablep989 's active session history entryp989.

You can see some of the intertwined complexity peeking through here, in how traversal can cause a navigation (i.e., a network fetch to
a stored URL), and how a navigation necessarily needs to interface with the session history list to ensure that when it finishes the user
is looking at the right thing. But the real problems come in with the various edge cases and interacting web platform features:

The following example illustrates how a Documentp130 can be the active documentp989 of its node navigablep989, while not being fully
activep1003. Here a.html is loaded into a browser window, b-1.html starts out loaded into an iframep390 as shown, and b-2.html
and c.html are omitted (they can simply be an empty document).

<!-- a.html -->
<!DOCTYPE html>
<html lang="en">
<title>Navigable A</title>

<iframe src="b-1.html"></iframe>
<button onclick="frames[0].location.href = 'b-2.html'">Click me</button>

<!-- b-1.html -->
<!DOCTYPE html>
<html lang="en">
<title>Navigable B</title>

<iframe src="c.html"></iframe>

At this point, the documents given by a.html, b-1.html, and c.html are all the active documentsp989 of their respective node
navigablesp989. They are also all fully activep1003.

After clicking on the buttonp566, and thus loading a new Documentp130 from b-2.html into navigable B, we have the following
results:

• The a.html Documentp130 remains both the active documentp989 of navigable A, and fully activep1003.

• The b-1.html Documentp130 is now not the active documentp989 of navigable B. As such it is also not fully activep1003.

• The new b-2.html Documentp130 is now the active documentp989 of navigable B, and is also fully activep1003.

• The c.html Documentp130 is still the active documentp989 of navigable C. However, since C's container documentp992 is the
b-1.html Documentp130, which is itself not fully activep1003, this means the c.html Documentp130 is now not fully
activep1003.

7.4 Navigation and session history §p10

04

1004

https://url.spec.whatwg.org/#concept-url

• Child navigablesp992 (e.g., those contained in iframep390s) can also navigate and traverse, but those navigations need to be
linearized into a single session history listp990 since the user only has a single back/forward interface for the entire
traversable navigablep990 (e.g., browser tab).

• Since the user can traverse back more than a single step in the session history (e.g., by holding down their back button),
they can end up traversing multiple navigablesp989 at the same time when child navigablesp992 are involved. This needs to be
synchronized across all of the involved navigables, which might involve multiple event loopsp1123 or even agent clusters.

• During navigation, servers can respond with 204 or 205 status codes or with `Content-Disposition: attachment` headers,
which cause navigation to abort and the navigablep989 to stay on its original active documentp998. (This is much worse if it
happens during a traversal-initiated navigation!)

• Various other HTTP headers, such as `Location`, `Refreshp1069`, `X-Frame-Optionsp1068`, and those for Content Security
Policy, contribute to either the fetching processp1033, or the Document-creation processp1056, or both. The `Cross-Origin-
Opener-Policyp904` header even contributes to the browsing context selection and creationp905 process!

• Some navigations (namely fragment navigationsp1021 and single-page app navigationsp1028) are synchronous, meaning that
JavaScript code expects to observe the navigation's results instantly. This then needs to be synchronized with the view of the
session history that all other navigablesp989 in the tree see, which can be subject to race conditions and necessitate resolving
conflicting views of the session history.

• The platform has accumulated various exciting navigation-related features that need special-casing, such as
javascript:p1019 URLs, srcdocp391 iframep390s, and the beforeunloadp1471 event.

In what follows, we have attempted to guide the reader through these complexities by appropriately cordoning them off into labeled
sections and algorithms, and giving appropriate words of introduction where possible. Nevertheless, if you wish to truly understand
navigation and session history, the usual advicep30 will be invaluable.

A session history entry is a struct with the following items:

• step, a non-negative integer or "pending", initially "pending".

• URL, a URL

• document state, a document statep1006.

• classic history API state, which is serialized statep1006, initially StructuredSerializeForStoragep122(null).

• navigation API state, which is a serialized statep1006, initially StructuredSerializeForStoragep122(undefined).

• navigation API key, which is a string, initially set to the result of generating a random UUID.

• navigation API ID, which is a string, initially set to the result of generating a random UUID.

• scroll restoration mode, a scroll restoration modep1006, initially "autop1006".

• scroll position data, which is scroll position data for the documentp1005 's restorable scrollable regionsp1055.

• persisted user state, which is implementation-defined, initially null

To get a session history entryp1005 's document, return its document statep1005 's documentp1006.

7.4.1.1 Session history entries §p10

05

For example, some user agents might want to persist the values of form controls.
Example

User agents that persist the value of form controls are encouraged to also persist their directionality (the value of the
element's dirp160 attribute). This prevents values from being displayed incorrectly after a history traversal when the user
had originally entered the values with an explicit, non-default directionality.

Note

7.4.1 Session history §p10

05

1005

https://tc39.es/ecma262/#sec-agent-clusters
https://httpwg.org/specs/rfc6266.html
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webcrypto/#dfn-generate-a-random-uuid
https://w3c.github.io/webcrypto/#dfn-generate-a-random-uuid
https://infra.spec.whatwg.org/#implementation-defined

Serialized state is a serialization (via StructuredSerializeForStoragep122) of an object representing a user interface state. We
sometimes informally refer to "state objects", which are the objects representing user interface state supplied by the author, or
alternately the objects created by deserializing (via StructuredDeserializep122) serialized state.

Pages can addp946 serialized statep1006 to the session history. These are then deserializedp122 and returned to the scriptp1472 when the
user (or script) goes back in the history, thus enabling authors to use the "navigation" metaphor even in one-page applications.

A scroll restoration mode indicates whether the user agent should restore the persisted scroll position (if any) when traversing to an
entryp1005. A scroll restoration mode is one of the following:

"auto"
The user agent is responsible for restoring the scroll position upon navigation.

"manual"
The page is responsible for restoring the scroll position and the user agent does not attempt to do so automatically

Document state holds state inside a session history entryp1005 regarding how to present and, if necessary, recreate, a Documentp130. It
has:

• A document, a Documentp130 or null, initially null.

• A history policy container, a policy containerp917 or null, initially null.

• A request referrer, which is "no-referrer", "client", or a URL, initially "client".

• A request referrer policy, which is a referrer policy, initially the default referrer policy.

• An initiator origin, which is an originp898 or null, initially null.

• An origin, which is an originp898 or null, initially null.

Serialized statep1006 is intended to be used for two main purposes: first, storing a preparsed description of the state in the URL so
that in the simple case an author doesn't have to do the parsing (though one would still need the parsing for handling URLs passed
around by users, so it's only a minor optimization). Second, so that the author can store state that one wouldn't store in the URL
because it only applies to the current Documentp130 instance and it would have to be reconstructed if a new Documentp130 were
opened.

An example of the latter would be something like keeping track of the precise coordinate from which a popup divp256 was made to
animate, so that if the user goes back, it can be made to animate to the same location. Or alternatively, it could be used to keep a
pointer into a cache of data that would be fetched from the server based on the information in the URL, so that when going back
and forward, the information doesn't have to be fetched again.

Note

7.4.1.2 Document state §p10

06

When a history entry is activep989, it has a Documentp130 in its document statep1005. However, when a Documentp130 is not
fully activep1003, it's possible for it to be destroyedp1066 to free resources. In such cases, this documentp1006 item will be
nulled out. The URLp1005 and other data in the session history entryp1005 and document statep1005 is then used to bring a
new Documentp130 into being to take the place of the original, in the case where the user agent finds itself having to
traverse to the entry.

If the Documentp130 is not destroyedp1066, then during history traversalp1028, it can be reactivatedp1051. The cache in which
browsers store such Documentp130s is often called a back-forward cache, or bfcache (or perhaps "blazingly fast" cache).

Note

The request referrer policyp1006 is distinct from the history policy containerp1006 's referrer policyp917. The former is used for
fetches of this document, whereas the latter controls fetches by this document.

Note

1006

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://bugzilla.mozilla.org/show_bug.cgi?id=274784
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#default-referrer-policy

• An about base URL, which is a URL or null, initially null.

• Nested histories, a list of nested historiesp1007, initially an empty list.

• A resource, a string, POST resourcep1007 or null, initially null.

• A reload pending boolean, initially false.

• An ever populated boolean, initially false.

• A navigable target name string, initially the empty string.

• A not restored reasons, a not restored reasonsp988 or null, initially null.

User agents may destroy a document and its descendantsp1066 given the documentsp1006 of document statesp1006 with non-null
documentsp1006, as long as the Documentp130 is not fully activep1003.

Apart from that restriction, this standard does not specify when user agents should destroy the documentp1006 stored in a document
statep1006, versus keeping it cached.

A POST resource has:

• A request body, a byte sequence or failure.

This is only ever accessed in parallelp43, so it doesn't need to be stored in memory. However, it must return the same byte
sequence each time. If this isn't possible due to resources changing on disk, or if resources can no longer be accessed, then
this must be set to failure.

• A request content-type, which is `application/x-www-form-urlencoded`, `multipart/form-datap1474`, or `text/
plain`.

A nested history has:

• An id, a unique internal valuep96.

• Entries, a list of session history entriesp1005.

This will later contain ways to identify a child navigable across reloads.

Several contiguous entries in a session history can share the same document statep1005. This can occur when the initial entry is
reached via normal navigationp1014, and the following entry is added via history.pushState()p946. Or it can occur via navigation to a
fragmentp1021.

This is the origin that we set "about:"-schemed Documentp130s' origin to. We store it here because it is also used when
restoring these Documentp130s during traversal, since they are reconstructed locally without visiting the network. It is also
used to compare the origin before and after the session history entryp1005 is repopulatedp1029. If the origins change, the
navigable target namep1007 is cleared.

Note

This will be populated only for "about:"-schemed Documentp130s and will be the fallback base URLp96 for those
Documentp130s. It is a snapshot of the initiator Documentp130 's document base URLp96.

Note

A string is treated as HTML. It's used to store the source of an iframe srcdoc documentp391.
Note

This is used to associate the nested historyp1007 with a navigablep989.
Note

1007

https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#byte-sequence
https://infra.spec.whatwg.org/#byte-sequence
https://infra.spec.whatwg.org/#byte-sequence
https://url.spec.whatwg.org/#concept-urlencoded
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://infra.spec.whatwg.org/#list

A Documentp130 has a latest entry, a session history entryp1005 or null.

To maintain a single source of truth, all modifications to a traversable navigablep990 's session history entriesp990 need to be
synchronized. This is especially important due to how session history is influenced by all of the descendant navigablesp989, and thus by
multiple event loopsp1123. To accomplish this, we use the session history traversal parallel queuep1008 structure.

A session history traversal parallel queue is very similar to a parallel queuep43. It has an algorithm set, an ordered set.

The items in a session history traversal parallel queuep1008 's algorithm setp1008 are either algorithm steps, or synchronous navigation
steps, which are a particular brand of algorithm steps involving a target navigable (a navigablep989).

To append session history traversal steps to a traversable navigablep990 traversable given algorithm steps steps, append steps to
traversable's session history traversal queuep990 's algorithm setp1008.

To append session history synchronous navigation steps involving a navigablep989 targetNavigable to a traversable navigablep990

traversable given algorithm steps steps, append steps as synchronous navigation stepsp1008 targeting target navigablep1008

targetNavigable to traversable's session history traversal queuep990 's algorithm setp1008.

To start a new session history traversal parallel queue:

1. Let sessionHistoryTraversalQueue be a new session history traversal parallel queuep1008.

2. Run the following steps in parallelp43:

1. While true:

1. If sessionHistoryTraversalQueue's algorithm setp1008 is empty, then continue.

2. Let steps be the result of dequeuing from sessionHistoryTraversalQueue's algorithm setp1008.

3. Run steps.

3. Return sessionHistoryTraversalQueue.

Synchronous navigation stepsp1008 are tagged in the algorithm setp1008 to allow them to conditionally "jump the queue". This is handled
within apply the history stepp1044.

All entries that share the same document statep1005 (and that are therefore merely different states of one particular document) are
contiguous by construction.

Note

This is the entry that was most recently represented by a given Documentp130. A single Documentp130 can represent many session
history entriesp1005 over time, as many contiguous session history entriesp1005 can share the same document statep1005 as explained
above.

Note

7.4.1.3 Centralized modifications of session history §p10

08

Imagine the joint session history depicted by this Jake diagramp993:

0 1

top /a /b

And the following code runs at the top level:

history.back();
location.href = '#foo';

Example

1008

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-item
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#queue-dequeue

The desired result is:

0 1 2

top /a /b /b#foo

This isn't straightforward, as the sync navigation wins the race in terms of being observable, whereas the traversal wins the race in
terms of queuing steps on the session history traversal parallel queuep1008. To achieve this result, the following happens:

1. history.back()p946 appends stepsp1008 intended to traverse by a delta of −1.

2. location.href = '#foo'p939 synchronously changes the active session history entryp989 entry to a newly-created one,
with the URL /b#foo, and appends synchronous stepsp1008 to notify the central source of truth about that new entry. Note
that this does not yet update the current session history entryp989, current session history stepp990, or the session history
entriesp990 list; those updates cannot be done synchronously, and instead must be done as part of the queued steps.

3. On the session history traversal parallel queuep1008, the steps queued by history.back()p946 run:

1. The target history step is determined to be 0: the current session history stepp990 (i.e., 1) plus the intended
delta of −1.

2. We enter the main apply the history stepp1041 algorithm.

The entry at step 0, for the /a URL, has its documentp1005 populatedp1029.

Meanwhile, the queue is checked for synchronous navigation stepsp1008. The steps queued by the
location.hrefp939 setter now run, and block the traversal from performing effects beyond document
population (such as, unloading documents and switching active history entries) until they are finished. Those
steps cause the following to happen:

1. The entry with URL /b#foo is added, with its stepp1005 determined to be 2: the current session history
stepp990 (i.e., 1) plus 1.

2. We fully switch to that newly added entry, including a nested call to apply the history stepp1041. This
ultimately results in updating the documentp1049 by dispatching events like hashchangep1471.

Only once that is all complete, and the /a history entry has been fully populated with a documentp1005, do we
move on with applying the history step given the target step of 0.

At this point, the Documentp130 with URL /b#foo unloadsp1064, and we finish moving to our target history step 0,
which makes the entry with URL /a become the active session history entryp989 and 0 become the current
session history stepp990.

Here is another more complex example, involving races between populating two different iframep390s, and a synchronous
navigation once one of those iframes loads. We start with this setup:

0 1 2

top /t

frames[0] /i-0-a /i-0-b

frames[1] /i-1-a /i-1-b

and then call history.go(-2)p946. The following then occurs:

1. history.go(-2)p946 appends stepsp1008 intended to traverse by a delta of −2. Once those steps run:

1. The target step is determined to be 2 + (−2) = 0.

2. In parallel, the fetches are made to populatep1029 the two iframes, fetching /i-0-a and /i-1-a respectively.

Meanwhile, the queue is checked for synchronous navigation stepsp1008. There aren't any right now.

3. In the fetch race, the fetch for /i-0-a wins. We proceed onward to finish all of apply the history stepp1041 's work

Example

1009

This section contains a miscellaneous grab-bag of operations that we perform throughout the standard when manipulating session
history. The best way to get a sense of what they do is to look at their call sites.

To get session history entries of a navigablep989 navigable:

1. Let traversable be navigable's traversable navigablep990.

2. Assert: this is running within traversable's session history traversal queuep990.

3. If navigable is traversable, return traversable's session history entriesp990.

4. Let docStates be an empty ordered set of document statesp1006.

5. For each entry of traversable's session history entriesp990, append entry's document statep1005 to docStates.

6. For each docState of docStates:

1. For each nestedHistory of docState's nested historiesp1007:

1. If nestedHistory's idp1007 equals navigable's idp989, return nestedHistory's entriesp1007.

2. For each entry of nestedHistory's entriesp1007, append entry's document statep1005 to docStates.

for how the traversal impacts the frames[0] navigablep989, including updating its active session history
entryp989 to the entry with URL /i-0-a.

4. Before the fetch for /i-1-a finishes, we reach the point where scripts may run for the newly-created
documentp1051 in the frames[0] navigablep989 's active documentp989. Some such script does run:

location.href = '#foo'

This synchronously changes the frames[0] navigable's active session history entryp989 entry to a newly-
created one, with the URL /i-0-a#foo, and appends synchronous stepsp1008 to notify the central source of truth
about that new entry.

Unlike in the previous examplep1008, these synchronous steps do not "jump the queue" and update the
traversablep990 before we finish the fetch for /i-1-a. This is because the navigable in question, frames[0], has
already been altered as part of the traversal, so we know that with the current session history stepp990 being 2,
adding the new entry as a step 3 doesn't make sense.

5. Once the fetch for /i-1-a finally finishes, we proceed to finish updating the frames[1] navigablep989 for the
traversal, including updating its active session history entryp989 to the entry with URL /i-1-a.

6. Now that both navigables have finished processing the traversal, we update the current session history stepp990

to the target step of 0.

2. Now we can process the steps that were queued for the synchronous navigation:

1. The /i-0-a#foo entry is added, with its stepp1005 determined to be 1: the current session history stepp990 (i.e.,
0) plus 1. This also clears existing forward historyp1011.

2. We fully switch to that newly added entry, including calling apply the history stepp1041. This ultimately results in
updating the documentp1049 by dispatching events like hashchangep1471, as well as updating the current session
history stepp990 to the target step of 1.

The end result is:

0 1

top /t

frames[0] /i-0-a /i-0-a#foo

frames[1] /i-1-a

7.4.1.4 Low-level operations on session history §p10

10

1010

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#set-append

7. Assert: this step is not reached.

To get session history entries for the navigation API of a navigablep989 navigable given an integer targetStep:

1. Let rawEntries be the result of getting session history entriesp1010 for navigable.

2. Let entriesForNavigationAPI be a new empty list.

3. Let startingIndex be the index of the session history entryp1005 in rawEntries who has the greatest stepp1005 less than or equal
to targetStep.

4. Append rawEntries[startingIndex] to entriesForNavigationAPI.

5. Let startingOrigin be rawEntries[startingIndex]'s document statep1005 's originp1006.

6. Let i be startingIndex − 1.

7. While i > 0:

1. If rawEntries[i]'s document statep1005 's originp1006 is not same originp899 with startingOrigin, then break.

2. Prepend rawEntries[i] to entriesForNavigationAPI.

3. Set i to i − 1.

8. Set i to startingIndex + 1.

9. While i < rawEntries's size:

1. If rawEntries[i]'s document statep1005 's originp1006 is not same originp899 with startingOrigin, then break.

2. Append rawEntries[i] to entriesForNavigationAPI.

3. Set i to i + 1.

10. Return entriesForNavigationAPI.

To clear the forward session history of a traversable navigablep990 navigable:

1. Assert: this is running within navigable's session history traversal queuep990.

2. Let step be the navigable's current session history stepp990.

3. Let entryLists be the ordered set « navigable's session history entriesp990 ».

4. For each entryList of entryLists:

1. Remove every session history entryp1005 from entryList that has a stepp1005 greater than step.

2. For each entry of entryList:

1. For each nestedHistory of entry's document statep1005 's nested historiesp1007, append nestedHistory's
entries listp1007 to entryLists.

To get all used history steps that are part of traversable navigablep990 traversable:

1. Assert: this is running within traversable's session history traversal queuep990.

2. Let steps be an empty ordered set of non-negative integers.

3. Let entryLists be the ordered set « traversable's session history entriesp990 ».

4. For each entryList of entryLists:

1. For each entry of entryList:

1. Append entry's stepp1005 to steps.

See this examplep1048 to understand why it's the greatest step less than or equal to targetStep.
Note

1011

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#list-prepend
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#set-append

2. For each nestedHistory of entry's document statep1005 's nested historiesp1007, append nestedHistory's
entries listp1007 to entryLists.

5. Return steps, sorted.

Certain actions cause a navigablep989 to navigatep1014 to a new resource.

Before we can jump into the navigation algorithmp1014 itself, we need to establish several important structures that it uses.

The source snapshot params struct is used to capture data from a Documentp130 initiating a navigation. It is snapshotted at the
beginning of a navigation and used throughout the navigation's lifetime. It has the following items:

has transient activation
a boolean

sandboxing flags
a sandboxing flag setp914

allows downloading
a boolean

fetch client
an environment settings objectp1076, only to be used as a request client

source policy container
a policy containerp917

To snapshot source snapshot params given a Documentp130 sourceDocument, return a new source snapshot paramsp1012 with

has transient activationp1012

true if sourceDocument's relevant global objectp1083 has transient activationp830; otherwise false
sandboxing flagsp1012

sourceDocument's active sandboxing flag setp917

allows downloadingp1012

false if sourceDocument's active sandboxing flag setp917 has the sandboxed downloads browsing context flagp916 set; otherwise true

For example, following a hyperlinkp309, form submissionp629, and the window.open()p926 and location.assign()p942 methods can
all cause navigation.

Example

Although in this standard the word "navigation" refers specifically to the navigatep1014 algorithm, this doesn't always line up with
web developer or user perceptions. For example:

• The URL and history update stepsp1028 are often used during so-called "single-page app navigations" or "same-document
navigations", but they do not trigger the navigatep1014 algorithm.

• Reloadsp1027 and traversalsp1028 are sometimes talked about as a type of navigation, since all three will often attempt to
populate the history entry's documentp1029 and thus could perform navigational fetches. See, e.g., the APIs exposed
Navigation Timing. But they have their own entry point algorithms, separate from the navigatep1014 algorithm.
[NAVIGATIONTIMING]p1480

• Although fragment navigationsp1021 are always done through the navigatep1014 algorithm, a user might perceive them as
more like jumping around a single page, than as a true navigation.

Note

7.4.2.1 Supporting concepts §p10

12

7.4.2 Navigation §p10

12

1012

https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#list-sort-in-ascending-order
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://fetch.spec.whatwg.org/#concept-request-client

fetch clientp1012

sourceDocument's relevant settings objectp1083

source policy containerp1012

sourceDocument's policy containerp131

The target snapshot params struct is used to capture data from a navigablep989 being navigated. Like source snapshot paramsp1012,
it is snapshotted at the beginning of a navigation and used throughout the navigation's lifetime. It has the following items:

sandboxing flags
a sandboxing flag setp914

To snapshot target snapshot params given a navigablep989 targetNavigable, return a new target snapshot paramsp1013 with
sandboxing flagsp1013 set to the result of determining the creation sandboxing flagsp917 given targetNavigable's active browsing
contextp989 and targetNavigable's containerp991.

Much of the navigation process is concerned with determining how to create a new Documentp130, which ultimately happens in the
create and initialize a Document objectp1056 algorithm. The parameters to that algorithm are tracked via a navigation params struct,
which has the following items:

id
null or a navigation IDp1014

navigable
the navigablep989 to be navigated

request
null or a request that started the navigation

response
a response that ultimately was navigated to (potentially a network error)

fetch controller
null or a fetch controller

commit early hints
null or an algorithm accepting a Documentp130, once it has been created

COOP enforcement result
an opener policy enforcement resultp906, used for reporting and potentially for causing a browsing context group switchp905

reserved environment
null or an environmentp1075 reserved for the new Documentp130

origin
an originp898 to use for the new Documentp130

policy container
a policy containerp917 to use for the new Documentp130

final sandboxing flag set
a sandboxing flag setp914 to impose on the new Documentp130

opener policy
an opener policyp904 to use for the new Documentp130

navigation timing type
a NavigationTimingType used for creating the navigation timing entry for the new Documentp130

about base URL
a URL or null used to populate the new Documentp130 's about base URLp131

Once a navigation paramsp1013 struct is created, this standard does not mutate any of its items. They are only passed onward to
other algorithms.

Note

1013

https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#fetch-controller
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://w3c.github.io/navigation-timing/#dfn-create-the-navigation-timing-entry
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#struct-item

A navigation ID is a UUID string generated during navigation. It is used to interface with the WebDriver BiDi specification as well as to
track the ongoing navigationp1027. [WEBDRIVERBIDI]p1483

After Documentp130 creation, the relevant traversable navigablep990 's session historyp990 gets updated. The
NavigationHistoryBehaviorp952 enumeration is used to indicate the desired type of session history update to the navigatep1014

algorithm. It is one of the following:

"push"
A regular navigation which adds a new session history entryp1005, and will clear the forward session historyp1011.

"replace"
A navigation that will replace the active session history entryp989.

"auto"
The default value, which will be converted very early in the navigatep1014 algorithm into "pushp1014" or "replacep1014". Usually it
becomes "pushp1014", but under certain circumstancesp1015 it becomes "replacep1014" instead.

A history handling behavior is a NavigationHistoryBehaviorp952 that is either "pushp1014" or "replacep1014", i.e., that has been
resolved away from any initial "autop1014" value.

The navigation must be a replace, given a URL url and a Documentp130 document, if any of the following are true:

• url's scheme is "javascriptp1019"; or

• document's is initial about:blankp131 is true.

Various parts of the platform track whether a user is involved in a navigation. A user navigation involvement is one of the following:

"browser UI"
The navigation was initiated by the user via browser UI mechanisms.

"activation"
The navigation was initiated by the user via the activation behavior of an element.

"none"
The navigation was not initiated by the user.

For convenience at certain call sites, the user navigation involvement for an Event event is defined as follows:

1. Assert: this algorithm is being called as part of an activation behavior definition.

2. Assert: event's type is "click".

3. If event's isTrusted is initialized to true, then return "activationp1014".

4. Return "nonep1014".

To navigate a navigablep989 navigable to a URL url using a Documentp130 sourceDocument, with an optional POST resourcep1007, string,
or null documentResource (default null), an optional response-or-null response (default null), an optional boolean
exceptionsEnabled (default false), an optional NavigationHistoryBehaviorp952 historyHandling (default "autop1014"), an optional
serialized statep1006-or-null navigationAPIState (default null), an optional entry listp632 or null formDataEntryList (default null), an
optional referrer policy referrerPolicy (default the empty string), and an optional user navigation involvementp1014 userInvolvement

Other cases that often, but not always, force a "replacep1014" navigation are:

• if the Documentp130 is not completely loadedp1063; or

• if the target URL equals the Documentp130 's URL.

Note

7.4.2.2 Beginning navigation §p10

14

1014

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#interface-event
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#dom-event-type
https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#dom-event-istrusted
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-response
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy

(default "nonep1014"):

1. Let cspNavigationType be "form-submission" if formDataEntryList is non-null; otherwise "other".

2. Let sourceSnapshotParams be the result of snapshotting source snapshot paramsp1012 given sourceDocument.

3. Let initiatorOriginSnapshot be sourceDocument's origin.

4. Let initiatorBaseURLSnapshot be sourceDocument's document base URLp96.

5. If sourceDocument's node navigablep989 is not allowed by sandboxing to navigatep1025 navigable given
sourceSnapshotParams, then:

1. If exceptionsEnabled is true, then throw a "SecurityError" DOMException.

2. Return.

6. Let navigationId be the result of generating a random UUID. [WEBCRYPTO]p1483

7. If the surrounding agent is equal to navigable's active documentp989 's relevant agentp1073, then continue these steps.
Otherwise, queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigable's active windowp989 to
continue these steps.

8. If navigable's active documentp989 's unload counterp1064 is greater than 0, then invoke WebDriver BiDi navigation failed with a
WebDriver BiDi navigation status whose id is navigationId, status is "canceled", and url is url, and return.

9. Let container be navigable's containerp991.

10. If container is an iframep390 element and will lazy load element stepsp101 given container returns true, then stop intersection-
observing a lazy loading elementp102 container and set container's lazy load resumption stepsp101 to null.

11. If historyHandling is "autop1014", then:

1. If url equals navigable's active documentp989 's URL, and initiatorOriginSnapshot is same originp899 with
targetNavigable's active documentp989 's origin, then set historyHandling to "replacep1014".

2. Otherwise, set historyHandling to "pushp1014".

12. If the navigation must be a replacep1014 given url and navigable's active documentp989, then set historyHandling to
"replacep1014".

13. If all of the following are true:

◦ documentResource is null;

◦ response is null;

◦ url equals navigable's active session history entryp989 's URLp1005 with exclude fragments set to true; and

◦ url's fragment is non-null,

then:

1. Navigate to a fragmentp1021 given navigable, url, historyHandling, userInvolvement, navigationAPIState, and
navigationId.

2. Return.

14. If navigable's parentp989 is non-null, then set navigable's is delaying load eventsp989 to true.

We do this because we are about to look at a lot of properties of navigable's active documentp989, which are in theory
only accessible over in the appropriate event loopp1123. (But, we do not want to unconditionally queue a task, since — for
example — same-event-loop fragment navigationsp1021 need to take effect synchronously.)

Another implementation strategy would be to replicate the relevant information across event loops, or into a canonical
"browser process", so that it can be consulted without queueing a task. This could give different results than what we
specify here in edge cases, where the relevant properties have changed over in the target event loop but not yet been
replicated. Further testing is needed to determine which of these strategies best matches browser behavior, in such racy
edge cases.

Note

1015

https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/webcrypto/#dfn-generate-a-random-uuid
https://tc39.es/ecma262/#surrounding-agent
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-failed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-canceled
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://url.spec.whatwg.org/#concept-url-equals
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url-equals
https://url.spec.whatwg.org/#url-equals-exclude-fragments
https://url.spec.whatwg.org/#concept-url-fragment

15. Let targetBrowsingContext be navigable's active browsing contextp989.

16. Let targetSnapshotParams be the result of snapshotting target snapshot paramsp1013 given navigable.

17. Invoke WebDriver BiDi navigation started with targetBrowsingContext, and a new WebDriver BiDi navigation status whose id
is navigationId, status is "pending", and url is url.

18. If navigable's ongoing navigationp1027 is "traversal", then:

1. Invoke WebDriver BiDi navigation failed with targetBrowsingContext and a new WebDriver BiDi navigation status
whose id is navigationId, status is "canceled", and url is url.

2. Return.

19. Set the ongoing navigationp1027 for navigable to navigationId.

20. If url's scheme is "javascriptp1019", then:

1. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigable's active windowp989 to
navigate to a javascript: URLp1019 given navigable, url, historyHandling, initiatorOriginSnapshot, and
cspNavigationType.

2. Return.

21. If all of the following are true:

◦ userInvolvement is not "browser UIp1014";

◦ navigable's active documentp989 's origin is same origin-domainp899 with sourceDocument's origin;

◦ navigable's active documentp989 's is initial about:blankp131 is false; and

◦ url's scheme is a fetch scheme,

then:

1. Let navigation be navigable's active windowp989 's navigation APIp952.

2. Let entryListForFiring be formDataEntryList if documentResource is a POST resourcep1007; otherwise, null.

3. Let navigationAPIStateForFiring be navigationAPIState if navigationAPIState is not null; otherwise,
StructuredSerializeForStoragep122(undefined).

4. Let continue be the result of firing a push/replace/reload navigate eventp974 at navigation with navigationTypep974

set to historyHandling, isSameDocumentp974 set to false, userInvolvementp974 set to userInvolvement,
formDataEntryListp975 set to entryListForFiring, destinationURLp974 set to url, and navigationAPIStatep975 set to
navigationAPIStateForFiring.

5. If continue is false, then return.

22. In parallelp43, run these steps:

1. Let unloadPromptCanceled be the result of checking if unloading is canceledp1025 for navigable's active
documentp989 's inclusive descendant navigablesp994.

2. If unloadPromptCanceled is true, or navigable's ongoing navigationp1027 is no longer navigationId, then:

1. Invoke WebDriver BiDi navigation failed with targetBrowsingContext and a new WebDriver BiDi

Any attempts to navigate a navigablep989 that is currently traversingp1040 are ignored.
Note

This will have the effect of aborting other ongoing navigations of navigable, since at certain points during navigation
changes to the ongoing navigationp1027 will cause further work to be abandoned.

Note

It is possible for navigations with userInvolvement of "browser UIp1014" or initiated by a cross origin-domainp899

sourceDocument to fire navigatep1472 events, if they go through the earlier navigate to a fragmentp1021 path.

Note

1016

https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-started
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-pending
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-failed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-canceled
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://url.spec.whatwg.org/#concept-url-scheme
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-failed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status

navigation status whose id is navigationId, status is "canceled", and url is url.

2. Abort these steps.

3. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigable's active windowp989 to
abort a document and its descendantsp1067 given navigable's active documentp989.

4. Let documentState be a new document statep1006 with
request referrer policyp1006

referrerPolicy
initiator originp1006

initiatorOriginSnapshot
resourcep1007

documentResource
navigable target namep1007

navigable's target namep989

5. If url matches about:blankp96 or is about:srcdocp96, then:

1. Set documentState's originp1006 to initiatorOriginSnapshot.

2. Set documentState's about base URLp1007 to initiatorBaseURLSnapshot.

6. Let historyEntry be a new session history entryp1005, with its URLp1005 set to url and its document statep1005 set to
documentState.

7. Let navigationParams be null.

8. If response is non-null:

1. Let policyContainer be the result of determining navigation params policy containerp918 given response's
URL, null, a clonep917 of the sourceDocument's policy containerp131, navigable's container documentp992 's
policy containerp131, and null.

2. Let finalSandboxFlags be the union of targetSnapshotParams's sandboxing flagsp1013 and
policyContainer's CSP listp917 's CSP-derived sandboxing flagsp917.

3. Let responseOrigin be the result of determining the originp1001 given response's URL, finalSandboxFlags,
and documentState's initiator originp1006.

4. Let coop be a new opener policyp904.

5. Let coopEnforcementResult be a new opener policy enforcement resultp906 with
urlp906

response's URL
originp906

responseOrigin
opener policyp906

coop

6. Set navigationParams to a new navigation paramsp1013, with
idp1013

navigationId
navigablep1013

navigable
requestp1013

null

The navigable target namep1007 can get cleared under various conditions later in the navigation process, before
the document state is finalized.

Note

The navigatep1014 algorithm is only supplied with a response as part of the objectp402 and embedp399 processing
models, or for processing parts of multipart/x-mixed-replace responsesp1061 after the initial response.

Note

1017

https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-canceled
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://infra.spec.whatwg.org/#set-union
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url

responsep1013

response
fetch controllerp1013

null
commit early hintsp1013

null
COOP enforcement resultp1013

coopEnforcementResult
reserved environmentp1013

null
originp1013

responseOrigin
policy containerp1013

policyContainer
final sandboxing flag setp1013

finalSandboxFlags
opener policyp1013

coop
navigation timing typep1013

"navigate"
about base URLp1013

documentState's about base URLp1007

9. Attempt to populate the history entry's documentp1029 for historyEntry, given navigable, "navigate",
sourceSnapshotParams, targetSnapshotParams, navigationId, navigationParams, cspNavigationType, with
allowPOSTp1029 set to true and completionStepsp1029 set to the following step:

1. Append session history traversal stepsp1008 to navigable's traversablep990 to finalize a cross-document
navigationp1018 given navigable, historyHandling, and historyEntry.

Although the usual cross-document navigation case will first foray into populating a session history entryp1029 with a Documentp130, all
navigations that don't get aborted will ultimately end up calling into one of the below algorithms.

To finalize a cross-document navigation given a navigablep989 navigable, history handling behaviorp1014 historyHandling, and
session history entryp1005 historyEntry:

1. Assert: this is running on navigable's traversable navigable'sp990 session history traversal queuep990.

2. Set navigable's is delaying load eventsp989 to false.

3. If historyEntry's documentp1005 is null, then return.

4. If all of the following are true:

◦ navigable's parentp989 is null;

◦ historyEntry's documentp1005 's browsing contextp999 is not an auxiliary browsing contextp999 whose opener browsing
contextp998 is non-null; and

◦ historyEntry's documentp1005 's origin is not navigable's active documentp989 's origin,

then set historyEntry's document statep1005 's navigable target namep1007 to the empty string.

7.4.2.3 Ending navigation §p10

18

7.4.2.3.1 The usual cross-document navigation case §p10

18

This means that attempting to populate the history entry's documentp1029 ended up not creating a document, as a result
of e.g., the navigation being canceled by a subsequent navigation, a 204 No Content response, etc.

Note

1018

https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-navigate
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-navigate
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin

5. Let entryToReplace be navigable's active session history entryp989 if historyHandling is "replacep1014", otherwise null.

6. Let traversable be navigable's traversable navigablep990.

7. Let targetStep be null.

8. Let targetEntries be the result of getting session history entriesp1010 for navigable.

9. If entryToReplace is null, then:

1. Clear the forward session historyp1011 of traversable.

2. Set targetStep to traversable's current session history stepp990 + 1.

3. Set historyEntry's stepp1005 to targetStep.

4. Append historyEntry to targetEntries.

Otherwise:

1. Replace entryToReplace with historyEntry in targetEntries.

2. Set historyEntry's stepp1005 to entryToReplace's stepp1005.

3. If historyEntry's document statep1005 's originp1006 is same originp899 with entryToReplace's document statep1005 's
originp1006, then set historyEntry's navigation API keyp1005 to entryToReplace's navigation API keyp1005.

4. Set targetStep to traversable's current session history stepp990.

10. Apply the push/replace history stepp1040 targetStep to traversable given historyHandling.

javascript:p1019 URLs have a dedicated label on the issue tracker documenting various problems with their specification.

To navigate to a javascript: URL, given a navigablep989 targetNavigable, a URL url, a history handling behaviorp1014

historyHandling, an originp898 initiatorOrigin, and a string cspNavigationType:

1. Assert: historyHandling is "replacep1014".

2. Set the ongoing navigationp1027 for targetNavigable to null.

3. If initiatorOrigin is not same origin-domainp899 with targetNavigable's active documentp989 's origin, then return.

4. Let request be a new request whose URL is url.

5. If the result of should navigation request of type be blocked by Content Security Policy? given request and cspNavigationType
is "Blocked", then return. [CSP]p1476

6. Let newDocument be the result of evaluating a javascript: URLp1020 given targetNavigable, url, and initiatorOrigin.

7. If newDocument is null, then return.

8. Assert: initiatorOrigin is newDocument's origin.

9. Let entryToReplace be targetNavigable's active session history entryp989.

10. Let oldDocState be entryToReplace's document statep1005.

7.4.2.3.2 The javascript: URL special case §p10

19

This is a synthetic request solely for plumbing into the next step. It will never hit the network.
Note

In this case, some JavaScript code was executed, but no new Documentp130 was created, so we will not perform a
navigation.

Note

1019

https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-replace
https://github.com/whatwg/html/labels/topic%3A%20javascript%3A%20URLs
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request
https://w3c.github.io/webappsec-csp/#should-block-navigation-request
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin

11. Let documentState be a new document statep1006 with
documentp1006

newDocument
history policy containerp1006

a clonep917 of the oldDocState's history policy containerp1006 if it is non-null; null otherwise
request referrerp1006

oldDocState's request referrerp1006

request referrer policyp1006

oldDocState's request referrer policyp1006 or should this be the referrerPolicy that was passed to navigatep1014?
initiator originp1006

initiatorOrigin
originp1006

initiatorOrigin
about base URLp1007

oldDocState's about base URLp1007

resourcep1007

null
ever populatedp1007

true
navigable target namep1007

oldDocState's navigable target namep1007

12. Let historyEntry be a new session history entryp1005, with
URLp1005

entryToReplace's URLp1005

document statep1005

documentState

13. Append session history traversal stepsp1008 to targetNavigable's traversablep990 to finalize a cross-document navigationp1018

with targetNavigable, historyHandling, and historyEntry.

To evaluate a javascript: URL given a navigablep989 targetNavigable, a URL url, and an originp898 newDocumentOrigin:

1. Let urlString be the result of running the URL serializer on url.

2. Let encodedScriptSource be the result of removing the leading "javascript:" from urlString.

3. Let scriptSource be the UTF-8 decoding of the percent-decoding of encodedScriptSource.

4. Let settings be targetNavigable's active documentp989 's relevant settings objectp1083.

5. Let baseURL be settings's API base URLp1076.

6. Let script be the result of creating a classic scriptp1093 given scriptSource, settings, baseURL, and the default script fetch
optionsp1086.

7. Let evaluationStatus be the result of running the classic scriptp1096 script.

8. Let result be null.

9. If evaluationStatus is a normal completion, and evaluationStatus.[[Value]] is a String, then set result to
evaluationStatus.[[Value]].

10. Otherwise, return null.

11. Let response be a new response with
URL

targetNavigable's active documentp989 's URL
header list

« (`Content-Typep98`, `text/html;charset=utf-8`) »

For the URLp1005, we do not use url, i.e. the actual javascript:p1019 URL that the navigatep1014 algorithm was called with.
This means javascript:p1019 URLs are never stored in session history, and so can never be traversed to.

Note

1020

https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://encoding.spec.whatwg.org/#utf-8-decode
https://url.spec.whatwg.org/#string-percent-decode
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://dom.spec.whatwg.org/#concept-document-url
https://fetch.spec.whatwg.org/#concept-response-header-list

body
the UTF-8 encoding of result, as a body

12. Let policyContainer be targetNavigable's active documentp989 's policy containerp131.

13. Let finalSandboxFlags be policyContainer's CSP listp917 's CSP-derived sandboxing flagsp917.

14. Let coop be targetNavigable's active documentp989 's opener policyp131.

15. Let coopEnforcementResult be a new opener policy enforcement resultp906 with
urlp906

url
originp906

newDocumentOrigin
opener policyp906

coop

16. Let navigationParams be a new navigation paramsp1013, with
idp1013

navigationId
navigablep1013

targetNavigable
requestp1013

null this will cause the referrer of the resulting Documentp130 to be null; is that correct?
responsep1013

response
fetch controllerp1013

null
commit early hintsp1013

null
COOP enforcement resultp1013

coopEnforcementResult
reserved environmentp1013

null
originp1013

newDocumentOrigin
policy containerp1013

policyContainer
final sandboxing flag setp1013

finalSandboxFlags
opener policyp1013

coop
navigation timing typep1013

"navigate"
about base URLp1013

targetNavigable's active documentp989 's about base URLp131

17. Return the result of loading an HTML documentp1059 given navigationParams.

To navigate to a fragment given a navigablep989 navigable, a URL url, a history handling behaviorp1014 historyHandling, a user
navigation involvementp1014 userInvolvement, a serialized statep1006-or-null navigationAPIState, and a navigation IDp1014 navigationId:

1. Let navigation be navigable's active windowp989 's navigation APIp952.

2. Let destinationNavigationAPIState be navigable's active session history entryp989 's navigation API statep1005.

The encoding to UTF-8 means that unpaired surrogates will not roundtrip, once the HTML parser decodes the response
body.

Note

7.4.2.3.3 Fragment navigations §p10

21

1021

https://fetch.spec.whatwg.org/#concept-response-body
https://encoding.spec.whatwg.org/#utf-8-encode
https://fetch.spec.whatwg.org/#byte-sequence-as-a-body
https://infra.spec.whatwg.org/#surrogate
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-navigate
https://url.spec.whatwg.org/#concept-url

3. If navigationAPIState is not null, then set destinationNavigationAPIState to navigationAPIState.

4. Let continue be the result of firing a push/replace/reload navigate eventp974 at navigation with navigationTypep974 set to
historyHandling, isSameDocumentp974 set to true, userInvolvementp974 set to userInvolvement, destinationURLp974 set to url,
and navigationAPIStatep975 set to destinationNavigationAPIState.

5. If continue is false, then return.

6. Let historyEntry be a new session history entryp1005, with
URLp1005

url
document statep1005

navigable's active session history entryp989 's document statep1005

navigation API statep1005

destinationNavigationAPIState
scroll restoration modep1005

navigable's active session history entryp989 's scroll restoration modep1005

7. Let entryToReplace be navigable's active session history entryp989 if historyHandling is "replacep1014", otherwise null.

8. Let history be navigable's active documentp989 's history objectp945.

9. Let scriptHistoryIndex be history's indexp946.

10. Let scriptHistoryLength be history's lengthp946.

11. If historyHandling is "pushp1014", then:

1. Set history's statep946 to null.

2. Increment scriptHistoryIndex.

3. Set scriptHistoryLength to scriptHistoryIndex + 1.

12. Set navigable's active documentp989 's URL to url.

13. Set navigable's active session history entryp989 to historyEntry.

14. Update document for history step applicationp1049 given navigable's active documentp989, historyEntry, true,
scriptHistoryIndex, scriptHistoryLength, and historyHandling.

15. Scroll to the fragmentp1054 given navigable's active documentp989.

16. Let traversable be navigable's traversable navigablep990.

17. Append the following session history synchronous navigation stepsp1008 involving navigable to traversable:

1. Finalize a same-document navigationp1023 given traversable, navigable, historyEntry, entryToReplace, and

For navigations peformed with navigation.navigate()p960, the value provided by the statep952 option is used for the
new navigation API statep1005. (This will set it to the serialization of undefined, if no value is provided for that option.) For
other fragment navigations, including user-initiated ones, the navigation API statep1005 is carried over from the previous
entry.

The classic history API statep1005 is never carried over.

Note

This algorithm will be called twice as a result of a single fragment navigation: once synchronously, where best-guess
values scriptHistoryIndex and scriptHistoryLength are set, history.statep946 is nulled out, and various events are fired;
and once asynchronously, where the final values for index and length are set, history.statep946 remains untouched,
and no events are fired.

Note

If the scrolling fails because the Documentp130 is new and the relevant ID has not yet been parsed, then the second
asynchronous call to update document for history step applicationp1049 will take care of scrolling.

Note

1022

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-id

historyHandling.

2. Invoke WebDriver BiDi fragment navigated with navigable's active browsing contextp989 and a new WebDriver BiDi
navigation status whose id is navigationId, url is url, and status is "complete".

To finalize a same-document navigation given a traversable navigablep990 traversable, a navigablep989 targetNavigable, a session
history entryp1005 targetEntry, a session history entryp1005-or-null entryToReplace, and a history handling behaviorp1014 historyHandling:

1. Assert: this is running on traversable's session history traversal queuep990.

2. If targetNavigable's active session history entryp989 is not targetEntry, then return.

3. Let targetStep be null.

4. Let targetEntries be the result of getting session history entriesp1010 for targetNavigable.

5. If entryToReplace is null, then:

1. Clear the forward session historyp1011 of traversable.

2. Set targetStep to traversable's current session history stepp990 + 1.

3. Set targetEntry's stepp1005 to targetStep.

4. Append targetEntry to targetEntries.

Otherwise:

1. Replace entryToReplace with targetEntry in targetEntries.

2. Set targetEntry's stepp1005 to entryToReplace's stepp1005.

3. Set targetStep to traversable's current session history stepp990.

6. Apply the push/replace history stepp1040 targetStep to traversable given historyHandling.

The input to attempt to create a non-fetch scheme documentp1024 is the non-fetch scheme navigation params struct. It is a
lightweight version of navigation paramsp1013 which only carries parameters relevant to the non-fetch scheme navigation case. It has
the following items:

id
null or a navigation IDp1014

navigable
the navigablep989 experiencing the navigation

URL
a URL

target snapshot sandboxing flags
the target snapshot paramsp1013 's sandboxing flagsp1013 present during navigation

source snapshot has transient activation
a copy of the source snapshot paramsp1012 's has transient activationp1012 boolean present during activation

This is used by both fragment navigationsp1021 and by the URL and history update stepsp1028, which are the only synchronous
updates to session history. By virtue of being synchronous, those algorithms are performed outside of the top-level
traversablep990 's session history traversal queuep990. This puts them out of sync with the top-level traversablep990 's current session
history stepp990, so this algorithm is used to resolve conflicts due to race conditions.

Note

This is done even for "replacep1014" navigations, as it resolves race conditions across multiple synchronous navigations.
Note

7.4.2.3.4 Non-fetch schemes and external software §p10

23

1023

https://w3c.github.io/webdriver-bidi/#webdriver-bidi-fragment-navigated
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-complete
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-replace
https://infra.spec.whatwg.org/#struct
https://fetch.spec.whatwg.org/#fetch-scheme
https://infra.spec.whatwg.org/#struct-item
https://url.spec.whatwg.org/#concept-url

initiator origin
an originp898 possibly for use in a user-facing prompt to confirm the invocation of an external software package

navigation timing type
a NavigationTimingType used for creating the navigation timing entry for the new Documentp130

To attempt to create a non-fetch scheme document, given a non-fetch scheme navigation paramsp1023 navigationParams:

1. Let url be navigationParams's URLp1023.

2. Let navigable be navigationParams's navigablep1023.

3. If url is to be handled using a mechanism that does not affect navigable, e.g., because url's scheme is handled externally,
then:

1. Hand-off to external softwarep1024 given url, navigable, navigationParams's target snapshot sandboxing flagsp1023,
navigationParams's source snapshot has transient activationp1023, and navigationParams's initiator originp1024.

2. Return null.

4. Handle url by displaying some sort of inline content, e.g., an error message because the specified scheme is not one of the
supported protocols, or an inline prompt to allow the user to select a registered handlerp1174 for the given scheme. Return the
result of displaying the inline contentp1062 given navigable, navigationParams's idp1023, and navigationParams's navigation
timing typep1024.

To hand-off to external software given a URL or response resource, a navigablep989 navigable, a sandboxing flag setp914

sandboxFlags, a boolean hasTransientActivation, and an originp898 initiatorOrigin user agents should:

1. If all of the following are true:

◦ navigable is not a top-level traversablep990;

◦ sandboxFlags has its sandboxed custom protocols navigation browsing context flagp916 set; and

◦ sandboxFlags has its sandboxed top-level navigation with user activation browsing context flagp915 set, or
hasTransientActivation is false,

then return without invoking the external software package.

2. Perform the appropriate handoff of resource while attempting to mitigate the risk that this is an attempt to exploit the target
software. For example, user agents could prompt the user to confirm that initiatorOrigin is to be allowed to invoke the
external software in question. In particular, if hasTransientActivation is false, then the user agent should not invoke the
external software package without prior user confirmation.

This differs slightly from a document statep1005 's initiator originp1006 in that a non-fetch scheme navigation paramsp1023 's initiator
originp1024 follows redirects up to the last fetch scheme URL in a redirect chain that ends in a non-fetch scheme URL.

Note

In the case of a registered handler being used, navigatep1014 will be invoked with a new URL.
Note

Navigation inside an iframe toward external software can be seen by users as a new popup or a new top-level
navigation. That's why its is allowed in sandboxed iframep390 only when one of allow-popupsp916, allow-top-
navigationp916, allow-top-navigation-by-user-activationp916, or allow-top-navigation-to-custom-protocolsp917

is specified.

Note

For example, there could be a vulnerability in the target software's URL handler which a hostile page would attempt to
exploit by tricking a user into clicking a link.

Example

1024

https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://w3c.github.io/navigation-timing/#dfn-create-the-navigation-timing-entry
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-response

A couple of scenarios can intervene early in the navigation process and put the whole thing to a halt. This can be especially exciting
when multiple navigablesp989 are navigating at the same time, due to a session history traversal.

A navigablep989 source is allowed by sandboxing to navigate a second navigablep989 target, given a source snapshot paramsp1012

sourceSnapshotParams, if the following steps return true:

1. If source is target, then return true.

2. If source is an ancestor of target, then return true.

3. If target is an ancestor of source, then:

1. If target is not a top-level traversablep990, then return true.

2. If sourceSnapshotParams's has transient activationp1012 is true, and sourceSnapshotParams's sandboxing
flagsp1012 's sandboxed top-level navigation with user activation browsing context flagp915 is set, then return false.

3. If sourceSnapshotParams's has transient activationp1012 is false, and sourceSnapshotParams's sandboxing
flagsp1012 's sandboxed top-level navigation without user activation browsing context flagp915 is set, then return
false.

4. Return true.

4. If target is a top-level traversablep990:

1. If source is the one permitted sandboxed navigatorp914 of target, then return true.

2. If sourceSnapshotParams's sandboxing flagsp1012 's sandboxed navigation browsing context flagp914 is set, then
return false.

3. Return true.

5. If sourceSnapshotParams's sandboxing flagsp1012 's sandboxed navigation browsing context flagp914 is set, then return false.

6. Return true.

To check if unloading is canceled for a list of navigablesp989 navigablesThatNeedBeforeUnload, given an optional traversable
navigablep990 traversable, an optional integer targetStep, and an optional user navigation involvementp1014-or-null
userInvolvementForNavigateEvent, run these steps. They return "canceled-by-beforeunload", "canceled-by-navigate", or
"continue".

1. Let documentsToFireBeforeunload be the active documentp989 of each item in navigablesThatNeedBeforeUnload.

2. Let unloadPromptShown be false.

3. Let finalStatus be "continue".

4. If traversable was given, then:

1. Assert: targetStep and userInvolvementForNavigateEvent were given.

2. Let targetEntry be the result of getting the target history entryp1048 given traversable and targetStep.

3. If targetEntry is not traversable's current session history entryp989, and targetEntry's document statep1005 's
originp1006 is the samep899 as traversable's current session history entryp989 's document statep1005 's originp1006, then:

1. Assert: userInvolvementForNavigateEvent is not null.

7.4.2.4 Preventing navigation §p10

25

In this case, we're going to fire the navigatep1472 event for traversable here. Because under some
circumstancesp976 it might be canceled, we need to do this separately from other traversal navigate
eventsp1042, which happen later.

Additionally, because we want beforeunloadp1471 events to fire before navigatep1472 events, this means we
need to fire beforeunloadp1471 for traversable here (if applicable), instead of doing it as part of the below loop
over documentsToFireBeforeunload.

Note

1025

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-item
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert

2. Let eventsFired be false.

3. Let needsBeforeunload be true if navigablesThatNeedBeforeUnload contains traversable; otherwise false.

4. If needsBeforeunload is true, then remove traversable's active documentp989 from
documentsToFireBeforeunload.

5. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given traversable's active
windowp989 to perform the following steps:

1. If needsBeforeunload is true, then:

1. Let (unloadPromptShownForThisDocument, unloadPromptCanceledByThisDocument)
be the result of running the steps to fire beforeunloadp1026 given traversable's active
documentp989 and false.

2. If unloadPromptShownForThisDocument is true, then set unloadPromptShown to true.

3. If unloadPromptCanceledByThisDocument is true, then set finalStatus to "canceled-
by-beforeunload".

2. If finalStatus is "canceled-by-beforeunload", then abort these steps.

3. Let navigation be traversable's active windowp989 's navigation APIp952.

4. Let navigateEventResult be the result of firing a traverse navigate eventp974 at navigation
given targetEntry and userInvolvementForNavigateEvent.

5. If navigateEventResult is false, then set finalStatus to "canceled-by-navigate".

6. Set eventsFired to true.

6. Wait until eventsFired is true.

7. If finalStatus is not "continue", then return finalStatus.

5. Let totalTasks be the size of documentsThatNeedBeforeunload.

6. Let completedTasks be 0.

7. For each document of documents, queue a global taskp1125 on the navigation and traversal task sourcep1134 given document's
relevant global objectp1083 to run the steps:

1. Let (unloadPromptShownForThisDocument, unloadPromptCanceledByThisDocument) be the result of running the
steps to fire beforeunloadp1026 given document and unloadPromptShown.

2. If unloadPromptShownForThisDocument is true, then set unloadPromptShown to true.

3. If unloadPromptCanceledByThisDocument is true, then set finalStatus to "canceled-by-beforeunload".

4. Increment completedTasks.

8. Wait for completedTasks to be totalTasks.

9. Return finalStatus.

The steps to fire beforeunload given a Documentp130 document and a boolean unloadPromptShown are:

1. Let unloadPromptCanceled be false.

2. Increase the document's unload counterp1064 by 1.

3. Increase document's relevant agentp1073 's event loopp1123 's termination nesting levelp1064 by 1.

4. Let eventFiringResult be the result of firing an event named beforeunloadp1471 at document's relevant global objectp1083,
using BeforeUnloadEventp983, with the cancelable attribute initialized to true.

5. Decrease document's relevant agentp1073 's event loopp1123 's termination nesting levelp1064 by 1.

6. If all of the following are true:

1026

https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable

◦ unloadPromptShown is false;

◦ document's active sandboxing flag setp917 does not have its sandboxed modals flagp915 set;

◦ document's relevant global objectp1083 has sticky activationp830;

◦ eventFiringResult is false, or the returnValuep983 attribute of event is not the empty string; and

◦ showing an unload prompt is unlikely to be annoying, deceptive, or pointless,

then:

1. Set unloadPromptShown to true.

2. Let userPromptHandler be the result of WebDriver BiDi user prompt opened with document's relevant global
objectp1083, "beforeunload", and "".

3. If userPromptHandler is "dismiss", then set unloadPromptCanceled to true.

4. If userPromptHandler is "none", then:

▪ Ask the user to confirm that they wish to unload the document, and pausep1133 while waiting for the
user's response.

▪ If the user did not confirm the page navigation, then set unloadPromptCanceled to true.

5. Invoke WebDriver BiDi user prompt closed with document's relevant global objectp1083, "beforeunload", and true if
unloadPromptCanceled is false or false otherwise.

7. Decrease document's unload counterp1064 by 1.

8. Return (unloadPromptShown, unloadPromptCanceled).

Each navigablep989 has an ongoing navigation, which is a navigation IDp1014, "traversal", or null, initially null. It is used to track
navigation aborting and to prevent any navigations from taking place during traversalp1040.

To set the ongoing navigation for a navigablep989 navigable to newValue:

1. If navigable's ongoing navigationp1027 is equal to newValue, then return.

2. Inform the navigation API about aborting navigationp967 given navigable.

3. Set navigable's ongoing navigationp1027 to newValue.

To reload a navigablep989 navigable given an optional serialized statep1006-or-null navigationAPIState (default null) and an optional
user navigation involvementp1014 userInvolvement (default "nonep1014"):

1. If userInvolvement is not "browser UIp1014", then:

1. Let navigation be navigable's active windowp989 's navigation APIp952.

2. Let destinationNavigationAPIState be navigable's active session history entryp989 's navigation API statep1005.

3. If navigationAPIState is not null, then set destinationNavigationAPIState to navigationAPIState.

4. Let continue be the result of firing a push/replace/reload navigate eventp974 at navigation with navigationTypep974

set to "reloadp954", isSameDocumentp974 set to false, userInvolvementp974 set to userInvolvement,

The message shown to the user is not customizable, but instead determined by the user agent. In
particular, the actual value of the returnValuep983 attribute is ignored.

Note

7.4.2.5 Aborting navigation §p10

27

7.4.3 Reloading and traversing §p10

27

1027

https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-opened
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-closed

destinationURLp974 set to navigable's active session history entryp989 's URLp1005, and navigationAPIStatep975 set to
destinationNavigationAPIState.

5. If continue is false, then return.

2. Set navigable's active session history entryp989 's document statep1005 's reload pendingp1007 to true.

3. Let traversable be navigable's traversable navigablep990.

4. Append the following session history traversal stepsp1008 to traversable:

1. Apply the reload history stepp1040 to traversable.

To traverse the history by a delta given a traversable navigablep990 traversable, an integer delta, and an optional Documentp130

sourceDocument:

1. Let sourceSnapshotParams and initiatorToCheck be null.

2. Let userInvolvement be "browser UIp1014".

3. If sourceDocument is given, then:

1. Set sourceSnapshotParams to the result of snapshotting source snapshot paramsp1012 given sourceDocument.

2. Set initiatorToCheck to sourceDocument's node navigablep989.

3. Set userInvolvement to "nonep1014".

4. Append the following session history traversal stepsp1008 to traversable:

1. Let allSteps be the result of getting all used history stepsp1011 for traversable.

2. Let currentStepIndex be the index of traversable's current session history stepp990 within allSteps.

3. Let targetStepIndex be currentStepIndex plus delta.

4. If allSteps[targetStepIndex] does not exist, then abort these steps.

5. Apply the traverse history stepp1040 allSteps[targetStepIndex] to traversable, given sourceSnapshotParams,
initiatorToCheck, and userInvolvement.

Apart from the navigatep1014 algorithm, session history entriesp1005 can be pushed or replaced via one more mechanism, the URL and
history update stepsp1028. The most well-known callers of these steps are the history.replaceState()p946 and
history.pushState()p946 APIs, but various other parts of the standard also need to perform updates to the active history entryp989,
and they use these steps to do so.

The URL and history update steps, given a Documentp130 document, a URL newURL, an optional serialized statep1006-or-null
serializedData (default null), and an optional history handling behaviorp1014 historyHandling (default "replacep1014"), are:

1. Let navigable be document's node navigablep989.

2. Let activeEntry be navigable's active session history entryp989.

3. Let newEntry be a new session history entryp1005, with
URLp1005

newURL
serialized statep1005

if serializedData is not null, serializedData; otherwise activeEntry's classic history API statep1005

document statep1005

activeEntry's document statep1005

scroll restoration modep1005

activeEntry's scroll restoration modep1005

persisted user statep1005

activeEntry's persisted user statep1005

7.4.4 Non-fragment synchronous "navigations" §p10

28

1028

https://infra.spec.whatwg.org/#list-contain
https://url.spec.whatwg.org/#concept-url

4. If document's is initial about:blankp131 is true, then set historyHandling to "replacep1014".

5. Let entryToReplace be activeEntry if historyHandling is "replacep1014", otherwise null.

6. If historyHandling is "pushp1014", then:

1. Increment document's history objectp945 's indexp946.

2. Set document's history objectp945 's lengthp946 to its indexp946 + 1.

7. If serializedData is not null, then restore the history object statep1051 given document and newEntry.

8. Set document's URL to newURL.

9. Set document's latest entryp1008 to newEntry.

10. Set navigable's active session history entryp989 to newEntry.

11. Update the navigation API entries for a same-document navigationp955 given document's relevant global objectp1083 's
navigation APIp952, newEntry, and historyHandling.

12. Let traversable be navigable's traversable navigablep990.

13. Append the following session history synchronous navigation stepsp1008 involving navigable to traversable:

1. Finalize a same-document navigationp1023 given traversable, navigable, newEntry, entryToReplace, and
historyHandling.

2. Invoke WebDriver BiDi history updated with navigable.

As explained in the overviewp1004, both navigationp1012 and traversalp1027 involve creating a session history entryp1005 and then
attempting to populate its documentp1005 member, so that it can be presented inside the navigablep989.

This involves either: using an already-given responsep1017; using the srcdoc resourcep1007 stored in the session history entryp1005; or
fetchingp1033. The process has several failure modes, which can either result in doing nothing (leaving the navigablep989 on its
currently-activep989 Documentp130) or can result in populating the session history entryp1005 with an error documentp1062.

To attempt to populate the history entry's document for a session history entryp1005 entry, given a navigablep989 navigable, a
NavigationTimingType navTimingType, a source snapshot paramsp1012 sourceSnapshotParams, a target snapshot paramsp1013

targetSnapshotParams, an optional navigation IDp1014-or-null navigationId (default null), an optional navigation paramsp1013-or-null
navigationParams (default null), an optional string cspNavigationType (default "other"), an optional boolean allowPOST (default
false), and optional algorithm steps completionSteps (default an empty algorithm):

1. Assert: this is running in parallelp43.

This means that pushState()p946 on an initial about:blankp131 Documentp130 behaves as a replaceState()p946 call.
Note

These are temporary best-guess values for immediate synchronous access.
Note

Since this is neither a navigationp1014 nor a history traversalp1028, it does not cause a hashchangep1471 event to be fired.
Note

Although both fragment navigationp1021 and the URL and history update stepsp1028 perform synchronous history updates, only
fragment navigation contains a synchronous call to update document for history step applicationp1049. The URL and history update
stepsp1028 instead perform a few select updates inside the above algorithm, omitting others. This is somewhat of an unfortunate
historical accident, and generally leads to web-developer sadness about the inconsistency. For example, this means that
popstatep1472 events fire for fragment navigations, but not for history.pushState()p946 calls.

Note

7.4.5 Populating a session history entry §p10

29

1029

https://dom.spec.whatwg.org/#concept-document-url
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-history-updated
https://github.com/whatwg/html/issues/5562
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://infra.spec.whatwg.org/#assert

2. Assert: if navigationParams is non-null, then navigationParams's responsep1013 is non-null.

3. Let currentBrowsingContext be navigable's active browsing contextp989.

4. Let documentResource be entry's document statep1005 's resourcep1007.

5. If navigationParams is null, then:

1. If documentResource is a string, then set navigationParams to the result of creating navigation params from a
srcdoc resourcep1032 given entry, navigable, targetSnapshotParams, navigationId, and navTimingType.

2. Otherwise, if all of the following are true:

▪ entry's URLp1005 's scheme is a fetch scheme; and

▪ documentResource is null, or allowPOST is true and documentResource's request bodyp1007 is not failure,

then set navigationParams to the result of creating navigation params by fetchingp1033 given entry, navigable,
sourceSnapshotParams, targetSnapshotParams, cspNavigationType, navigationId, and navTimingType.

3. Otherwise, if entry's URLp1005 's scheme is not a fetch scheme, then set navigationParams to a new non-fetch
scheme navigation paramsp1023, with
idp1023

navigationId
navigablep1023

navigable
URLp1023

entry's URLp1005

target snapshot sandboxing flagsp1023

targetSnapshotParams's sandboxing flagsp1013

source snapshot has transient activationp1023

sourceSnapshotParams's has transient activationp1012

initiator originp1024

entry's document statep1005 's initiator originp1006

navigation timing typep1024

navTimingType

6. Queue a global taskp1125 on the navigation and traversal task sourcep1134, given navigable's active windowp998, to run these
steps:

1. If navigable's ongoing navigationp1027 no longer equals navigationId, then run completionSteps and abort these
steps.

2. Let saveExtraDocumentState be true.

3. If navigationParams is a non-fetch scheme navigation paramsp1023, then:

1. Set entry's document statep1005 's documentp1006 to the result of running attempt to create a non-fetch
scheme documentp1024 given navigationParams.

2. Set saveExtraDocumentState to false.

4. Otherwise, if any of the following are true:

Usually, in the cases where we end up populating entry's document statep1005 's documentp1006, we then want to
save some of the state from that Documentp130 into entry. This ensures that if there are future traversals to
entry where its documentp1006 has been destroyedp1006, we can use that state when creating a new
Documentp130.

However, in some specific cases, saving the state would be unhelpful. For those, we set
saveExtraDocumentState to false later in this algorithm.

Note

This can result in setting entry's document statep1005 's documentp1006 to null, e.g., when handing-off
to external softwarep1024.

Note

1030

https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme

▪ navigationParams is null;

▪ the result of should navigation response to navigation request of type in target be blocked by Content
Security Policy? given navigationParams's requestp1013, navigationParams's responsep1013,
navigationParams's policy containerp1013 's CSP listp917, cspNavigationType, and navigable is "Blocked";

▪ navigationParams's reserved environmentp1013 is non-null and the result of checking a navigation
response's adherence to its embedder policyp913 given navigationParams's responsep1013, navigable, and
navigationParams's policy containerp1013 's embedder policyp917 is false; or

▪ the result of checking a navigation response's adherence to `X-Frame-Options`p1068 given
navigationParams's responsep1013, navigable, navigationParams's policy containerp1013 's CSP listp917, and
navigationParams's originp1013 is false,

then:

1. Set entry's document statep1005 's documentp1006 to the result of creating a document for inline content
that doesn't have a DOMp1062, given navigable, null, and navTimingType. The inline content should
indicate to the user the sort of error that occurred.

2. Make document unsalvageablep1052 given entry's document statep1005 's documentp1006 and "navigation-
failurep985".

3. Set saveExtraDocumentState to false.

4. If navigationParams is not null, then:

1. Run the environment discarding stepsp1076 for navigationParams's reserved environmentp1013.

2. Invoke WebDriver BiDi navigation failed with currentBrowsingContext and a new WebDriver
BiDi navigation status whose id is navigationId, status is "canceled", and url is
navigationParams's responsep1013 's URL.

5. Otherwise, if navigationParams's responsep1013 has a `Content-Disposition` header specifying the attachment
disposition type, then:

1. Let sourceAllowsDownloading be sourceSnapshotParams's allows downloadingp1012.

2. Let targetAllowsDownloading be false if navigationParams's final sandboxing flag setp1013 has the
sandboxed downloads browsing context flagp916 set; otherwise true.

3. Let uaAllowsDownloading be true.

4. Optionally, the user agent may set uaAllowsDownloading to false, if it believes doing so would safeguard
the user from a potentially hostile download.

5. If sourceAllowsDownloading, targetAllowsDownloading, and uaAllowsDownloading are true, then:

1. Handle navigationParams's responsep1013 as a downloadp311.

2. Invoke WebDriver BiDi download started with currentBrowsingContext and a new WebDriver
BiDi navigation status whose id is navigationId, status is "complete", and url is
navigationParams's responsep1013 's URL.

6. Otherwise, if navigationParams's responsep1013 's status is not 204 and is not 205, then set entry's document
statep1005 's documentp1006 to the result of loading a documentp1039 given navigationParams, sourceSnapshotParams,
and entry's document statep1005 's initiator originp1006.

7. If entry's document statep1005 's documentp1006 is not null, then:

1. Set entry's document statep1005 's ever populatedp1007 to true.

This branch leaves entry's document statep1005 's documentp1006 as null.
Note

This can result in setting entry's document statep1005 's documentp1006 to null, e.g., when handing-off to external
softwarep1024.

Note

1031

https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webappsec-csp/#should-block-navigation-response
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-failed
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-canceled
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://fetch.spec.whatwg.org/#concept-response-url
https://httpwg.org/specs/rfc6266.html
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-download-started
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-complete
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-status

2. If saveExtraDocumentState is true:

1. Let document be entry's document statep1005 's documentp1006.

2. Set entry's document statep1005 's originp1006 to document's origin.

3. If document's URL requires storing the policy container in historyp918, then:

1. Assert: navigationParams is a navigation paramsp1013 (i.e., neither null nor a non-
fetch scheme navigation paramsp1023).

2. Set entry's document statep1005 's history policy containerp1006 to navigationParams's
policy containerp1013.

3. If entry's document statep1005 's request referrerp1006 is "client", and navigationParams is a navigation
paramsp1013 (i.e., neither null nor a non-fetch scheme navigation paramsp1023), then:

1. Assert: navigationParams's requestp1013 is not null.

2. Set entry's document statep1005 's request referrerp1006 to navigationParams's requestp1013 's
referrer.

8. Run completionSteps.

To create navigation params from a srcdoc resource given a session history entryp1005 entry, a navigablep989 navigable, a target
snapshot paramsp1013 targetSnapshotParams, a navigation IDp1014-or-null navigationId, and a NavigationTimingType navTimingType:

1. Let documentResource be entry's document statep1005 's resourcep1007.

2. Let response be a new response with
URL

about:srcdocp96

header list
« (`Content-Typep98`, `text/html`) »

body
the UTF-8 encoding of documentResource, as a body

3. Let responseOrigin be the result of determining the originp1001 given response's URL, targetSnapshotParams's sandboxing
flagsp1013, and entry's document statep1005 's originp1006.

4. Let coop be a new opener policyp904.

5. Let coopEnforcementResult be a new opener policy enforcement resultp906 with
urlp906

response's URL
originp906

responseOrigin
opener policyp906

coop

6. Let policyContainer be the result of determining navigation params policy containerp918 given response's URL, entry's
document statep1005 's history policy containerp1006, null, navigable's container documentp992 's policy containerp131, and null.

7. Return a new navigation paramsp1013, with
idp1013

navigationId
navigablep1013

navigable
requestp1013

null
responsep1013

response
fetch controllerp1013

null
commit early hintsp1013

null
1032

https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://fetch.spec.whatwg.org/#concept-request-referrer
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-header-list
https://fetch.spec.whatwg.org/#concept-response-body
https://encoding.spec.whatwg.org/#utf-8-encode
https://fetch.spec.whatwg.org/#byte-sequence-as-a-body
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url

COOP enforcement resultp1013

coopEnforcementResult
reserved environmentp1013

null
originp1013

responseOrigin
policy containerp1013

policyContainer
final sandboxing flag setp1013

targetSnapshotParams's sandboxing flagsp1013

opener policyp1013

coop
navigation timing typep1013

navTimingType
about base URLp1013

entry's document statep1005 's about base URLp1007

To create navigation params by fetching given a session history entryp1005 entry, a navigablep989 navigable, a source snapshot
paramsp1012 sourceSnapshotParams, a target snapshot paramsp1013 targetSnapshotParams, a string cspNavigationType, a navigation
IDp1014-or-null navigationId, and a NavigationTimingType navTimingType, perform the following steps. They return a navigation
paramsp1013, a non-fetch scheme navigation paramsp1023, or null.

1. Assert: this is running in parallelp43.

2. Let documentResource be entry's document statep1005 's resourcep1007.

3. Let request be a new request, with
url

entry's URLp1005

client
sourceSnapshotParams's fetch clientp1012

destination
"document"

credentials mode
"include"

use-URL-credentials flag
set

redirect mode
"manual"

replaces client id
navigable's active documentp989 's relevant settings objectp1083 's idp1075

mode
"navigate"

referrer
entry's document statep1005 's request referrerp1006

referrer policy
entry's document statep1005 's request referrer policyp1006

4. If documentResource is a POST resourcep1007, then:

1. Set request's method to `POST`.

2. Set request's body to documentResource's request bodyp1007.

3. Set `Content-Type` to documentResource's request content-typep1007 in request's header list.

5. If entry's document statep1005 's reload pendingp1007 is true, then set request's reload-navigation flag.

6. Otherwise, if entry's document statep1005 's ever populatedp1007 is true, then set request's history-navigation flag.

7. If sourceSnapshotParams's has transient activationp1012 is true, then set request's user-activation to true.

This algorithm mutates entry.
Note

1033

https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://infra.spec.whatwg.org/#assert
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-request-redirect-mode
https://fetch.spec.whatwg.org/#concept-request-replaces-client-id
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-request-method
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-header-list-set
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-reload-navigation-flag
https://fetch.spec.whatwg.org/#concept-request-history-navigation-flag
https://fetch.spec.whatwg.org/#request-user-activation

8. If navigable's containerp991 is non-null:

1. If the navigable's containerp991 has a browsing context scope originp1038, then set request's origin to that browsing
context scope originp1038.

2. Set request's destination to navigable's containerp991 's local name.

3. If sourceSnapshotParams's fetch clientp1012 is navigable's container documentp992 's relevant settings objectp1083,
then set request's initiator type to navigable's containerp991 's local name.

9. Let response be null.

10. Let responseOrigin be null.

11. Let fetchController be null.

12. Let coopEnforcementResult be a new opener policy enforcement resultp906, with
urlp906

navigable's active documentp989 's URL
originp906

navigable's active documentp989 's origin
opener policyp906

navigable's active documentp989 's opener policyp131

current context is navigation sourcep906

true if navigable's active documentp989 's origin is same originp899 with entry's document statep1005 's initiator originp1006

otherwise false

13. Let finalSandboxFlags be an empty sandboxing flag setp914.

14. Let responsePolicyContainer be null.

15. Let responseCOOP be a new opener policyp904.

16. Let locationURL be null.

17. Let currentURL be request's current URL.

18. Let commitEarlyHints be null.

19. While true:

1. If request's reserved client is not null and currentURL's origin is not the samep899 as request's reserved client's
creation URLp1075 's origin, then:

1. Run the environment discarding stepsp1076 for request's reserved client.

2. Set request's reserved client to null.

3. Set commitEarlyHints to null.

2. If request's reserved client is null, then:

1. Let topLevelCreationURL be currentURL.

2. Let topLevelOrigin be null.

3. If navigable is not a top-level traversablep990, then:

1. Let parentEnvironment be navigable's parentp989 's active documentp989 's relevant settings
objectp1083.

2. Set topLevelCreationURL to parentEnvironment's top-level creation URLp1075.

This ensure that only container-initiated navigations are reported to resource timing.
Note

Preloaded links from early hint headersp187 remain in the preload cache after a same originp899

redirect, but get discarded when the redirect is cross-origin.

Note

1034

https://fetch.spec.whatwg.org/#concept-request-origin
https://fetch.spec.whatwg.org/#concept-request-destination
https://dom.spec.whatwg.org/#concept-element-local-name
https://fetch.spec.whatwg.org/#request-initiator-type
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://fetch.spec.whatwg.org/#concept-request-current-url
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://url.spec.whatwg.org/#concept-url-origin
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://url.spec.whatwg.org/#concept-url-origin
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-request-reserved-client

3. Set topLevelOrigin to parentEnvironment's top-level originp1076.

4. Set request's reserved client to a new environmentp1075 whose idp1075 is a unique opaque string, target
browsing contextp1076 is navigable's active browsing contextp989, creation URLp1075 is currentURL, top-level
creation URLp1075 is topLevelCreationURL, and top-level originp1076 is topLevelOrigin.

3. If the result of should navigation request of type be blocked by Content Security Policy? given request and
cspNavigationType is "Blocked", then set response to a network error and break. [CSP]p1476

4. Set response to null.

5. If fetchController is null, then set fetchController to the result of fetching request, with processEarlyHintsResponse
set to processEarlyHintsResponse as defined below, processResponse set to processResponse as defined below,
and useParallelQueue set to true.

Let processEarlyHintsResponse be the following algorithm given a response earlyResponse:

1. If commitEarlyHints is null, then set commitEarlyHints to the result of processing early hint headersp188

given earlyResponse and request's reserved client.

Let processResponse be the following algorithm given a response fetchedResponse:

1. Set response to fetchedResponse.

6. Otherwise, process the next manual redirect for fetchController.

7. Wait until either response is non-null, or navigable's ongoing navigationp1027 changes to no longer equal
navigationId.

If the latter condition occurs, then abort fetchController, and return.

Otherwise, proceed onward.

8. If request's body is null, then set entry's document statep1005 's resourcep1007 to null.

9. Set responsePolicyContainer to the result of creating a policy container from a fetch responsep918 given response
and request's reserved client.

10. Set finalSandboxFlags to the union of targetSnapshotParams's sandboxing flagsp1013 and responsePolicyContainer's
CSP listp917 's CSP-derived sandboxing flagsp917.

11. Set responseOrigin to the result of determining the originp1001 given response's URL, finalSandboxFlags, and entry's
document statep1005 's initiator originp1006.

12. If navigable is a top-level traversablep990, then:

1. Set responseCOOP to the result of obtaining an opener policyp904 given response and request's reserved

The created environment's active service workerp1076 is set in the Handle Fetch algorithm during the
fetch if the request URL matches a service worker registration. [SW]p1482

Note

This will result in calling the processResponse we supplied above, during our first iteration through the loop,
and thus setting response.

Note

Navigation handles redirects manually as navigation is the only place in the web platform that cares for
redirects to mailto: URLs and such.

Note

Fetch unsets the body for particular redirects.
Note

If response is a redirect, then response's URL will be the URL that led to the redirect to response's location URL;
it will not be the location URL itself.

Note

1035

https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://w3c.github.io/ServiceWorker/#on-fetch-request-algorithm
https://w3c.github.io/webappsec-csp/#should-block-navigation-request
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#iteration-break
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#fetch-processearlyhintsresponse
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#fetch-useparallelqueue
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#fetch-controller-process-the-next-manual-redirect
https://fetch.spec.whatwg.org/#process-response
https://www.rfc-editor.org/rfc/rfc6068#section-2
https://fetch.spec.whatwg.org/#fetch-controller-abort
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-request-body
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://infra.spec.whatwg.org/#set-union
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-response-location-url
https://fetch.spec.whatwg.org/#concept-request-reserved-client

client.

2. Set coopEnforcementResult to the result of enforcing the response's opener policyp906 given navigable's
active browsing contextp989, response's URL, responseOrigin, responseCOOP, coopEnforcementResult and
request's referrer.

3. If finalSandboxFlags is not empty and responseCOOP's valuep904 is not "unsafe-nonep903", then set
response to an appropriate network error and break.

13. If response is not a network error, navigable is a child navigablep992, and the result of performing a cross-origin
resource policy check with navigable's container documentp992 's origin, navigable's container documentp992 's
relevant settings objectp1083, request's destination, response, and true is blocked, then set response to a network
error and break.

14. Set locationURL to response's location URL given currentURL's fragment.

15. If locationURL is failure or null, then break.

16. Assert: locationURL is a URL.

17. Set entry's classic history API statep1005 to StructuredSerializeForStoragep122(null).

18. Let oldDocState be entry's document statep1005.

19. Set entry's document statep1005 to a new document statep1006, with
history policy containerp1006

a clonep917 of the oldDocState's history policy containerp1006 if it is non-null; null otherwise
request referrerp1006

oldDocState's request referrerp1006

request referrer policyp1006

oldDocState's request referrer policyp1006

initiator originp1006

oldDocState's initiator originp1006

originp1006

oldDocState's originp1006

about base URLp1007

oldDocState's about base URLp1007

resourcep1007

oldDocState's resourcep1007

ever populatedp1007

oldDocState's ever populatedp1007

navigable target namep1007

oldDocState's navigable target namep1007

This results in a network error as one cannot simultaneously provide a clean slate to a response
using opener policy and sandbox the result of navigating to that response.

Note

Here we're running the cross-origin resource policy check against the parent navigablep989 rather than
navigable itself. This is because we care about the same-originness of the embedded content against the
parent context, not the navigation source.

Note

For the navigation case, only entry referenced oldDocState, which was created early in the navigate
algorithmp1017. So for navigations, this is functionally just an update to entry's document statep1005. For the
traversal case, it's possible adjacent session history entriesp1005 also reference oldDocState, in which case they
will continue doing so even after we've updated entry's document statep1005.

Note

oldDocState's history policy containerp1006 is only ever non-null here in the traversal case, after we've
populated it during a navigation to a URL that requires storing the policy container in historyp918.

Note

1036

https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#iteration-break
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://dom.spec.whatwg.org/#concept-document-origin
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-network-error
https://infra.spec.whatwg.org/#iteration-break
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-check
https://fetch.spec.whatwg.org/#concept-response-location-url
https://url.spec.whatwg.org/#concept-url-fragment
https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url

20. If locationURL's scheme is not an HTTP(S) scheme, then:

1. Set entry's document statep1005 's resourcep1007 to null.

2. Break.

21. Set currentURL to locationURL.

22. Set entry's URLp1005 to currentURL.

20. If locationURL is a URL whose scheme is not a fetch scheme, then return a new non-fetch scheme navigation paramsp1023,
with
idp1023

navigationId
navigablep1023

navigable
URLp1023

locationURL
target snapshot sandboxing flagsp1023

targetSnapshotParams's sandboxing flagsp1013

source snapshot has transient activationp1023

sourceSnapshotParams's has transient activationp1012

initiator originp1024

responseOrigin
navigation timing typep1024

navTimingType

The setup is given by the following Jake diagramp993:

0 1 2 3

top /a /a#foo /a#bar /b

Also assume that the document statep1005 shared by the entries in steps 0, 1, and 2 has a null documentp1006,
i.e., bfcachep1006 is not in play.

Now consider the scenario where we traverse back to step 2, but this time when fetching /a, the server
responds with a `Location` header pointing to /c. That is, locationURL points to /c and so we have reached
this step instead of breaking out of the loop.

In this case, we replace the document statep1005 of the session history entryp1005 occupying step 2, but we do
not replace the document state of the entries occupying steps 0 and 1. The resulting Jake diagramp993 looks like
this:

0 1 2 3

top /a /a#foo /c#bar /b

Note that we perform this replacement even if we end up in a redirect chain back to the original URL, for
example if /c itself had a `Location` header pointing to /a. Such a case would end up like so:

0 1 2 3

top /a /a#foo /a#bar /b

Example

By the end of this loop we will be in one of these scenarios:

◦ locationURL is failure, because of an unparseable `Location` header.

◦ locationURL is null, either because response is a network error or because we successfully fetched a
non-network error HTTP(S) response with no `Location` header.

◦ locationURL is a URL with a non-HTTP(S) scheme.

Note

1037

https://infra.spec.whatwg.org/#iteration-break
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://infra.spec.whatwg.org/#iteration-break
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-network-error
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#http-scheme
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme

21. If any of the following are true:

◦ response is a network error;

◦ locationURL is failure; or

◦ locationURL is a URL whose scheme is a fetch scheme,

then return null.

22. Assert: locationURL is null and response is not a network error.

23. Let resultPolicyContainer be the result of determining navigation params policy containerp918 given response's URL, entry's
document statep1005 's history policy containerp1006, sourceSnapshotParams's source policy containerp1012, null, and
responsePolicyContainer.

24. If navigable's containerp991 is an iframep390, and response's timing allow passed flag is set, then set containerp991 's pending
resource-timing start timep395 to null.

25. Return a new navigation paramsp1013, with
idp1013

navigationId
navigablep1013

navigable
requestp1013

request
responsep1013

response
fetch controllerp1013

fetchController
commit early hintsp1013

commitEarlyHints
opener policyp1013

responseCOOP
reserved environmentp1013

request's reserved client
originp1013

responseOrigin
policy containerp1013

resultPolicyContainer
final sandboxing flag setp1013

finalSandboxFlags
COOP enforcement resultp1013

coopEnforcementResult
navigation timing typep1013

navTimingType
about base URLp1013

entry's document statep1005 's about base URLp1007

An element has a browsing context scope origin if its Documentp130 's node navigablep989 is a top-level traversablep990 or if all of its
Documentp130 's ancestor navigablesp994 all have active documentsp989 whose origins are the same originp899 as the element's node

At this point, request's current URL is the last URL in the redirect chain with a fetch scheme before redirecting to a
non-fetch scheme URL. It is this URL's origin that will be used as the initiator origin for navigations to non-fetch scheme
URLs.

Note

We allow redirects to non-fetch scheme URLs, but redirects to fetch scheme URLs that aren't HTTP(S) are treated like
network errors.

Note

If the iframep390 is allowed to report to resource timing, we don't need to run its fallback steps as the normal reporting
would happen.

Note

1038

https://fetch.spec.whatwg.org/#concept-request-current-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#fetch-scheme
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-origin
https://fetch.spec.whatwg.org/#fetch-scheme
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-network-error
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://fetch.spec.whatwg.org/#fetch-scheme
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#fetch-scheme
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#http-scheme
https://infra.spec.whatwg.org/#assert
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response-timing-allow-passed
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-node-document

document's origin. If an element has a browsing context scope originp1038, then its value is the origin of the element's node document.

This definition is broken and needs investigation to see what it was intended to express: see issue #4703.

To load a document given navigation paramsp1013 navigationParams, source snapshot paramsp1012 sourceSnapshotParams, and
originp898 initiatorOrigin, perform the following steps. They return a Documentp130 or null.

1. Let type be the computed type of navigationParams's responsep1013.

2. If the user agent has been configured to process resources of the given type using some mechanism other than rendering
the content in a navigablep989, then skip this step. Otherwise, if the type is one of the following types:

↪ an HTML MIME type
Return the result of loading an HTML documentp1059, given navigationParams.

↪ an XML MIME type that is not an explicitly supported XML MIME typep1039

Return the result of loading an XML documentp1060 given navigationParams and type.

↪ a JavaScript MIME type
↪ a JSON MIME type that is not an explicitly supported JSON MIME typep1039

↪ "text/cssp1474"
↪ "text/plain"
↪ "text/vttp1474"

Return the result of loading a text documentp1060 given navigationParams and type.

↪ "multipart/x-mixed-replacep1445"
Return the result of loading a multipart/x-mixed-replace documentp1061, given navigationParams,
sourceSnapshotParams, and initiatorOrigin.

↪ A supported image, video, or audio type
Return the result of loading a media documentp1061 given navigationParams and type.

↪ "application/pdf"
↪ "text/pdf"

If the user agent's PDF viewer supportedp1178 is true, return the result of creating a document for inline content that
doesn't have a DOMp1062 given navigationParams's navigablep1013.

Otherwise, proceed onward.

An explicitly supported XML MIME type is an XML MIME type for which the user agent is configured to use an external
application to render the content, or for which the user agent has dedicated processing rules. For example, a web browser
with a built-in Atom feed viewer would be said to explicitly support the application/atom+xmlp1473 MIME type.

An explicitly supported JSON MIME type is a JSON MIME type for which the user agent is configured to use an external
application to render the content, or for which the user agent has dedicated processing rules.

3. If, given type, the new resource is to be handled by displaying some sort of inline content, e.g., a native rendering of the
content or an error message because the specified type is not supported, then return the result of creating a document for
inline content that doesn't have a DOMp1062 given navigationParams's navigablep1013, navigationParams's idp1013, and
navigationParams's navigation timing typep1013.

4. Otherwise, the document's type is such that the resource will not affect navigationParams's navigablep1013, e.g., because the
resource is to be handed to an external application or because it is an unknown type that will be processed as a
downloadp311. Hand-off to external softwarep1024 given navigationParams's responsep1013, navigationParams's navigablep1013,
navigationParams's final sandboxing flag setp1013, sourceSnapshotParams's has transient activationp1012, and initiatorOrigin.

5. Return null.

In both cases, the external application or user agent will either display the content inlinep1062 directly in
navigationParams's navigablep1013, or hand it off to external softwarep1024. Both happen in the steps below.

Note

1039

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-node-document
https://github.com/whatwg/html/issues/4703
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://mimesniff.spec.whatwg.org/#html-mime-type
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://mimesniff.spec.whatwg.org/#json-mime-type
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://mimesniff.spec.whatwg.org/#json-mime-type

For both navigation and traversal, once we have an idea of where we want to head to in the session history, much of the work comes
about in applying that notion to the traversable navigablep990 and the relevant Documentp130. For navigations, this work generally
occurs toward the end of the process; for traversals, it is the beginning.

Ensuring a traversablep990 ends up at the right session history step is particularly complex, as it can involve coordinating across
multiple navigablep989 descendants of the traversable, populatingp1029 them in parallel, and then synchronizing back up to ensure
everyone has the same view of the result. This is further complicated by the existence of synchronous same-document navigations
being mixed together with cross-document navigations, and how web pages have come to have certain relative timing expectations.

A changing navigable continuation state is used to store information during the apply the history stepp1041 algorithm, allowing
parts of the algorithm to continue only after other parts have finished. It is a struct with:

displayed document
A Documentp130

target entry
A session history entryp1005

navigable
A navigablep989

update only
A boolean

Although all updates to the traversable navigablep990 end up in the same apply the history stepp1041 algorithm, each possible entry
point comes along with some minor customizations:

To update for navigable creation/destruction given a traversable navigablep990 traversable:

1. Let step be traversable's current session history stepp990.

2. Return the result of applying the history stepp1041 step to traversable given false, null, null, null, and null.

To apply the push/replace history step given a non-negative integer step and a history handling behaviorp1014 historyHandling to a
traversable navigablep990 traversable:

1. Return the result of applying the history stepp1041 step to traversable given false, null, null, null, and historyHandling.

To apply the reload history step to a traversable navigablep990 traversable:

1. Let step be traversable's current session history stepp990.

2. Return the result of applying the history stepp1041 step to traversable given true, null, null, null, and "reloadp954".

To apply the traverse history step given a non-negative integer step to a traversable navigablep990 traversable, with source
snapshot paramsp1012 sourceSnapshotParams, navigablep989 initiatorToCheck, and user navigation involvementp1014 userInvolvement:

1. Return the result of applying the history stepp1041 step to traversable given true, sourceSnapshotParams, initiatorToCheck,

7.4.6.1 Updating the traversable §p10

40

Apply the push/replace history stepp1040 never passes source snapshot paramsp1012 or an initiator navigablep989 to apply the history
stepp1041. This is because those checks are done earlier in the navigationp1014 algorithm.

Note

Apply the reload history stepp1040 never passes source snapshot paramsp1012 or an initiator navigablep989 to apply the history
stepp1041. This is because reloading is always treated as if it were done by the navigablep989 itself, even in cases like
parent.location.reload().

Note

7.4.6 Applying the history step §p10

40

1040

https://infra.spec.whatwg.org/#struct

userInvolvement, and "traversep954".

Now for the algorithm itself.

To apply the history step given a non-negative integer step to a traversable navigablep990 traversable, with boolean
checkForCancelation, source snapshot paramsp1012-or-null sourceSnapshotParams, navigablep989-or-null initiatorToCheck, user
navigation involvementp1014-or-null userInvolvementForNavigateEvents, and NavigationTypep953-or-null navigationType, perform the
following steps. They return "initiator-disallowed", "canceled-by-beforeunload", "canceled-by-navigate", or "applied".

1. Assert: This is running within traversable's session history traversal queuep990.

2. Let targetStep be the result of getting the used stepp1047 given traversable and step.

3. If initiatorToCheck is not null, then:

1. Assert: sourceSnapshotParams is not null.

2. For each navigable of get all navigables whose current session history entry will change or reloadp1047: if
initiatorToCheck is not allowed by sandboxing to navigatep1025 navigable given sourceSnapshotParams, then return
"initiator-disallowed".

4. Let navigablesCrossingDocuments be the result of getting all navigables that might experience a cross-document
traversalp1049 given traversable and targetStep.

5. If checkForCancelation is true, and the result of checking if unloading is canceledp1025 given navigablesCrossingDocuments,
traversable, targetStep, and userInvolvementForNavigateEvents is not "continue", then return that result.

6. Let changingNavigables be the result of get all navigables whose current session history entry will change or reloadp1047

given traversable and targetStep.

7. Let nonchangingNavigablesThatStillNeedUpdates be the result of getting all navigables that only need history object length/
index updatep1048 given traversable and targetStep.

8. For each navigable of changingNavigables:

1. Let targetEntry be the result of getting the target history entryp1048 given navigable and targetStep.

2. Set navigable's current session history entryp989 to targetEntry.

3. Set the ongoing navigationp1027 for navigable to "traversal".

9. Let totalChangeJobs be the size of changingNavigables.

10. Let completedChangeJobs be 0.

11. Let changingNavigableContinuations be an empty queue of changing navigable continuation statesp1040.

12. For each navigable of changingNavigables, queue a global taskp1125 on the navigation and traversal task sourcep1134 of
navigable's active windowp989 to run the steps:

1. Let displayedEntry be navigable's active session history entryp989.

2. Let targetEntry be navigable's current session history entryp989.

3. Let changingNavigableContinuation be a changing navigable continuation statep1040 with:
displayed documentp1040

displayedEntry's documentp1005

This queue is used to split the operations on changingNavigables into two parts. Specifically,
changingNavigableContinuations holds data for the second partp1044.

Note

This set of steps are split into two parts to allow synchronous navigations to be processed before documents unload.
State is stored in changingNavigableContinuations for the second partp1044.

Note

1041

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#list-iterate

target entryp1040

targetEntry
navigablep1040

navigable
update-onlyp1040

false

4. If displayedEntry is targetEntry and targetEntry's document statep1005 's reload pendingp1007 is false, then:

1. Set changingNavigableContinuation's update-onlyp1040 to true.

2. Enqueue changingNavigableContinuation on changingNavigableContinuations.

3. Abort these steps.

5. Switch on navigationType:

↪ "reloadp954"
Assert: targetEntry's document statep1005 's reload pendingp1007 is true.

↪ "traversep954"
Assert: targetEntry's document statep1005 's ever populatedp1007 is true.

↪ "replacep953"
Assert: targetEntry's stepp1005 is displayedEntry's stepp1005 and targetEntry's document statep1005 's ever
populatedp1007 is false.

↪ "pushp953"
Assert: targetEntry's stepp1005 is displayedEntry's stepp1005 + 1 and targetEntry's document statep1005 's ever
populatedp1007 is false.

6. Let oldOrigin be targetEntry's document statep1005 's originp1006.

7. If all of the following are true:

▪ navigable is not traversable;

▪ targetEntry is not navigable's current session history entryp989; and

▪ oldOrigin is the samep899 as navigable's current session history entryp989 's document statep1005 's
originp1006,

then:

1. Assert: userInvolvementForNavigateEvents is not null.

2. Let navigation be navigable's active windowp989 's navigation API.p952

3. Fire a traverse navigate eventp974 at navigation given targetEntry and
userInvolvementForNavigateEvents.

8. If targetEntry's documentp1005 is null, or targetEntry's document statep1005 's reload pendingp1007 is true, then:

1. Let navTimingType be "back_forward" if targetEntry's documentp1005 is null; otherwise "reload".

2. Let targetSnapshotParams be the result of snapshotting target snapshot paramsp1013 given navigable.

3. Let potentiallyTargetSpecificSourceSnapshotParams be sourceSnapshotParams.

4. If potentiallyTargetSpecificSourceSnapshotParams is null, then set it to the result of snapshotting source
snapshot paramsp1012 given navigable's active documentp989.

This case occurs due to a synchronous navigationp1023 which already updated the active session history
entryp989.

Note

1042

https://infra.spec.whatwg.org/#queue-enqueue
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-back_forward
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype-back_forward

5. Set targetEntry's document statep1005 's reload pendingp1007 to false.

6. Let allowPOST be targetEntry's document statep1005 's reload pendingp1007.

7. In parallelp43, attempt to populate the history entry's documentp1029 for targetEntry, given navigable,
potentiallyTargetSpecificSourceSnapshotParams, targetSnapshotParams, with allowPOSTp1029 set to
allowPOST and completionStepsp1029 set to queue a global taskp1125 on the navigation and traversal task
sourcep1134 given navigable's active windowp989 to run afterDocumentPopulated.

Otherwise, run afterDocumentPopulated immediatelyp43.

In both cases, let afterDocumentPopulated be the following steps:

1. If targetEntry's documentp1005 is null, then set changingNavigableContinuation's update-onlyp1040 to true.

2. If targetEntry's documentp1005 's origin is not oldOrigin, then set targetEntry's classic history API statep1005

to StructuredSerializeForStoragep122(null).

3. If all of the following are true:

▪ navigable's parentp989 is null;

▪ targetEntry's documentp1005 's browsing contextp999 is not an auxiliary browsing contextp999

whose opener browsing contextp998 is non-null; and

▪ targetEntry's documentp1005 's origin is not oldOrigin,

then set targetEntry's document statep1005 's navigable target namep1007 to the empty string.

4. Enqueue changingNavigableContinuation on changingNavigableContinuations.

13. Let navigablesThatMustWaitBeforeHandlingSyncNavigation be an empty set.

14. While completedChangeJobs does not equal totalChangeJobs:

In this case there is no clear source of the traversal/reload. We treat this situation as if navigable
navigated itself, but note that some properties of targetEntry's original initiator are preserved in
targetEntry's document statep1005, such as the initiator originp1006 and referrerp1006, which will
appropriately influence the navigation.

Note

This means we tried to populate the document, but were unable to do so, e.g. because of the server
returning a 204.

Note

These kinds of failed navigations or traversals will not be signaled to the navigation APIp949 (e.g.,
through the promises of any navigation API method trackerp964, or the navigateerrorp1472 event).
Doing so would leak information about the timing of responses from other origins, in the cross-origin
case, and providing different results in the cross-origin vs. same-origin cases was deemed too
confusing.

However, implementations could use this opportunity to clear any promise handlers for the
navigation.transition.finishedp969 promise, as they are guaranteed at this point to never run.
And, they might wish to report a warning to the console if any part of the navigation API initiated
these navigations, to make it clear to the web developer why their promises will never settle and
events will never fire.

Note

This clears history state when the origin changed vs a previous load of targetEntry without a redirect
occuring. This can happen due to a change in CSP sandbox headers.

Note

The rest of this job runs laterp1044 in this algorithm.
Note

1043

https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#queue-enqueue
https://infra.spec.whatwg.org/#ordered-set

1. If traversable's running nested apply history stepp990 is false, then:

1. While traversable's session history traversal queuep990 's algorithm setp1008 contains one or more
synchronous navigation stepsp1008 with a target navigablep1008 not contained in
navigablesThatMustWaitBeforeHandlingSyncNavigation:

1. Let steps be the first item in traversable's session history traversal queuep990 's algorithm
setp1008 that is synchronous navigation stepsp1008 with a target navigablep1008 not contained in
navigablesThatMustWaitBeforeHandlingSyncNavigation.

2. Remove steps from traversable's session history traversal queuep990 's algorithm setp1008.

3. Set traversable's running nested apply history stepp990 to true.

4. Run steps.

5. Set traversable's running nested apply history stepp990 to false.

2. Let changingNavigableContinuation be the result of dequeuing from changingNavigableContinuations.

3. If changingNavigableContinuation is nothing, then continue.

4. Let displayedDocument be changingNavigableContinuation's displayed documentp1040.

5. Let targetEntry be changingNavigableContinuation's target entryp1040.

6. Let navigable be changingNavigableContinuation's navigablep1040.

7. Let (scriptHistoryLength, scriptHistoryIndex) be the result of getting the history object length and indexp1047 given
traversable and targetStep.

8. Append navigable to navigablesThatMustWaitBeforeHandlingSyncNavigation.

9. Let entriesForNavigationAPI be the result of getting session history entries for the navigation APIp1011 given
navigable and targetStep.

10. If changingNavigableContinuation's update-onlyp1040 is true, or targetEntry's documentp1005 is displayedDocument,
then:

1. Set the ongoing navigationp1027 for navigable to null.

2. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigable's active
windowp989 to perform afterPotentialUnloads.

11. Otherwise:

Synchronous navigations that are intended to take place before this traversal jump the queue at this
point, so they can be added to the correct place in traversable's session history entriesp990 before this
traversal potentially unloads their document. More details can be found herep1008.

Note

These values might have changed since they were last calculated.
Note

Once a navigable has reached this point in traversal, additionally queued synchronous navigation steps are
likely to be intended to occur after this traversal rather than before it, so they no longer jump the queue. More
details can be found herep1008.

Note

This is a same-document navigation: we proceed without unloading.
Note

This allows new navigationsp1014 of navigable to start, whereas during the traversal they were
blocked.

Note

1044

https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-item
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#queue-dequeue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-append

1. Assert: navigationType is not null.

2. Deactivatep1045 displayedDocument, given userNavigationInvolvement, targetEntry, navigationType, and
afterPotentialUnloads.

12. In both cases, let afterPotentialUnloads be the following steps:

1. Let previousEntry be navigable's active session history entryp989.

2. If changingNavigableContinuation's update-onlyp1040 is false, then activate history entryp1047 targetEntry
for navigable.

3. Let updateDocument be an algorithm step which performs update document for history step
applicationp1049 given targetEntry's documentp1005, targetEntry, changingNavigableContinuation's update-
onlyp1040, scriptHistoryLength, scriptHistoryIndex, navigationType, entriesForNavigationAPI, and
previousEntry.

4. If targetEntry's documentp1005 is equal to displayedDocument, then perform updateDocument.

5. Otherwise, queue a global taskp1125 on the navigation and traversal task sourcep1134 given targetEntry's
documentp1005 's relevant global objectp1083 to perform updateDocument.

6. Increment completedChangeJobs.

15. Let totalNonchangingJobs be the size of nonchangingNavigablesThatStillNeedUpdates.

16. Let completedNonchangingJobs be 0.

17. Let (scriptHistoryLength, scriptHistoryIndex) be the result of getting the history object length and indexp1047 given traversable
and targetStep.

18. For each navigable of nonchangingNavigablesThatStillNeedUpdates, queue a global taskp1125 on the navigation and traversal
task sourcep1134 given navigable's active windowp989 to run the steps:

1. Let document be navigable's active documentp989.

2. Set document's history objectp945 's indexp946 to scriptHistoryIndex.

3. Set document's history objectp945 's lengthp946 to scriptHistoryLength.

4. Increment completedNonchangingJobs.

19. Wait for completedNonchangingJobs to equal totalNonchangingJobs.

20. Set traversable's current session history stepp990 to targetStep.

21. Return "applied".

To deactivate a document for a cross-document navigation given a Documentp130 displayedDocument, a user navigation
involvementp1014 userNavigationInvolvement, a session history entryp1005 targetEntry, a NavigationTypep953 navigationType, and
afterPotentialUnloads, which is an algorithm that receives no arguments:

1. Let navigable be displayedDocument's node navigablep989.

2. Let potentiallyTriggerViewTransition be false.

3. Let isBrowserUINavigation be true if userNavigationInvolvement is "browser UIp1014"; otherwise false.

4. Set potentiallyTriggerViewTransition to the result of calling can navigation trigger a cross-document view-transition? given
displayedDocument, targetEntry's documentp1005, navigationType, and isBrowserUINavigation.

5. If potentiallyTriggerViewTransition is false, then:

1. Let firePageSwapBeforeUnload be the following step:

1. Fire the pageswap eventp1046 given displayedDocument, targetEntry, navigationType, and null.

This step onwards deliberately waits for all the previous operations to complete, as they include processing synchronous
navigationsp1044 which will also post tasks to update history length and index.

Note

1045

https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-iterate
https://drafts.csswg.org/css-view-transitions-2/#can-navigation-trigger-a-cross-document-view-transition

2. Set the ongoing navigationp1027 for navigable to null.

3. Unload a document and its descendantsp1065 given displayedDocument, targetEntry's documentp1005,
afterPotentialUnloads, and firePageSwapBeforeUnload.

6. Otherwise, queue a global taskp1125 on the navigation and traversal task sourcep1134 given navigable's active windowp989 to
run the steps:

1. Let proceedWithNavigationAfterViewTransitionCapture be the following step:

1. Append the following session history traversal stepsp1008 to navigable's traversable navigablep990:

1. Set the ongoing navigationp1027 for navigable to null.

2. Unload a document and its descendantsp1065 given displayedDocument, targetEntry's
documentp1005, and afterPotentialUnloads.

2. Let viewTransition be the result of setting up a cross-document view-transition given displayedDocument,
targetEntry's documentp1005, navigationType, and proceedWithNavigationAfterViewTransitionCapture.

3. Fire the pageswap eventp1046 given displayedDocument, targetEntry, navigationType, and viewTransition.

4. If viewTransition is null, then run proceedWithNavigationAfterViewTransitionCapture.

To fire the pageswap event given a Documentp130 displayedDocument, a session history entryp1005 targetEntry, a NavigationTypep953

navigationType, and a ViewTransition-or-null viewTransition:

1. Assert: this is running as part of a taskp1124 queued on displayedDocument's relevant agentp1073 's event loopp1123.

2. Let navigation be displayedDocument's relevant global objectp1083 's navigation APIp952.

3. Let activation be null.

4. If all of the following are true:

◦ targetEntry's documentp1005 's origin is same originp899 with displayedDocument's origin; and

◦ targetEntry's documentp1005 's was created via cross-origin redirectsp134 is false, or targetEntry's documentp1005 's
latest entryp1008 is not null,

then:

1. Let destinationEntry be determined by switching on navigationType:

↪ "reloadp954"
The current entryp953 of navigation

↪ "traversep954"
The NavigationHistoryEntryp956 in navigation's entry listp953 whose session history entryp957 is targetEntry

↪ "pushp953"
↪ "replacep953"

A new NavigationHistoryEntryp956 in displayedDocument's relevant realmp1083 with its session history
entryp957 set to targetEntry.

This allows new navigationsp1014 of navigable to start, whereas during the traversal they were blocked.
Note

This allows new navigationsp1014 of navigable to start, whereas during the traversal they
were blocked.

Note

In the case where a view transition started, the view transitions algorithms are responsible for calling
proceedWithNavigationAfterViewTransitionCapture.

Note

1046

https://drafts.csswg.org/css-view-transitions-2/#setup-cross-document-view-transition
https://drafts.csswg.org/css-view-transitions/#viewtransition
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin

2. Set activation to a new NavigationActivationp969 created in displayedDocument's relevant realmp1083, with
old entryp969

the current entryp953 of navigation
new entryp969

destinationEntry
navigation typep969

navigationType

5. Fire an event named pageswapp1472 at displayedDocument's relevant global objectp1083, using PageSwapEventp982 with its
activationp982 set to activation, and its viewTransitionp982 set to viewTransition.

To activate history entry session history entryp1005 entry for navigablep989 navigable:

1. Save persisted statep1055 to the navigablep989 's active session history entryp989.

2. Let newDocument be entry's documentp1005.

3. Assert: newDocument's is initial about:blankp131 is false, i.e., we never traverse back to the initial about:blankp131

Documentp130 because it always gets replacedp1015 when we navigate away from it.

4. Set navigable's active session history entryp989 to entry.

5. Make activep1051 newDocument.

To get the used step given a traversable navigablep990 traversable, and a non-negative integer step, perform the following steps.
They return a non-negative integer.

1. Let steps be the result of getting all used history stepsp1011 within traversable.

2. Return the greatest item in steps that is less than or equal to step.

To get the history object length and index given a traversable navigablep990 traversable, and a non-negative integer step, perform
the following steps. They return a tuple of two non-negative integers.

1. Let steps be the result of getting all used history stepsp1011 within traversable.

2. Let scriptHistoryLength be the size of steps.

3. Assert: steps contains step.

4. Let scriptHistoryIndex be the index of step in steps.

5. Return (scriptHistoryLength, scriptHistoryIndex).

To get all navigables whose current session history entry will change or reload given a traversable navigablep990 traversable,
and a non-negative integer targetStep, perform the following steps. They return a list of navigablesp989.

1. Let results be an empty list.

2. Let navigablesToCheck be « traversable ».

This means that a cross-origin redirect during a navigation would result in a null activationp982 in the old document's
PageSwapEventp982, unless the new document is being restored from bfcachep1006.

Note

This caters for situations where there's no session history entryp1005 with stepp1005 step, due to the removal of a
navigablep989.

Note

It is assumed that step has been adjusted by getting the used stepp1047.
Note

This list is extended in the loop below.
Note

1047

https://webidl.spec.whatwg.org/#new
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-item
https://infra.spec.whatwg.org/#tuple
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list

3. For each navigable of navigablesToCheck:

1. Let targetEntry be the result of getting the target history entryp1048 given navigable and targetStep.

2. If targetEntry is not navigable's current session history entryp989 or targetEntry's document statep1005 's reload
pendingp1007 is true, then append navigable to results.

3. If targetEntry's documentp1005 is navigable's documentp989, and targetEntry's document statep1005 's reload
pendingp1007 is false, then extend navigablesToCheck with the child navigablesp992 of navigable.

4. Return results.

To get all navigables that only need history object length/index update given a traversable navigablep990 traversable, and a
non-negative integer targetStep, perform the following steps. They return a list of navigablesp989.

1. Let results be an empty list.

2. Let navigablesToCheck be « traversable ».

3. For each navigable of navigablesToCheck:

1. Let targetEntry be the result of getting the target history entryp1048 given navigable and targetStep.

2. If targetEntry is navigable's current session history entryp989 and targetEntry's document statep1005 's reload
pendingp1007 is false, then:

1. Append navigable to results.

2. Extend navigablesToCheck with navigable's child navigablesp992.

4. Return results.

To get the target history entry given a navigablep989 navigable, and a non-negative integer step, perform the following steps. They
return a session history entryp1005.

1. Let entries be the result of getting session history entriesp1010 for navigable.

2. Return the item in entries that has the greatest stepp1005 less than or equal to step.

Adding child navigablesp992 to navigablesToCheck means those navigables will also be checked by this loop.
Child navigablesp992 are only checked if the navigable's active documentp989 will not change as part of this
traversal.

Note

Other navigablesp989 might not be impacted by the traversal. For example, if the response is a 204, the currently active document
will remain. Additionally, going 'back' after a 204 will change the current session history entryp989, but the active session history
entryp989 will already be correct.

Note

This list is extended in the loop below.
Note

Adding child navigablesp992 to navigablesToCheck means those navigables will also be checked by
this loop. child navigablesp992 are only checked if the navigable's active documentp989 will not change
as part of this traversal.

Note

To see why getting the target history entryp1048 returns the entry with the greatest stepp1005 less than or equal to the input step,
consider the following Jake diagramp993:

0 1 2 3

top /t /t#foo

Example

1048

https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-extend
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-extend
https://infra.spec.whatwg.org/#list-item

To get all navigables that might experience a cross-document traversal given a traversable navigablep990 traversable, and a
non-negative integer targetStep, perform the following steps. They return a list of navigablesp989.

1. Let results be an empty list.

2. Let navigablesToCheck be « traversable ».

3. For each navigable of navigablesToCheck:

1. Let targetEntry be the result of getting the target history entryp1048 given navigable and targetStep.

2. If targetEntry's documentp1005 is not navigable's documentp989 or targetEntry's document statep1005 's reload
pendingp1007 is true, then append navigable to results.

3. Otherwise, extend navigablesToCheck with navigable's child navigablesp992.

4. Return results.

To update document for history step application given a Documentp130 document, a session history entryp1005 entry, a boolean

0 1 2 3

frames[0] /i-0-a /i-0-b

For the input step 1, the target history entry for the top navigable is the /t entry, whose stepp1005 is 0, while the target history
entry for the frames[0] navigable is the /i-0-b entry, whose stepp1005 is 1:

0 1 2 3

top /t /t#foo
frames[0] /i-0-a /i-0-b

Similarly, given the input step 3 we get the top entry whose stepp1005 is 3, and the frames[0] entry whose stepp1005 is 1:

0 1 2 3

top /t /t#foo

frames[0] /i-0-a /i-0-b

From traversable's session history traversal queuep990 's perspective, these documents are candidates for going cross-document
during the traversal described by targetStep. They will not experience a cross-document traversal if the status code for their target
document is HTTP 204 No Content.

Note that if a given navigablep989 might experience a cross-document traversal, this algorithm will return navigablep989 but not its
child navigablesp992. Those would end up unloadedp1064, not traversed.

Note

This list is extended in the loop below.
Note

Although navigable's active history entryp989 can change synchronously, the new entry will always have the
same Documentp130, so accessing navigable's documentp989 is reliable.

Note

Adding child navigablesp992 to navigablesToCheck means those navigables will also be checked by this loop.
Child navigablesp992 are only checked if the navigable's active documentp989 will not change as part of this
traversal.

Note

7.4.6.2 Updating the document §p10

49

1049

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-extend

doNotReactivate, integers scriptHistoryLength and scriptHistoryIndex, NavigationTypep953-or-null navigationType, an optional list of
session history entriesp1005 entriesForNavigationAPI, and an optional session history entryp1005 previousEntryForActivation:

1. Let documentIsNew be true if document's latest entryp1008 is null; otherwise false.

2. Let documentsEntryChanged be true if document's latest entryp1008 is not entry; otherwise false.

3. Set document's history objectp945 's indexp946 to scriptHistoryIndex.

4. Set document's history objectp945 's lengthp946 to scriptHistoryLength.

5. Let navigation be history's relevant global objectp1083 's navigation APIp952.

6. If documentsEntryChanged is true, then:

1. Let oldURL be document's latest entryp1008 's URLp1005.

2. Set document's latest entryp1008 to entry.

3. Restore the history object statep1051 given document and entry.

4. If documentIsNew is false, then:

1. Assert: navigationType is not null.

2. Update the navigation API entries for a same-document navigationp955 given navigation, entry, and
navigationType.

3. Fire an event named popstatep1472 at document's relevant global objectp1083, using PopStateEventp981,
with the statep981 attribute initialized to document's history objectp945 's statep946 and
hasUAVisualTransitionp981 initialized to true if a visual transition, to display a cached rendered state of
the latest entryp1008, was done by the user agent.

4. Restore persisted statep1055 given entry.

5. If oldURL's fragment is not equal to entry's URLp1005 's fragment, then queue a global taskp1125 on the DOM
manipulation task sourcep1134 given document's relevant global objectp1083 to fire an event named
hashchangep1471 at document's relevant global objectp1083, using HashChangeEventp981, with the
oldURLp981 attribute initialized to the serialization of oldURL and the newURLp981 attribute initialized to the
serialization of entry's URLp1005.

5. Otherwise:

1. Assert: entriesForNavigationAPI is given.

2. Restore persisted statep1055 given entry.

3. Initialize the navigation API entries for a new documentp954 given navigation, entriesForNavigationAPI,
and entry.

7. If all the following are true:

◦ previousEntryForActivation is given;

◦ navigationType is non-null; and

◦ navigationType is "reloadp954" or previousEntryForActivation's documentp1005 is not document,

then:

1. If navigation's activationp969 is null, then set navigation's activationp969 to a new NavigationActivationp969 object
in navigation's relevant realmp1083.

2. Let previousEntryIndex be the result of getting the navigation API entry indexp953 of previousEntryForActivation
within navigation.

3. If previousEntryIndex is non-negative, then set activation's old entryp969 to navigation's entry
listp953[previousEntryIndex].

4. Otherwise, if all the following are true:

1050

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-event-fire
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#assert

▪ navigationType is "replacep953";

▪ previousEntryForActivation's document statep1005 's originp1006 is same originp899 with document's origin;
and

▪ previousEntryForActivation's documentp1005 's initial about:blankp131 is false,

then set activation's old entryp969 to a new NavigationHistoryEntryp956 in navigation's relevant realmp1083, whose
session history entryp957 is previousEntryForActivation.

5. Set activation's new entryp969 to navigation's current entryp953.

6. Set activation's navigation typep969 to navigationType.

8. If documentIsNew is true, then:

1. Try to scroll to the fragmentp1052 for document.

2. At this point scripts may run for the newly-created document document.

9. Otherwise, if documentsEntryChanged is false and doNotReactivate is false, then:

1. Assert: entriesForNavigationAPI is given.

2. Reactivatep1051 document given entry and entriesForNavigationAPI.

To restore the history object state given Documentp130 document and session history entryp1005 entry:

1. Let targetRealm be document's relevant realmp1083.

2. Let state be StructuredDeserializep122(entry's classic history API statep1005, targetRealm). If this throws an exception, catch it
and let state be null.

3. Set document's history objectp945 's statep946 to state.

To make active a Documentp130 document:

1. Let window be document's relevant global objectp1083.

2. Set document's browsing contextp999 's WindowProxyp934 's [[Window]]p934 internal slot value to window.

3. Set document's visibility statep826 to document's node navigablep989 's traversable navigablep990 's system visibility statep990.

4. Queue a new VisibilityStateEntryp827 whose visibility statep827 is document's visibility statep826 and whose timestampp827

is zero.

5. Set window's relevant settings objectp1083 's execution ready flagp1076.

To reactivate a Documentp130 document given a session history entryp1005 reactivatedEntry and a list of session history entriesp1005

entriesForNavigationAPI:

1. For each formControl of form controls in document with an autofill field namep610 of "offp606", invoke the reset algorithmp637

for formControl.

2. If document's suspended timer handlesp1064 is not empty:

1. Assert: document's suspension timep1064 is not zero.

documentsEntryChanged can be false for one of two reasons: either we are restoring from bfcachep1006, or we are
asynchronously finishing up a synchronous navigation which already synchronously set document's latest entryp1008. The
doNotReactivate argument distinguishes between these two cases.

Note

This algorithm updates document after it has come out of bfcachep1006, i.e., after it has been made fully activep1003 again. Other
specifications that want to watch for this change to the fully activep1003 state are encouraged to add steps into this algorithm, so
that the ordering of events that happen in effect of the change is clear.

Note

1051

https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/performance-timeline/#queue-a-performanceentry
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#assert

2. Let suspendDuration be the current high resolution time minus document's suspension timep1064.

3. Let activeTimers be document's relevant global objectp1083 's map of active timersp1164.

4. For each handle in document's suspended timer handlesp1064, if activeTimers[handle] exists, then increase
activeTimers[handle] by suspendDuration.

3. Update the navigation API entries for reactivationp954 given document's relevant global objectp1083 's navigation APIp952,
entriesForNavigationAPI, and reactivatedEntry.

4. If document's current document readinessp133 is "complete", and document's page showingp1064 flag is false, then:

1. Set document's page showingp1064 flag to true.

2. Set document's has been revealedp1053 to false.

3. Update the visibility statep826 of document to "visible".

4. Fire a page transition eventp983 named pageshowp1472 at document's relevant global objectp1083 with true.

To try to scroll to the fragment for a Documentp130 document, perform the following steps in parallelp43:

1. Wait for an implementation-defined amount of time. (This is intended to allow the user agent to optimize the user experience
in the face of performance concerns.)

2. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given document's relevant global objectp1083 to run
these steps:

1. If document has no parser, or its parser has stopped parsingp1358, or the user agent has reason to believe the user
is no longer interested in scrolling to the fragment, then abort these steps.

2. Scroll to the fragmentp1054 given document.

3. If document's indicated partp1054 is still null, then try to scroll to the fragmentp1052 for document.

To make document unsalvageable, given a Documentp130 document and a string reason:

1. Let details be a new not restored reason detailsp985 whose reasonp985 is reason.

2. Append details to document's bfcache blocking detailsp131.

3. Set document's salvageablep1064 state to false.

To build not restored reasons for document state given Documentp130 document:

1. Let notRestoredReasonsForDocument be a new not restored reasonsp988.

2. Set notRestoredReasonsForDocument's URLp988 to document's URL.

3. If document's node navigablep989 's containerp991 is an iframep390 element, then:

1. Set notRestoredReasonsForDocument's srcp988 to the value of document's node navigablep989 's containerp991 's
srcp391 attribute.

2. Set notRestoredReasonsForDocument's idp988 to the value of document's node navigablep989 's containerp991 's idp154

attribute.

3. Set notRestoredReasonsForDocument's namep988 to the value of document's node navigablep989 's containerp991 's
namep395 attribute.

4. Set notRestoredReasonsForDocument's reasonsp988 to a clone of document's bfcache blocking detailsp131.

5. For each navigable of document's document-tree child navigablesp995:

1. Let childDocument be navigable's active documentp989.

2. Build not restored reasons for document statep1052 given childDocument.

3. Append childDocument's not restored reasonsp988 to notRestoredReasonsForDocument's childrenp988.

6. Set document's node navigablep989 's active session history entryp989 's document statep1005 's not restored reasonsp1007 to
1052

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url-fragment
https://infra.spec.whatwg.org/#set-append
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append

notRestoredReasonsForDocument.

To build not restored reasons for a top-level traversable and its descendants given top-level traversablep990

topLevelTraversable:

1. Build not restored reasons for document statep1052 given topLevelTraversable's active documentp989.

2. Let crossOriginDescendants be an empty list.

3. For each childNavigable of topLevelTraversable's active documentp989 's descendant navigablesp994:

1. If childNavigable's active documentp989 's origin is not same originp899 with topLevelTraversable's active
documentp989 's origin, then append childNavigable to crossOriginDescendants.

4. Let crossOriginDescendantsPreventsBfcache be false.

5. For each crossOriginNavigable of crossOriginDescendants:

1. Let reasonsForCrossOriginChild be crossOriginNavigable's active documentp989 's document statep1006 's not restored
reasonsp1007.

2. If reasonsForCrossOriginChild's reasonsp988 is not empty, set crossOriginDescendantsPreventsBfcache to true.

3. Set reasonsForCrossOriginChild's URLp988 to null.

4. Set reasonsForCrossOriginChild's reasonsp988 to null.

5. Set reasonsForCrossOriginChild's childrenp988 to null.

6. If crossOriginDescendantsPreventsBfcache is true, make document unsalvageablep1052 given topLevelTraversable's active
documentp989 and "maskedp985".

A Documentp130 has a boolean has been revealed, initially false. It is used to ensure that the pagerevealp1472 event is fired once for
each activation of the Documentp130 (once when it's rendered initially, and once for each reactivationp1051).

To reveal a Documentp130 document:

1. If document's has been revealedp1053 is true, then return.

2. Set document's has been revealedp1053 to true.

3. Let transition be the result of resolving inbound cross-document view-transition for document.

4. Fire an event named pagerevealp1472 at document's relevant global objectp1083, using PageRevealEventp982 with its
viewTransitionp982 set to transition.

5. If transition is not null, then:

1. Prepare to run scriptp1097 given document's relevant settings objectp1083.

2. Activate transition.

3. Clean up after running scriptp1097 given document's relevant settings objectp1083.

7.4.6.3 Revealing the document §p10

53

Activating a view transition might resolve/reject promises, so by wrapping the activation with prepare/cleanup we ensure
those promises are handled before the next rendering step.

Note

Though pagerevealp1472 is guaranteed to be fired during the first update the renderingp1128 step that displays an up-to-date version
of the page, user agents are free to display a cached frame of the page before firing it. This prevents the presence of a
pagerevealp1472 handler from delaying the presentation of such cached frame.

Note

1053

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-iterate
https://drafts.csswg.org/css-view-transitions-2/#resolve-inbound-cross-document-view-transition
https://dom.spec.whatwg.org/#concept-event-fire
https://drafts.csswg.org/css-view-transitions/#activate-view-transition

To scroll to the fragment given a Documentp130 document:

1. If document's indicated partp1054 is null, then set document's target elementp1054 to null.

2. Otherwise, if document's indicated partp1054 is top of the documentp1054, then:

1. Set document's target elementp1054 to null.

2. Scroll to the beginning of the document for document. [CSSOMVIEW]p1477

3. Return.

3. Otherwise:

1. Assert: document's indicated partp1054 is an element.

2. Let target be document's indicated partp1054.

3. Set document's target elementp1054 to target.

4. Run the ancestor details revealing algorithmp640 on target.

5. Run the ancestor hidden-until-found revealing algorithmp825 on target.

6. Scroll target into view, with behavior set to "auto", block set to "start", and inline set to "nearest".
[CSSOMVIEW]p1477

7. Run the focusing stepsp842 for target, with the Documentp130 's viewport as the fallback target.

8. Move the sequential focus navigation starting pointp844 to target.

A Documentp130 's indicated part is the one that its URL's fragment identifies, or null if the fragment does not identify anything. The
semantics of the fragment in terms of mapping it to a node is defined by the specification that defines the MIME type used by the
Documentp130 (for example, the processing of fragments for XML MIME types is the responsibility of RFC7303). [RFC7303]p1482

There is also a target element for each Documentp130, which is used in defining the :targetp784 pseudo-class and is updated by the
above algorithm. It is initially null.

For an HTML document document, its indicated partp1054 is the result of selecting the indicated partp1054 given document and
document's URL.

To select the indicated part given a Documentp130 document and a URL url:

1. If document's URL does not equal url with exclude fragments set to true, then return null.

2. Let fragment be url's fragment.

3. If fragment is the empty string, then return the special value top of the document.

4. Let potentialIndicatedElement be the result of finding a potential indicated elementp1054 given document and fragment.

5. If potentialIndicatedElement is not null, then return potentialIndicatedElement.

6. Let fragmentBytes be the result of percent-decoding fragment.

7. Let decodedFragment be the result of running UTF-8 decode without BOM on fragmentBytes.

8. Set potentialIndicatedElement to the result of finding a potential indicated elementp1054 given document and
decodedFragment.

9. If potentialIndicatedElement is not null, then return potentialIndicatedElement.

10. If decodedFragment is an ASCII case-insensitive match for the string top, then return the top of the documentp1054.

11. Return null.

To find a potential indicated element given a Documentp130 document and a string fragment, run these steps:

1. If there is an element in the document tree whose root is document and that has an ID equal to fragment, then return the

7.4.6.4 Scrolling to a fragment §p10

54

1054

https://drafts.csswg.org/cssom-view/#scroll-to-the-beginning-of-the-document
https://infra.spec.whatwg.org/#assert
https://drafts.csswg.org/cssom-view/#scroll-a-target-into-view
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#mime-type
https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#xml-mime-type
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-equals
https://url.spec.whatwg.org/#url-equals-exclude-fragments
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#string-percent-decode
https://encoding.spec.whatwg.org/#utf-8-decode-without-bom
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-id

first such element in tree order.

2. If there is an ap257 element in the document tree whose root is document that has a namep1427 attribute whose value is equal
to fragment, then return the first such element in tree order.

3. Return null.

To save persisted state to a session history entryp1005 entry:

1. Set the scroll position datap1005 of entry to contain the scroll positions for all of entry's documentp1005 's restorable scrollable
regionsp1055.

2. Optionally, update entry's persisted user statep1005 to reflect any state that the user agent wishes to persist, such as the
values of form fields.

To restore persisted state from a session history entryp1005 entry:

1. If entry's scroll restoration modep1005 is "autop1006", and entry's documentp1005 's relevant global objectp1083 's navigation
APIp952 's suppress normal scroll restoration during ongoing navigationp964 is false, then restore scroll position datap1055 given
entry.

2. Optionally, update other aspects of entry's documentp1005 and its rendering, for instance values of form fields, that the user
agent had previously recorded in entry's persisted user statep1005.

Each Documentp130 has a boolean has been scrolled by the user, initially false. If the user scrolls the document, the user agent must
set that document's has been scrolled by the userp1055 to true.

The restorable scrollable regions of a Documentp130 document are document's viewport, and all of document's scrollable regions
excepting any navigable containersp991.

To restore scroll position data given a session history entryp1005 entry:

1. Let document be entry's documentp1005.

7.4.6.5 Persisted history entry state §p10

55

The user agent not restoring scroll positions does not imply that scroll positions will be left at any particular value (e.g.,
(0,0)). The actual scroll position depends on the navigation type and the user agent's particular caching strategy. So web
applications cannot assume any particular scroll position but rather are urged to set it to what they want it to be.

Note

If suppress normal scroll restoration during ongoing navigationp964 is true, then restoring scroll position datap1055 might
still happen at a later point, as part of finishingp979 the relevant NavigateEventp970, or via a navigateEvent.scroll()p972

method call.

Note

This can even include updating the dirp160 attribute of textareap579 elements or inputp520 elements whose typep523

attribute is in the Textp527, Searchp527, Telephonep528, URLp529, or Emailp530 state, if the persisted state includes the
directionality of user input in such controls.

Note

Restoring the value of form controls as part of this process does not fire any input or changep1471 events, but can trigger
the formStateRestoreCallback of form-associated custom elementsp760.

Note

Child navigablep992 scroll restoration is handled as part of state restoration for the session history entryp1005 for those
navigablesp989 ' Documentp130s.

Note

1055

https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root
https://dom.spec.whatwg.org/#concept-tree-order
https://w3c.github.io/uievents/#event-type-input
https://drafts.csswg.org/css2/#viewport

2. If document's has been scrolled by the userp1055 is true, then the user agent should return.

3. The user agent should attempt to use entry's scroll position datap1005 to restore the scroll positions of entry's documentp1005 's
restorable scrollable regionsp1055. The user agent may continue to attempt to do so periodically, until document's has been
scrolled by the userp1055 becomes true.

When loading a document using one of the below algorithms, we use the following steps to create and initialize a Document object,
given a type type, content type contentType, and navigation paramsp1013 navigationParams:

1. Let browsingContext be navigationParams's navigablep1013 's active browsing contextp989.

2. Set browsingContext to the result of the obtaining a browsing context to use for a navigation responsep907 given
browsingContext, navigationParams's final sandboxing flag setp1013, navigationParams's cross-origin opener policyp1013, and
navigationParams's COOP enforcement resultp1013.

3. Let permissionsPolicy be the result of creating a permissions policy from a response given navigationParams's
navigablep1013 's containerp991, navigationParams's originp1013, and navigationParams's responsep1013.
[PERMISSIONSPOLICY]p1480

4. Let creationURL be navigationParams's responsep1013 's URL.

5. If navigationParams's requestp1013 is non-null, then set creationURL to navigationParams's requestp1013 's current URL.

6. Let window be null.

7. If browsingContext's active documentp998 's is initial about:blankp131 is true, and browsingContext's active documentp998 's
origin is same origin-domainp899 with navigationParams's originp1013, then set window to browsingContext's active windowp998.

This is formulated as an attempt, which is potentially repeated until success or until the user scrolls, due to the fact that
relevant content indicated by the scroll position datap1005 might take some time to load from the network.

Note

Scroll restoration might be affected by scroll anchoring. [CSSSCROLLANCHORING]p1477

Note

7.5 Document lifecycle §p10

56

Documentp130 objects are also created when creating a new browsing context and documentp999; such initial about:blankp131

Documentp130 are never created by this algorithm. Also, browsing contextp999-less Documentp130 objects can be created via various
APIs, such as document.implementation.createHTMLDocument().

Note

This can result in a browsing context group switchp905, in which case browsingContext will be a newly-createdp999

browsing contextp998 instead of being navigationParams's navigablep1013 's active browsing contextp989. In such a case, the
created Windowp922, Documentp130, and agent will not end up being used; because the created Documentp130 's origin is
opaquep898, we will end up creating a new agent and Windowp922 later in this algorithmp1057 to go along with the new
Documentp130.

Note

The creating a permissions policy from a response algorithm makes use of the passed originp898. If document.domainp901

has been used for navigationParams's navigablep1013 's container documentp992, then its origin cannot be same origin-
domainp899 with the passed origin, because these steps run before the document is created, so it cannot itself yet have
used document.domainp901. Note that this means that Permissions Policy checks are less permissive compared to doing a
same originp899 check instead.

See below for some examples of this in action.

Note

7.5.1 Shared document creation infrastructure §p10

56

1056

https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#dom-domimplementation-createhtmldocument
https://tc39.es/ecma262/#sec-agents
https://dom.spec.whatwg.org/#concept-document-origin
https://tc39.es/ecma262/#sec-agents
https://w3c.github.io/webappsec-feature-policy/#create-from-response
https://w3c.github.io/webappsec-feature-policy/#create-from-response
https://dom.spec.whatwg.org/#concept-document-origin
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-request-current-url
https://dom.spec.whatwg.org/#concept-document-origin

8. Otherwise:

1. Let oacHeader be the result of getting a structured field value given `Origin-Agent-Clusterp902` and "item" from
navigationParams's responsep1013 's header list.

2. Let requestsOAC be true if oacHeader is not null and oacHeader[0] is the boolean true; otherwise false.

3. If navigationParams's reserved environmentp1013 is a non-secure contextp1084, then set requestsOAC to false.

4. Let agent be the result of obtaining a similar-origin window agentp1073 given navigationParams's originp1013,
browsingContext's groupp1002, and requestsOAC.

5. Let realmExecutionContext be the result of creating a new realmp1077 given agent and the following customizations:

▪ For the global object, create a new Windowp922 object.

▪ For the global this binding, use browsingContext's WindowProxyp934 object.

6. Set window to the global objectp1077 of realmExecutionContext's Realm component.

7. Let topLevelCreationURL be creationURL.

8. Let topLevelOrigin be navigationParams's originp1013.

9. If navigable's containerp991 is not null, then:

1. Let parentEnvironment be navigable's containerp991 's relevant settings objectp1083.

2. Set topLevelCreationURL to parentEnvironment's top-level creation URLp1075.

3. Set topLevelOrigin to parentEnvironment's top-level originp1076.

10. Set up a window environment settings objectp933 with creationURL, realmExecutionContext, navigationParams's
reserved environmentp1013, topLevelCreationURL, and topLevelOrigin.

9. Let loadTimingInfo be a new document load timing infop134 with its navigation start timep134 set to navigationParams's
responsep1013 's timing info's start time.

10. Let document be a new Documentp130, with
type

type
content type

contentType
origin

navigationParams's originp1013

browsing contextp999

browsingContext
policy containerp131

navigationParams's policy containerp1013

permissions policyp131

permissionsPolicy
active sandboxing flag setp917

navigationParams's final sandboxing flag setp1013

opener policyp131

navigationParams's cross-origin opener policyp1013

load timing infop134

loadTimingInfo
was created via cross-origin redirectsp134

navigationParams's responsep1013 's has cross-origin redirects

This means that both the initial about:blankp131 Documentp130, and the new Documentp130 that is about to be created, will
share the same Windowp922 object.

Note

This is the usual case, where the new Documentp130 we're about to create gets a new Windowp922 to go along with it.
Note

1057

https://fetch.spec.whatwg.org/#concept-header-list-get-structured-header
https://fetch.spec.whatwg.org/#concept-response-header-list
https://httpwg.org/specs/rfc8941.html#boolean
https://fetch.spec.whatwg.org/#concept-response-timing-info
https://fetch.spec.whatwg.org/#fetch-timing-info-start-time
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#concept-document-origin
https://fetch.spec.whatwg.org/#response-has-cross-origin-redirects

during-loading navigation ID for WebDriver BiDip131

navigationParams's idp1013

URL
creationURL

current document readinessp133

"loading"
about base URLp131

navigationParams's about base URLp1013

allow declarative shadow roots
true

11. Set window's associated Documentp923 to document.

12. Run CSP initialization for a Document given document. [CSP]p1476

13. If navigationParams's requestp1013 is non-null, then:

1. Set document's referrerp130 to the empty string.

2. Let referrer be navigationParams's requestp1013 's referrer.

3. If referrer is a URL record, then set document's referrerp130 to the serialization of referrer.

14. If navigationParams's fetch controllerp1013 is not null, then:

1. Let fullTimingInfo be the result of extracting the full timing info from navigationParams's fetch controllerp1013.

2. Let redirectCount be 0 if navigationParams's responsep1013 's has cross-origin redirects is true; otherwise
navigationParams's requestp1013 's redirect count.

3. Create the navigation timing entry for document, given fullTimingInfo, redirectCount, navigationTimingType,
navigationParams's responsep1013 's service worker timing info, and navigationParams's responsep1013 's body info.

15. Create the navigation timing entry for document, with navigationParams's responsep1013 's timing info, redirectCount,
navigationParams's navigation timing typep1013, and navigationParams's responsep1013 's service worker timing info.

16. If navigationParams's responsep1013 has a `Refreshp1069` header, then:

1. Let value be the isomorphic decoding of the value of the header.

2. Run the shared declarative refresh stepsp197 with document and value.

We do not currently have a spec for how to handle multiple `Refreshp1069` headers. This is tracked as issue #2900.

17. If navigationParams's commit early hintsp1013 is not null, then call navigationParams's commit early hintsp1013 with document.

18. Process link headersp186 given document, navigationParams's responsep1013, and "pre-media".

19. Return document.

Per Fetch, referrer will be either a URL record or "no-referrer" at this point.
Note

In this example, the child document is not allowed to use PaymentRequest, despite being same origin-domainp899 at the time the
child document tries to use it. At the time the child document is initialized, only the parent document has set document.domainp901,
and the child document has not.

<!-- https://foo.example.com/a.html -->
<!doctype html>
<script>
document.domain = 'example.com';
</script>
<iframe src=b.html></iframe>

Example

1058

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-allow-declarative-shadow-roots
https://w3c.github.io/webappsec-csp/#run-document-csp-initialization
https://fetch.spec.whatwg.org/#concept-request-referrer
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#extract-full-timing-info
https://fetch.spec.whatwg.org/#response-has-cross-origin-redirects
https://fetch.spec.whatwg.org/#concept-request-redirect-count
https://w3c.github.io/navigation-timing/#dfn-create-the-navigation-timing-entry
https://fetch.spec.whatwg.org/#response-service-worker-timing-info
https://fetch.spec.whatwg.org/#concept-response-body-info
https://w3c.github.io/navigation-timing/#dfn-create-the-navigation-timing-entry
https://fetch.spec.whatwg.org/#concept-response-timing-info
https://fetch.spec.whatwg.org/#response-service-worker-timing-info
https://infra.spec.whatwg.org/#isomorphic-decode
https://github.com/whatwg/html/issues/2900
https://w3c.github.io/payment-request/#dom-paymentrequest

To populate with html/head/body given a Documentp130 document:

1. Let html be the result of creating an element given document, htmlp172, and the HTML namespace.

2. Let head be the result of creating an element given document, headp173, and the HTML namespace.

3. Let body be the result of creating an element given document, bodyp205, and the HTML namespace.

4. Append html to document.

5. Append head to html.

6. Append body to html.

To load an HTML document, given navigation paramsp1013 navigationParams:

1. Let document be the result of creating and initializing a Document objectp1056 given "html", "text/html", and
navigationParams.

2. If document's URL is about:blankp53, then populate with html/head/bodyp1059 given document.

3. Otherwise, create an HTML parserp1271 and associate it with the document. Each taskp1124 that the networking task sourcep1134

places on the task queuep1123 while fetching runs must then fill the parser's input byte streamp1277 with the fetched bytes and
cause the HTML parserp1271 to perform the appropriate processing of the input stream.

The first taskp1124 that the networking task sourcep1134 places on the task queuep1123 while fetching runs must process link

<!-- https://bar.example.com/b.html -->
<!doctype html>
<script>
document.domain = 'example.com'; // This happens after the document is initialized
new PaymentRequest(…); // Not allowed to use
</script>

In this example, the child document is allowed to use PaymentRequest, despite not being same origin-domainp899 at the time the
child document tries to use it. At the time the child document is initialized, none of the documents have set document.domainp901

yet so same origin-domainp899 falls back to a normal same originp899 check.

<!-- https://example.com/a.html -->
<!doctype html>
<iframe src=b.html></iframe>
<!-- The child document is now initialized, before the script below is run. -->
<script>
document.domain = 'example.com';
</script>

<!-- https://example.com/b.html -->
<!doctype html>
<script>
new PaymentRequest(…); // Allowed to use
</script>

Example

This special case, where even non-initial about:blankp131 Documentp130s are synchronously given their element nodes, is
necessary for compatible with deployed content. In other words, it is not compatible to instead go down the "otherwise"
branch and feed the empty byte sequence into an HTML parserp1271 to asynchronously populate document.

Note

7.5.2 Loading HTML documents §p10

59

1059

https://w3c.github.io/payment-request/#dom-paymentrequest
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#byte-sequence

headersp186 given document, navigationParams's responsep1013, and "media", after the task has been processed by the HTML
parserp1271.

Before any script execution occurs, the user agent must wait for scripts may run for the newly-created documentp1051 to be
true for document.

When no more bytes are available, the user agent must queue a global taskp1125 on the networking task sourcep1134 given
document's relevant global objectp1083 to have the parser process the implied EOF character, which eventually causes a
loadp1471 event to be fired.

4. Return document.

When faced with displaying an XML file inline, provided navigation paramsp1013 navigationParams and a string type, user agents must
follow the requirements defined in XML and Namespaces in XML, XML Media Types, DOM, and other relevant specifications to create
and initialize a Document objectp1056 document, given "xml", type, and navigationParams, and return that Documentp130. They must also
create a corresponding XML parserp1384. [XML]p1484 [XMLNS]p1484 [RFC7303]p1482 [DOM]p1478

The first taskp1124 that the networking task sourcep1134 places on the task queuep1123 while fetching runs must process link headersp186

given document, navigationParams's responsep1013, and "media", after the task has been processed by the XML parserp1384.

The actual HTTP headers and other metadata, not the headers as mutated or implied by the algorithms given in this specification, are
the ones that must be used when determining the character encoding according to the rules given in the above specifications. Once
the character encoding is established, the document's character encoding must be set to that character encoding.

Before any script execution occurs, the user agent must wait for scripts may run for the newly-created documentp1051 to be true for the
newly-created Documentp130.

Once parsing is complete, the user agent must set document's during-loading navigation ID for WebDriver BiDip131 to null.

Error messages from the parse process (e.g., XML namespace well-formedness errors) may be reported inline by mutating the
Documentp130.

To load a text document, given a navigation paramsp1013 navigationParams and a string type:

1. Let document be the result of creating and initializing a Document objectp1056 given "html", type, and navigationParams.

2. Set document's parser cannot change the mode flagp1325 to true.

3. Set document's mode to "no-quirks".

4. Create an HTML parserp1271 and associate it with the document. Act as if the tokenizer had emitted a start tag token with the
tag name "pre" followed by a single U+000A LINE FEED (LF) character, and switch the HTML parserp1271 's tokenizer to the
PLAINTEXT statep1292. Each taskp1124 that the networking task sourcep1134 places on the task queuep1123 while fetching runs

The input byte streamp1277 converts bytes into characters for use in the tokenizerp1290. This process relies, in part, on
character encoding information found in the real Content-Type metadatap98 of the resource; the computed type is not
used for this purpose.

Note

At the time of writing, the XML specification community had not actually yet specified how XML and the DOM interact.
Note

For HTML documents this is reset when parsing is complete, after firing the load event.
Note

7.5.3 Loading XML documents §p10

60

7.5.4 Loading text documents §p10

60

1060

https://dom.spec.whatwg.org/#concept-document-encoding
https://dom.spec.whatwg.org/#concept-document-mode

must then fill the parser's input byte streamp1277 with the fetched bytes and cause the HTML parserp1271 to perform the
appropriate processing of the input stream.

document's encoding must be set to the character encoding used to decode the document during parsing.

The first taskp1124 that the networking task sourcep1134 places on the task queuep1123 while fetching runs must process link
headersp186 given document, navigationParams's responsep1013, and "media", after the task has been processed by the HTML
parserp1271.

Before any script execution occurs, the user agent must wait for scripts may run for the newly-created documentp1051 to be
true for document.

When no more bytes are available, the user agent must queue a global taskp1125 on the networking task sourcep1134 given
document's relevant global objectp1083 to have the parser process the implied EOF character, which eventually causes a
loadp1471 event to be fired.

5. User agents may add content to the headp173 element of document, e.g., linking to a style sheet, providing script, or giving
the document a titlep174.

6. Return document.

The rules for how to convert the bytes of the plain text document into actual characters, and the rules for actually rendering the text to
the user, are defined by the specifications for the computed MIME type of the resource (i.e., type).

To load a multipart/x-mixed-replace document, given navigation paramsp1013 navigationParams, source snapshot paramsp1012

sourceSnapshotParams, and originp898 initiatorOrigin:

1. Parse navigationParams's responsep1013 's body using the rules for multipart types. [RFC2046]p1481

2. Let firstPartNavigationParams be a copy of navigationParams.

3. Set firstPartNavigationParams's responsep1013 to a new response representing the first part of navigationParams's
responsep1013 's body's multipart stream.

4. Let document be the result of loading a documentp1039 given firstPartNavigationParams, sourceSnapshotParams, and
initiatorOrigin.

For each additional body part obtained from navigationParams's responsep1013, the user agent must navigatep1014 document's
node navigablep989 to navigationParams's requestp1013 's URL, using document, with responsep1014 set to navigationParams's
responsep1013 and historyHandlingp1014 set to "replacep1014".

5. Return document.

For the purposes of algorithms processing these body parts as if they were complete stand-alone resources, the user agent must act as
if there were no more bytes for those resources whenever the boundary following the body part is reached.

To load a media document, given navigationParams and a string type:

1. Let document be the result of creating and initializing a Document objectp1056 given "html", type, and navigationParams.

In particular, if the user agent supports the Format=Flowed feature of RFC 3676 then the user agent would need to apply
extra styling to cause the text to wrap correctly and to handle the quoting feature. This could be performed using, e.g., a
CSS extension.

Note

Thus, loadp1471 events (and for that matter unloadp1472 events) do fire for each body part loaded.
Note

7.5.5 Loading multipart/x-mixed-replacep1445 documents §p10

61

7.5.6 Loading media documents §p10

61

1061

https://dom.spec.whatwg.org/#concept-document-encoding
https://mimesniff.spec.whatwg.org/#computed-mime-type
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-body
https://fetch.spec.whatwg.org/#concept-request-url

2. Set document's mode to "no-quirks".

3. Populate with html/head/bodyp1059 given document.

4. Append an element host element for the media, as described below, to the bodyp205 element.

5. Set the appropriate attribute of the element host element, as described below, to the address of the image, video, or audio
resource.

6. User agents may add content to the headp173 element of document, or attributes to host element, e.g., to link to a style
sheet, to provide a script, to give the document a titlep174, or to make the media autoplayp435.

7. Process link headersp186 given document, navigationParams's responsep1013, and "media".

8. Act as if the user agent had stopped parsingp1358 document.

9. Return document.

The element host element to create for the media is the element given in the table below in the second cell of the row whose first cell
describes the media. The appropriate attribute to set is the one given by the third cell in that same row.

Type of media Element for the media Appropriate attribute

Image imgp346 srcp347

Video videop406 srcp416

Audio audiop410 srcp416

Before any script execution occurs, the user agent must wait for scripts may run for the newly-created documentp1051 to be true for the
Documentp130.

When the user agent is to create a document to display a user agent page or PDF viewer inline, provided a navigablep989 navigable, a
navigation IDp1014 navigationId, a NavigationTimingType navTimingType, the user agent should:

1. Let origin be a new opaque originp898.

2. Let coop be a new opener policyp904.

3. Let coopEnforcementResult be a new opener policy enforcement resultp906 with
urlp906

response's URL
originp906

origin
opener policyp906

coop

4. Let navigationParams be a new navigation paramsp1013 with
idp1013

navigationId
navigablep1013

navigable
requestp1013

null
responsep1013

a new response
originp1013

origin
fetch controllerp1013

null
commit early hintsp1013

null

7.5.7 Loading a document for inline content that doesn't have a DOM §p10

62

1062

https://dom.spec.whatwg.org/#concept-document-mode
https://w3c.github.io/navigation-timing/#dom-navigationtimingtype
https://fetch.spec.whatwg.org/#concept-response-url
https://fetch.spec.whatwg.org/#concept-response

COOP enforcement resultp1013

coopEnforcementResult
reserved environmentp1013

null
policy containerp1013

a new policy containerp917

final sandboxing flag setp1013

an empty set
opener policyp1013

coop
navigation timing typep1013

navTimingType
about base URLp1013

null

5. Let document be the result of creating and initializing a Document objectp1056 given "html", "text/html", and
navigationParams.

6. Either associate document with a custom rendering that is not rendered using the normal Documentp130 rendering rules, or
mutate document until it represents the content the user agent wants to render.

7. Return document.

Once the page has been set up, the user agent must act as if it had stopped parsingp1358.

A Documentp130 has a completely loaded time (a time or null), which is initially null.

A Documentp130 is considered completely loaded if its completely loaded timep1063 is non-null.

To completely finish loading a Documentp130 document:

1. Assert: document's browsing contextp999 is non-null.

2. Set document's completely loaded timep1063 to the current time.

3. Let container be document's node navigablep989 's containerp991.

4. If container is an iframep390 element, then queue an element taskp1125 on the DOM manipulation task sourcep1134 given
container to run the iframe load event stepsp394 given container.

5. Otherwise, if container is non-null, then queue an element taskp1125 on the DOM manipulation task sourcep1134 given
container to fire an event named loadp1471 at container.

Because we ensure the resulting Documentp130 's origin is opaquep898, and the resulting Documentp130 cannot run script with access
to the DOM, the existence and properties of this Documentp130 are not observable to web developer code. This means that most of
the above values, e.g., the text/htmlp1444 type, do not matter. Similarly, most of the items in navigationParams don't have any
observable effect, besides preventing the Document-creation algorithmp1056 from getting confused, and so are set to default values.

Note

This will be null in the case where document is the initial about:blankp131 Documentp130 in a framep1433 or iframep390,
since at the point of browsing context creationp999 which calls this algorithm, the container relationship has not yet been
established. (That happens in a subsequent step of create a new child navigablep992.)

The consequence of this is that the following steps do nothing, i.e., we do not fire an asynchronous loadp1471 event on the
container element for such cases. Instead, a synchronous loadp1471 event is fired in a special initial-insertion case when
processing the iframe attributesp393.

Note

7.5.8 Finishing the loading process §p10

63

1063

https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-type
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-event-fire

A Documentp130 has a salvageable state, which must initially be true, and a page showing flag, which must initially be false. The
page showingp1064 flag is used to ensure that scripts receive pageshowp1472 and pagehidep1472 events in a consistent manner (e.g. that
they never receive two pagehidep1472 events in a row without an intervening pageshowp1472, or vice versa).

A Documentp130 has a DOMHighResTimeStamp suspension time, initially 0.

A Documentp130 has a list of suspended timer handles, initially empty.

Event loopsp1123 have a termination nesting level counter, which must initially be 0.

Documentp130 objects have an unload counter, which is used to ignore certain operations while the below algorithms run. Initially, the
counter must be set to zero.

To unload a Documentp130 oldDocument, given an optional Documentp130 newDocument:

1. Assert: this is running as part of a taskp1124 queued on oldDocument's relevant agentp1073 's event loopp1123.

2. Let unloadTimingInfo be a new document unload timing infop134.

3. If newDocument is not given, then set unloadTimingInfo to null.

4. Otherwise, if newDocument's event loopp1123 is not oldDocument's event loopp1123, then the user agent may be unloadingp1064

oldDocument in parallelp43. In that case, the user agent should set unloadTimingInfo to null.

5. Let intendToKeepInBfcache be true if the user agent intends to keep oldDocument alive in a session history entryp1005, such
that it can later be used for history traversalp1006.

This must be false if oldDocument is not salvageablep1064, or if there are any descendants of oldDocument which the user
agent does not intend to keep alive in the same way (including due to their lack of salvageabilityp1064).

6. Let eventLoop be oldDocument's relevant agentp1073 's event loopp1123.

7. Increase eventLoop's termination nesting levelp1064 by 1.

8. Increase oldDocument's unload counterp1064 by 1.

9. If intendToKeepInBfcache is false, then set oldDocument's salvageablep1064 state to false.

10. If oldDocument's page showingp1064 is true:

1. Set oldDocument's page showingp1064 to false.

2. Fire a page transition eventp983 named pagehidep1472 at oldDocument's relevant global objectp1083 with
oldDocument's salvageablep1064 state.

3. Update the visibility statep826 of oldDocument to "hidden".

11. If unloadTimingInfo is not null, then set unloadTimingInfo's unload event start timep134 to the current high resolution time
given newDocument's relevant global objectp1083, coarsened given oldDocument's relevant settings objectp1083 's cross-origin
isolated capabilityp1076.

12. If oldDocument's salvageablep1064 state is false, then fire an event named unloadp1472 at oldDocument's relevant global
objectp1083, with legacy target override flag set.

13. If unloadTimingInfo is not null, then set unloadTimingInfo's unload event end timep134 to the current high resolution time
given newDocument's relevant global objectp1083, coarsened given oldDocument's relevant settings objectp1083 's cross-origin
isolated capabilityp1076.

14. Decrease eventLoop's termination nesting levelp1064 by 1.

In this case there is no new document that needs to know about how long it took oldDocument to unload.
Note

In this case newDocument's loading is not impacted by how long it takes to unload oldDocument, so it would be
meaningless to communicate that timing info.

Note

7.5.9 Unloading documents §p10

64

1064

https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-coarsen-time
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-coarsen-time

15. Set oldDocument's suspension timep1064 to the current high resolution time given document's relevant global objectp1083.

16. Set oldDocument's suspended timer handlesp1064 to the result of getting the keys for the map of active timersp1164.

17. Set oldDocument's has been scrolled by the userp1055 to false.

18. Run any unloading document cleanup stepsp1065 for oldDocument that are defined by this specification and other applicable
specificationsp73.

19. If oldDocument's node navigablep989 is a top-level traversablep990, build not restored reasons for a top-level traversable and
its descendantsp1053 given oldDocument's node navigablep989.

20. If oldDocument's salvageablep1064 state is false, then destroyp1066 oldDocument.

21. Decrease oldDocument's unload counterp1064 by 1.

22. If newDocument is given, newDocument's was created via cross-origin redirectsp134 is false, and newDocument's origin is the
samep899 as oldDocument's origin, then set newDocument's previous document unload timingp134 to unloadTimingInfo.

To unload a document and its descendants, given a Documentp130 document, an optional Documentp130-or-null newDocument
(default null), an optional set of steps afterAllUnloads, and an optional set of steps firePageSwapSteps:

1. Assert: this is running within document's node navigablep989 's traversable navigablep990 's session history traversal queuep990.

2. Let childNavigables be document's child navigablesp992.

3. Let numberUnloaded be 0.

4. For each childNavigable of childNavigable's in what order? , queue a global taskp1125 on the navigation and traversal task
sourcep1134 given childNavigable's active windowp989 to perform the following steps:

1. Let incrementUnloaded be an algorithm step which increments numberUnloaded.

2. Unload a document and its descendantsp1065 given childNavigable's active documentp989, null, and
incrementUnloaded.

5. Wait until numberUnloaded equals childNavigable's size.

6. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given document's relevant global objectp1083 to
perform the following steps:

1. If firePageSwapSteps is given, then run firePageSwapSteps.

2. Unloadp1064 document, passing along newDocument if it is not null.

3. If afterAllUnloads was given, then run it.

This specification defines the following unloading document cleanup steps. Other specifications can define more. Given a
Documentp130 document:

1. Let window be document's relevant global objectp1083.

2. For each WebSocket object webSocket whose relevant global objectp1083 is window, make disappear webSocket.

If this affected any WebSocket objects, then make document unsalvageablep1052 given document and "websocketp985".

3. For each WebTransport object transport whose relevant global objectp1083 is window, run the context cleanup steps given
transport.

4. If document's salvageablep1064 state is false, then:

1. For each EventSourcep1191 object eventSource whose relevant global objectp1083 is equal to window, forcibly
closep1198 eventSource.

2. Clear window's map of active timersp1164.

It would be better if specification authors sent a pull request to add calls from here into their specifications directly, instead of
using the unloading document cleanup stepsp1065 hook, to ensure well-defined cross-specification call order. As of the time of this

1065

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://infra.spec.whatwg.org/#map-getting-the-keys
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-size
https://websockets.spec.whatwg.org/#websocket
https://websockets.spec.whatwg.org/#make-disappear
https://websockets.spec.whatwg.org/#websocket
https://w3c.github.io/webtransport/#webtransport
https://w3c.github.io/webtransport/#context-cleanup-steps
https://infra.spec.whatwg.org/#map-clear

writing the following specifications are known to have unloading document cleanup stepsp1065, which will be run in an unspecified
order: Fullscreen API, Web NFC, WebDriver BiDi, Compute Pressure, File API, Media Capture and Streams, Picture-in-Picture,
Screen Orientation, Service Workers, WebLocks API, WebAudio API, WebRTC. [FULLSCREEN]p1478 [WEBNFC]p1484

[WEBDRIVERBIDI]p1483 [COMPUTEPRESSURE]p1475 [FILEAPI]p1478 [MEDIASTREAM]p1480 [PICTUREINPICTURE]p1480

[SCREENORIENTATION]p1482 [SW]p1482 [WEBLOCKS]p1484 [WEBAUDIO]p1483 [WEBRTC]p1484

Issue #8906 tracks the work to make the order of these steps clear.

To destroy a Documentp130 document:

1. Assert: this is running as part of a taskp1124 queued on document's relevant agentp1073 's event loopp1123.

2. Abortp1067 document.

3. Set document's salvageablep1064 state to false.

4. Let ports be the list of MessagePortp1205s whose relevant global objectp1083 's associated Documentp923 is document.

5. For each port in ports, disentanglep1206 port.

6. Run any unloading document cleanup stepsp1065 for document that are defined by this specification and other applicable
specificationsp73.

7. Remove any tasksp1124 whose documentp1124 is document from any task queuep1123 (without running those tasks).

8. Set document's browsing contextp999 to null.

9. Set document's node navigablep989 's active session history entryp989 's document statep1005 's documentp1006 to null.

10. Remove document from the owner setp1228 of each WorkerGlobalScopep1228 object whose set contains document.

11. For each workletGlobalScope in document's worklet global scopesp1250, terminatep1247 workletGlobalScope.

To destroy a document and its descendants given a Documentp130 document and an optional set of steps afterAllDestruction,
perform the following steps in parallelp43:

1. If document is not fully activep1003, then:

1. Let reason be a string from user-agent specific blocking reasonsp985. If none apply, then let reason be "maskedp985".

2. Make document unsalvageablep1052 given document and reason.

3. If document's node navigablep989 is a top-level traversablep990, build not restored reasons for a top-level traversable
and its descendantsp1053 given document's node navigablep989.

2. Let childNavigables be document's child navigablesp992.

3. Let numberDestroyed be 0.

4. For each childNavigable of childNavigable's in what order? , queue a global taskp1125 on the navigation and traversal task
sourcep1134 given childNavigable's active windowp989 to perform the following steps:

1. Let incrementDestroyed be an algorithm step which increments numberDestroyed.

2. Destroy a document and its descendantsp1066 given childNavigable's active documentp989 and incrementDestroyed.

5. Wait until numberDestroyed equals childNavigable's size.

6. Queue a global taskp1125 on the navigation and traversal task sourcep1134 given document's relevant global objectp1083 to

Even after destruction, the Documentp130 object itself might still be accessible to script, in the case where we are destroying a child
navigablep995.

Note

7.5.10 Destroying documents §p10

66

1066

https://github.com/whatwg/html/issues/8906
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-size

perform the following steps:

1. Destroyp1066 document.

2. If afterAllDestruction was given, then run it.

To abort a Documentp130 document:

1. Assert: this is running as part of a taskp1124 queued on document's relevant agentp1073 's event loopp1123.

2. Cancel any instances of the fetch algorithm in the context of document, discarding any tasksp1124 queuedp1125 for them, and
discarding any further data received from the network for them. If this resulted in any instances of the fetch algorithm being
canceled or any queuedp1125 tasksp1124 or any network data getting discarded, then make document unsalvageablep1052 given
document and "fetchp985".

3. If document's during-loading navigation ID for WebDriver BiDip131 is non-null, then:

1. Invoke WebDriver BiDi navigation aborted with document's browsing contextp999, and a new WebDriver BiDi
navigation status whose id is document's during-loading navigation ID for WebDriver BiDip131, status is "canceled",
and url is document's URL.

2. Set document's during-loading navigation ID for WebDriver BiDip131 to null.

4. If document has an active parserp134, then:

1. Set document's active parser was abortedp1150 to true.

2. Abort that parserp1359.

3. Set document's salvageablep1064 to false.

4. Make document unsalvageablep1052 given document and "parser-abortedp985".

To abort a document and its descendants given a Documentp130 document:

1. Assert: this is running as part of a taskp1124 queued on document's relevant agentp1073 's event loopp1123.

2. Let descendantNavigables be document's descendant navigablesp994.

3. For each descendantNavigable of descendantNavigables in what order? , queue a global taskp1125 on the navigation and
traversal task sourcep1134 given descendantNavigable's active windowp989 to perform the following steps:

1. Abortp1067 descendantNavigable's active documentp989.

2. If descendantNavigable's active documentp989 's salvageablep1064 is false, then set document's salvageablep1064 to
false.

4. Abortp1067 document.

To stop loading a navigablep989 navigable:

1. Let document be navigable's active documentp989.

2. If document's unload counterp1064 is 0, and navigable's ongoing navigationp1027 is a navigation IDp1014, then set the ongoing
navigationp1027 for navigable to null.

3. Abort a document and its descendantsp1067 given document.

Through their user interfacep1069, user agents also allow stopping traversals, i.e. cases where the ongoing navigationp1027 is

This will have the effect of aborting any ongoing navigations of navigable, since at certain points during navigation,
changes to the ongoing navigationp1027 will cause further work to be abandoned.

Note

7.5.11 Aborting a document load §p10

67

1067

https://infra.spec.whatwg.org/#assert
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-aborted
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-canceled
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-iterate

"traversal". The above algorithm does not account for this. (On the other hand, user agents do not allow window.stop()p928 to
stop traversals, so the above algorithm is correct for that caller.) See issue #6905.

The `X-Frame-Options` HTTP response header is a legacy way of controlling whether and how a Documentp130 may be loaded inside of
a child navigablep992. It is obsoleted by the frame-ancestors CSP directive, which provides more granular control over the same
situations. It was originally defined in HTTP Header Field X-Frame-Options, but the definition and processing model here supersedes
that document. [CSP]p1476 [RFC7034]p1482

For web developers and conformance checkers, its value ABNF is:

X-Frame-Options = "DENY" / "SAMEORIGIN"

To check a navigation response's adherence to `X-Frame-Options`, given a response response, a navigablep989 navigable, a CSP
list cspList, and an originp898 destinationOrigin:

1. If navigable is not a child navigablep992, then return true.

2. For each policy of cspList:

1. If policy's disposition is not "enforce", then continue.

2. If policy's directive set contains a frame-ancestors directive, then return true.

3. Let rawXFrameOptions be the result of getting, decoding, and splitting `X-Frame-Optionsp1068` from response's header list.

4. Let xFrameOptions be a new set.

5. For each value of rawXFrameOptions, append value, converted to ASCII lowercase, to xFrameOptions.

6. If xFrameOptions's size is greater than 1, and xFrameOptions contains any of "deny", "allowall", or "sameorigin", then
return false.

7. If xFrameOptions's size is greater than 1, then return true.

8. If xFrameOptions[0] is "deny", then return false.

9. If xFrameOptions[0] is "sameorigin", then:

1. Let containerDocument be navigable's container documentp992.

7.6 The `X-Frame-Optionsp1068` header §p10

68

In particular, HTTP Header Field X-Frame-Options specified an `ALLOW-FROM` variant of the header, but that is not to be
implemented.

Note

Per the below processing model, if both a CSP frame-ancestors directive and an `X-Frame-Optionsp1068` header are used in the
same response, then `X-Frame-Optionsp1068` is ignored.

Note

The intention here is to block any attempts at applying `X-Frame-Optionsp1068` which were trying to do something valid,
but appear confused.

Note

This is the only impact of the legacy `ALLOWALL` value on the processing model.
Note

This means it contains multiple invalid values, which we treat the same way as if the header was omitted entirely.
Note

✔ MDN

1068

https://github.com/whatwg/html/issues/6905
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#abnf
https://fetch.spec.whatwg.org/#concept-response
https://w3c.github.io/webappsec-csp/#csp-list
https://w3c.github.io/webappsec-csp/#csp-list
https://infra.spec.whatwg.org/#list-iterate
https://w3c.github.io/webappsec-csp/#policy-disposition
https://infra.spec.whatwg.org/#iteration-continue
https://w3c.github.io/webappsec-csp/#policy-directive-set
https://infra.spec.whatwg.org/#list-contain
https://w3c.github.io/webappsec-csp/#frame-ancestors
https://fetch.spec.whatwg.org/#concept-header-list-get-decode-split
https://fetch.spec.whatwg.org/#concept-response-header-list
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-size

2. While containerDocument is not null:

1. If containerDocument's origin is not same originp899 with destinationOrigin, then return false.

2. Set containerDocument to containerDocument's container documentp992.

10. Return true.

The `Refresh` HTTP response header is the HTTP-equivalent to a metap189 element with an http-equivp195 attribute in the Refresh
statep196. It takes the same valuep198 and works largely the same. Its processing model is detailed in create and initialize a Document
objectp1056.

Browser user agents should provide the ability to navigatep1014, reloadp1027, and stop loadingp1067 any top-level traversablep990 in their
top-level traversable setp990.

Browser user agents should provide the ability to traverse by a deltap1028 any top-level traversablep990 in their top-level traversable

If we've reached this point then we have a lone invalid value (which could potentially be one the legacy `ALLOWALL` or
`ALLOW-FROM` forms). These are treated as if the header were omitted entirely.

Note

The following table illustrates the processing of various values for the header, including non-conformant ones:

`X-Frame-Optionsp1068` Valid Result

`DENY` ✅ embedding disallowed
`SAMEORIGIN` ✅ same-origin embedding allowed
`INVALID` ❌ embedding allowed
`ALLOWALL` ❌ embedding allowed
`ALLOW-FROM=https://example.com/` ❌ embedding allowed (from anywhere)

Example

The following table illustrates how various non-conformant cases involving multiple values are processed:

`X-Frame-Optionsp1068` Result

`SAMEORIGIN, SAMEORIGIN` same-origin embedding allowed
`SAMEORIGIN, DENY` embedding disallowed
`SAMEORIGIN,` embedding disallowed
`SAMEORIGIN, ALLOWALL` embedding disallowed
`SAMEORIGIN, INVALID` embedding disallowed
`ALLOWALL, INVALID` embedding disallowed
`ALLOWALL,` embedding disallowed
`INVALID, INVALID` embedding allowed

The same results are obtained whether the values are delivered in a single header whose value is comma-delimited, or in multiple
headers.

Example

7.7 The `Refreshp1069` header §p10

69

7.8 Browser user interface considerations §p10

69

For example, via a location bar and reload/stop button UI.
Example

1069

https://infra.spec.whatwg.org/#iteration-while
https://dom.spec.whatwg.org/#concept-document-origin

setp990.

It is suggested that such user agents allow traversal by deltas greater than one, to avoid letting a page "trap" the user by stuffing the
session history with spurious entries. (For example, via repeated calls to history.pushState()p946 or fragment navigationsp1021.)

Browser user agents should offer users the ability to create a fresh top-level traversablep991, given a user-provided or user agent-
determined initial URL.

Browser user agents should offer users the ability to arbitrarily closep995 any top-level traversablep990 in their top-level traversable
setp990.

Browser user agents may provide ways for the user to explicitly cause any navigablep989 (not just a top-level traversablep990) to
navigatep1014, reloadp1027, or stop loadingp1067.

Browser user agents may provide the ability for users to destroy a top-level traversablep995.

When a user requests a reloadp1027 of a navigablep989 whose active session history entryp989 's document statep1005 's resourcep1007 is a
POST resourcep1007, the user agent should prompt the user to confirm the operation first, since otherwise transactions (e.g., purchases
or database modifications) could be repeated.

When a user requests a reloadp1027 of a navigablep989, user agents may provide a mechanism for ignoring any caches when reloading.

All calls to navigatep1014 initiated by the mechanisms mentioned above must have the userInvolvementp1014 argument set to "browser
UIp1014".

All calls to reloadp1027 initiated by the mechanisms mentioned above must have the userInvolvementp1027 argument set to "browser
UIp1014".

All calls to traverse the history by a deltap1028 initiated by the mechanisms mentioned above must not pass a value for the
sourceDocumentp1028 argument.

The above recommendations, and the data structures in this specification, are not meant to place restrictions on how user agents
represent the session history to the user.

For example, although a top-level traversablep990 's session history entriesp990 are stored and maintained as a list, and the user agent is

For example, via back and forward buttons, possibly including long-press abilities to change the delta.
Example

Some user agents have heuristics for translating a single "back" or "forward" button press into a larger delta, specifically to
overcome such abuses. We are contemplating specifying these heuristics in issue #7832.

Note

For example, via a "new tab" or "new window" button.
Example

For example, by clicking a "close tab" button.
Example

For example, via a context menu.
Example

For example, by force-closing a window containing one or more such top-level traversablesp990.
Example

1070

https://github.com/whatwg/html/issues/7832
https://url.spec.whatwg.org/#concept-url

recommended to give an interface for traversing that list by a deltap1028, a novel user agent could instead or in addition present a tree-
like view, with each page having multiple "forward" pages that the user can choose between.

Similarly, although session history for all descendant navigablesp989 is stored in their traversable navigablep990, user agents could
present the user with a more nuanced per-navigablep989 view of the session history.

Browser user agents may use a top-level browsing contextp1001 's is popupp998 boolean for the following purposes:

• Deciding whether or not to provide a minimal web browser user interface for the corresponding top-level traversablep990.

• Performing the optional steps in set up browsing context features.

In both cases user agents might additionally incorporate user preferences, or present a choice as to whether to go down the popup
route.

User agents that provides a minimal user interface for such popups are encouraged to not hide the browser's location bar.

1071

https://drafts.csswg.org/cssom-view/#set-up-browsing-context-features

Various mechanisms can cause author-provided executable code to run in the context of a document. These mechanisms include, but
are probably not limited to:

• Processing of scriptp652 elements.

• Navigating to javascript: URLsp1019.

• Event handlers, whether registered through the DOM using addEventListener(), by explicit event handler content
attributesp1138, by event handler IDL attributesp1137, or otherwise.

• Processing of technologies like SVG that have their own scripting features.

JavaScript defines the concept of an agent. This section gives the mapping of that language-level concept on to the web platform.

The following types of agents exist on the web platform:

Similar-origin window agent
Contains various Windowp922 objects which can potentially reach each other, either directly or by using document.domainp901.

If the encompassing agent cluster's is origin-keyedp1073 is true, then all the Windowp922 objects will be same originp899, can reach each
other directly, and document.domainp901 will no-op.

Dedicated worker agent
Contains a single DedicatedWorkerGlobalScopep1230.

Shared worker agent
Contains a single SharedWorkerGlobalScopep1230.

Service worker agent
Contains a single ServiceWorkerGlobalScope.

Worklet agent
Contains a single WorkletGlobalScopep1245 object.

8 Web application APIs §p10

72

8.1 Scripting §p10

72

8.1.2.1 Integration with the JavaScript agent formalism §p10

72

Conceptually, the agent concept is an architecture-independent, idealized "thread" in which JavaScript code runs. Such code can
involve multiple globals/realmsp1077 that can synchronously access each other, and thus needs to run in a single execution thread.

Two Windowp922 objects having the same agent does not indicate they can directly access all objects created in each other's realms.
They would have to be same origin-domainp899; see IsPlatformObjectSameOriginp920.

Note

Two Windowp922 objects that are same originp899 can be in different similar-origin window agentsp1072, for instance if they are
each in their own browsing context groupp1002.

Note

8.1.1 Introduction §p10

72

8.1.2 Agents and agent clusters §p10

72

1072

https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope

Only sharedp1072 and dedicated worker agentsp1072 allow the use of JavaScript Atomics APIs to potentially block.

To create an agent, given a boolean canBlock:

1. Let signifier be a new unique internal value.

2. Let candidateExecution be a new candidate execution.

3. Let agent be a new agent whose [[CanBlock]] is canBlock, [[Signifier]] is signifier, [[CandidateExecution]] is
candidateExecution, and [[IsLockFree1]], [[IsLockFree2]], and [[LittleEndian]] are set at the implementation's discretion.

4. Set agent's event loopp1123 to a new event loopp1123.

5. Return agent.

For a realm realm, the agent whose [[Signifier]] is realm.[[AgentSignifier]] is the realm's agent.

The relevant agent for a platform object platformObject is platformObject's relevant realmp1083 's agentp1073.

JavaScript also defines the concept of an agent cluster, which this standard maps to the web platform by placing agents appropriately
when they are created using the obtain a similar-origin window agentp1073 or obtain a worker/worklet agentp1074 algorithms.

The agent cluster concept is crucial for defining the JavaScript memory model, and in particular among which agents the backing data
of SharedArrayBuffer objects can be shared.

An agent cluster has an associated cross-origin isolation mode, which is a cross-origin isolation modep1002. It is initially "nonep1002".

An agent cluster has an associated is origin-keyed (a boolean), which is initially false.

The following defines the allocation of the agent clusters of similar-origin window agentsp1072.

An agent cluster key is a sitep899 or tuple originp898. Without web developer action to achieve origin-keyed agent clustersp902, it will be
a sitep899.

To obtain a similar-origin window agent, given an originp898 origin, a browsing context groupp1002 group, and a boolean
requestsOAC, run these steps:

1. Let site be the result of obtaining a sitep899 with origin.

2. Let key be site.

Although a given worklet can have multiple realms, each such realm needs its own agent, as each realm can be executing code
independently and at the same time as the others.

Note

The agent equivalent of the current realm is the surrounding agent.
Note

8.1.2.2 Integration with the JavaScript agent cluster formalism §p10

73

Conceptually, the agent cluster concept is an architecture-independent, idealized "process boundary" that groups together
multiple "threads" (agents). The agent clusters defined by the specification are generally more restrictive than the actual process
boundaries implemented in user agents. By enforcing these idealized divisions at the specification level, we ensure that web
developers see interoperable behavior with regard to shared memory, even in the face of varying and changing user agent process
models.

Note

An equivalent formulation is that an agent cluster keyp1073 can be a scheme-and-hostp899 or an originp898.
Note

1073

https://tc39.es/ecma262/#sec-atomics-object
https://tc39.es/ecma262/#sec-forward-progress
https://tc39.es/ecma262/#sec-candidate-executions
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters

3. If group's cross-origin isolation modep1002 is not "nonep1002", then set key to origin.

4. Otherwise, if group's historical agent cluster key mapp1002[origin] exists, then set key to group's historical agent cluster key
mapp1002[origin].

5. Otherwise:

1. If requestsOAC is true, then set key to origin.

2. Set group's historical agent cluster key mapp1002[origin] to key.

6. If group's agent cluster mapp1002[key] does not exist, then:

1. Let agentCluster be a new agent cluster.

2. Set agentCluster's cross-origin isolation modep1073 to group's cross-origin isolation modep1002.

3. Set agentCluster's is origin-keyedp1073 to true if key equals origin; otherwise false.

4. Add the result of creating an agentp1073, given false, to agentCluster.

5. Set group's agent cluster mapp1002[key] to agentCluster.

7. Return the single similar-origin window agentp1072 contained in group's agent cluster mapp1002[key].

The following defines the allocation of the agent clusters of all other types of agents.

To obtain a worker/worklet agent, given an environment settings objectp1076 or null outside settings, a boolean isTopLevel, and a
boolean canBlock, run these steps:

1. Let agentCluster be null.

2. If isTopLevel is true, then:

1. Set agentCluster to a new agent cluster.

2. Set agentCluster's is origin-keyedp1073 to true.

3. Otherwise:

1. Assert: outside settings is not null.

2. Let ownerAgent be outside settings's realmp1077 's agentp1073.

3. Set agentCluster to the agent cluster which contains ownerAgent.

4. Let agent be the result of creating an agentp1073 given canBlock.

5. Add agent to agentCluster.

6. Return agent.

To obtain a dedicated/shared worker agent, given an environment settings objectp1076 outside settings and a boolean isShared,
return the result of obtaining a worker/worklet agentp1074 given outside settings, isShared, and true.

To obtain a worklet agent, given an environment settings objectp1076 outside settings, return the result of obtaining a worker/worklet
agentp1074 given outside settings, false, and false.

To obtain a service worker agent, return the result of obtaining a worker/worklet agentp1074 given null, true, and false.

This means that there is only one similar-origin window agentp1072 per browsing context agent cluster. (However, dedicated
workerp1072 and worklet agentsp1072 might be in the same cluster.)

Note

These workers can be considered to be origin-keyed. However, this is not exposed through any APIs (in the way
that originAgentClusterp903 exposes the origin-keyedness for windows).

Note

1074

https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-exists
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-agent-clusters
https://infra.spec.whatwg.org/#assert

The JavaScript specification introduces the realm concept, representing a global environment in which script is run. Each realm comes
with an implementation-defined global objectp1076; much of this specification is devoted to defining that global object and its
properties.

For web specifications, it is often useful to associate values or algorithms with a realm/global object pair. When the values are specific
to a particular type of realm, they are associated directly with the global object in question, e.g., in the definition of the Windowp922 or
WorkerGlobalScopep1228 interfaces. When the values have utility across multiple realms, we use the environment settings objectp1076

concept.

Finally, in some cases it is necessary to track associated values before a realm/global object/environment settings object even comes
into existence (for example, during navigationp1014). These values are tracked in the environmentp1075 concept.

An environment is an object that identifies the settings of a current or potential execution environment (i.e., a navigation
paramsp1013 's reserved environmentp1013 or a request's reserved client). An environmentp1075 has the following fields:

An id
An opaque string that uniquely identifies this environmentp1075.

A creation URL
A URL that represents the location of the resource with which this environmentp1075 is associated.

A top-level creation URL
Null or a URL that represents the creation URLp1075 of the "top-level" environmentp1075. It is null for workers and worklets.

The following pairs of global objects are each within the same agent cluster, and thus can use SharedArrayBuffer instances to
share memory with each other:

• A Windowp922 object and a dedicated worker that it created.

• A worker (of any type) and a dedicated worker it created.

• A Windowp922 object A and the Windowp922 object of an iframep390 element that A created that could be same origin-
domainp899 with A.

• A Windowp922 object and a same origin-domainp899 Windowp922 object that opened it.

• A Windowp922 object and a worklet that it created.

The following pairs of global objects are not within the same agent cluster, and thus cannot share memory:

• A Windowp922 object and a shared worker it created.

• A worker (of any type) and a shared worker it created.

• A Windowp922 object and a service worker it created.

• A Windowp922 object A and the Windowp922 object of an iframep390 element that A created that cannot be same origin-
domainp899 with A.

• Any two Windowp922 objects with no opener or ancestor relationship. This holds even if the two Windowp922 objects are
same originp899.

Example

8.1.3.1 Environments §p10

75

In the case of a Windowp922 environment settings objectp1076, this URL might be distinct from its global objectp1077 's associated
Documentp923 's URL, due to mechanisms such as history.pushState()p946 which modify the latter.

Note

8.1.3 Realms and their counterparts §p10

75

1075

https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-agent-clusters
https://tc39.es/ecma262/#sec-code-realms
https://infra.spec.whatwg.org/#implementation-defined
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url

A top-level origin
A for now implementation-defined value, null, or an originp898. For a "top-level" potential execution environment it is null (i.e.,
when there is no response yet); otherwise it is the "top-level" environmentp1075 's originp1076. For a dedicated worker or worklet it is
the top-level originp1076 of its creator. For a shared or service worker it is an implementation-defined value.

A target browsing context
Null or a target browsing contextp998 for a navigation request.

An active service worker
Null or a service worker that controls the environmentp1075.

An execution ready flag
A flag that indicates whether the environment setup is done. It is initially unset.

Specifications may define environment discarding steps for environments. The steps take an environmentp1075 as input.

An environment settings object is an environmentp1075 that additionally specifies algorithms for:

A realm execution context
A JavaScript execution context shared by all scriptsp652 that use this settings object, i.e., all scripts in a given realm. When we run a
classic scriptp1096 or run a module scriptp1096, this execution context becomes the top of the JavaScript execution context stack, on
top of which another execution context specific to the script in question is pushed. (This setup ensures Source Text Module Record's
Evaluate knows which realm to use.)

A module map
A module mapp1119 that is used when importing JavaScript modules.

An API base URL
A URL used by APIs called by scripts that use this environment settings objectp1076 to parse URLsp97.

An origin
An originp898 used in security checks.

A policy container
A policy containerp917 containing policies used for security checks.

A cross-origin isolated capability
A boolean representing whether scripts that use this environment settings objectp1076 are allowed to use APIs that require cross-
origin isolation.

A time origin
A number used as the baseline for performance-related timestamps. [HRT]p1478

An environment settings objectp1076 's responsible event loop is its global objectp1077 's relevant agentp1073 's event loopp1123.

A global object is a JavaScript object that is the [[GlobalObject]] field of a realm.

This is distinct from the top-level creation URLp1075 's origin when sandboxing, workers, and worklets are involved.
Note

The environment discarding stepsp1076 are run for only a select few environments: the ones that will never become execution ready
because, for example, they failed to load.

Note

8.1.3.2 Environment settings objects §p10

76

8.1.3.3 Realms, settings objects, and global objects §p10

76

1076

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://url.spec.whatwg.org/#concept-url-origin
https://fetch.spec.whatwg.org/#navigation-request
https://w3c.github.io/ServiceWorker/#dfn-service-worker
https://w3c.github.io/ServiceWorker/#dfn-control
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/ecma262/#sec-moduleevaluation
https://url.spec.whatwg.org/#concept-url
https://tc39.es/ecma262/#sec-code-realms

A global objectp1076 has an in error reporting mode boolean, which is initially false.

A global objectp1076 has an outstanding rejected promises weak set, a set of Promise objects, initially empty. This set must not
create strong references to any of its members, and implementations are free to limit its size in an implementation-defined manner,
e.g., by removing old entries from it when new ones are added.

A global objectp1076 has an about-to-be-notified rejected promises list, a list of Promise objects, initially empty.

A global objectp1076 has an import map, initially an empty import mapp1107.

A global objectp1076 has a resolved module set, a set of specifier resolution recordsp1107, initially empty.

There is always a 1-to-1-to-1 mapping between realms, global objectsp1076, and environment settings objectsp1076:

• A realm has a [[HostDefined]] field, which contains the realm's settings object.

• A realm has a [[GlobalObject]] field, which contains the realm's global object.

• Each global objectp1076 in this specification is created during the creationp1077 of a corresponding realm, known as the global
object's realm.

• Each global objectp1076 in this specification is created alongside a corresponding environment settings objectp1076, known as
its relevant settings objectp1083.

• An environment settings objectp1076 's realm execution contextp1076 's Realm component is the environment settings
object's realm.

• An environment settings objectp1076 's realmp1077 then has a [[GlobalObject]] field, which contains the environment settings
object's global object.

To create a new realm in an agent agent, optionally with instructions to create a global object or a global this binding (or both), the
following steps are taken:

1. Perform InitializeHostDefinedRealm() with the provided customizations for creating the global object and the global this
binding.

2. Let realm execution context be the running JavaScript execution context.

3. Remove realm execution context from the JavaScript execution context stack.

4. Let realm be realm execution context's Realm component.

5. If agent's agent cluster's cross-origin isolation modep1073 is "nonep1002", then:

1. Let global be realm's global objectp1077.

In this specification, all realms are createdp1077 with global objectsp1076 that are either Windowp922, WorkerGlobalScopep1228, or
WorkletGlobalScopep1245 objects.

Note

For now, only Windowp922 global objectsp1076 have their import mapp1077 modified from the initial empty one. The import mapp1077 is
only accessed for the resolution of a root module scriptp1085.

Note

The resolved module setp1077 ensures that module specifier resolution returns the same result when called multiple times with the
same (referrer, specifier) pair. It does that by ensuring that import mapp1107 rules that impact the specifier in its referrer's scope
cannot be defined after its initial resolution. For now, only Windowp922 global objectsp1076 have their module set data structures
modified from the initial empty one.

Note

This is the JavaScript execution context created in the previous step.
Note

1077

https://tc39.es/ecma262/#sec-code-realms
https://infra.spec.whatwg.org/#ordered-set
https://webidl.spec.whatwg.org/#idl-promise
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#list
https://webidl.spec.whatwg.org/#idl-promise
https://infra.spec.whatwg.org/#ordered-set
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-initializehostdefinedrealm
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-agent-clusters

2. Let status be ! global.[[Delete]]("SharedArrayBuffer").

3. Assert: status is true.

6. Return realm execution context.

When defining algorithm steps throughout this specification, it is often important to indicate what realm is to be used—or, equivalently,
what global objectp1076 or environment settings objectp1076 is to be used. In general, there are at least four possibilities:

Entry
This corresponds to the script that initiated the currently running script action: i.e., the function or script that the user agent called
into when it called into author code.

Incumbent
This corresponds to the most-recently-entered author function or script on the stack, or the author function or script that originally
scheduled the currently-running callback.

Current
This corresponds to the currently-running function object, including built-in user-agent functions which might not be implemented as
JavaScript. (It is derived from the current realm.)

Relevant
Every platform object has a relevant realmp1083, which is roughly the realm in which it was created. When writing algorithms, the
most prominent platform object whose relevant realmp1083 might be important is the this value of the currently-running function
object. In some cases, there can be other important relevant realmsp1083, such as those of any arguments.

Note how the entryp1078, incumbentp1078, and currentp1078 concepts are usable without qualification, whereas the relevantp1078 concept
must be applied to a particular platform object.

In general, web platform specifications should use the relevantp1078 concept, applied to the object being operated on (usually the this
value of the current method). This mismatches the JavaScript specification, where currentp1078 is generally used as the default (e.g., in
determining the realm whose Array constructor should be used to construct the result in Array.prototype.map). But this
inconsistency is so embedded in the platform that we have to accept it going forward.

This is done for compatibility with web content and there is some hope that this can be removed in the future. Web
developers can still get at the constructor through new WebAssembly.Memory({ shared:true, initial:0, maximum:0
}).buffer.constructor.

Note

The incumbentp1078 and entryp1078 concepts should not be used by new specifications, as they are excessively
complicated and unintuitive to work with. We are working to remove almost all existing uses from the platform: see
issue #1430 for incumbentp1078, and issue #1431 for entryp1078.

⚠Warning!

Consider the following pages, with a.html being loaded in a browser window, b.html being loaded in an iframep390 as shown, and
c.html and d.html omitted (they can simply be empty documents):

<!-- a.html -->
<!DOCTYPE html>
<html lang="en">
<title>Entry page</title>

<iframe src="b.html"></iframe>
<button onclick="frames[0].hello()">Hello</button>

<!--b.html -->
<!DOCTYPE html>
<html lang="en">
<title>Incumbent page</title>

Example

1078

https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#current-realm
https://webidl.spec.whatwg.org/#dfn-platform-object
https://tc39.es/ecma262/#sec-code-realms
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-platform-object
https://github.com/whatwg/html/issues/1430
https://github.com/whatwg/html/issues/1431
https://tc39.es/ecma262/#sec-code-realms

<iframe src="c.html" id="c"></iframe>
<iframe src="d.html" id="d"></iframe>

<script>
const c = document.querySelector("#c").contentWindow;
const d = document.querySelector("#d").contentWindow;

window.hello = () => {
c.print.call(d);

};
</script>

Each page has its own browsing contextp998, and thus its own realm, global objectp1076, and environment settings objectp1076.

When the print()p1169 method is called in response to pressing the button in a.html, then:

• The entry realmp1080 is that of a.html.

• The incumbent realmp1081 is that of b.html.

• The current realm is that of c.html (since it is the print()p1169 method from c.html whose code is running).

• The relevant realmp1083 of the object on which the print()p1169 method is being called is that of d.html.

One reason why the relevantp1078 concept is generally a better default choice than the currentp1078 concept is that it is more
suitable for creating an object that is to be persisted and returned multiple times. For example, the navigator.getBattery()
method creates promises in the relevant realmp1083 for the Navigatorp1170 object on which it is invoked. This has the following
impact: [BATTERY]p1475

<!-- outer.html -->
<!DOCTYPE html>
<html lang="en">
<title>Relevant realm demo: outer page</title>
<script>

function doTest() {
const promise = navigator.getBattery.call(frames[0].navigator);

console.log(promise instanceof Promise); // logs false
console.log(promise instanceof frames[0].Promise); // logs true

frames[0].hello();
}

</script>
<iframe src="inner.html" onload="doTest()"></iframe>

<!-- inner.html -->
<!DOCTYPE html>
<html lang="en">
<title>Relevant realm demo: inner page</title>
<script>

function hello() {
const promise = navigator.getBattery();

console.log(promise instanceof Promise); // logs true
console.log(promise instanceof parent.Promise); // logs false

}
</script>

Example

1079

https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#current-realm
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager

The rest of this section deals with formally defining the entryp1078, incumbentp1078, currentp1078, and relevantp1078 concepts.

The process of calling scriptsp1096 will push or pop realm execution contextsp1076 onto the JavaScript execution context stack,
interspersed with other execution contexts.

With this in hand, we define the entry execution context to be the most recently pushed item in the JavaScript execution context
stack that is a realm execution contextp1076. The entry realm is the entry execution contextp1080 's Realm component.

Then, the entry settings object is the environment settings objectp1077 of the entry realmp1080.

Similarly, the entry global object is the global objectp1077 of the entry realmp1080.

All JavaScript execution contexts must contain, as part of their code evaluation state, a skip-when-determining-incumbent
counter value, which is initially zero. In the process of preparing to run a callbackp1080 and cleaning up after running a callbackp1080,
this value will be incremented and decremented.

Every event loopp1123 has an associated backup incumbent settings object stack, initially empty. Roughly speaking, it is used to
determine the incumbent settings objectp1081 when no author code is on the stack, but author code is responsible for the current
algorithm having been run in some way. The process of preparing to run a callbackp1080 and cleaning up after running a callbackp1080

manipulate this stack. [WEBIDL]p1483

When Web IDL is used to invoke author code, or when HostEnqueuePromiseJobp1117 invokes a promise job, they use the following
algorithms to track relevant data for determining the incumbent settings objectp1081:

To prepare to run a callback with an environment settings objectp1076 settings:

1. Push settings onto the backup incumbent settings object stackp1080.

2. Let context be the topmost script-having execution contextp1080.

3. If context is not null, increment context's skip-when-determining-incumbent counterp1080.

To clean up after running a callback with an environment settings objectp1076 settings:

1. Let context be the topmost script-having execution contextp1080.

2. If context is not null, decrement context's skip-when-determining-incumbent counterp1080.

3. Assert: the topmost entry of the backup incumbent settings object stackp1080 is settings.

4. Remove settings from the backup incumbent settings object stackp1080.

Here, the topmost script-having execution context is the topmost entry of the JavaScript execution context stack that has a non-
null ScriptOrModule component, or null if there is no such entry in the JavaScript execution context stack.

If the algorithm for the getBattery() method had instead used the current realm, all the results would be reversed. That is, after
the first call to getBattery() in outer.html, the Navigatorp1170 object in inner.html would be permanently storing a Promise
object created in outer.html's realm, and calls like that inside the hello() function would thus return a promise from the "wrong"
realm. Since this is undesirable, the algorithm instead uses the relevant realmp1083, giving the sensible results indicated in the
comments above.

8.1.3.3.1 Entry §p10

80

8.1.3.3.2 Incumbent §p10

80

This will be the same as the topmost script-having execution contextp1080 inside the corresponding invocation of prepare
to run a callbackp1080.

Note

1080

https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://tc39.es/ecma262/#current-realm
https://w3c.github.io/battery/#widl-Navigator-getBattery-Promise-BatteryManager
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-execution-contexts
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack

With all this in place, the incumbent settings object is determined as follows:

1. Let context be the topmost script-having execution contextp1080.

2. If context is null, or if context's skip-when-determining-incumbent counterp1080 is greater than zero, then:

1. Assert: the backup incumbent settings object stackp1080 is not empty.

2. Return the topmost entry of the backup incumbent settings object stackp1080.

3. Return context's Realm component's settings objectp1077.

Then, the incumbent realm is the realmp1077 of the incumbent settings objectp1081.

Similarly, the incumbent global object is the global objectp1077 of the incumbent settings objectp1081.

The following series of examples is intended to make it clear how all of the different mechanisms contribute to the definition of the
incumbentp1080 concept:

This assert would fail if you try to obtain the incumbent settings objectp1081 from inside an algorithm that was
triggered neither by calling scriptsp1096 nor by Web IDL invoking a callback. For example, it would trigger if you
tried to obtain the incumbent settings objectp1081 inside an algorithm that ran periodically as part of the event
loopp1123, with no involvement of author code. In such cases the incumbentp1078 concept cannot be used.

Note

Consider the following starter example:

<!DOCTYPE html>
<iframe></iframe>
<script>

frames[0].postMessage("some data", "*");
</script>

There are two interesting environment settings objectsp1076 here: that of window, and that of frames[0]. Our concern is: what is the
incumbent settings objectp1081 at the time that the algorithm for postMessage()p1201 executes?

It should be that of window, to capture the intuitive notion that the author script responsible for causing the algorithm to happen is
executing in window, not frames[0]. This makes sense: the window post message stepsp1201 use the incumbent settings objectp1081

to determine the sourcep1190 property of the resulting MessageEventp1189, and in this case window is definitely the source of the
message.

Let us now explain how the steps given above give us our intuitively-desired result of window's relevant settings objectp1083.

When the window post message stepsp1201 look up the incumbent settings objectp1081, the topmost script-having execution
contextp1080 will be that corresponding to the scriptp652 element: it was pushed onto the JavaScript execution context stack as part
of ScriptEvaluation during the run a classic scriptp1096 algorithm. Since there are no Web IDL callback invocations involved, the
context's skip-when-determining-incumbent counterp1080 is zero, so it is used to determine the incumbent settings objectp1081; the
result is the environment settings objectp1076 of window.

(Note how the environment settings objectp1076 of frames[0] is the relevant settings objectp1083 of this at the time the
postMessage()p1201 method is called, and thus is involved in determining the target of the message. Whereas the incumbent is
used to determine the source.)

Example

Consider the following more complicated example:

<!DOCTYPE html>
<iframe></iframe>
<script>

Example

1081

https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://webidl.spec.whatwg.org/#this

const bound = frames[0].postMessage.bind(frames[0], "some data", "*");
window.setTimeout(bound);

</script>

This example is very similar to the previous one, but with an extra indirection through Function.prototype.bind as well as
setTimeout()p1162. But, the answer should be the same: invoking algorithms asynchronously should not change the incumbentp1078

concept.

This time, the result involves more complicated mechanisms:

When bound is converted to a Web IDL callback type, the incumbent settings objectp1081 is that corresponding to window (in the
same manner as in our starter example above). Web IDL stores this as the resulting callback value's callback context.

When the taskp1124 posted by setTimeout()p1162 executes, the algorithm for that task uses Web IDL to invoke the stored callback
value. Web IDL in turn calls the above prepare to run a callbackp1080 algorithm. This pushes the stored callback context onto the
backup incumbent settings object stackp1080. At this time (inside the timer task) there is no author code on the stack, so the
topmost script-having execution contextp1080 is null, and nothing gets its skip-when-determining-incumbent counterp1080

incremented.

Invoking the callback then calls bound, which in turn calls the postMessage()p1201 method of frames[0]. When the
postMessage()p1201 algorithm looks up the incumbent settings objectp1081, there is still no author code on the stack, since the
bound function just directly calls the built-in method. So the topmost script-having execution contextp1080 will be null: the JavaScript
execution context stack only contains an execution context corresponding to postMessage()p1201, with no ScriptEvaluation context
or similar below it.

This is where we fall back to the backup incumbent settings object stackp1080. As noted above, it will contain as its topmost entry
the relevant settings objectp1083 of window. So that is what is used as the incumbent settings objectp1081 while executing the
postMessage()p1201 algorithm.

Consider this final, even more convoluted example:

<!-- a.html -->
<!DOCTYPE html>
<button>click me</button>
<iframe></iframe>
<script>
const bound = frames[0].location.assign.bind(frames[0].location, "https://example.com/");
document.querySelector("button").addEventListener("click", bound);
</script>

<!-- b.html -->
<!DOCTYPE html>
<iframe src="a.html"></iframe>
<script>

const iframe = document.querySelector("iframe");
iframe.onload = function onLoad() {

iframe.contentWindow.document.querySelector("button").click();
};

</script>

Again there are two interesting environment settings objectsp1076 in play: that of a.html, and that of b.html. When the
location.assign()p942 method triggers the Location-object navigatep939 algorithm, what will be the incumbent settings
objectp1081? As before, it should intuitively be that of a.html: the click listener was originally scheduled by a.html, so even if
something involving b.html causes the listener to fire, the incumbentp1078 responsible is that of a.html.

The callback setup is similar to the previous example: when bound is converted to a Web IDL callback type, the incumbent settings
objectp1081 is that corresponding to a.html, which is stored as the callback's callback context.

Example

1082

https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#dfn-callback-context
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#dfn-callback-context
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://w3c.github.io/uievents/#event-type-click
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#dfn-callback-context

The JavaScript specification defines the current realm, also known as the "current Realm Record". [JAVASCRIPT]p1479

Then, the current settings object is the environment settings objectp1077 of the current realm.

Similarly, the current global object is the global objectp1077 of the current realm.

The relevant realm for a platform object is the value of its [[Realm]] field.

Then, the relevant settings object for a platform object o is the environment settings objectp1077 of the relevant realmp1083 for o.

Similarly, the relevant global object for a platform object o is the global objectp1077 of the relevant realmp1083 for o.

Scripting is enabled for an environment settings objectp1076 settings when all of the following conditions are true:

• The user agent supports scripting.

• The user has not disabled scripting for settings at this time. (User agents may provide users with the option to
disable scripting globally, or in a finer-grained manner, e.g., on a per-origin basis, down to the level of individual
environment settings objectsp1076.)

• Either settings's global objectp1077 is not a Windowp922 object, or settings's global objectp1077 's associated
Documentp923 's active sandboxing flag setp917 does not have its sandboxed scripts browsing context flagp915 set.

Scripting is disabled for an environment settings objectp1076 when scripting is not enabledp1083 for it, i.e., when any of the above
conditions are false.

Scripting is enabled for a node node if node's node document's browsing contextp999 is non-null, and scripting is enabledp1083 for
node's relevant settings objectp1083.

Scripting is disabled for a node when scripting is not enabledp1083, i.e., when its node document's browsing contextp999 is null or
when scripting is disabledp1083 for its relevant settings objectp1083.

When the click()p833 method is called inside b.html, it dispatches a click event on the button that is inside a.html. This time,
when the prepare to run a callbackp1080 algorithm executes as part of event dispatch, there is author code on the stack; the
topmost script-having execution contextp1080 is that of the onLoad function, whose skip-when-determining-incumbent counterp1080

gets incremented. Additionally, a.html's environment settings objectp1076 (stored as the EventHandlerp1141 's callback context) is
pushed onto the backup incumbent settings object stackp1080.

Now, when the Location-object navigatep939 algorithm looks up the incumbent settings objectp1081, the topmost script-having
execution contextp1080 is still that of the onLoad function (due to the fact we are using a bound function as the callback). Its skip-
when-determining-incumbent counterp1080 value is one, however, so we fall back to the backup incumbent settings object
stackp1080. This gives us the environment settings objectp1076 of a.html, as expected.

Note that this means that even though it is the iframep390 inside a.html that navigates, it is a.html itself that is used as the
source Documentp130, which determines among other things the request client. This is perhaps the only justifiable use of the
incumbent concept on the web platform; in all other cases the consequences of using it are simply confusing and we hope to one
day switch them to use currentp1078 or relevantp1078 as appropriate.

8.1.3.3.3 Current §p10

83

8.1.3.3.4 Relevant §p10

83

8.1.3.4 Enabling and disabling scripting §p10

83

1083

https://dom.spec.whatwg.org/#concept-event-dispatch
https://w3c.github.io/uievents/#event-type-click
https://webidl.spec.whatwg.org/#dfn-callback-context
https://fetch.spec.whatwg.org/#concept-request-client
https://www.w3.org/Bugs/Public/show_bug.cgi?id=26603#c36
https://www.w3.org/Bugs/Public/show_bug.cgi?id=26603#c36
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#current-realm
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#es-platform-objects
https://webidl.spec.whatwg.org/#dfn-platform-object
https://webidl.spec.whatwg.org/#dfn-platform-object
https://infra.spec.whatwg.org/#tracking-vector
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document

An environmentp1075 environment is a secure context if the following algorithm returns true:

1. If environment is an environment settings objectp1076, then:

1. Let global be environment's global objectp1077.

2. If global is a WorkerGlobalScopep1228, then:

1. If global's owner setp1228[0]'s relevant settings objectp1083 is a secure contextp1084, then return true.

2. Return false.

3. If global is a WorkletGlobalScopep1245, then return true.

2. If the result of Is url potentially trustworthy? given environment's top-level creation URLp1075 is "Potentially Trustworthy",
then return true.

3. Return false.

An environmentp1075 is a non-secure context if it is not a secure contextp1084.

A script is one of two possible structs (namely, a classic scriptp1085 or a module scriptp1085). All scripts have:

A settings object
An environment settings objectp1076, containing various settings that are shared with other scriptsp1084 in the same context.

A record
One of the following:

• a script record, for classic scriptsp1085;

• a Source Text Module Record, for JavaScript module scriptsp1085;

• a Synthetic Module Record, for CSS module scriptsp1085 and JSON module scriptsp1085;

• a WebAssembly Module Record, for WebAssembly module scriptsp1085; or

• null, representing a parsing failure.

A parse error
A JavaScript value, which has meaning only if the recordp1084 is null, indicating that the corresponding script source text could not be
parsed.

An error to rethrow
A JavaScript value representing an error that will prevent evaluation from succeeding. It will be re-thrown by any attempts to
runp1096 the script.

8.1.3.5 Secure contexts §p10

84

We only need to check the 0th item since they will necessarily all be consistent.
Note

Worklets can only be created in secure contexts.
Note

8.1.4.1 Scripts §p10

84

This value is used for internal tracking of immediate parse errors when creating scriptsp1093, and is not to be used directly.
Instead, consult the error to rethrowp1084 when determining "what went wrong" for this script.

Note

8.1.4 Script processing model §p10

84

1084

https://w3c.github.io/webappsec-secure-contexts/#potentially-trustworthy-url
https://infra.spec.whatwg.org/#struct
https://tc39.es/ecma262/#sec-script-records
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/proposal-json-modules/#sec-synthetic-module-records
https://webassembly.github.io/esm-integration/js-api/index.html#webassembly-module-record

Fetch options
Null or a script fetch optionsp1085, containing various options related to fetching this script or module scriptsp1085 that it imports.

A base URL
Null or a base URL used for resolving module specifiersp1102. When non-null, this will either be the URL from which the script was
obtained, for external scripts, or the document base URLp96 of the containing document, for inline scripts.

A classic script is a type of scriptp1084 that has the following additional item:

A muted errors boolean
A boolean which, if true, means that error information will not be provided for errors in this script. This is used to mute errors for
cross-origin scripts, since that can leak private information.

A module script is another type of scriptp1084. It has no additional items.

Module scriptsp1085 can be classified into four types:

• A module scriptp1085 is a JavaScript module script if its recordp1084 is a Source Text Module Record.

• A module scriptp1085 is a CSS module script if its recordp1084 is a Synthetic Module Record, and it was created via the create
a CSS module scriptp1094 algorithm. CSS module scripts represent a parsed CSS stylesheet.

• A module scriptp1085 is a JSON module script if its recordp1084 is a Synthetic Module Record, and it was created via the
create a JSON module scriptp1095 algorithm. JSON module scripts represent a parsed JSON document.

• A module scriptp1085 is a WebAssembly module script if its recordp1084 is a WebAssembly Module Record.

The active script is determined by the following algorithm:

1. Let record be GetActiveScriptOrModule().

2. If record is null, return null.

3. Return record.[[HostDefined]].

This section introduces a number of algorithms for fetching scripts, taking various necessary inputs and resulting in classicp1085 or
module scriptsp1085.

Script fetch options is a struct with the following items:

This could be the script's parse errorp1084, but in the case of a module scriptp1085 it could instead be the parse errorp1084 from one
of its dependencies, or an error from resolve a module specifierp1102.

Note

Since this exception value is provided by the JavaScript specification, we know that it is never null, so we use null to signal that
no error has occurred.

Note

As CSS stylesheets and JSON documents do not import dependent modules, and do not throw exceptions on evaluation, the fetch
optionsp1085 and base URLp1085 of CSS module scriptsp1085 and JSON module scriptsp1085 and are always null.

Note

The active scriptp1085 concept is so far only used by the import() feature, to determine the base URLp1085 to use for resolving
relative module specifiers.

Note

8.1.4.2 Fetching scripts §p10

85

1085

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#struct-item
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/proposal-json-modules/#sec-synthetic-module-records
https://tc39.es/proposal-json-modules/#sec-synthetic-module-records
https://webassembly.github.io/esm-integration/js-api/index.html#webassembly-module-record
https://tc39.es/ecma262/#sec-getactivescriptormodule
https://tc39.es/ecma262/#sec-import-calls
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item

cryptographic nonce
The cryptographic nonce metadata used for the initial fetch and for fetching any imported modules

integrity metadata
The integrity metadata used for the initial fetch

parser metadata
The parser metadata used for the initial fetch and for fetching any imported modules

credentials mode
The credentials mode used for the initial fetch (for module scriptsp1085) and for fetching any imported modules (for both module
scriptsp1085 and classic scriptsp1085)

referrer policy
The referrer policy used for the initial fetch and for fetching any imported modules

render-blocking
The boolean value of render-blocking used for the initial fetch and for fetching any imported modules. Unless otherwise stated, its
value is false.

fetch priority
The priority used for the initial fetch

The default script fetch options are a script fetch optionsp1085 whose cryptographic noncep1086 is the empty string, integrity
metadatap1086 is the empty string, parser metadatap1086 is "not-parser-inserted", credentials modep1086 is "same-origin", referrer
policyp1086 is the empty string, and fetch priorityp1086 is "auto".

Given a request request and a script fetch optionsp1085 options, we define:

set up the classic script request
Set request's cryptographic nonce metadata to options's cryptographic noncep1086, its integrity metadata to options's integrity
metadatap1086, its parser metadata to options's parser metadatap1086, its referrer policy to options's referrer policyp1086, its render-
blocking to options's render-blockingp1086, and its priority to options's fetch priorityp1086.

set up the module script request
Set request's cryptographic nonce metadata to options's cryptographic noncep1086, its integrity metadata to options's integrity
metadatap1086, its parser metadata to options's parser metadatap1086, its credentials mode to options's credentials modep1086, its
referrer policy to options's referrer policyp1086, its render-blocking to options's render-blockingp1086, and its priority to options's fetch
priorityp1086.

To get the descendant script fetch options given a script fetch optionsp1085 originalOptions, a URL url, and an environment settings
objectp1076 settingsObject:

1. Let newOptions be a copy of originalOptions.

2. Let integrity be the result of resolving a module integrity metadatap1086 with url and settingsObject.

3. Set newOptions's integrity metadatap1086 to integrity.

4. Set newOptions's fetch priorityp1086 to "auto".

5. Return newOptions.

To resolve a module integrity metadata, given a URL url and an environment settings objectp1076 settingsObject:

This policy can mutate after a module scriptp1085 's response is received, to be the referrer policy parsed from the response, and
used when fetching any module dependencies.

Note

Recall that via the import() feature, classic scriptsp1085 can import module scriptsp1085.
Note

1086

https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#concept-response
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#request-render-blocking
https://fetch.spec.whatwg.org/#request-priority
https://tc39.es/ecma262/#sec-import-calls
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#request-render-blocking
https://fetch.spec.whatwg.org/#request-render-blocking
https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-request-nonce-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-referrer-policy
https://fetch.spec.whatwg.org/#request-render-blocking
https://fetch.spec.whatwg.org/#request-priority
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

1. Let map be settingsObject's global objectp1077 's import mapp1077.

2. If map's integrityp1107[url] does not exist, then return the empty string.

3. Return map's integrityp1107[url].

Several of the below algorithms can be customized with a perform the fetch hook algorithm, which takes a request, a boolean
isTopLevelp1087, and a processCustomFetchResponse algorithm. It runs processCustomFetchResponsep1087 with a response and
either null (on failure) or a byte sequence containing the response body. isTopLevel will be true for all classic scriptp1085 fetches, and
for the initial fetch when fetching an external module script graphp1089 or fetching a module worker script graphp1090, but false for the
fetches resulting from import statements encountered throughout the graph or from import() expressions.

By default, not supplying a perform the fetch hookp1087 will cause the below algorithms to simply fetch the given request, with
algorithm-specific customizations to the request and validations of the resulting response.

To layer your own customizations on top of these algorithm-specific ones, supply a perform the fetch hookp1087 that modifies the given
request, fetches it, and then performs specific validations of the resulting response (completing with a network error if the validations
fail).

The hook can also be used to perform more subtle customizations, such as keeping a cache of responses and avoiding performing a
fetch at all.

Now for the algorithms themselves.

To fetch a classic script given a URL url, an environment settings objectp1076 settingsObject, a script fetch optionsp1085 options, a
CORS settings attribute statep99 corsSetting, an encoding encoding, and an algorithm onComplete, run these steps. onComplete must
be an algorithm accepting null (on failure) or a classic scriptp1085 (on success).

1. Let request be the result of creating a potential-CORS requestp98 given url, "script", and corsSetting.

2. Set request's client to settingsObject.

3. Set request's initiator type to "script".

4. Set up the classic script requestp1086 given request and options.

5. Fetch request with the following processResponseConsumeBody steps given response response and null, failure, or a byte
sequence bodyBytes:

1. Set response to response's unsafe responsep98.

2. If any of the following are true:

▪ bodyBytes is null or failure; or

▪ response's status is not an ok status,

then run onComplete given null, and abort these steps.

3. Let potentialMIMETypeForEncoding be the result of extracting a MIME type given response's header list.

4. Set encoding to the result of legacy extracting an encoding given potentialMIMETypeForEncoding and encoding.

Service Workers is an example of a specification that runs these algorithms with its own options for the hook. [SW]p1482

Note

response can be either CORS-same-originp98 or CORS-cross-originp98. This only affects how error reporting happens.
Note

For historical reasons, this algorithm does not include MIME type checking, unlike the other script-fetching
algorithms in this section.

Note

1087

https://infra.spec.whatwg.org/#map-exists
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-fetch
https://url.spec.whatwg.org/#concept-url
https://encoding.spec.whatwg.org/#encoding
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://fetch.spec.whatwg.org/#legacy-extract-an-encoding

5. Let sourceText be the result of decoding bodyBytes to Unicode, using encoding as the fallback encoding.

6. Let mutedErrors be true if response was CORS-cross-originp98, and false otherwise.

7. Let script be the result of creating a classic scriptp1093 given sourceText, settingsObject, response's URL, options,
mutedErrors, and url.

8. Run onComplete given script.

To fetch a classic worker script given a URL url, an environment settings objectp1076 fetchClient, a destination destination, an
environment settings objectp1076 settingsObject, an algorithm onComplete, and an optional perform the fetch hookp1087 performFetch,
run these steps. onComplete must be an algorithm accepting null (on failure) or a classic scriptp1085 (on success).

1. Let request be a new request whose URL is url, client is fetchClient, destination is destination, initiator type is "other", mode
is "same-origin", credentials mode is "same-origin", parser metadata is "not parser-inserted", and whose use-URL-
credentials flag is set.

2. If performFetch was given, run performFetch with request, true, and with processResponseConsumeBody as defined below.

Otherwise, fetch request with processResponseConsumeBody set to processResponseConsumeBody as defined below.

In both cases, let processResponseConsumeBody given response response and null, failure, or a byte sequence bodyBytes
be the following algorithm:

1. Set response to response's unsafe responsep98.

2. If any of the following are true:

▪ bodyBytes is null or failure; or

▪ response's status is not an ok status,

then run onComplete given null, and abort these steps.

3. If all of the following are true:

▪ response's URL's scheme is an HTTP(S) scheme; and

▪ the result of extracting a MIME type from response's header list is not a JavaScript MIME type,

then run onComplete given null, and abort these steps.

4. Let sourceText be the result of UTF-8 decoding bodyBytes.

5. Let script be the result of creating a classic scriptp1093 using sourceText, settingsObject, response's URL, and the
default script fetch optionsp1086.

6. Run onComplete given script.

To fetch a classic worker-imported script given a URL url, an environment settings objectp1076 settingsObject, and an optional
perform the fetch hookp1087 performFetch, run these steps. The algorithm will return a classic scriptp1085 on success, or throw an
exception on failure.

1. Let response be null.

2. Let bodyBytes be null.

3. Let request be a new request whose URL is url, client is settingsObject, destination is "script", initiator type is "other",
parser metadata is "not parser-inserted", and whose use-URL-credentials flag is set.

This intentionally ignores the MIME type essence.
Note

The decode algorithm overrides encoding if the file contains a BOM.
Note

Other fetch schemes are exempted from MIME type checking for historical web-compatibility reasons. We
might be able to tighten this in the future; see issue #3255.

Note

1088

https://mimesniff.spec.whatwg.org/#mime-type-essence
https://encoding.spec.whatwg.org/#decode
https://encoding.spec.whatwg.org/#decode
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://fetch.spec.whatwg.org/#fetch-scheme
https://github.com/whatwg/html/issues/3255
https://encoding.spec.whatwg.org/#utf-8-decode
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-request-parser-metadata
https://fetch.spec.whatwg.org/#concept-request-use-url-credentials-flag

4. If performFetch was given, run performFetch with request, isTopLevel, and with processResponseConsumeBody as defined
below.

Otherwise, fetch request with processResponseConsumeBody set to processResponseConsumeBody as defined below.

In both cases, let processResponseConsumeBody given response res and null, failure, or a byte sequence bb be the following
algorithm:

1. Set bodyBytes to bb.

2. Set response to res.

5. Pausep1133 until response is not null.

6. Set response to response's unsafe responsep98.

7. If any of the following are true:

◦ bodyBytes is null or failure;

◦ response's status is not an ok status; or

◦ the result of extracting a MIME type from response's header list is not a JavaScript MIME type,

then throw a "NetworkError" DOMException.

8. Let sourceText be the result of UTF-8 decoding bodyBytes.

9. Let mutedErrors be true if response was CORS-cross-originp98, and false otherwise.

10. Let script be the result of creating a classic scriptp1093 given sourceText, settingsObject, response's URL, the default script
fetch optionsp1086, and mutedErrors.

11. Return script.

To fetch an external module script graph given a URL url, an environment settings objectp1076 settingsObject, a script fetch
optionsp1085 options, and an algorithm onComplete, run these steps. onComplete must be an algorithm accepting null (on failure) or a
module scriptp1085 (on success).

1. Fetch a single module scriptp1091 given url, settingsObject, "script", options, settingsObject, "client", true, and with the
following steps given result:

1. If result is null, run onComplete given null, and abort these steps.

2. Fetch the descendants of and linkp1091 result given settingsObject, "script", and onComplete.

To fetch a modulepreload module script graph given a URL url, a destination destination, an environment settings objectp1076

settingsObject, a script fetch optionsp1085 options, and an algorithm onComplete, run these steps. onComplete must be an algorithm
accepting null (on failure) or a module scriptp1085 (on success).

1. Fetch a single module scriptp1091 given url, settingsObject, destination, options, settingsObject, "client", true, and with the
following steps given result:

1. Run onComplete given result.

2. Assert: settingsObject's global objectp1077 implements Windowp922.

3. If result is not null, optionally fetch the descendants of and linkp1091 result given settingsObject, destination, and an
empty algorithm.

Unlike other algorithms in this section, the fetching process is synchronous here.
Note

Generally, performing this step will be beneficial for performance, as it allows pre-loading the modules that will
invariably be requested later, via algorithms such as fetch an external module script graphp1089 that fetch the
entire graph. However, user agents might wish to skip them in bandwidth-constrained situations, or situations
where the relevant fetches are already in flight.

Note

1089

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://webidl.spec.whatwg.org/#networkerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://encoding.spec.whatwg.org/#utf-8-decode
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://infra.spec.whatwg.org/#assert

To fetch an inline module script graph given a string sourceText, a URL baseURL, an environment settings objectp1076

settingsObject, a script fetch optionsp1085 options, and an algorithm onComplete, run these steps. onComplete must be an algorithm
accepting null (on failure) or a module scriptp1085 (on success).

1. Let script be the result of creating a JavaScript module scriptp1093 using sourceText, settingsObject, baseURL, and options.

2. Fetch the descendants of and linkp1091 script, given settingsObject, "script", and onComplete.

To fetch a module worker script graph given a URL url, an environment settings objectp1076 fetchClient, a destination destination, a
credentials modep1086 credentialsMode, an environment settings objectp1076 settingsObject, and an algorithm onComplete, fetch a
worklet/module worker script graphp1090 given url, fetchClient, destination, credentialsMode, settingsObject, and onComplete.

To fetch a worklet script graph given a URL url, an environment settings objectp1076 fetchClient, a destination destination, a
credentials modep1086 credentialsMode, an environment settings objectp1076 settingsObject, a module responses mapp1248

moduleResponsesMap, and an algorithm onComplete, fetch a worklet/module worker script graphp1090 given url, fetchClient,
destination, credentialsMode, settingsObject, onComplete, and the following perform the fetch hookp1087 given request and
processCustomFetchResponsep1087:

1. Let requestURL be request's URL.

2. If moduleResponsesMap[requestURL] is "fetching", wait in parallelp43 until that entry's value changes, then queue a
taskp1125 on the networking task sourcep1134 to proceed with running the following steps.

3. If moduleResponsesMap[requestURL] exists, then:

1. Let cached be moduleResponsesMap[requestURL].

2. Run processCustomFetchResponse with cached[0] and cached[1].

3. Return.

4. Set moduleResponsesMap[requestURL] to "fetching".

5. Fetch request, with processResponseConsumeBody set to the following steps given response response and null, failure, or a
byte sequence bodyBytes:

1. Set moduleResponsesMap[requestURL] to (response, bodyBytes).

2. Run processCustomFetchResponse with response and bodyBytes.

The following algorithms are meant for internal use by this specification only as part of fetching an external module script graphp1089 or
other similar concepts above, and should not be used directly by other specifications.

This diagram illustrates how these algorithms relate to the ones above, as well as to each other:

To fetch a worklet/module worker script graph given a URL url, an environment settings objectp1076 fetchClient, a destination
destination, a credentials modep1086 credentialsMode, an environment settings objectp1076 settingsObject, an algorithm onComplete,
and an optional perform the fetch hookp1087 performFetch, run these steps. onComplete must be an algorithm accepting null (on
failure) or a module scriptp1085 (on success).

1. Let options be a script fetch optionsp1085 whose cryptographic noncep1086 is the empty string, integrity metadatap1086 is the
empty string, parser metadatap1086 is "not-parser-inserted", credentials modep1086 is credentialsMode, referrer policyp1086

is the empty string, and fetch priorityp1086 is "auto".

2. Fetch a single module scriptp1091 given url, fetchClient, destination, options, settingsObject, "client", true, and
onSingleFetchComplete as defined below. If performFetch was given, pass it along as well.

1090

https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-url
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-set
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination

onSingleFetchComplete given result is the following algorithm:

1. If result is null, run onComplete given null, and abort these steps.

2. Fetch the descendants of and linkp1091 result given fetchClient, destination, and onComplete. If performFetch was
given, pass it along as well.

To fetch the descendants of and link a module scriptp1085 moduleScript, given an environment settings objectp1076 fetchClient, a
destination destination, an algorithm onComplete, and an optional perform the fetch hookp1087 performFetch, run these steps.
onComplete must be an algorithm accepting null (on failure) or a module scriptp1085 (on success).

1. Let record be moduleScript's recordp1084.

2. If record is null, then:

1. Set moduleScript's error to rethrowp1084 to moduleScript's parse errorp1273.

2. Run onComplete given moduleScript.

3. Return.

3. Let state be Record { [[ParseError]]: null, [[Destination]]: destination, [[PerformFetch]]: null, [[FetchClient]]: fetchClient }.

4. If performFetch was given, set state.[[PerformFetch]] to performFetch.

5. Let loadingPromise be record.LoadRequestedModules(state).

6. Upon fulfillment of loadingPromise, run the following steps:

1. Perform record.Link().

If this throws an exception, catch it, and set moduleScript's error to rethrowp1084 to that exception.

2. Run onComplete given moduleScript.

7. Upon rejection of loadingPromise, run the following steps:

1. If state.[[ParseError]] is not null, set moduleScript's error to rethrowp1084 to state.[[ParseError]] and run onComplete
given moduleScript.

2. Otherwise, run onComplete given null.

To fetch a single module script, given a URL url, an environment settings objectp1076 fetchClient, a destination destination, a script
fetch optionsp1085 options, an environment settings objectp1076 settingsObject, a referrer referrer, an optional ModuleRequest Record
moduleRequest, a boolean isTopLevelp1087, an algorithm onComplete, and an optional perform the fetch hookp1087 performFetch, run
these steps. onComplete must be an algorithm accepting null (on failure) or a module scriptp1085 (on success).

1. Let moduleType be "javascript-or-wasm".

2. If moduleRequest was given, then set moduleType to the result of running the module type from module requestp1095 steps
given moduleRequest.

3. Assert: the result of running the module type allowedp1095 steps given moduleType and settingsObject is true. Otherwise, we
would not have reached this point because a failure would have been raised when inspecting moduleRequest.[[Attributes]] in
HostLoadImportedModulep1122 or fetch a single imported module scriptp1093.

4. Let moduleMap be settingsObject's module mapp1076.

5. If moduleMap[(url, moduleType)] is "fetching", wait in parallelp43 until that entry's value changes, then queue a taskp1125 on

This step will recursively load all the module transitive dependencies.
Note

This step will recursively call Link on all of the module's unlinked dependencies.
Note

state.[[ParseError]] is null when loadingPromise is rejected due to a loading error.
Note

1091

https://fetch.spec.whatwg.org/#concept-request-destination
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-LoadRequestedModules
https://webidl.spec.whatwg.org/#upon-fulfillment
https://tc39.es/ecma262/#sec-moduledeclarationlinking
https://tc39.es/ecma262/#sec-moduledeclarationlinking
https://webidl.spec.whatwg.org/#upon-rejection
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-referrer
https://tc39.es/proposal-import-attributes/#sec-modulerequest-record
https://infra.spec.whatwg.org/#assert

the networking task sourcep1134 to proceed with running the following steps.

6. If moduleMap[(url, moduleType)] exists, run onComplete given moduleMap[(url, moduleType)], and return.

7. Set moduleMap[(url, moduleType)] to "fetching".

8. Let request be a new request whose URL is url, mode is "cors", referrer is referrer, and client is fetchClient.

9. Set request's destination to the result of running the fetch destination from module typep1095 steps given destination and
moduleType.

10. If destination is "worker", "sharedworker", or "serviceworker", and isTopLevel is true, then set request's mode to "same-
origin".

11. Set request's initiator type to "script".

12. Set up the module script requestp1086 given request and options.

13. If performFetch was given, run performFetch with request, isTopLevel, and with processResponseConsumeBody as defined
below.

Otherwise, fetch request with processResponseConsumeBody set to processResponseConsumeBody as defined below.

In both cases, let processResponseConsumeBody given response response and null, failure, or a byte sequence bodyBytes
be the following algorithm:

1. If any of the following are true:

▪ bodyBytes is null or failure; or

▪ response's status is not an ok status,

then set moduleMap[(url, moduleType)] to null, run onComplete given null, and abort these steps.

2. Let mimeType be the result of extracting a MIME type from response's header list.

3. Let moduleScript be null.

4. Let referrerPolicy be the result of parsing the `Referrer-Policy` header given response. [REFERRERPOLICY]p1481

5. If referrerPolicy is not the empty string, set options's referrer policyp1086 to referrerPolicy.

6. If mimeType's essence is "application/wasmp1473" and moduleType is "javascript-or-wasm", then set
moduleScript to the result of creating a WebAssembly module scriptp1094 given bodyBytes, settingsObject,
response's URL, and options.

7. Otherwise:

1. Let sourceText be the result of UTF-8 decoding bodyBytes.

2. If mimeType is a JavaScript MIME type and moduleType is "javascript-or-wasm", then set moduleScript
to the result of creating a JavaScript module scriptp1093 given sourceText, settingsObject, response's URL,
and options.

3. If the MIME type essence of mimeType is "text/cssp1474" and moduleType is "css", then set moduleScript
to the result of creating a CSS module scriptp1094 given sourceText and settingsObject.

4. If mimeType is a JSON MIME type and moduleType is "json", then set moduleScript to the result of
creating a JSON module scriptp1095 given sourceText and settingsObject.

8. Set moduleMap[(url, moduleType)] to moduleScript, and run onComplete given moduleScript.

response is always CORS-same-originp98.
Note

It is intentional that the module mapp1119 is keyed by the request URL, whereas the base URLp1085 for the
module scriptp1085 is set to the response URL. The former is used to deduplicate fetches, while the latter is used
for URL resolution.

Note

1092

https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-set
https://fetch.spec.whatwg.org/#concept-request
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#concept-request-referrer
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-mode
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#ok-status
https://infra.spec.whatwg.org/#map-set
https://fetch.spec.whatwg.org/#concept-header-extract-mime-type
https://fetch.spec.whatwg.org/#concept-response-header-list
https://w3c.github.io/webappsec-referrer-policy/#parse-referrer-policy-from-header
https://mimesniff.spec.whatwg.org/#mime-type-essence
https://fetch.spec.whatwg.org/#concept-response-url
https://encoding.spec.whatwg.org/#utf-8-decode
https://mimesniff.spec.whatwg.org/#javascript-mime-type
https://fetch.spec.whatwg.org/#concept-response-url
https://mimesniff.spec.whatwg.org/#mime-type-essence
https://mimesniff.spec.whatwg.org/#json-mime-type
https://infra.spec.whatwg.org/#map-set
https://fetch.spec.whatwg.org/#concept-request-url
https://fetch.spec.whatwg.org/#concept-response-url

To fetch a single imported module script, given a URL url, an environment settings objectp1076 fetchClient, a destination
destination, a script fetch optionsp1085 options, environment settings objectp1076 settingsObject, a referrer referrer, a ModuleRequest
Record moduleRequest, an algorithm onComplete, and an optional perform the fetch hookp1087 performFetch, run these steps.
onComplete must be an algorithm accepting null (on failure) or a module scriptp1085 (on success).

1. Assert: moduleRequest.[[Attributes]] does not contain any Record entry such that entry.[[Key]] is not "type", because we
only asked for "type" attributes in HostGetSupportedImportAttributesp1121.

2. Let moduleType be the result of running the module type from module requestp1095 steps given moduleRequest.

3. If the result of running the module type allowedp1095 steps given moduleType and settingsObject is false, then run
onComplete given null, and return.

4. Fetch a single module scriptp1091 given url, fetchClient, destination, options, settingsObject, referrer, moduleRequest, false,
and onComplete. If performFetch was given, pass it along as well.

To create a classic script, given a string source, an environment settings objectp1076 settings, a URL baseURL, a script fetch
optionsp1085 options, an optional boolean mutedErrors (default false), and an optional URL-or-null sourceURLForWindowScripts (default
null):

1. If mutedErrors is true, then set baseURL to about:blankp53.

2. If scripting is disabledp1083 for settings, then set source to the empty string.

3. Let script be a new classic scriptp1085 that this algorithm will subsequently initialize.

4. Set script's settings objectp1084 to settings.

5. Set script's base URLp1085 to baseURL.

6. Set script's fetch optionsp1085 to options.

7. Set script's muted errorsp1085 to mutedErrors.

8. Set script's parse errorp1084 and error to rethrowp1084 to null.

9. Record classic script creation time given script and sourceURLForWindowScripts.

10. Let result be ParseScript(source, settings's realmp1077, script).

11. If result is a list of errors, then:

1. Set script's parse errorp1084 and its error to rethrowp1084 to result[0].

2. Return script.

12. Set script's recordp1084 to result.

13. Return script.

To create a JavaScript module script, given a string source, an environment settings objectp1076 settings, a URL baseURL, and a
script fetch optionsp1085 options:

1. If scripting is disabledp1083 for settings, then set source to the empty string.

2. Let script be a new module scriptp1085 that this algorithm will subsequently initialize.

8.1.4.3 Creating scripts §p10

93

When mutedErrors is true, baseURL is the script's CORS-cross-originp98 response's url, which shouldn't be exposed to
JavaScript. Therefore, baseURL is sanitized here.

Note

Passing script as the last parameter here ensures result.[[HostDefined]] will be script.
Note

1093

https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-referrer
https://tc39.es/proposal-import-attributes/#sec-modulerequest-record
https://tc39.es/proposal-import-attributes/#sec-modulerequest-record
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response-url
https://w3c.github.io/long-animation-frames/#record-classic-script-creation-time
https://tc39.es/ecma262/#sec-parse-script
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url

3. Set script's settings objectp1084 to settings.

4. Set script's base URLp1085 to baseURL.

5. Set script's fetch optionsp1085 to options.

6. Set script's parse errorp1084 and error to rethrowp1084 to null.

7. Let result be ParseModule(source, settings's realmp1077, script).

8. If result is a list of errors, then:

1. Set script's parse errorp1084 to result[0].

2. Return script.

9. Set script's recordp1084 to result.

10. Return script.

To create a WebAssembly module script, given a byte sequence bodyBytes, an environment settings objectp1076 settings, a URL
baseURL, and a script fetch optionsp1085 options:

1. If scripting is disabledp1083 for settings, then set bodyBytes to the byte sequence 0x00 0x61 0x73 0x6d 0x01 0x00 0x00
0x00.

2. Let script be a new module scriptp1085 that this algorithm will subsequently initialize.

3. Set script's settings objectp1084 to settings.

4. Set script's base URLp1085 to baseURL.

5. Set script's fetch optionsp1085 to options.

6. Set script's parse errorp1084 and error to rethrowp1084 to null.

7. Let result be the result of parsing a WebAssembly module given bodyBytes, settings's realmp1077, and script.

8. If the previous step threw an error error, then:

1. Set script's parse errorp1084 to error.

2. Return script.

9. Set script's recordp1084 to result.

10. Return script.

To create a CSS module script, given a string source and an environment settings objectp1076 settings:

1. Let script be a new module scriptp1085 that this algorithm will subsequently initialize.

Passing script as the last parameter here ensures result.[[HostDefined]] will be script.
Note

This byte sequence corresponds to an empty WebAssembly module with only the magic bytes and version number
provided.

Note

Passing script as the last parameter here ensures result.[[HostDefined]] will be script.
Note

WebAssembly JavaScript Interface: ESM Integration specifies the hooks for the WebAssembly integration with ECMA-262 module
loading. This includes support both for direct dependency imports, as well as for source phase imports, which support virtualization
and multi-instantiation. [WASMESM]p1483

Note

1094

https://tc39.es/ecma262/#sec-parsemodule
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#byte-sequence
https://url.spec.whatwg.org/#concept-url
https://webassembly.github.io/esm-integration/js-api/index.html#parse-a-webassembly-module

2. Set script's settings objectp1084 to settings.

3. Set script's base URLp1085 and fetch optionsp1085 to null.

4. Set script's parse errorp1084 and error to rethrowp1084 to null.

5. Let sheet be the result of running the steps to create a constructed CSSStyleSheet with an empty dictionary as the
argument.

6. Run the steps to synchronously replace the rules of a CSSStyleSheet on sheet given source.

If this throws an exception, catch it, and set script's parse errorp1084 to that exception, and return script.

7. Set script's recordp1084 to the result of CreateDefaultExportSyntheticModule(sheet).

8. Return script.

To create a JSON module script, given a string source and an environment settings objectp1076 settings:

1. Let script be a new module scriptp1085 that this algorithm will subsequently initialize.

2. Set script's settings objectp1084 to settings.

3. Set script's base URLp1085 and fetch optionsp1085 to null.

4. Set script's parse errorp1084 and error to rethrowp1084 to null.

5. Let result be ParseJSONModule(source).

If this throws an exception, catch it, and set script's parse errorp1084 to that exception, and return script.

6. Set script's recordp1084 to result.

7. Return script.

The module type from module request steps, given a ModuleRequest Record moduleRequest, are as follows:

1. Let moduleType be "javascript-or-wasm".

2. If moduleRequest.[[Attributes]] has a Record entry such that entry.[[Key]] is "type", then:

1. If entry.[[Value]] is "javascript-or-wasm", then set moduleType to null.

2. Otherwise, set moduleType to entry.[[Value]].

3. Return moduleType.

The module type allowed steps, given a string moduleType and an environment settings objectp1076 settings, are as follows:

1. If moduleType is not "javascript-or-wasm", "css", or "json", then return false.

2. If moduleType is "css" and the CSSStyleSheet interface is not exposed in settings's realmp1077, then return false.

3. Return true.

The fetch destination from module type steps, given a destination defaultDestination and a string moduleType, are as follows:

1. If moduleType is "json", then return "json".

The steps to synchronously replace the rules of a CSSStyleSheet will throw if source contains any @import rules. This is
by-design for now because there is not yet an agreement on how to handle these for CSS module scripts; therefore they
are blocked altogether until a consensus is reached.

Note

This specification uses the "javascript-or-wasm" module type internally for JavaScript module scriptsp1085 or
WebAssembly module scriptsp1085, so this step is needed to prevent modules from being imported using a
"javascript-or-wasm" type attribute (a null moduleType will cause the module type allowedp1095 check to fail).

Note

1095

https://drafts.csswg.org/cssom/#create-a-constructed-cssstylesheet
https://drafts.csswg.org/cssom/#synchronously-replace-the-rules-of-a-cssstylesheet
https://drafts.csswg.org/cssom/#synchronously-replace-the-rules-of-a-cssstylesheet
https://tc39.es/proposal-json-modules/#sec-create-default-export-synthetic-module
https://tc39.es/proposal-json-modules/#sec-parse-json-module
https://tc39.es/proposal-import-attributes/#sec-modulerequest-record
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#string
https://drafts.csswg.org/cssom/#the-cssstylesheet-interface
https://webidl.spec.whatwg.org/#dfn-exposed
https://fetch.spec.whatwg.org/#concept-request-destination
https://infra.spec.whatwg.org/#string

2. If moduleType is "css", then return "style".

3. Return defaultDestination.

To run a classic script given a classic scriptp1085 script and an optional boolean rethrow errors (default false):

1. Let settings be the settings objectp1084 of script.

2. Check if we can run scriptp1097 with settings. If this returns "do not run" then return NormalCompletion(empty).

3. Record classic script execution start time given script.

4. Prepare to run scriptp1097 given settings.

5. Let evaluationStatus be null.

6. If script's error to rethrowp1084 is not null, then set evaluationStatus to Completion { [[Type]]: throw, [[Value]]: script's error to
rethrowp1084, [[Target]]: empty }.

7. Otherwise, set evaluationStatus to ScriptEvaluation(script's recordp1084).

If ScriptEvaluation does not complete because the user agent has aborted the running scriptp1097, leave evaluationStatus as
null.

8. If evaluationStatus is an abrupt completion, then:

1. If rethrow errors is true and script's muted errorsp1085 is false, then:

1. Clean up after running scriptp1097 with settings.

2. Rethrow evaluationStatus.[[Value]].

2. If rethrow errors is true and script's muted errorsp1085 is true, then:

1. Clean up after running scriptp1097 with settings.

2. Throw a "NetworkError" DOMException.

3. Otherwise, rethrow errors is false. Perform the following steps:

1. Report an exceptionp1098 given by evaluationStatus.[[Value]] for script's settings objectp1084 's global
objectp1077.

2. Clean up after running scriptp1097 with settings.

3. Return evaluationStatus.

9. Clean up after running scriptp1097 with settings.

10. If evaluationStatus is a normal completion, then return evaluationStatus.

11. If we've reached this point, evaluationStatus was left as null because the script was aborted prematurelyp1097 during
evaluation. Return Completion { [[Type]]: throw, [[Value]]: a new "QuotaExceededError" DOMException, [[Target]]: empty }.

To run a module script given a module scriptp1085 script and an optional boolean preventErrorReporting (default false):

1. Let settings be the settings objectp1084 of script.

2. Check if we can run scriptp1097 with settings. If this returns "do not run", then return a promise resolved with undefined.

3. Record module script execution start time given script.

4. Prepare to run scriptp1097 given settings.

5. Let evaluationPromise be null.

6. If script's error to rethrowp1084 is not null, then set evaluationPromise to a promise rejected with script's error to rethrowp1084.

8.1.4.4 Calling scripts §p10

96

1096

https://tc39.es/ecma262/#sec-normalcompletion
https://w3c.github.io/long-animation-frames/#record-classic-script-execution-start-time
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://webidl.spec.whatwg.org/#networkerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#quotaexceedederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-resolved-with
https://w3c.github.io/long-animation-frames/#record-module-script-execution-start-time
https://webidl.spec.whatwg.org/#a-promise-rejected-with

7. Otherwise:

1. Let record be script's recordp1084.

2. Set evaluationPromise to record.Evaluate().

If Evaluate fails to complete as a result of the user agent aborting the running scriptp1097, then set
evaluationPromise to a promise rejected with a new "QuotaExceededError" DOMException.

8. If preventErrorReporting is false, then upon rejection of evaluationPromise with reason, report an exceptionp1098 given by
reason for script's settings objectp1084 's global objectp1077.

9. Clean up after running scriptp1097 with settings.

10. Return evaluationPromise.

The steps to check if we can run script with an environment settings objectp1076 settings are as follows. They return either "run" or
"do not run".

1. If the global objectp1077 specified by settings is a Windowp922 object whose Documentp130 object is not fully activep1003, then
return "do not run".

2. If scripting is disabledp1083 for settings, then return "do not run".

3. Return "run".

The steps to prepare to run script with an environment settings objectp1076 settings are as follows:

1. Push settings's realm execution contextp1076 onto the JavaScript execution context stack; it is now the running JavaScript
execution context.

2. Add settings to the surrounding agent's event loopp1123 's currently running taskp1124 's script evaluation environment settings
object setp1124.

The steps to clean up after running script with an environment settings objectp1076 settings are as follows:

1. Assert: settings's realm execution contextp1076 is the running JavaScript execution context.

2. Remove settings's realm execution contextp1076 from the JavaScript execution context stack.

3. If the JavaScript execution context stack is now empty, perform a microtask checkpointp1131. (If this runs scripts, these
algorithms will be invoked reentrantly.)

The running script is the scriptp1084 in the [[HostDefined]] field in the ScriptOrModule component of the running JavaScript execution
context.

Although the JavaScript specification does not account for this possibility, it's sometimes necessary to abort a running script. This
causes any ScriptEvaluation or Source Text Module Record Evaluate invocations to cease immediately, emptying the JavaScript
execution context stack without triggering any of the normal mechanisms like finally blocks. [JAVASCRIPT]p1479

User agents may impose resource limitations on scripts, for example CPU quotas, memory limits, total execution time limits, or
bandwidth limitations. When a script exceeds a limit, the user agent may either throw a "QuotaExceededError" DOMException, abort
the scriptp1097 without an exception, prompt the user, or throttle script execution.

This step will recursively evaluate all of the module's dependencies.
Note

These algorithms are not invoked by one script directly calling another, but they can be invoked reentrantly in an indirect manner,
e.g. if a script dispatches an event which has event listeners registered.

Note

8.1.4.5 Killing scripts §p10

97

1097

https://tc39.es/ecma262/#sec-moduleevaluation
https://tc39.es/ecma262/#sec-moduleevaluation
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#quotaexceedederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#upon-rejection
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#surrounding-agent
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#sec-runtime-semantics-scriptevaluation
https://tc39.es/ecma262/#sec-source-text-module-records
https://tc39.es/ecma262/#sec-moduleevaluation
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://webidl.spec.whatwg.org/#quotaexceedederror
https://webidl.spec.whatwg.org/#dfn-DOMException

User agents are encouraged to allow users to disable scripting whenever the user is prompted either by a script (e.g. using the
window.alert()p1167 API) or because of a script's actions (e.g. because it has exceeded a time limit).

If scripting is disabled while a script is executing, the script should be terminated immediately.

User agents may allow users to specifically disable scripts just for the purposes of closing a browsing contextp998.

To extract error information from a JavaScript value exception:

1. Let attributes be an empty map keyed by IDL attributes.

2. Set attributes[errorp1100] to exception.

3. Set attributes[messagep1100], attributes[filenamep1100], attributes[linenop1100], and attributes[colnop1100] to implementation-
defined values derived from exception.

4. Return attributes.

To report an exception exception which is a JavaScript value, for a particular global objectp1076 global and optional boolean
omitError (default false):

1. Let notHandled be true.

2. Let errorInfo be the result of extracting error informationp1098 from exception.

3. Let script be a scriptp1084 found in an implementation-defined way, or null. This should usually be the running scriptp1097 (most
notably during run a classic scriptp1096).

4. If script is a classic scriptp1085 and script's muted errorsp1085 is true, then set errorInfo[errorp1100] to null,
errorInfo[messagep1100] to "Script error.", errorInfo[filenamep1100] to the empty string, errorInfo[linenop1100] to 0, and
errorInfo[colnop1100] to 0.

5. If omitError is true, then set errorInfo[errorp1100] to null.

For example, the following script never terminates. A user agent could, after waiting for a few seconds, prompt the user to either
terminate the script or let it continue.

<script>
while (true) { /* loop */ }

</script>

Example

For example, the prompt mentioned in the example above could also offer the user with a mechanism to just close the page
entirely, without running any unloadp1472 event handlers.

Example

8.1.4.6 Runtime script errors §p10

98

self.reportErrorp1099(e)
Dispatches an errorp1471 event at the global object for the given value e, in the same fashion as an unhandled exception.

For web developers (non-normative)

Browsers implement behavior not specified here or in the JavaScript specification to gather values which are helpful,
including in unusual cases (e.g., eval). In the future, this might be specified in greater detail.

Note

Implementations have not yet settled on interoperable behavior for which script is used to determine whether errors are
muted in less common cases.

Note

✔ MDN

1098

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined

6. If global is not in error reporting modep1077, then:

1. Set global's in error reporting modep1077 to true.

2. If global implements EventTarget, then set notHandled to the result of firing an event named errorp1471 at global,
using ErrorEventp1099, with the cancelable attribute initialized to true, and additional attributes initialized
according to errorInfo.

3. Set global's in error reporting modep1077 to false.

7. If notHandled is true, then:

1. Set errorInfo[errorp1100] to null.

2. If global implements DedicatedWorkerGlobalScopep1230, queue a global taskp1125 on the DOM manipulation task
sourcep1134 with the global's associated Workerp1236 's relevant global objectp1083 to run these steps:

1. Let workerObject be the Workerp1236 object associated with global.

2. Set notHandled be the result of firing an event named errorp1471 at workerObject, using ErrorEventp1099,
with the cancelable attribute initialized to true, and additional attributes initialized according to
errorInfo.

3. If notHandled is true, then reportp1098 exception for workerObject's relevant global objectp1083 with
omitErrorp1098 set to true.

8. Otherwise, the user agent may report exception to a developer console.

If the implicit port connecting a worker to its Workerp1236 object has been disentangled (i.e. if the parent worker has been terminated),
then the user agent must act as if the Workerp1236 object had no errorp1471 event handler and as if that worker's onerrorp1229 attribute
was null, but must otherwise act as described above.

Previous revisions of this standard defined an algorithm to report the exception. As part of issue #958, this has been superseded by
report an exceptionp1098 which behaves differently and takes different inputs. Issue #10516 tracks updating the specification
ecosystem.

The reportError(e) method steps are to report an exceptionp1098 e for this.

It is unclear whether mutingp1085 is applicable here. In Chrome and Safari it is muted, but in Firefox it is not. See also issue #958.

The ErrorEventp1099 interface is defined as follows:

[Exposed=*]
interface ErrorEvent : Event {

constructor(DOMString type, optional ErrorEventInit eventInitDict = {});

readonly attribute DOMString message;
readonly attribute USVString filename;

Returning true in an event handler cancels the event per the event handler processing algorithmp1140.
Note

The actual exception value will not be available in the owner realm, but the user agent still carries
through enough information to set the message, filename, and other attributes, as well as potentially
report to a developer console.

Note

Thus, error reports propagate up to the chain of dedicated workers up to the original Documentp130, even if some of the workers
along this chain have been terminated and garbage collected.

Note

IDL

✔ MDN

1099

https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://github.com/whatwg/html
https://github.com/whatwg/html/issues/10516
https://webidl.spec.whatwg.org/#this
https://github.com/whatwg/html/issues/958
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor

readonly attribute unsigned long lineno;
readonly attribute unsigned long colno;
readonly attribute any error;

};

dictionary ErrorEventInit : EventInit {
DOMString message = "";
USVString filename = "";
unsigned long lineno = 0;
unsigned long colno = 0;
any error;

};

The message attribute must return the value it was initialized to. It represents the error message.

The filename attribute must return the value it was initialized to. It represents the URL of the script in which the error originally
occurred.

The lineno attribute must return the value it was initialized to. It represents the line number where the error occurred in the script.

The colno attribute must return the value it was initialized to. It represents the column number where the error occurred in the script.

The error attribute must return the value it was initialized to. It must initially be initialized to undefined. Where appropriate, it is set to
the object representing the error (e.g., the exception object in the case of an uncaught exception).

In addition to synchronous runtime script errorsp1098, scripts may experience asynchronous promise rejections, tracked via the
unhandledrejectionp1472 and rejectionhandledp1472 events. Tracking these rejections is done via the
HostPromiseRejectionTrackerp1115 abstract operation, but reporting them is defined here.

To notify about rejected promises given a global objectp1076 global:

1. Let list be a clone of global's about-to-be-notified rejected promises listp1077.

2. If list is empty, then return.

3. Empty global's about-to-be-notified rejected promises listp1077.

4. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given global to run the following step:

1. For each promise p of list:

1. If p.[[PromiseIsHandled]] is true, then continue.

2. Let notCanceled be the result of firing an event named unhandledrejectionp1472 at global, using
PromiseRejectionEventp1100, with the cancelable attribute initialized to true, the promisep1101 attribute
initialized to p, and the reasonp1101 attribute initialized to p.[[PromiseResult]].

3. If notCanceled is true, then the user agent may report p.[[PromiseResult]] to a developer console.

4. If p.[[PromiseIsHandled]] is false, then append p to global's outstanding rejected promises weak setp1077.

The PromiseRejectionEventp1100 interface is defined as follows:

[Exposed=*]
interface PromiseRejectionEvent : Event {

constructor(DOMString type, PromiseRejectionEventInit eventInitDict);

readonly attribute object promise;
readonly attribute any reason;

};

8.1.4.7 Unhandled promise rejections §p11

00

IDL

✔ MDN

✔ MDN

1100

https://dom.spec.whatwg.org/#dictdef-eventinit
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-empty
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://infra.spec.whatwg.org/#set-append
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://webidl.spec.whatwg.org/#idl-object

dictionary PromiseRejectionEventInit : EventInit {
required object promise;
any reason;

};

The promise attribute must return the value it was initialized to. It represents the promise which this notification is about.

The reason attribute must return the value it was initialized to. It represents the rejection reason for the promise.

An import map parse result is a struct that is similar to a scriptp1084, and also can be stored in a scriptp652 element's resultp659, but
is not counted as a scriptp1084 for other purposes. It has the following items:

An import map
An import mapp1107 or null.

An error to rethrow
A JavaScript value representing an error that will prevent using this import map, when non-null.

To create an import map parse result given a string input and a URL baseURL:

1. Let result be an import map parse resultp1101 whose import mapp1101 is null and whose error to rethrowp1101 is null.

2. Parse an import map stringp1107 given input and baseURL, catching any exceptions. If this threw an exception, then set
result's error to rethrowp1101 to that exception. Otherwise, set result's import mapp1101 to the return value.

3. Return result.

To register an import map given a Windowp922 global and an import map parse resultp1101 result:

1. If result's error to rethrowp1101 is not null, then report an exceptionp1098 given by result's error to rethrowp1101 for global and
return.

2. Merge existing and new import mapsp1109, given global and result's import mapp1101.

The resolve a module specifierp1102 algorithm is the primary entry point for converting module specifier strings into URLs. When no
import mapsp1107 are involved, it is relatively straightforward, and reduces to resolving a URL-like module specifierp1103.

When there is a non-empty import mapp1107 present, the behavior is more complex. It checks candidate entries from all applicable
module specifier mapsp1107, from most-specific to least-specific scopesp1107 (falling back to the top-level unscoped importsp1107), and
from most-specific to least-specific prefixes. For each candidate, the resolve an imports matchp1102 algorithm will give on the following
results:

• Successful resolution of the specifier to a URL. Then the resolve a module specifierp1102 algorithm will return that URL.

• Throwing an exception. Then the resolve a module specifierp1102 algorithm will rethrow that exception, without any further
fallbacks.

• Failing to resolve, without an error. In this case the outer resolve a module specifierp1102 algorithm will move on to the next
candidate.

Because of how Web IDL conversion rules for Promise<T> types always wrap the input into a new promise, the promisep1101

attribute is of type object instead, which is more appropriate for representing an opaque handle to the original promise object.

Note

8.1.4.8 Import map parse results §p11

01

8.1.5.1 The resolution algorithm §p11

01

8.1.5 Module specifier resolution §p11

01

✔ MDN

✔ MDN

1101

https://dom.spec.whatwg.org/#dictdef-eventinit
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-object
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

In the end, if no successful resolution is found via any of the candidate module specifier mapsp1107, resolve a module specifierp1102 will
throw an exception. Thus the result is always either a URL or a thrown exception.

To resolve a module specifier given a scriptp652-or-null referringScript and a string specifier:

1. Let settingsObject and baseURL be null.

2. If referringScript is not null, then:

1. Set settingsObject to referringScript's settings objectp1084.

2. Set baseURL to referringScript's base URLp1085.

3. Otherwise:

1. Assert: there is a current settings objectp1083.

2. Set settingsObject to the current settings objectp1083.

3. Set baseURL to settingsObject's API base URLp1076.

4. Let importMap be an empty import mapp1107.

5. If settingsObject's global objectp1077 implements Windowp922, then set importMap to settingsObject's global objectp1077 's import
mapp1077.

6. Let serializedBaseURL be baseURL, serialized.

7. Let asURL be the result of resolving a URL-like module specifierp1103 given specifier and baseURL.

8. Let normalizedSpecifier be the serialization of asURL, if asURL is non-null; otherwise, specifier.

9. Let result be a URL-or-null, initially null.

10. For each scopePrefix → scopeImports of importMap's scopesp1107:

1. If scopePrefix is serializedBaseURL, or if scopePrefix ends with U+002F (/) and scopePrefix is a code unit prefix of
serializedBaseURL, then:

1. Let scopeImportsMatch be the result of resolving an imports matchp1102 given normalizedSpecifier,
asURL, and scopeImports.

2. If scopeImportsMatch is not null, then set result to scopeImportsMatch, and break.

11. If result is null, set result be the result of resolving an imports matchp1102 given normalizedSpecifier, asURL, and importMap's
importsp1107.

12. If result is null, set it to asURL.

13. If result is not null, then:

1. Add module to resolved module setp1107 given settingsObject, serializedBaseURL, normalizedSpecifier, and asURL.

2. Return result.

14. Throw a TypeError indicating that specifier was a bare specifier, but was not remapped to anything by importMap.

To resolve an imports match, given a string normalizedSpecifier, a URL-or-null asURL, and a module specifier mapp1107 specifierMap:

1. For each specifierKey → resolutionResult of specifierMap:

1. If specifierKey is normalizedSpecifier, then:

1. If resolutionResult is null, then throw a TypeError indicating that resolution of specifierKey was blocked
by a null entry.

By this point, if result was null, specifier wasn't remapped to anything by importMap, but it might have been able to be
turned into a URL.

Note

1102

https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#code-unit-prefix
https://infra.spec.whatwg.org/#iteration-break
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

2. Assert: resolutionResult is a URL.

3. Return resolutionResult.

2. If all of the following are true:

▪ specifierKey ends with U+002F (/);

▪ specifierKey is a code unit prefix of normalizedSpecifier; and

▪ either asURL is null, or asURL is special,

then:

1. If resolutionResult is null, then throw a TypeError indicating that the resolution of specifierKey was
blocked by a null entry.

2. Assert: resolutionResult is a URL.

3. Let afterPrefix be the portion of normalizedSpecifier after the initial specifierKey prefix.

4. Assert: resolutionResult, serialized, ends with U+002F (/), as enforced during parsingp1107.

5. Let url be the result of URL parsing afterPrefix with resolutionResult.

6. If url is failure, then throw a TypeError indicating that resolution of normalizedSpecifier was blocked
since the afterPrefix portion could not be URL-parsed relative to the resolutionResult mapped to by the
specifierKey prefix.

7. Assert: url is a URL.

8. If the serialization of resolutionResult is not a code unit prefix of the serialization of url, then throw a
TypeError indicating that the resolution of normalizedSpecifier was blocked due to it backtracking above
its prefix specifierKey.

9. Return url.

2. Return null.

To resolve a URL-like module specifier, given a string specifier and a URL baseURL:

1. If specifier starts with "/", "./", or "../", then:

1. Let url be the result of URL parsing specifier with baseURL.

2. If url is failure, then return null.

3. Return url.

This will terminate the entire resolve a module specifierp1102 algorithm, without any further fallbacks.
Note

This will terminate the entire resolve a module specifierp1102 algorithm, without any further fallbacks.
Note

This will terminate the entire resolve a module specifierp1102 algorithm, without any further fallbacks.
Note

This will terminate the entire resolve a module specifierp1102 algorithm, without any further fallbacks.
Note

The resolve a module specifierp1102 algorithm will fall back to a less-specific scope, or to "imports", if possible.
Note

One way this could happen is if specifier is "../foo" and baseURL is a data: URL.
Example

1103

https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#code-unit-prefix
https://url.spec.whatwg.org/#is-special
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#concept-url-parser
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#code-unit-prefix
https://url.spec.whatwg.org/#concept-url-serializer
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#string-starts-with
https://url.spec.whatwg.org/#concept-url-parser
https://www.rfc-editor.org/rfc/rfc2397#section-2

2. Let url be the result of URL parsing specifier (with no base URL).

3. If url is failure, then return null.

4. Return url.

An import mapp1107 allows control over module specifier resolution. Import maps are delivered via inline scriptp652 elements with their
typep653 attribute set to "importmap", and with their child text content containing a JSON representation of the import map.

A Documentp130 can have multiple import maps processed, which can happen either before or after any modules have been imported,
e.g., via import() expressions or scriptp652 elements with their typep653 attribute set to "module". The merge existing and new import
mapsp1109 algorithm ensures that new import maps cannot define the module resolution for modules that were already defined by past
import maps, or for ones that were already resolved.

This includes cases where specifier starts with "//", i.e., scheme-relative URLs. Thus, url might end up with a different
host than baseURL.

Note

8.1.5.2 Import maps §p11

04

The simplest use of import maps is to globally remap a bare module specifier:

{
"imports": {

"moment": "/node_modules/moment/src/moment.js"
}

}

This enables statements like import moment from "moment"; to work, fetching and evaluating the JavaScript module at the
/node_modules/moment/src/moment.js URL.

Example

An import map can remap a class of module specifiers into a class of URLs by using trailing slashes, like so:

{
"imports": {

"moment/": "/node_modules/moment/src/"
}

}

This enables statements like import localeData from "moment/locale/zh-cn.js"; to work, fetching and evaluating the
JavaScript module at the /node_modules/moment/src/locale/zh-cn.js URL. Such trailing-slash mappings are often combined
with bare-specifier mappings, e.g.

{
"imports": {

"moment": "/node_modules/moment/src/moment.js",
"moment/": "/node_modules/moment/src/"

}
}

so that both the "main module" specified by "moment" and the "submodules" specified by paths such as "moment/locale/zh-
cn.js" are available.

Example

Bare specifiers are not the only type of module specifiers which import maps can remap. "URL-like" specifiers, i.e., those that are
Example

1104

https://infra.spec.whatwg.org/#string-starts-with
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-parser
https://dom.spec.whatwg.org/#concept-child-text-content
https://tc39.es/ecma262/#sec-import-calls

either parseable as absolute URLs or start with "/", "./", or "../", can be remapped as well:

{
"imports": {

"https://cdn.example.com/vue/dist/vue.runtime.esm.js": "/node_modules/vue/dist/
vue.runtime.esm.js",

"/js/app.mjs": "/js/app-8e0d62a03.mjs",
"../helpers/": "https://cdn.example/helpers/"

}
}

Note how the URL to be remapped, as well as the URL being mapped to, can be specified either as absolute URLs, or as relative
URLs starting with "/", "./", or "../". (They cannot be specified as relative URLs without those starting sigils, as those help
distinguish from bare module specifiers.) Also note how the trailing slash mappingp1104 works in this context as well.

Such remappings operate on the post-canonicalization URL, and do not require a match between the literal strings supplied in the
import map key and the imported module specifier. So for example, if this import map was included on https://example.com/
app.html, then not only would import "/js/app.mjs" be remapped, but so would import "./js/app.mjs" and import
"./foo/../js/app.mjs".

All previous examples have globally remapped module specifiers, by using the top-level "imports" key in the import map. The top-
level "scopes" key can be used to provide localized remappings, which only apply when the referring module matches a specific
URL prefix. For example:

{
"scopes": {

"/a/" : {
"moment": "/node_modules/moment/src/moment.js"

},
"/b/" : {

"moment": "https://cdn.example.com/moment/src/moment.js"
}

}
}

With this import map, the statement import "moment" will have different meanings depending on which referrer script contains
the statement:

• Inside scripts located under /a/, this will import /node_modules/moment/src/moment.js.

• Inside scripts located under /b/, this will import https://cdn.example.com/moment/src/moment.js.

• Inside scripts located under /c/, this will fail to resolve and thus throw an exception.

A typical usage of scopes is to allow multiple versions of the "same" module to exist in a web application, with some parts of the
module graph importing one version, and other parts importing another version.

Example

Scopes can overlap each other, and overlap the global "imports" specifier map. At resolution time, scopes are consulted in order
of most- to least-specific, where specificity is measured by sorting the scopes using the code unit less than operation. So, for
example, "/scope2/scope3/" is treated as more specific than "/scope2/", which is treated as more specific than the top-level
(unscoped) mappings.

The following import map illustrates this:

{
"imports": {

"a": "/a-1.mjs",

Example

1105

https://infra.spec.whatwg.org/#code-unit-less-than

The child text content of a scriptp652 element representing an import mapp1107 must match the following import map authoring
requirements:

• It must be valid JSON. [JSON]p1479

• The JSON must represent a JSON object, with at most the three keys "imports", "scopes", and "integrity".

• The values corresponding to the "imports", "scopes", and "integrity" keys, if present, must themselves be JSON objects.

• The value corresponding to the "imports" key, if present, must be a valid module specifier mapp1106.

• The value corresponding to the "scopes" key, if present, must be a JSON object, whose keys are valid URL strings and whose
values are valid module specifier mapsp1106.

• The value corresponding to the "integrity" key, if present, must be a JSON object, whose keys are valid URL strings and
whose values fit the requirements of the integrity attribute.

A valid module specifier map is a JSON object that meets the following requirements:

"b": "/b-1.mjs",
"c": "/c-1.mjs"

},
"scopes": {

"/scope2/": {
"a": "/a-2.mjs"

},
"/scope2/scope3/": {

"b": "/b-3.mjs"
}

}
}

This results in the following resolutions (using relative URLs for brevity):

Specifier
"a" "b" "c"

Referrer /scope1/r.mjs /a-1.mjs /b-1.mjs /c-1.mjs

/scope2/r.mjs /a-2.mjs /b-1.mjs /c-1.mjs

/scope2/scope3/r.mjs /a-2.mjs /b-3.mjs /c-1.mjs

Import maps can also be used to provide modules with integrity metadata to be used in Subresource Integrity checks. [SRI]p1482

The following import map illustrates this:

{
"imports": {

"a": "/a-1.mjs",
"b": "/b-1.mjs",
"c": "/c-1.mjs"

},
"integrity": {

"/a-1.mjs": "sha384-Li9vy3DqF8tnTXuiaAJuML3ky+er10rcgNR/VqsVpcw+ThHmYcwiB1pbOxEbzJr7",
"/d-1.mjs": "sha384-MBO5IDfYaE6c6Aao94oZrIOiC6CGiSN2n4QUbHNPhzk5Xhm0djZLQqTpL0HzTUxk"

}
}

The above example provides integrity metadata to be enforced on the modules /a-1.mjs and /d-1.mjs, even if the latter is not
defined as an import in the map.

Example

1106

https://dom.spec.whatwg.org/#concept-child-text-content
https://url.spec.whatwg.org/#valid-url-string
https://url.spec.whatwg.org/#valid-url-string
https://w3c.github.io/webappsec-subresource-integrity/#the-integrity-attribute

• All of its keys must be nonempty.

• All of its values must be strings.

• Each value must be either a valid absolute URL or a valid URL string that starts with "/", "./", or "../".

• If a given key ends with "/", then the corresponding value must also.

Formally, an import map is a struct with three items:

• imports, a module specifier mapp1107;

• scopes, an ordered map of URLs to module specifier mapsp1107; and

• integrity, a module integrity mapp1107.

A module specifier map is an ordered map whose keys are strings and whose values are either URLs or nulls.

A module integrity map is an ordered map whose keys are URLs and whose values are strings that will be used as integrity
metadata.

An empty import map is an import mapp1107 with its importsp1107 and scopesp1107 both being empty maps.

A specifier resolution record is a struct. It has the following items:

A serialized base URL
A string-or-null that represents the base URL of the specifier, when one exists.

A specifier
A string representing the specifier.

A specifier as a URL
A URL-or-null that represents the URL in case of a URL-like module specifier.

To add module to resolved module set given an environment settings objectp1076 settingsObject, a string serializedBaseURL, a
string normalizedSpecifier, and a URL-or-null asURL:

1. Let global be settingsObject's global objectp1077.

2. If global does not implement Windowp922, then return.

3. Let record be a new specifier resolution recordp1107, with serialized base URLp1107 set to serializedBaseURL, specifierp1107 set
to normalizedSpecifier, and specifier as a URLp1107 set to asURL.

4. Append record to global's resolved module setp1077.

To parse an import map string, given a string input and a URL baseURL:

1. Let parsed be the result of parsing a JSON string to an Infra value given input.

2. If parsed is not an ordered map, then throw a TypeError indicating that the top-level value needs to be a JSON object.

3. Let sortedAndNormalizedImports be an empty ordered map.

4. If parsed["imports"] exists, then:

1. If parsed["imports"] is not an ordered map, then throw a TypeError indicating that the value for the "imports"

8.1.5.3 Import map processing model §p11

07

Implementations can replace specifier as a URLp1107 with a boolean that indicates that the specifier is either bare or URL-like that is
special.

Note

1107

https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#valid-url-string
https://infra.spec.whatwg.org/#string-starts-with
https://infra.spec.whatwg.org/#string-ends-with
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#ordered-map
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#map-value
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-key
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#map-value
https://infra.spec.whatwg.org/#string
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#is-special
https://url.spec.whatwg.org/#is-special
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#parse-a-json-string-to-an-infra-value
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

top-level key needs to be a JSON object.

2. Set sortedAndNormalizedImports to the result of sorting and normalizing a module specifier mapp1112 given
parsed["imports"] and baseURL.

5. Let sortedAndNormalizedScopes be an empty ordered map.

6. If parsed["scopes"] exists, then:

1. If parsed["scopes"] is not an ordered map, then throw a TypeError indicating that the value for the "scopes" top-
level key needs to be a JSON object.

2. Set sortedAndNormalizedScopes to the result of sorting and normalizing scopesp1113 given parsed["scopes"] and
baseURL.

7. Let normalizedIntegrity be an empty ordered map.

8. If parsed["integrity"] exists, then:

1. If parsed["integrity"] is not an ordered map, then throw a TypeError indicating that the value for the
"integrity" top-level key needs to be a JSON object.

2. Set normalizedIntegrity to the result of normalizing a module integrity mapp1113 given parsed["integrity"] and
baseURL.

9. If parsed's keys contains any items besides "imports", "scopes", or "integrity", then the user agent should report a
warning to the console indicating that an invalid top-level key was present in the import map.

10. Return an import mapp1107 whose importsp1107 are sortedAndNormalizedImports, whose scopesp1107 are
sortedAndNormalizedScopes, and whose integrityp1107 are normalizedIntegrity.

To merge module specifier maps, given a module specifier mapp1107 newMap and a module specifier mapp1107 oldMap:

1. Let mergedMap be a deep copy of oldMap.

2. For each specifier → url of newMap:

1. If specifier exists in oldMap, then:

1. The user agent may report a warning to the console indicating the ignored rule. They may choose to

This can help detect typos. It is not an error, because that would prevent any future extensions from being added
backward-compatibly.

Note

The import mapp1107 that results from this parsing algorithm is highly normalized. For example, given a base URL of
https://example.com/base/page.html, the input

{
"imports": {

"/app/helper": "node_modules/helper/index.mjs",
"lodash": "/node_modules/lodash-es/lodash.js"

}
}

will generate an import mapp1107 with importsp1107 of

«[
"https://example.com/app/helper" → https://example.com/base/node_modules/helper/index.mjs
"lodash" → https://example.com/node_modules/lodash-es/lodash.js

]»

and (despite nothing being present in the input string) an empty ordered map for its scopesp1107.

Example

1108

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#list-contain
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-iterate
https://infra.spec.whatwg.org/#map-exists
https://console.spec.whatwg.org/#report-a-warning-to-the-console

avoid reporting if the rule is identical to an existing one.

2. Continue.

2. Set mergedMap[specifier] to url.

3. Return mergedMap.

To merge existing and new import maps, given a global objectp1077 global and an import mapp1107 newImportMap:

1. Let newImportMapScopes be a deep copy of newImportMap's scopesp1107.

2. Let oldImportMap be global's import mapp1077.

3. Let newImportMapImports be a deep copy of newImportMap's importsp1107.

4. For each scopePrefix → scopeImports of newImportMapScopes:

1. For each record of global's resolved module setp1077:

1. If scopePrefix is record's serialized base URLp1107, or if scopePrefix ends with U+002F (/) and scopePrefix
is a code unit prefix of record's serialized base URLp1107, then:

1. For each specifierKey → resolutionResult of scopeImports:

1. If specifierKey is record's specifierp1107, or if all of the following conditions are true:

▪ specifierKey ends with U+002F (/);

▪ specifierKey is a code unit prefix of record's specifierp1107;

▪ either record's specifier as a URLp1107 is null or is special,

then:

1. The user agent may report a warning to the console indicating the ignored
rule. They may choose to avoid reporting if the rule is identical to an
existing one.

2. Remove scopeImports[specifierKey].

2. If scopePrefix exists in oldImportMap's scopesp1107, then set oldImportMap's scopesp1107[scopePrefix] to the result of
merging module specifier mapsp1108, given scopeImports and oldImportMap's scopesp1107[scopePrefix].

3. Otherwise, set oldImportMap's scopesp1107[scopePrefix] to scopeImports.

5. For each url → integrity of newImportMap's integrityp1107:

1. If url exists in oldImportMap's integrityp1107, then:

1. The user agent may report a warning to the console indicating the ignored rule. They may choose to
avoid reporting if the rule is identical to an existing one.

2. Continue.

2. Set oldImportMap's integrityp1107[url] to integrity.

6. For each record of global's resolved module setp1077:

1. For each specifier → url of newImportMapImports:

We're mutating these copies and removing items from them when they are used to ignore scope-specific rules. This is
true for newImportMapScopes, as well as to newImportMapImports below.

Note

Implementers are encouraged to implement a more efficient matching algorithm when working with the
resolved module setp1077. As guidance, the number of resolved/mapped modules in a large application can be
on the order of thousands.

Note

1109

https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#map-iterate
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#code-unit-prefix
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#code-unit-prefix
https://url.spec.whatwg.org/#is-special
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-iterate
https://infra.spec.whatwg.org/#map-exists
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-iterate

1. If specifier starts with record's specifierp1107, then:

1. The user agent may report a warning to the console indicating the ignored rule. They may
choose to avoid reporting if the rule is identical to an existing one.

2. Remove newImportMapImports[specifier].

7. Set oldImportMap's importsp1107 to the result of merge module specifier mapsp1108, given newImportMapImports and
oldImportMap's importsp1107.

The above algorithm merges a new import map into the given environment settings objectp1076 's global objectp1076 's import mapp1107.
Let's examine a few examples:

There are two cases when rules of the new import map don't get merged into the existing one.

1. The new import map rule has the exact same scope and specifier as a rule in the existing import map. We'll call that
"conflicting rule".

2. The new import map rule may impact the resolution of an already resolved module. We'll call that "impacted already
resolved module".

When the new import map has no conflicting rules, and there are no impacted resolved modules, the resulting map would be a
combination of the new and existing maps. Rules that would have individually impacted similar modules (e.g. "/app/" and "/app/
helper") but are not an exact match are not conflicting, and all make it to the merged map.

So, the following existing and new import maps:

{
"imports": {
"/app/": "./original-app/",

}
}

{
"imports": {

"/app/helper": "./helper/index.mjs"
},
"scopes": {

"/js": {
"/app/": "./js-app/"

}
}

}

Would be equivalent to the following single import map:

{
"imports": {

"/app/": "./original-app/",
"/app/helper": "./helper/index.mjs"

},
"scopes": {

"/js": {
"/app/": "./js-app/"

}
}

}

Example

When the new import map impacts an already resolved module, that rule gets dropped from the import map.
Example

1110

https://infra.spec.whatwg.org/#string-starts-with
https://console.spec.whatwg.org/#report-a-warning-to-the-console

So, if the resolved module setp1077 already contains the "/app/helper", the following new import map:

{
"imports": {
"/app/helper": "./helper/index.mjs",
"lodash": "/node_modules/lodash-es/lodash.js"

}
}

Would be equivalent to the following one:

{
"imports": {

"lodash": "/node_modules/lodash-es/lodash.js"
}

}

The same is true for rules that impact already resolved modules defined in specific scopes. If we already resolved "/app/helper"
from "/app/main.mjs" the following new import map:

{
"scopes": {

"/app/": {
"/app/helper": "./helper/index.mjs"

}
},
"imports": {
"lodash": "/node_modules/lodash-es/lodash.js"

}
}

Would similarly be equivalent to:

{
"imports": {

"lodash": "/node_modules/lodash-es/lodash.js"
}

}

Example

We could also have cases where a single already-resolved module specifier has multiple rules for its resolution, depending on the
referring script. In such cases, only the relevant rules would not be added to the map.

For example, if we already resolved "/app/helper" from "/app/vendor/main.mjs", the following new import map:

{
"scopes": {

"/app/": {
"/app/helper": "./helper/index.mjs"

},
"/app/vendor/": {

"/app/": "./vendor_helper/"
},
"/vendor/": {

"/app/helper": "./helper/vendor_index.mjs"

Example

1111

To sort and normalize a module specifier map, given an ordered map originalMap and a URL baseURL:

1. Let normalized be an empty ordered map.

2. For each specifierKey → value of originalMap:

}
},
"imports": {
"lodash": "/node_modules/lodash-es/lodash.js"
"/app/": "./general_app_path/"
"/app/helper": "./other_path/helper/index.mjs"

}
}

Would be equivalent to:

{
"scopes": {

"/vendor/": {
"/app/helper": "./helper/vendor_index.mjs"

}
},
"imports": {

"lodash": "/node_modules/lodash-es/lodash.js"
}

}

This is achieved by the fact that the merge algorithm tracks already resolved modules and removes rules affecting them from new
import maps before they are merged into the existing one.

When the new import map has conflicting rules to the existing import map, with no impacted already resolved modules, the
existing import map rules persist.

For example, the following existing and new import maps:

{
"imports": {
"/app/helper": "./helper/index.mjs",
"lodash": "/node_modules/lodash-es/lodash.js"

}
}

{
"imports": {

"/app/helper": "./main/helper/index.mjs"
}

}

Would be equivalent to the following single import map:

{
"imports": {

"/app/helper": "./helper/index.mjs",
"lodash": "/node_modules/lodash-es/lodash.js",

}
}

Example

1112

https://infra.spec.whatwg.org/#ordered-map
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-iterate

1. Let normalizedSpecifierKey be the result of normalizing a specifier keyp1114 given specifierKey and baseURL.

2. If normalizedSpecifierKey is null, then continue.

3. If value is not a string, then:

1. The user agent may report a warning to the console indicating that addresses need to be strings.

2. Set normalized[normalizedSpecifierKey] to null.

3. Continue.

4. Let addressURL be the result of resolving a URL-like module specifierp1103 given value and baseURL.

5. If addressURL is null, then:

1. The user agent may report a warning to the console indicating that the address was invalid.

2. Set normalized[normalizedSpecifierKey] to null.

3. Continue.

6. If specifierKey ends with U+002F (/), and the serialization of addressURL does not end with U+002F (/), then:

1. The user agent may report a warning to the console indicating that an invalid address was given for the
specifier key specifierKey; since specifierKey ends with a slash, the address needs to as well.

2. Set normalized[normalizedSpecifierKey] to null.

3. Continue.

7. Set normalized[normalizedSpecifierKey] to addressURL.

3. Return the result of sorting in descending order normalized, with an entry a being less than an entry b if a's key is code unit
less than b's key.

To sort and normalize scopes, given an ordered map originalMap and a URL baseURL:

1. Let normalized be an empty ordered map.

2. For each scopePrefix → potentialSpecifierMap of originalMap:

1. If potentialSpecifierMap is not an ordered map, then throw a TypeError indicating that the value of the scope with
prefix scopePrefix needs to be a JSON object.

2. Let scopePrefixURL be the result of URL parsing scopePrefix with baseURL.

3. If scopePrefixURL is failure, then:

1. The user agent may report a warning to the console that the scope prefix URL was not parseable.

2. Continue.

4. Let normalizedScopePrefix be the serialization of scopePrefixURL.

5. Set normalized[normalizedScopePrefix] to the result of sorting and normalizing a module specifier mapp1112 given
potentialSpecifierMap and baseURL.

3. Return the result of sorting in descending order normalized, with an entry a being less than an entry b if a's key is code unit
less than b's key.

To normalize a module integrity map, given an ordered map originalMap:

1. Let normalized be an empty ordered map.

2. For each key → value of originalMap:

In the above two algorithms, sorting keys and scopes in descending order has the effect of putting "foo/bar/" before "foo/". This
in turn gives "foo/bar/" a higher priority than "foo/" during module specifier resolutionp1102.

Note

1113

https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#string
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#iteration-continue
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#iteration-continue
https://url.spec.whatwg.org/#concept-url-serializer
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#map-sort-in-descending-order
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#code-unit-less-than
https://infra.spec.whatwg.org/#code-unit-less-than
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#ordered-map
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#ordered-map
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://url.spec.whatwg.org/#concept-url-parser
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#iteration-continue
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#map-sort-in-descending-order
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#code-unit-less-than
https://infra.spec.whatwg.org/#code-unit-less-than
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-iterate

1. Let resolvedURL be the result of resolving a URL-like module specifierp1103 given key and baseURL.

2. If resolvedURL is null, then:

1. The user agent may report a warning to the console indicating that the key failed to resolve.

2. Continue.

3. If value is not a string, then:

1. The user agent may report a warning to the console indicating that integrity metadata values need to be
strings.

2. Continue.

4. Set normalized[resolvedURL] to value.

3. Return normalized.

To normalize a specifier key, given a string specifierKey and a URL baseURL:

1. If specifierKey is the empty string, then:

1. The user agent may report a warning to the console indicating that specifier keys may not be the empty string.

2. Return null.

2. Let url be the result of resolving a URL-like module specifierp1103, given specifierKey and baseURL.

3. If url is not null, then return the serialization of url.

4. Return specifierKey.

The JavaScript specification contains a number of implementation-defined abstract operations, that vary depending on the host
environment. This section defines them for user agent hosts.

JavaScript contains an implementation-defined HostEnsureCanAddPrivateElement(O) abstract operation. User agents must use the
following implementation: [JAVASCRIPT]p1479

1. If O is a WindowProxyp934 object, or implements Locationp937, then return Completion { [[Type]]: throw, [[Value]]: a new
TypeError }.

2. Return NormalCompletion(unused).

Unlike "imports", keys of the integrity map are treated as URLs, not module specifiers. However, we use the
resolve a URL-like module specifierp1103 algorithm to prohibit "bare" relative URLs like foo, which could be
mistaken for module specifiers.

Note

8.1.6.1 HostEnsureCanAddPrivateElement(O) §p11

14

JavaScript private fields can be applied to arbitrary objects. Since this can dramatically complicate implementation for particularly-
exotic host objects, the JavaScript language specification provides this hook to allow hosts to reject private fields on objects
meeting a host-defined criteria. In the case of HTML, WindowProxyp934 and Locationp937 have complicated semantics — particularly
around navigation and security — that make implementation of private field semantics challenging, so our implementation simply
rejects those objects.

Note

8.1.6 JavaScript specification host hooks §p11

14

1114

https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#string
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://fetch.spec.whatwg.org/#concept-request-integrity-metadata
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://console.spec.whatwg.org/#report-a-warning-to-the-console
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostensurecanaddprivateelement
https://webidl.spec.whatwg.org/#implements
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-normalcompletion

JavaScript contains an implementation-defined HostEnsureCanCompileStrings abstract operation, redefined by the Dynamic Code
Brand Checks proposal. User agents must use the following implementation: [JAVASCRIPT]p1479 [JSDYNAMICCODEBRANDCHECKS]p1479

1. Perform ? EnsureCSPDoesNotBlockStringCompilation(realm, parameterStrings, bodyString, codeString, compilationType,
parameterArgs, bodyArg). [CSP]p1476

The Dynamic Code Brand Checks proposal contains an implementation-defined HostGetCodeForEval(argument) abstract operation.
User agents must use the following implementation: [JSDYNAMICCODEBRANDCHECKS]p1479

1. If argument is a TrustedScript object, then return argument's data.

2. Otherwise, return no-code.

JavaScript contains an implementation-defined HostPromiseRejectionTracker(promise, operation) abstract operation. User agents must
use the following implementation: [JAVASCRIPT]p1479

1. Let script be the running scriptp1097.

2. If script is a classic scriptp1085 and script's muted errorsp1085 is true, then return.

3. Let settingsObject be the current settings objectp1083.

4. If script is not null, then set settingsObject to script's settings objectp1084.

5. Let global be settingsObject's global objectp1077.

6. If operation is "reject", then:

1. Append promise to global's about-to-be-notified rejected promises listp1077.

7. If operation is "handle", then:

1. If global's about-to-be-notified rejected promises listp1077 contains promise, then remove promise from that list and
return.

2. If global's outstanding rejected promises weak setp1077 does not contain promise, then return.

3. Remove promise from global's outstanding rejected promises weak setp1077.

4. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given global to fire an event named
rejectionhandledp1472 at global, using PromiseRejectionEventp1100, with the promisep1101 attribute initialized to
promise, and the reasonp1101 attribute initialized to promise.[[PromiseResult]].

The Temporal proposal contains an implementation-defined HostSystemUTCEpochNanoseconds abstract operation. User agents must
use the following implementation: [JSTEMPORAL]p1479

1. Let settingsObject be global's relevant settings objectp1083.

2. Let time be settingsObject's current wall time.

3. Let ns be the number of nanoseconds from the Unix epoch to time, rounded to the nearest integer.

4. Return the result of clamping ns between nsMinInstant and nsMaxInstant.

8.1.6.2 HostEnsureCanCompileStrings(realm, parameterStrings, bodyString, codeString, compilationType,
parameterArgs, bodyArg) §p11

15

8.1.6.3 HostGetCodeForEval(argument) §p11

15

8.1.6.4 HostPromiseRejectionTracker(promise, operation) §p11

15

8.1.6.5 HostSystemUTCEpochNanoseconds(global) §p11

15

1115

https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/proposal-dynamic-code-brand-checks/#sec-hostensurecancompilestrings
https://w3c.github.io/webappsec-csp/#can-compile-strings
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/proposal-dynamic-code-brand-checks/#sec-hostgetcodeforeval
https://w3c.github.io/trusted-types/dist/spec/#trusted-script
https://w3c.github.io/trusted-types/dist/spec/#trustedscript-data
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-host-promise-rejection-tracker
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-remove
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/proposal-temporal/#sec-hostsystemutcepochnanoseconds
https://w3c.github.io/hr-time/#dfn-current-wall-time
https://w3c.github.io/hr-time/#dfn-unix-epoch
https://tc39.es/ecma262/#clamping
https://tc39.es/proposal-temporal/#eqn-nsMinInstant
https://tc39.es/proposal-temporal/#eqn-nsMaxInstant

The JavaScript specification defines Jobs to be scheduled and run later by the host, as well as JobCallback Records which encapsulate
JavaScript functions that are called as part of jobs. The JavaScript specification contains a number of implementation-defined abstract
operations that lets the host define how jobs are scheduled and how JobCallbacks are handled. HTML uses these abstract operations to
track the incumbent settings objectp1081 in promises and FinalizationRegistry callbacks by saving and restoring the incumbent
settings objectp1081 and a JavaScript execution context for the active scriptp1085 in JobCallbacks. This section defines them for user
agent hosts.

JavaScript contains an implementation-defined HostCallJobCallback(callback, V, argumentsList) abstract operation to let hosts restore
state when invoking JavaScript callbacks from inside tasks. User agents must use the following implementation: [JAVASCRIPT]p1479

1. Let incumbent settings be callback.[[HostDefined]].[[IncumbentSettings]].

2. Let script execution context be callback.[[HostDefined]].[[ActiveScriptContext]].

3. Prepare to run a callbackp1080 with incumbent settings.

4. If script execution context is not null, then push script execution context onto the JavaScript execution context stack.

5. Let result be Call(callback.[[Callback]], V, argumentsList).

6. If script execution context is not null, then pop script execution context from the JavaScript execution context stack.

7. Clean up after running a callbackp1080 with incumbent settings.

8. Return result.

JavaScript has the ability to register objects with FinalizationRegistry objects, in order to schedule a cleanup action if they are
found to be garbage collected. The JavaScript specification contains an implementation-defined
HostEnqueueFinalizationRegistryCleanupJob(finalizationRegistry) abstract operation to schedule the cleanup action.

Cleanup actions do not take place interspersed with synchronous JavaScript execution, but rather happen in queued tasksp1124. User
agents must use the following implementation: [JAVASCRIPT]p1479

1. Let global be finalizationRegistry.[[Realm]]'s global objectp1076.

2. Queue a global taskp1125 on the JavaScript engine task source given global to perform the following steps:

1. Let entry be finalizationRegistry.[[CleanupCallback]].[[Callback]].[[Realm]]'s environment settings objectp1077.

2. Check if we can run scriptp1097 with entry. If this returns "do not run", then return.

8.1.6.6 Job-related host hooks §p11

16

8.1.6.6.1 HostCallJobCallback(callback, V, argumentsList) §p11

16

This affects the incumbentp1078 concept while the callback runs.
Note

This affects the active scriptp1085 while the callback runs.
Note

8.1.6.6.2 HostEnqueueFinalizationRegistryCleanupJob(finalizationRegistry) §p11

16

The timing and occurrence of cleanup work is implementation-defined in the JavaScript specification. User agents might differ in
when and whether an object is garbage collected, affecting both whether the return value of the WeakRef.prototype.deref()
method is undefined, and whether FinalizationRegistry cleanup callbacks occur. There are well-known cases in popular web
browsers where objects are not accessible to JavaScript, but they remain retained by the garbage collector indefinitely. HTML
clears kept-alive WeakRef objects in the perform a microtask checkpointp1131 algorithm. Authors would be best off not depending on
the timing details of garbage collection implementations.

Note

⚠ MDN

1116

https://tc39.es/ecma262/#sec-jobcallback-records
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-finalization-registry-objects
https://tc39.es/ecma262/#sec-execution-contexts
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostcalljobcallback
https://infra.spec.whatwg.org/#stack-push
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-call
https://infra.spec.whatwg.org/#stack-pop
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-finalization-registry-objects
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-host-cleanup-finalization-registry
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-weak-ref.prototype.deref
https://tc39.es/ecma262/#sec-finalization-registry-objects
https://tc39.es/ecma262/#sec-weak-ref-objects

3. Prepare to run scriptp1097 with entry.

4. Let result be the result of performing CleanupFinalizationRegistry(finalizationRegistry).

5. Clean up after running scriptp1097 with entry.

6. If result is an abrupt completion, then report an exceptionp1098 given by result.[[Value]] for global.

JavaScript contains an implementation-defined HostEnqueueGenericJob(job, realm) abstract operation to perform generic jobs in a
particular realm (e.g., resolve promises resulting from Atomics.waitAsync). User agents must use the following implementation:
[JAVASCRIPT]p1479

1. Let global be realm's global objectp1077.

2. Queue a global taskp1125 on the JavaScript engine task sourcep1116 given global to perform job().

JavaScript contains an implementation-defined HostEnqueuePromiseJob(job, realm) abstract operation to schedule Promise-related
operations. HTML schedules these operations in the microtask queue. User agents must use the following implementation:
[JAVASCRIPT]p1479

1. If realm is not null, then let job settings be the settings objectp1077 for realm. Otherwise, let job settings be null.

2. Queue a microtaskp1125 to perform the following steps:

1. If job settings is not null, then check if we can run scriptp1097 with job settings. If this returns "do not run" then
return.

2. If job settings is not null, then prepare to run scriptp1097 with job settings.

3. Let result be job().

This affects the entryp1078 concept while the cleanup callback runs.
Note

8.1.6.6.3 HostEnqueueGenericJob(job, realm) §p11

17

8.1.6.6.4 HostEnqueuePromiseJob(job, realm) §p11

17

If realm is not null, it is the realm of the author code that will run. When job is returned by NewPromiseReactionJob, it is
the realm of the promise's handler function. When job is returned by NewPromiseResolveThenableJob, it is the realm of
the then function.

If realm is null, either no author code will run or author code is guaranteed to throw. For the former, the author may not
have passed in code to run, such as in promise.then(null, null). For the latter, it is because a revoked Proxy was
passed. In both cases, all the steps below that would otherwise use job settings get skipped.

NewPromiseResolveThenableJob and NewPromiseReactionJob both seem to provide non-null realms (the current
Realm Record) in the case of a revoked proxy. The previous text could be updated to reflect that.

Note

This affects the entryp1078 concept while the job runs.
Note

job is an abstract closure returned by NewPromiseReactionJob or NewPromiseResolveThenableJob. The
promise's handler function when job is returned by NewPromiseReactionJob, and the then function when job is
returned by NewPromiseResolveThenableJob, are wrapped in JobCallback Records. HTML saves the incumbent
settings objectp1081 and a JavaScript execution context for to the active scriptp1085 in HostMakeJobCallbackp1118

and restores them in HostCallJobCallbackp1116.

Note

1117

https://tc39.es/ecma262/#sec-cleanup-finalization-registry
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostenqueuegenericjob
https://tc39.es/ecma262/#sec-atomics.waitasync
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostenqueuepromisejob
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-abstract-closure
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-newpromisereactionjob
https://tc39.es/ecma262/#sec-newpromiseresolvethenablejob
https://tc39.es/ecma262/#sec-jobcallback-records
https://tc39.es/ecma262/#sec-execution-contexts

4. If job settings is not null, then clean up after running scriptp1097 with job settings.

5. If result is an abrupt completion, then report an exceptionp1098 given by result.[[Value]] for realm's global
objectp1077.

There is a very gnarly case where HostEnqueuePromiseJob is called with a null realm (e.g., because
Promise.prototype.then was called with null handlers) but also the job returns abruptly (because the promise
capability's resolve or reject handler threw, possibly because this is a subclass of Promise that takes the
supplied functions and wraps them in throwing functions before passing them on to the function passed to the
Promise superclass constructor. Which global is to be used then, considering that the current realm could be
different at each of those steps, by using a Promise constructor or Promise.prototype.then from another
realm? See issue #10526.

JavaScript contains an implementation-defined HostEnqueueTimeoutJob(job, milliseconds) abstract operation to schedule an operation
to be performed after a timeout. HTML schedules these operations using run steps after a timeoutp1164. User agents must use the
following implementation: [JAVASCRIPT]p1479

1. Let global be realm's global objectp1077.

2. Let timeoutStep be an algorithm step which queues a global taskp1125 on the JavaScript engine task sourcep1116 given global
to perform job().

3. Run steps after a timeoutp1164 given global, "JavaScript", milliseconds, and timeoutStep.

JavaScript contains an implementation-defined HostMakeJobCallback(callable) abstract operation to let hosts attach state to JavaScript
callbacks that are called from inside taskp1124s. User agents must use the following implementation: [JAVASCRIPT]p1479

1. Let incumbent settings be the incumbent settings objectp1081.

2. Let active script be the active scriptp1085.

3. Let script execution context be null.

4. If active script is not null, set script execution context to a new JavaScript execution context, with its Function field set to null,
its Realm field set to active script's settings objectp1084 's realmp1077, and its ScriptOrModule set to active script's recordp1084.

8.1.6.6.5 HostEnqueueTimeoutJob(job, realm, milliseconds) §p11

18

8.1.6.6.6 HostMakeJobCallback(callable) §p11

18

As seen below, this is used in order to propagate the current active scriptp1085 forward to the time when the job callback
is invoked.

Note

A case where active script is non-null, and saving it in this way is useful, is the following:

Promise.resolve('import(`./example.mjs`)').then(eval);

Without this step (and the steps that use it in HostCallJobCallbackp1116), there would be no active scriptp1085 when the
import() expression is evaluated, since eval() is a built-in function that does not originate from any particular
scriptp1084.

With this step in place, the active script is propagated from the above code into the job, allowing import() to use the
original script's base URLp1085 appropriately.

Example

active script can be null if the user clicks on the following button:
Example

1118

https://tc39.es/ecma262/#sec-completion-record-specification-type
https://github.com/whatwg/html/issues/10526
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostenqueuetimeoutjob
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostmakejobcallback
https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-eval-x
https://tc39.es/ecma262/#sec-import-calls

5. Return the JobCallback Record { [[Callback]]: callable, [[HostDefined]]: { [[IncumbentSettings]]: incumbent settings,
[[ActiveScriptContext]]: script execution context } }.

The JavaScript specification defines a syntax for modules, as well as some host-agnostic parts of their processing model. This
specification defines the rest of their processing model: how the module system is bootstrapped, via the scriptp652 element with
typep653 attribute set to "module", and how modules are fetched, resolved, and executed. [JAVASCRIPT]p1479

A module map is a map keyed by tuples consisting of a URL record and a string. The URL record is the request URL at which the
module was fetched, and the string indicates the type of the module (e.g. "javascript-or-wasm"). The module mapp1119 's values are
either a module scriptp1085, null (used to represent failed fetches), or a placeholder value "fetching". Module mapsp1119 are used to
ensure that imported module scripts are only fetched, parsed, and evaluated once per Documentp130 or workerp1212.

<button onclick="Promise.resolve('import(`./example.mjs`)').then(eval)">Click me</button>

In this case, the JavaScript function for the event handlerp1136 will be created by the get the current value of the event
handlerp1142 algorithm, which creates a function with null [[ScriptOrModule]] value. Thus, when the promise machinery
calls HostMakeJobCallbackp1118, there will be no active scriptp1085 to pass along.

As a consequence, this means that when the import() expression is evaluated, there will still be no active scriptp1085.
Fortunately that is handled by our implementation of HostLoadImportedModulep1121 by falling back to using the current
settings objectp1083 's API base URLp1076.

8.1.6.7 Module-related host hooks §p11

19

Although the JavaScript specification speaks in terms of "scripts" versus "modules", in general this specification speaks in terms of
classic scriptsp1085 versus module scriptsp1085, since both of them use the scriptp652 element.

Note

modulePromise = import(specifier)
Returns a promise for the module namespace object for the module scriptp1085 identified by specifier. This allows dynamic
importing of module scripts at runtime, instead of statically using the import statement form. The specifier will be resolvedp1102

relative to the active scriptp1085.
The returned promise will be rejected if an invalid specifier is given, or if a failure is encountered while fetchingp1121 or
evaluating the resulting module graph.
This syntax can be used inside both classicp1085 and module scriptsp1085. It thus provides a bridge into the module-script world,
from the classic-script world.

url = import.meta.urlp1121

Returns the active module scriptp1085 's base URLp1085.
This syntax can only be used inside module scriptsp1085.

url = import.meta.resolvep1121(specifier)
Returns specifier, resolvedp1102 relative to the active scriptp1085. That is, this returns the URL that would be imported by using
import(specifier).
Throws a TypeError exception if an invalid specifier is given.
This syntax can only be used inside module scriptsp1085.

For web developers (non-normative)

Since module mapsp1119 are keyed by (URL, module type), the following code will create three separate entries in the module
mapp1119, since it results in three different (URL, module type) tuples (all with "javascript-or-wasm" type):

import "https://example.com/module.mjs";
import "https://example.com/module.mjs#map-buster";

Example

1119

https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-jobcallback-records
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-meta-properties
https://tc39.es/ecma262/#sec-meta-properties
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#tuple
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#string
https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-url
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#tuple

import "https://example.com/module.mjs?debug=true";

That is, URL queries and fragments can be varied to create distinct entries in the module mapp1119; they are not ignored. Thus,
three separate fetches and three separate module evaluations will be performed.

In contrast, the following code would only create a single entry in the module mapp1119, since after applying the URL parser to
these inputs, the resulting URL records are equal:

import "https://example.com/module2.mjs";
import "https:example.com/module2.mjs";
import "https://///example.com\\module2.mjs";
import "https://example.com/foo/../module2.mjs";

So in this second example, only one fetch and one module evaluation will occur.

Note that this behavior is the same as how shared workersp1237 are keyed by their parsed constructor urlp1230.

Since module type is also part of the module mapp1119 key, the following code will create two separate entries in the module
mapp1119 (the type is "javascript-or-wasm" for the first, and "css" for the second):

<script type=module>
import "https://example.com/module";

</script>
<script type=module>

import "https://example.com/module" with { type: "css" };
</script>

This can result in two separate fetches and two separate module evaluations being performed.

In practice, due to the as-yet-unspecified memory cache (see issue #6110) the resource may only be fetched once in WebKit
and Blink-based browsers. Additionally, as long as all module types are mutually exclusive, the module type check in fetch a
single module scriptp1091 will fail for at least one of the imports, so at most one module evaluation will occur.

The purpose of including the type in the module mapp1119 key is so that an import with the wrong type attribute does not prevent a
different import of the same specifier but with the correct type from succeeding.

Example

JavaScript module scripts are the default import type when importing from another JavaScript module; that is, when an import
statement lacks a type import attribute the imported module script's type will be JavaScript. Attempting to import a JavaScript
resource using an import statement with a type import attribute will fail:

<script type="module">
// All of the following will fail, assuming that the imported .mjs files are served with a
// JavaScript MIME type. JavaScript module scripts are the default and cannot be imported with
// any import type attribute.
import foo from "./foo.mjs" with { type: "javascript" };
import foo2 from "./foo2.mjs" with { type: "js" };
import foo3 from "./foo3.mjs" with { type: "" };
await import("./foo4.mjs", { with: { type: null } });
await import("./foo5.mjs", { with: { type: undefined } });

</script>

Example

1120

https://url.spec.whatwg.org/#concept-url-query
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#concept-url
https://github.com/whatwg/html/issues/6110

JavaScript contains an implementation-defined HostGetImportMetaProperties abstract operation. User agents must use the following
implementation: [JAVASCRIPT]p1479

1. Let moduleScript be moduleRecord.[[HostDefined]].

2. Assert: moduleScript's base URLp1085 is not null, as moduleScript is a JavaScript module scriptp1085.

3. Let urlString be moduleScript's base URLp1085, serialized.

4. Let steps be the following steps, given the argument specifier:

1. Set specifier to ? ToString(specifier).

2. Let url be the result of resolving a module specifierp1102 given moduleScript and specifier.

3. Return the serialization of url.

5. Let resolveFunction be ! CreateBuiltinFunction(steps, 1, "resolve", « »).

6. Return « Record { [[Key]]: "url", [[Value]]: urlString }, Record { [[Key]]: "resolve", [[Value]]: resolveFunction } ».

The Import Attributes proposal contains an implementation-defined HostGetSupportedImportAttributes abstract operation. User agents
must use the following implementation: [JSIMPORTATTRIBUTES]p1479

1. Return « "type" ».

JavaScript contains an implementation-defined HostLoadImportedModule abstract operation. User agents must use the following
implementation: [JAVASCRIPT]p1479

1. Let settingsObject be the current settings objectp1083.

2. If settingsObject's global objectp1077 implements WorkletGlobalScopep1245 or ServiceWorkerGlobalScope and loadState is
undefined, then:

1. Let completion be Completion Record { [[Type]]: throw, [[Value]]: a new TypeError, [[Target]]: empty }.

2. Perform FinishLoadingImportedModule(referrer, moduleRequest, payload, completion).

3. Return.

3. Let referencingScript be null.

4. Let originalFetchOptions be the default script fetch optionsp1086.

5. Let fetchReferrer be "client".

6. If referrer is a Script Record or a Cyclic Module Record, then:

1. Set referencingScript to referrer.[[HostDefined]].

2. Set settingsObject to referencingScript's settings objectp1084.

3. Set fetchReferrer to referencingScript's base URLp1085.

4. Set originalFetchOptions to referencingScript's fetch optionsp1085.

8.1.6.7.1 HostGetImportMetaProperties(moduleRecord) §p11

21

8.1.6.7.2 HostGetSupportedImportAttributes() §p11

21

8.1.6.7.3 HostLoadImportedModule(referrer, moduleRequest, loadState, payload) §p11

21

loadState is undefined when the current fetching process has been initiated by a dynamic import() call, either directly
or when loading the transitive dependencies of the dynamically imported module.

Note

✔ MDN

1121

https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/ecma262/#sec-hostgetimportmetaproperties
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url-serializer
https://tc39.es/ecma262/#sec-tostring
https://url.spec.whatwg.org/#concept-url-serializer
https://tc39.es/ecma262/#sec-createbuiltinfunction
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/proposal-import-attributes/#sec-hostgetsupportedimportattributes
https://infra.spec.whatwg.org/#implementation-defined
https://tc39.es/proposal-import-attributes/#sec-HostLoadImportedModule
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule
https://tc39.es/ecma262/#sec-script-records
https://tc39.es/ecma262/#sec-cyclic-module-records

7. If referrer is a Cyclic Module Record and moduleRequest is equal to the first element of referrer.[[RequestedModules]], then:

1. For each ModuleRequest record requested of referrer.[[RequestedModules]]:

1. If moduleRequest.[[Attributes]] contains a Record entry such that entry.[[Key]] is not "type", then:

1. Let completion be Completion Record { [[Type]]: throw, [[Value]]: a new SyntaxError
exception, [[Target]]: empty }.

2. Perform FinishLoadingImportedModule(referrer, moduleRequest, payload, completion).

3. Return.

2. Resolve a module specifierp1102 given referencingScript and moduleRequest.[[Specifier]], catching any
exceptions. If they throw an exception, let resolutionError be the thrown exception.

3. If the previous step threw an exception, then:

1. Let completion be Completion Record { [[Type]]: throw, [[Value]]: resolutionError, [[Target]]:
empty }.

2. Perform FinishLoadingImportedModule(referrer, moduleRequest, payload, completion).

3. Return.

4. Let moduleType be the result of running the module type from module requestp1095 steps given
moduleRequest.

5. If the result of running the module type allowedp1095 steps given moduleType and settingsObject is false,
then:

1. Let completion be Completion Record { [[Type]]: throw, [[Value]]: a new TypeError exception,
[[Target]]: empty }.

2. Perform FinishLoadingImportedModule(referrer, moduleRequest, payload, completion).

3. Return.

8. Let url be the result of resolving a module specifierp1102 given referencingScript and moduleRequest.[[Specifier]], catching
any exceptions. If they throw an exception, let resolutionError be the thrown exception.

9. If the previous step threw an exception, then:

1. Let completion be Completion Record { [[Type]]: throw, [[Value]]: resolutionError, [[Target]]: empty }.

2. Perform FinishLoadingImportedModule(referrer, moduleRequest, payload, completion).

3. Return.

referrer is usually a Script Record or a Cyclic Module Record, but it will not be so for event handlers per the get the
current value of the event handlerp1142 algorithm. For example, given:

<button onclick="import('./foo.mjs')">Click me</button>

If a click event occurs, then at the time the import() expression runs, GetActiveScriptOrModule will return null, and this
operation will receive the current realm as a fallback referrer.

Example

The JavaScript specification re-performs this validation but it is duplicated here to avoid
unnecessarily loading any of the dependencies on validation failure.

Note

This step is essentially validating all of the requested module specifiers and type attributes when the first call
to HostLoadImportedModulep1121 for a static module dependency list is made, to avoid further loading
operations in the case any one of the dependencies has a static error. We treat a module with unresolvable
module specifiers or unsupported type attributes the same as one that cannot be parsed; in both cases, a
syntactic issue makes it impossible to ever contemplate linking the module later.

Note

1122

https://tc39.es/ecma262/#sec-script-records
https://tc39.es/ecma262/#sec-cyclic-module-records
https://w3c.github.io/uievents/#event-type-click
https://tc39.es/ecma262/#sec-import-calls
https://tc39.es/ecma262/#sec-getactivescriptormodule
https://tc39.es/ecma262/#current-realm
https://tc39.es/ecma262/#sec-cyclic-module-records
https://infra.spec.whatwg.org/#list-iterate
https://tc39.es/proposal-import-attributes/#sec-modulerequest-record
https://tc39.es/ecma262/#sec-list-and-record-specification-type
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-syntaxerror
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule

10. Let fetchOptions be the result of getting the descendant script fetch optionsp1086 given originalFetchOptions, url, and
settingsObject.

11. Let destination be "script".

12. Let fetchClient be settingsObject.

13. If loadState is not undefined, then:

1. Set destination to loadState.[[Destination]].

2. Set fetchClient to loadState.[[FetchClient]].

14. Fetch a single imported module scriptp1093 given url, fetchClient, destination, fetchOptions, settingsObject, fetchReferrer,
moduleRequest, and onSingleFetchComplete as defined below. If loadState is not undefined and loadState.[[PerformFetch]] is
not null, pass loadState.[[PerformFetch]] along as well.

onSingleFetchComplete given moduleScript is the following algorithm:

1. Let completion be null.

2. If moduleScript is null, then set completion to Completion Record { [[Type]]: throw, [[Value]]: a new TypeError,
[[Target]]: empty }.

3. Otherwise, if moduleScript's parse errorp1084 is not null, then:

1. Let parseError be moduleScript's parse errorp1084.

2. Set completion to Completion Record { [[Type]]: throw, [[Value]]: parseError, [[Target]]: empty }.

3. If loadState is not undefined and loadState.[[ParseError]] is null, set loadState.[[ParseError]] to
parseError.

4. Otherwise, set completion to Completion Record { [[Type]]: normal, [[Value]]: moduleScript's recordp1084, [[Target]]:
empty }.

5. Perform FinishLoadingImportedModule(referrer, moduleRequest, payload, completion).

To coordinate events, user interaction, scripts, rendering, networking, and so forth, user agents must use event loops as described in
this section. Each agent has an associated event loop, which is unique to that agent.

The event loopp1123 of a similar-origin window agentp1072 is known as a window event loop. The event loopp1123 of a dedicated worker
agentp1072, shared worker agentp1072, or service worker agentp1072 is known as a worker event loop. And the event loopp1123 of a
worklet agentp1072 is known as a worklet event loop.

An event loopp1123 has one or more task queues. A task queuep1123 is a set of tasksp1124.

8.1.7.1 Definitions §p11

23

Event loopsp1123 do not necessarily correspond to implementation threads. For example, multiple window event loopsp1123 could be
cooperatively scheduled in a single thread.

However, for the various worker agents that are allocated with [[CanBlock]] set to true, the JavaScript specification does place
requirements on them regarding forward progress, which effectively amount to requiring dedicated per-agent threads in those
cases.

Note

Task queuesp1123 are sets, not queues, because the event loop processing modelp1126 grabs the first runnablep1124 taskp1124 from the
chosen queue, instead of dequeuing the first task.

Note

8.1.7 Event loops §p11

23

1123

https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-completion-record-specification-type
https://tc39.es/ecma262/#sec-FinishLoadingImportedModule
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-forward-progress
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#queue
https://infra.spec.whatwg.org/#queue-dequeue

Tasks encapsulate algorithms that are responsible for such work as:

Events
Dispatching an Event object at a particular EventTarget object is often done by a dedicated task.

Parsing
The HTML parserp1271 tokenizing one or more bytes, and then processing any resulting tokens, is typically a task.

Callbacks
Calling a callback is often done by a dedicated task.

Using a resource
When an algorithm fetches a resource, if the fetching occurs in a non-blocking fashion then the processing of the resource once
some or all of the resource is available is performed by a task.

Reacting to DOM manipulation
Some elements have tasks that trigger in response to DOM manipulation, e.g. when that element is inserted into the documentp46.

Formally, a task is a struct which has:

Steps
A series of steps specifying the work to be done by the task.

A source
One of the task sourcesp1124, used to group and serialize related tasks.

A document
A Documentp130 associated with the task, or null for tasks that are not in a window event loopp1123.

A script evaluation environment settings object set
A set of environment settings objectsp1076 used for tracking script evaluation during the task.

A taskp1124 is runnable if its documentp1124 is either null or fully activep1003.

Per its sourcep1124 field, each taskp1124 is defined as coming from a specific task source. For each event loopp1123, every task
sourcep1124 must be associated with a specific task queuep1123.

Each event loopp1123 has a currently running task, which is either a taskp1124 or null. Initially, this is null. It is used to handle
reentrancy.

Each event loopp1123 has a microtask queue, which is a queue of microtasksp1124, initially empty. A microtask is a colloquial way of
referring to a taskp1124 that was created via the queue a microtaskp1125 algorithm.

The microtask queuep1124 is not a task queuep1123.
Note

Not all events are dispatched using the task queuep1123; many are dispatched during other tasks.
Note

Essentially, task sourcesp1124 are used within standards to separate logically-different types of tasks, which a user agent might wish
to distinguish between. Task queuesp1123 are used by user agents to coalesce task sources within a given event loopp1123.

Note

For example, a user agent could have one task queuep1123 for mouse and key events (to which the user interaction task sourcep1134

is associated), and another to which all other task sourcesp1124 are associated. Then, using the freedom granted in the initial step of
the event loop processing modelp1126, it could give keyboard and mouse events preference over other tasks three-quarters of the
time, keeping the interface responsive but not starving other task queues. Note that in this setup, the processing model still
enforces that the user agent would never process events from any one task sourcep1124 out of order.

Example

1124

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-eventtarget
https://fetch.spec.whatwg.org/#concept-fetch
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#queue

Each event loopp1123 has a performing a microtask checkpoint boolean, which is initially false. It is used to prevent reentrant
invocation of the perform a microtask checkpointp1131 algorithm.

Each window event loopp1123 has a DOMHighResTimeStamp last render opportunity time, initially set to zero.

Each window event loopp1123 has a DOMHighResTimeStamp last idle period start time, initially set to zero.

To get the same-loop windows for a window event loopp1123 loop, return all Windowp922 objects whose relevant agentp1073 's event
loopp1123 is loop.

To queue a task on a task sourcep1124 source, which performs a series of steps steps, optionally given an event loop event loop and a
document document:

1. If event loop was not given, set event loop to the implied event loopp1126.

2. If document was not given, set document to the implied documentp1126.

3. Let task be a new taskp1124.

4. Set task's stepsp1124 to steps.

5. Set task's sourcep1124 to source.

6. Set task's documentp1124 to the document.

7. Set task's script evaluation environment settings object setp1124 to an empty set.

8. Let queue be the task queuep1123 to which source is associated on event loop.

9. Append task to queue.

To queue a global task on a task sourcep1124 source, with a global objectp1076 global and a series of steps steps:

1. Let event loop be global's relevant agentp1073 's event loopp1123.

2. Let document be global's associated Documentp923, if global is a Windowp922 object; otherwise null.

3. Queue a taskp1125 given source, event loop, document, and steps.

To queue an element task on a task sourcep1124 source, with an element element and a series of steps steps:

1. Let global be element's relevant global objectp1083.

2. Queue a global taskp1125 given source, global, and steps.

To queue a microtask which performs a series of steps steps, optionally given a document document:

1. Assert: there is a surrounding agent. I.e., this algorithm is not called while in parallelp43.

2. Let eventLoop be the surrounding agent's event loopp1123.

3. If document was not given, set document to the implied documentp1126.

4. Let microtask be a new taskp1124.

5. Set microtask's stepsp1124 to steps.

6. Set microtask's sourcep1124 to the microtask task source.

8.1.7.2 Queuing tasks §p11

25

Failing to pass an event loop and document to queue a taskp1125 means relying on the ambiguous and poorly-
specified implied event loopp1126 and implied documentp1126 concepts. Specification authors should either always
pass these values, or use the wrapper algorithms queue a global taskp1125 or queue an element taskp1125 instead.
Using the wrapper algorithms is recommended.

⚠Warning!

1125

https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://w3c.github.io/hr-time/#dom-domhighrestimestamp
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#assert
https://tc39.es/ecma262/#surrounding-agent
https://tc39.es/ecma262/#surrounding-agent

7. Set microtask's documentp1124 to document.

8. Set microtask's script evaluation environment settings object setp1124 to an empty set.

9. Enqueue microtask on eventLoop's microtask queuep1124.

The implied event loop when queuing a task is the one that can deduced from the context of the calling algorithm. This is generally
unambiguous, as most specification algorithms only ever involve a single agent (and thus a single event loopp1123). The exception is
algorithms involving or specifying cross-agent communication (e.g., between a window and a worker); for those cases, the implied
event loopp1126 concept must not be relied upon and specifications must explicitly provide an event loopp1123 when queuing a taskp1125.

The implied document when queuing a task on an event loopp1123 event loop is determined as follows:

1. If event loop is not a window event loopp1123, then return null.

2. If the task is being queued in the context of an element, then return the element's node document.

3. If the task is being queued in the context of a browsing contextp998, then return the browsing context's active documentp998.

4. If the task is being queued by or for a scriptp1084, then return the script's settings objectp1084 's global objectp1077 's associated
Documentp923.

5. Assert: this step is never reached, because one of the previous conditions is true. Really?

Both implied event loopp1126 and implied documentp1126 are vaguely-defined and have a lot of action-at-a-distance. The hope is to
remove these, especially implied documentp1126. See issue #4980.

An event loopp1123 must continually run through the following steps for as long as it exists:

1. Let oldestTask and taskStartTime be null.

2. If the event loopp1123 has a task queuep1123 with at least one runnablep1124 taskp1124, then:

1. Let taskQueue be one such task queuep1123, chosen in an implementation-defined manner.

2. Set taskStartTime to the unsafe shared current time.

3. Set oldestTask to the first runnablep1124 taskp1124 in taskQueue, and remove it from taskQueue.

4. If oldestTask's documentp1124 is not null, then record task start time given taskStartTime and oldestTask's
documentp1124.

5. Set the event loopp1123 's currently running taskp1124 to oldestTask.

6. Perform oldestTask's stepsp1124.

7. Set the event loopp1123 's currently running taskp1124 back to null.

8. Perform a microtask checkpointp1131.

3. Let taskEndTime be the unsafe shared current time. [HRT]p1478

It is possible for a microtaskp1124 to be moved to a regular task queuep1123, if, during its initial execution, it spins the event loopp1131.
This is the only case in which the sourcep1124, documentp1124, and script evaluation environment settings object setp1124 of the
microtask are consulted; they are ignored by the perform a microtask checkpointp1131 algorithm.

Note

8.1.7.3 Processing model §p11

26

Remember that the microtask queuep1124 is not a task queuep1123, so it will not be chosen in this step. However,
a task queuep1123 to which the microtask task sourcep1125 is associated might be chosen in this step. In that
case, the taskp1124 chosen in the next step was originally a microtaskp1124, but it got moved as part of spinning
the event loopp1131.

Note

1126

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#queue-enqueue
https://tc39.es/ecma262/#sec-agents
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#assert
https://github.com/whatwg/html/issues/4980
https://infra.spec.whatwg.org/#implementation-defined
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://infra.spec.whatwg.org/#list-remove
https://w3c.github.io/long-animation-frames/#record-task-start-time
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time

4. If oldestTask is not null, then:

1. Let top-level browsing contexts be an empty set.

2. For each environment settings objectp1076 settings of oldestTask's script evaluation environment settings object
setp1124:

1. Let global be settings's global objectp1077.

2. If global is not a Windowp922 object, then continue.

3. If global's browsing contextp923 is null, then continue.

4. Let tlbc be global's browsing contextp923 's top-level browsing contextp1001.

5. If tlbc is not null, then append it to top-level browsing contexts.

3. Report long tasks, passing in taskStartTime, taskEndTime, top-level browsing contexts, and oldestTask.

4. If oldestTask's documentp1124 is not null, then record task end time given taskEndTime and oldestTask's
documentp1124.

5. If this is a window event loopp1123 that has no runnablep1124 taskp1124 in this event loopp1123 's task queuesp1123, then:

1. Set this event loopp1123 's last idle period start timep1125 to the unsafe shared current time.

2. Let computeDeadline be the following steps:

1. Let deadline be this event loopp1123 's last idle period start timep1125 plus 50.

2. Let hasPendingRenders be false.

3. For each windowInSameLoop of the same-loop windowsp1125 for this event loopp1123:

1. If windowInSameLoop's map of animation frame callbacksp1187 is not empty, or if the user agent
believes that the windowInSameLoop might have pending rendering updates, set
hasPendingRenders to true.

2. Let timerCallbackEstimates be the result of getting the values of windowInSameLoop's map of
active timersp1164.

3. For each timeoutDeadline of timerCallbackEstimates, if timeoutDeadline is less than deadline,
set deadline to timeoutDeadline.

4. If hasPendingRenders is true, then:

1. Let nextRenderDeadline be this event loopp1123 's last render opportunity timep1125 plus (1000
divided by the current refresh rate).

The refresh rate can be hardware- or implementation-specific. For a refresh rate of 60Hz, the
nextRenderDeadline would be about 16.67ms after the last render opportunity timep1125.

2. If nextRenderDeadline is less than deadline, then return nextRenderDeadline.

5. Return deadline.

3. For each win of the same-loop windowsp1125 for this event loopp1123, perform the start an idle period algorithm for
win with the following step: return the result of calling computeDeadline, coarsened given win's relevant settings
objectp1083 's cross-origin isolated capabilityp1076. [REQUESTIDLECALLBACK]p1481

6. If this is a worker event loopp1123, then:

1. If this event loopp1123 's agent's single realm's global objectp1077 is a supportedp1187

DedicatedWorkerGlobalScopep1230 and the user agent believes that it would benefit from having its rendering
updated at this time, then:

The cap of 50ms in the future is to ensure responsiveness to new user input within the threshold of
human perception.

Note

1127

https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#set-append
https://w3c.github.io/longtasks/#report-long-tasks
https://w3c.github.io/long-animation-frames/#record-task-end-time
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://infra.spec.whatwg.org/#map-is-empty
https://infra.spec.whatwg.org/#map-getting-the-values
https://w3c.github.io/requestidlecallback/#start-an-idle-period-algorithm
https://w3c.github.io/hr-time/#dfn-coarsen-time
https://tc39.es/ecma262/#sec-agents
https://tc39.es/ecma262/#sec-code-realms

1. Let now be the current high resolution time given the DedicatedWorkerGlobalScopep1230. [HRT]p1478

2. Run the animation frame callbacksp1187 for that DedicatedWorkerGlobalScopep1230, passing in now as the
timestamp.

3. Update the rendering of that dedicated worker to reflect the current state.

2. If there are no tasksp1124 in the event loopp1123 's task queuesp1123 and the WorkerGlobalScopep1228 object's
closingp1231 flag is true, then destroy the event loopp1123, aborting these steps, resuming the run a workerp1232 steps
described in the Web workersp1212 section below.

A window event loopp1123 eventLoop must also run the following in parallelp43, as long as it exists:

1. Wait until at least one navigablep989 whose active documentp989 's relevant agentp1073 's event loopp1123 is eventLoop might
have a rendering opportunityp1130.

2. Set eventLoop's last render opportunity timep1125 to the unsafe shared current time.

3. For each navigable that has a rendering opportunityp1130, queue a global taskp1125 on the rendering task sourcep1134 given
navigable's active windowp989 to update the rendering:

1. Let frameTimestamp be eventLoop's last render opportunity timep1125.

2. Let docs be all fully activep1003 Documentp130 objects whose relevant agentp1073 's event loopp1123 is eventLoop, sorted
arbitrarily except that the following conditions must be met:

▪ Any Documentp130 B whose container documentp992 is A must be listed after A in the list.

▪ If there are two documents A and B that both have the same non-null container documentp992 C, then the
order of A and B in the list must match the shadow-including tree order of their respective navigable
containersp991 in C's node tree.

In the steps below that iterate over docs, each Documentp130 must be processed in the order it is found in the list.

3. Filter non-renderable documents: Remove from docs any Documentp130 object doc for which any of the following are
true:

▪ doc is render-blockedp134;

▪ doc's visibility statep826 is "hidden";

▪ doc's rendering is suppressed for view transitions; or

▪ doc's node navigablep989 doesn't currently have a rendering opportunityp1130.

4. Unnecessary rendering: Remove from docs any Documentp130 object doc for which all of the following are true:

▪ the user agent believes that updating the rendering of doc's node navigablep989 would have no visible
effect; and

▪ doc's map of animation frame callbacksp1187 is empty.

Similar to the notes for updating the renderingp1128 in a window event loopp1123, a user agent can determine the
rate of rendering in the dedicated worker.

Note

This might cause redundant calls to update the renderingp1128. However, these calls would have no observable effect
because there will be no rendering necessary, as per the Unnecessary rendering step. Implementations can introduce
further optimizations such as only queuing this task when it is not already queued. However, note that the document
associated with the task might become inactive before the task is processed.

Note

We have to check for rendering opportunities here, in addition to checking that in the in parallelp43 steps, as
some documents that share the same event loopp1123 might not have a rendering opportunityp1130 at the same
time.

Note

1128

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://dom.spec.whatwg.org/#concept-shadow-including-tree-order
https://dom.spec.whatwg.org/#concept-node-tree
https://drafts.csswg.org/css-view-transitions/#document-rendering-suppression-for-view-transitions

5. Remove from docs all Documentp130 objects for which the user agent believes that it's preferable to skip updating
the rendering for other reasons.

6. For each doc of docs, revealp1053 doc.

7. For each doc of docs, flush autofocus candidatesp849 for doc if its node navigablep989 is a top-level traversablep990.

8. For each doc of docs, run the resize steps for doc. [CSSOMVIEW]p1477

9. For each doc of docs, run the scroll steps for doc. [CSSOMVIEW]p1477

10. For each doc of docs, evaluate media queries and report changes for doc. [CSSOMVIEW]p1477

11. For each doc of docs, update animations and send events for doc, passing in relative high resolution time given
frameTimestamp and doc's relevant global objectp1083 as the timestamp [WEBANIMATIONS]p1483

12. For each doc of docs, run the fullscreen steps for doc. [FULLSCREEN]p1478

13. For each doc of docs, if the user agent detects that the backing storage associated with a
CanvasRenderingContext2Dp682 or an OffscreenCanvasRenderingContext2Dp745, context, has been lost, then it
must run the context lost steps for each such context:

1. Let canvas be the value of context's canvasp689 attribute, if context is a CanvasRenderingContext2Dp682,
or the associated OffscreenCanvas objectp746 for context otherwise.

2. Set context's context lostp690 to true.

3. Reset the rendering context to its default statep690 given context.

4. Let shouldRestore be the result of firing an event named contextlostp1471 at canvas, with the
cancelable attribute initialized to true.

5. If shouldRestore is false, then abort these steps.

6. Attempt to restore context by creating a backing storage using context's attributes and associating them
with context. If this fails, then abort these steps.

7. Set context's context lostp690 to false.

8. Fire an event named contextrestoredp1471 at canvas.

14. For each doc of docs, run the animation frame callbacksp1187 for doc, passing in the relative high resolution time
given frameTimestamp and doc's relevant global objectp1083 as the timestamp.

15. Let unsafeStyleAndLayoutStartTime be the unsafe shared current time.

16. For each doc of docs:

1. Let resizeObserverDepth be 0.

2. While true:

1. Recalculate styles and update layout for doc.

2. Let hadInitialVisibleContentVisibilityDetermination be false.

3. For each element element with 'auto' used value of 'content-visibility':

The step labeled Filter non-renderable documents prevents the user agent from updating the rendering when it
is unable to present new content to the user.

The step labeled Unnecessary rendering prevents the user agent from updating the rendering when there's no
new content to draw.

This step enables the user agent to prevent the steps below from running for other reasons, for example, to
ensure certain tasksp1124 are executed immediately after each other, with only microtask checkpointsp1131

interleaved (and without, e.g., animation frame callbacksp1187 interleaved). Concretely, a user agent might wish
to coalesce timer callbacks together, with no intermediate rendering updates.

Note

1129

https://drafts.csswg.org/cssom-view/#document-run-the-resize-steps
https://drafts.csswg.org/cssom-view/#document-run-the-scroll-steps
https://drafts.csswg.org/cssom-view/#evaluate-media-queries-and-report-changes
https://drafts.csswg.org/web-animations-1/#update-animations-and-send-events
https://w3c.github.io/hr-time/#dfn-relative-high-resolution-time
https://fullscreen.spec.whatwg.org/#run-the-fullscreen-steps
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/hr-time/#dfn-relative-high-resolution-time
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://drafts.csswg.org/css-contain/#propdef-content-visibility
https://drafts.csswg.org/css-contain/#content-visibility

1. Let checkForInitialDetermination be true if element's proximity to the viewport is not
determined and it is not relevant to the user. Otherwise, let
checkForInitialDetermination be false.

2. Determine proximity to the viewport for element.

3. If checkForInitialDetermination is true and element is now relevant to the user, then
set hadInitialVisibleContentVisibilityDetermination to true.

4. If hadInitialVisibleContentVisibilityDetermination is true, then continue.

5. Gather active resize observations at depth resizeObserverDepth for doc.

6. If doc has active resize observations:

1. Set resizeObserverDepth to the result of broadcasting active resize observations
given doc.

2. Continue.

7. Otherwise, break.

3. If doc has skipped resize observations, then deliver resize loop error given doc.

17. For each doc of docs, if the focused areap836 of doc is not a focusable areap835, then run the focusing stepsp842 for
doc's viewport, and set doc's relevant global objectp1083 's navigation APIp952 's focus changed during ongoing
navigationp964 to false.

18. For each doc of docs, perform pending transition operations for doc. [CSSVIEWTRANSITIONS]p1477

19. For each doc of docs, run the update intersection observations steps for doc, passing in the relative high resolution
time given now and doc's relevant global objectp1083 as the timestamp. [INTERSECTIONOBSERVER]p1479

20. For each doc of docs, record rendering time for doc given unsafeStyleAndLayoutStartTime.

21. For each doc of docs, mark paint timing for doc.

22. For each doc of docs, update the rendering or user interface of doc and its node navigablep989 to reflect the current
state.

23. For each doc of docs, process top layer removals given doc.

A navigablep989 has a rendering opportunity if the user agent is currently able to present the contents of the navigablep989 to the
user, accounting for hardware refresh rate constraints and user agent throttling for performance reasons, but considering content
presentable even if it's outside the viewport.

A navigablep989 's rendering opportunitiesp1130 are determined based on hardware constraints such as display refresh rates and other
factors such as page performance or whether its active documentp989 's visibility statep826 is "visible". Rendering opportunities
typically occur at regular intervals.

The intent of this step is for the initial viewport proximity determination, which takes effect
immediately, to be reflected in the style and layout calculation which is carried out in a
previous step of this loop. Proximity determinations other than the initial one take effect at
the next rendering opportunityp1130. [CSSCONTAIN]p1476

Note

For example, this might happen because an element has the hiddenp824 attribute added, causing it to stop
being renderedp1388. It might also happen to an inputp520 element when the element gets disabledp601.

Example

This will usuallyp843 fire blurp1471 events, and possibly changep1471 events.
Note

In addition to this asynchronous fixup, if the focused area of the documentp836 is removed, there is a
synchronous fixupp46. That one will not fire blurp1471 or changep1471 events.

Note

1130

https://drafts.csswg.org/css-contain/#proximity-to-the-viewport
https://drafts.csswg.org/css-contain/#relevant-to-the-user
https://drafts.csswg.org/css-contain/#proximity-to-the-viewport
https://drafts.csswg.org/css-contain/#relevant-to-the-user
https://infra.spec.whatwg.org/#iteration-continue
https://w3c.github.io/csswg-drafts/resize-observer-1/#gather-active-observations-h
https://w3c.github.io/csswg-drafts/resize-observer-1/#has-active-observations-h
https://w3c.github.io/csswg-drafts/resize-observer-1/#broadcast-resize-notifications-h
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#iteration-break
https://w3c.github.io/csswg-drafts/resize-observer-1/#has-skipped-observations-h
https://w3c.github.io/csswg-drafts/resize-observer-1/#deliver-resize-error
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-view-transitions/#perform-pending-transition-operations
https://w3c.github.io/IntersectionObserver/#run-the-update-intersection-observations-steps
https://w3c.github.io/hr-time/#dfn-relative-high-resolution-time
https://w3c.github.io/hr-time/#dfn-relative-high-resolution-time
https://w3c.github.io/long-animation-frames/#record-rendering-time
https://w3c.github.io/paint-timing/#mark-paint-timing
https://drafts.csswg.org/css-position-4/#process-top-layer-removals

When a user agent is to perform a microtask checkpoint:

1. If the event loopp1123 's performing a microtask checkpointp1125 is true, then return.

2. Set the event loopp1123 's performing a microtask checkpointp1125 to true.

3. While the event loopp1123 's microtask queuep1124 is not empty:

1. Let oldestMicrotask be the result of dequeuing from the event loopp1123 's microtask queuep1124.

2. Set the event loopp1123 's currently running taskp1124 to oldestMicrotask.

3. Run oldestMicrotask.

4. Set the event loopp1123 's currently running taskp1124 back to null.

4. For each environment settings objectp1076 settingsObject whose responsible event loopp1076 is this event loopp1123, notify
about rejected promisesp1100 given settingsObject's global objectp1077.

5. Cleanup Indexed Database transactions.

6. Perform ClearKeptObjects().

7. Set the event loopp1123 's performing a microtask checkpointp1125 to false.

8. Record timing info for microtask checkpoint.

When an algorithm running in parallelp43 is to await a stable state, the user agent must queue a microtaskp1125 that runs the
following steps, and must then stop executing (execution of the algorithm resumes when the microtask is run, as described in the
following steps):

1. Run the algorithm's synchronous section.

2. Resumes execution of the algorithm in parallelp43, if appropriate, as described in the algorithm's steps.

Algorithm steps that say to spin the event loop until a condition goal is met are equivalent to substituting in the following algorithm
steps:

1. Let task be the event loopp1123 's currently running taskp1124.

This specification does not mandate any particular model for selecting rendering opportunities. But for example, if the browser is
attempting to achieve a 60Hz refresh rate, then rendering opportunities occur at a maximum of every 60th of a second (about
16.7ms). If the browser finds that a navigablep989 is not able to sustain this rate, it might drop to a more sustainable 30 rendering
opportunities per second for that navigablep989, rather than occasionally dropping frames. Similarly, if a navigablep989 is not visible,
the user agent might decide to drop that page to a much slower 4 rendering opportunities per second, or even less.

Note

This might involve invoking scripted callbacks, which eventually calls the clean up after running scriptp1097

steps, which call this perform a microtask checkpointp1131 algorithm again, which is why we use the performing
a microtask checkpointp1125 flag to avoid reentrancy.

Note

When WeakRef.prototype.deref() returns an object, that object is kept alive until the next invocation of
ClearKeptObjects(), after which it is again subject to garbage collection.

Note

Steps in synchronous sectionsp1131 are marked with ⌛.
Note

task could be a microtaskp1124.
Note

1131

https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#queue-dequeue
https://w3c.github.io/IndexedDB/#cleanup-indexed-database-transactions
https://tc39.es/ecma262/#sec-clear-kept-objects
https://tc39.es/ecma262/#sec-weak-ref.prototype.deref
https://tc39.es/ecma262/#sec-clear-kept-objects
https://w3c.github.io/long-animation-frames/#record-timing-info-for-microtask-checkpoint

2. Let task source be task's sourcep1124.

3. Let old stack be a copy of the JavaScript execution context stack.

4. Empty the JavaScript execution context stack.

5. Perform a microtask checkpointp1131.

6. In parallelp43:

1. Wait until the condition goal is met.

2. Queue a taskp1125 on task source to:

1. Replace the JavaScript execution context stack with old stack.

2. Perform any steps that appear after this spin the event loopp1131 instance in the original algorithm.

7. Stop task, allowing whatever algorithm that invoked it to resume.

If task is a microtaskp1124 this step will be a no-op due to performing a microtask checkpointp1125 being true.
Note

This resumes task.
Note

This causes the event loopp1123 's main set of steps or the perform a microtask checkpointp1131 algorithm to continue.
Note

Unlike other algorithms in this and other specifications, which behave similar to programming-language function calls, spin the
event loopp1131 is more like a macro, which saves typing and indentation at the usage site by expanding into a series of steps and
operations.

Note

An algorithm whose steps are:

1. Do something.

2. Spin the event loopp1131 until awesomeness happens.

3. Do something else.

is a shorthand which, after "macro expansion", becomes

1. Do something.

2. Let old stack be a copy of the JavaScript execution context stack.

3. Empty the JavaScript execution context stack.

4. Perform a microtask checkpointp1131.

5. In parallelp43:

1. Wait until awesomeness happens.

2. Queue a taskp1125 on the task source in which "do something" was done to:

1. Replace the JavaScript execution context stack with old stack.

2. Do something else.

Example

Example

1132

https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack

Some of the algorithms in this specification, for historical reasons, require the user agent to pause while running a taskp1124 until a
condition goal is met. This means running the following steps:

1. Let global be the current global objectp1083.

2. Let timeBeforePause be the current high resolution time given global.

3. If necessary, update the rendering or user interface of any Documentp130 or navigablep989 to reflect the current state.

4. Wait until the condition goal is met. While a user agent has a paused taskp1124, the corresponding event loopp1123 must not
run further tasksp1124, and any script in the currently running taskp1124 must block. User agents should remain responsive to
user input while paused, however, albeit in a reduced capacity since the event loopp1123 will not be doing anything.

5. Record pause duration given the duration from timeBeforePause to the current high resolution time given global.

Here is a more full example of the substitution, where the event loop is spun from inside a task that is queued from work in
parallel. The version using spin the event loopp1131:

1. In parallelp43:

1. Do parallel thing 1.

2. Queue a taskp1125 on the DOM manipulation task sourcep1134 to:

1. Do task thing 1.

2. Spin the event loopp1131 until awesomeness happens.

3. Do task thing 2.

3. Do parallel thing 2.

The fully expanded version:

1. In parallelp43:

1. Do parallel thing 1.

2. Let old stack be null.

3. Queue a taskp1125 on the DOM manipulation task sourcep1134 to:

1. Do task thing 1.

2. Set old stack to a copy of the JavaScript execution context stack.

3. Empty the JavaScript execution context stack.

4. Perform a microtask checkpointp1131.

4. Wait until awesomeness happens.

5. Queue a taskp1125 on the DOM manipulation task sourcep1134 to:

1. Replace the JavaScript execution context stack with old stack.

2. Do task thing 2.

6. Do parallel thing 2.

Pausingp1133 is highly detrimental to the user experience, especially in scenarios where a single event loopp1123 is
shared among multiple documents. User agents are encouraged to experiment with alternatives to pausingp1133,
such as spinning the event loopp1131 or even simply proceeding without any kind of suspended execution at all,
insofar as it is possible to do so while preserving compatibility with existing content. This specification will happily

⚠Warning!

1133

https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#execution-context-stack
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/long-animation-frames/#record-pause-duration
https://w3c.github.io/hr-time/#dfn-duration-from
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time

The following task sourcesp1124 are used by a number of mostly unrelated features in this and other specifications.

The DOM manipulation task source
This task sourcep1124 is used for features that react to DOM manipulations, such as things that happen in a non-blocking fashion
when an element is inserted into the documentp46.

The user interaction task source
This task sourcep1124 is used for features that react to user interaction, for example keyboard or mouse input.

Events sent in response to user input (e.g. click events) must be fired using tasksp1124 queuedp1125 with the user interaction task
sourcep1134. [UIEVENTS]p1483

The networking task source
This task sourcep1124 is used for features that trigger in response to network activity.

The navigation and traversal task source
This task sourcep1124 is used to queue tasks involved in navigationp1014 and history traversalp1040.

The rendering task source
This task sourcep1124 is used solely to update the renderingp1128.

Writing specifications that correctly interact with the event loopp1123 can be tricky. This is compounded by how this specification uses
concurrency-model-independent terminology, so we say things like "event loopp1123" and "in parallelp43" instead of using more familiar
model-specific terms like "main thread" or "on a background thread".

By default, specification text generally runs on the event loopp1123. This falls out from the formal event loop processing modelp1126, in
that you can eventually trace most algorithms back to a taskp1124 queuedp1125 there.

From this starting point, the overriding guideline is that any work a specification needs to perform that would otherwise block the event
loopp1123 must instead be performed in parallelp43 with it. This includes (but is not limited to):

• performing heavy computation;

• displaying a user-facing prompt;

• performing operations which could require involving outside systems (i.e. "going out of process").

The next complication is that, in algorithm sections that are in parallelp43, you must not create or manipulate objects associated to a
specific realm, globalp1076, or environment settings objectp1076. (Stated in more familiar terms, you must not directly access main-thread
artifacts from a background thread.) Doing so would create data races observable to JavaScript code, since after all, your algorithm
steps are running in parallelp43 to the JavaScript code.

You can, however, manipulate specification-level data structures and values from Infra, as those are realm-agnostic. They are never

change if a less-drastic alternative is discovered to be web-compatible.

In the interim, implementers should be aware that the variety of alternatives that user agents might experiment
with can change subtle aspects of event loopp1123 behavior, including taskp1124 and microtaskp1124 timing.
Implementations should continue experimenting even if doing so causes them to violate the exact semantics
implied by the pausep1133 operation.

8.1.7.4 Generic task sources §p11

34

8.1.7.5 Dealing with the event loop from other specifications §p11

34

The algorithm steps for any JavaScript method will be invoked by author code calling that method. And author code can only be
run via queued tasks, usually originating somewhere in the script processing modelp659.

Example

1134

https://w3c.github.io/uievents/#event-type-click
https://tc39.es/ecma262/#sec-code-realms

directly exposed to JavaScript without a specific conversion taking place (often via Web IDL). [INFRA]p1479 [WEBIDL]p1483

To affect the world of observable JavaScript objects, then, you must queue a global taskp1125 to perform any such manipulations. This
ensures your steps are properly interleaved with respect to other things happening on the event loopp1123. Furthermore, you must
choose a task sourcep1124 when queuing a global taskp1125; this governs the relative order of your steps versus others. If you are unsure
which task sourcep1124 to use, pick one of the generic task sourcesp1134 that sounds most applicable. Finally, you must indicate which
global objectp1076 your queued task is associated with; this ensures that if that global object is inactive, the task does not run.

Putting this all together, we can provide a template for a typical algorithm that needs to do work asynchronously:

1. Do any synchronous setup work, while still on the event loopp1123. This may include converting realm-specific JavaScript
values into realm-agnostic specification-level values.

2. Perform a set of potentially-expensive steps in parallelp43, operating entirely on realm-agnostic values, and producing a
realm-agnostic result.

3. Queue a global taskp1125, on a specified task sourcep1124 and given an appropriate global objectp1076, to convert the realm-
agnostic result back into observable effects on the observable world of JavaScript objects on the event loopp1123.

The base primitive, on which queue a global taskp1125 builds, is the queue a taskp1125 algorithm. In general, queue a global taskp1125

is better because it automatically picks the right event loopp1123 and, where appropriate, documentp1124. Older specifications often
use queue a taskp1125 combined with the implied event loopp1126 and implied documentp1126 concepts, but this is discouraged.

Note

The following is an algorithm that "encrypts" a passed-in list of scalar value strings input, after parsing them as URLs:

1. Let urls be an empty list.

2. For each string of input:

1. Let parsed be the result of encoding-parsing a URLp97 given string, relative to the current settings objectp1083.

2. If parsed is failure, then return a promise rejected with a "SyntaxError" DOMException.

3. Let serialized be the result of applying the URL serializer to parsed.

4. Append serialized to urls.

3. Let realm be the current realm.

4. Let p be a new promise.

5. Run the following steps in parallelp43:

1. Let encryptedURLs be an empty list.

2. For each url of urls:

1. Wait 100 milliseconds, so that people think we're doing heavy-duty encryption.

2. Let encrypted be a new string derived from url, whose nth code unit is equal to url's nth code unit
plus 13.

3. Append encrypted to encryptedURLs.

3. Queue a global taskp1125 on the networking task sourcep1134, given realm's global objectp1077, to perform the
following steps:

1. Let array be the result of converting encryptedURLs to a JavaScript array, in realm.

2. Resolve p with array.

6. Return p.

Here are several things to notice about this algorithm:

Example

1135

https://webidl.spec.whatwg.org/#es-type-mapping
https://tc39.es/ecma262/#sec-code-realms
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-serializer
https://infra.spec.whatwg.org/#list-append
https://tc39.es/ecma262/#current-realm
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#code-unit
https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#es-type-mapping

Many objects can have event handlers specified. These act as non-capture event listeners for the object on which they are specified.
[DOM]p1478

An event handlerp1136 is a struct with two items:

• a value, which is either null, a callback object, or an internal raw uncompiled handlerp1142. The EventHandlerp1141 callback
function type describes how this is exposed to scripts. Initially, an event handlerp1136 's valuep1136 must be set to null.

• a listener, which is either null or an event listener responsible for running the event handler processing algorithmp1140.
Initially, an event handlerp1136 's listenerp1136 must be set to null.

Event handlers are exposed in two ways.

The first way, common to all event handlers, is as an event handler IDL attributep1137.

The second way is as an event handler content attributep1138. Event handlers on HTML elementsp45 and some of the event handlers on
Windowp922 objects are exposed in this way.

For both of these two ways, the event handlerp1136 is exposed through a name, which is a string that always starts with "on" and is
followed by the name of the event for which the handler is intended.

Most of the time, the object that exposes an event handlerp1136 is the same as the object on which the corresponding event listener is
added. However, the bodyp205 and framesetp1433 elements expose several event handlersp1136 that act upon the element's Windowp922

object, if one exists. In either case, we call the object an event handlerp1136 acts upon the target of that event handlerp1136.

To determine the target of an event handler, given an EventTarget object eventTarget on which the event handlerp1136 is

• It does its URL parsing up front, on the event loopp1123, before going to the in parallelp43 steps. This is necessary, since
parsing depends on the current settings objectp1083, which would no longer be current after going in parallelp43.

• Alternately, it could have saved a reference to the current settings objectp1083 's API base URLp1076 and used it during the
in parallelp43 steps; that would have been equivalent. However, we recommend instead doing as much work as possible
up front, as this example does. Attempting to save the correct values can be error prone; for example, if we'd saved just
the current settings objectp1083, instead of its API base URLp1076, there would have been a potential race.

• It implicitly passes a list of strings from the initial steps to the in parallelp43 steps. This is OK, as both lists and strings are
realm-agnostic.

• It performs "expensive computation" (waiting for 100 milliseconds per input URL) during the in parallelp43 steps, thus not
blocking the main event loopp1123.

• Promises, as observable JavaScript objects, are never created and manipulated during the in parallelp43 steps. p is
created before entering those steps, and then is manipulated during a taskp1124 that is queuedp1125 specifically for that
purpose.

• The creation of a JavaScript array object also happens during the queued task, and is careful to specify which realm it
creates the array in since that is no longer obvious from context.

(On these last two points, see also whatwg/webidl issue #135 and whatwg/webidl issue #371, where we are still mulling over the
subtleties of the above promise-resolution pattern.)

Another thing to note is that, in the event this algorithm was called from a Web IDL-specified operation taking a
sequence<USVString>, there was an automatic conversion from realm-specific JavaScript objects provided by the author as input,
into the realm-agnostic sequence<USVString> Web IDL type, which we then treat as a list of scalar value strings. So depending on
how your specification is structured, there may be other implicit steps happening on the main event loopp1123 that play a part in
this whole process of getting you ready to go in parallelp43.

8.1.8.1 Event handlers §p11

36

8.1.8 Events §p11

36 MDN

1136

https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#string
https://tc39.es/ecma262/#sec-code-realms
https://github.com/whatwg/webidl/issues/135
https://github.com/whatwg/webidl/issues/371
https://webidl.spec.whatwg.org/#idl-USVString
https://tc39.es/ecma262/#sec-code-realms
https://webidl.spec.whatwg.org/#idl-USVString
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#scalar-value-string
https://dom.spec.whatwg.org/#concept-event-listener
https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#interface-eventtarget

exposed, and an event handler namep1136 name, the following steps are taken:

1. If eventTarget is not a bodyp205 element or a framesetp1433 element, then return eventTarget.

2. If name is not the name of an attribute member of the WindowEventHandlersp1147 interface mixin and the Window-reflecting
body element event handler setp1145 does not contain name, then return eventTarget.

3. If eventTarget's node document is not an active documentp998, then return null.

4. Return eventTarget's node document's relevant global objectp1083.

Each EventTarget object that has one or more event handlersp1136 specified has an associated event handler map, which is a map of
strings representing namesp1136 of event handlersp1136 to event handlersp1136.

When an EventTarget object that has one or more event handlersp1136 specified is created, its event handler mapp1137 must be
initialized such that it contains an entry for each event handlerp1136 that has that object as targetp1136, with items in those event
handlersp1136 set to their initial values.

An event handler IDL attribute is an IDL attribute for a specific event handlerp1136. The name of the IDL attribute is the same as the
namep1136 of the event handlerp1136.

The getter of an event handler IDL attributep1137 with name name, when called, must run these steps:

1. Let eventTarget be the result of determining the target of an event handlerp1136 given this object and name.

2. If eventTarget is null, then return null.

3. Return the result of getting the current value of the event handlerp1142 given eventTarget and name.

The setter of an event handler IDL attributep1137 with name name, when called, must run these steps:

1. Let eventTarget be the result of determining the target of an event handlerp1136 given this object and name.

2. If eventTarget is null, then return.

3. If the given value is null, then deactivate an event handlerp1138 given eventTarget and name.

4. Otherwise:

1. Let handlerMap be eventTarget's event handler mapp1137.

2. Let eventHandler be handlerMap[name].

3. Set eventHandler's valuep1136 to the given value.

This could happen if this object is a bodyp205 element without a corresponding Windowp922 object, for example.
Note

This check does not necessarily prevent bodyp205 and framesetp1433 elements that are not the body elementp136 of their
node document from reaching the next step. In particular, a bodyp205 element created in an active documentp998 (perhaps
with document.createElement()) but not connected will also have its corresponding Windowp922 object as the targetp1136

of several event handlersp1136 exposed through it.

Note

The order of the entries of event handler mapp1137 could be arbitrary. It is not observable through any algorithms that operate on
the map.

Note

Entries are not created in the event handler mapp1137 of an object for event handlersp1136 that are merely exposed on that object,
but have some other object as their targetsp1136.

Note

1137

https://infra.spec.whatwg.org/#list-contain
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#connected
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-eventtarget
https://infra.spec.whatwg.org/#ordered-map
https://dom.spec.whatwg.org/#interface-eventtarget
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#map-entry

4. Activate an event handlerp1139 given eventTarget and name.

An event handler content attribute is a content attribute for a specific event handlerp1136. The name of the content attribute is the
same as the namep1136 of the event handlerp1136.

Event handler content attributesp1138, when specified, must contain valid JavaScript code which, when parsed, would match the
FunctionBody production after automatic semicolon insertion.

The following attribute change steps are used to synchronize between event handler content attributesp1138 and event handlersp1136:
[DOM]p1478

1. If namespace is not null, or localName is not the name of an event handler content attributep1138 on element, then return.

2. Let eventTarget be the result of determining the target of an event handlerp1136 given element and localName.

3. If eventTarget is null, then return.

4. If value is null, then deactivate an event handlerp1138 given eventTarget and localName.

5. Otherwise:

1. If the Should element's inline behavior be blocked by Content Security Policy? algorithm returns "Blocked" when
executed upon element, "script attribute", and value, then return. [CSP]p1476

2. Let handlerMap be eventTarget's event handler mapp1137.

3. Let eventHandler be handlerMap[localName].

4. Let location be the script location that triggered the execution of these steps.

5. Set eventHandler's valuep1136 to the internal raw uncompiled handlerp1142 value/location.

6. Activate an event handlerp1139 given eventTarget and localName.

To deactivate an event handler given an EventTarget object eventTarget and a string name that is the namep1136 of an event
handlerp1136, run these steps:

1. Let handlerMap be eventTarget's event handler mapp1137.

2. Let eventHandler be handlerMap[name].

3. Set eventHandler's valuep1136 to null.

4. Let listener be eventHandler's listenerp1136.

5. If listener is not null, then remove an event listener with eventTarget and listener.

6. Set eventHandler's listenerp1136 to null.

To erase all event listeners and handlers given an EventTarget object eventTarget, run these steps:

1. If eventTarget has an associated event handler mapp1137, then for each name → eventHandler of eventTarget's associated
event handler mapp1137, deactivate an event handlerp1138 given eventTarget and name.

2. Remove all event listeners given eventTarget.

Certain event handler IDL attributesp1137 have additional requirements, in particular the onmessagep1205 attribute of
MessagePortp1205 objects.

Note

Per the DOM Standard, these steps are run even if oldValue and value are identical (setting an attribute to its current value), but
not if oldValue and value are both null (removing an attribute that doesn't currently exist). [DOM]p1478

Note

1138

https://tc39.es/ecma262/#prod-FunctionBody
https://tc39.es/ecma262/#sec-automatic-semicolon-insertion
https://dom.spec.whatwg.org/#concept-element-attributes-change-ext
https://w3c.github.io/webappsec-csp/#should-block-inline
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#remove-an-event-listener
https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#remove-all-event-listeners

To activate an event handler given an EventTarget object eventTarget and a string name that is the namep1136 of an event
handlerp1136, run these steps:

1. Let handlerMap be eventTarget's event handler mapp1137.

2. Let eventHandler be handlerMap[name].

3. If eventHandler's listenerp1136 is not null, then return.

4. Let callback be the result of creating a Web IDL EventListener instance representing a reference to a function of one
argument that executes the steps of the event handler processing algorithmp1140, given eventTarget, name, and its
argument.

The EventListener's callback context can be arbitrary; it does not impact the steps of the event handler processing
algorithmp1140. [DOM]p1478

5. Let listener be a new event listener whose type is the event handler event type corresponding to eventHandler and
callback is callback.

6. Add an event listener with eventTarget and listener.

7. Set eventHandler's listenerp1136 to listener.

This algorithm is used to define document.open()p1151.
Note

The callback is emphatically not the event handlerp1136 itself. Every event handler ends up registering the same callback,
the algorithm defined below, which takes care of invoking the right code, and processing the code's return value.

Note

To be clear, an event listener is different from an EventListener.
Note

The event listener registration happens only if the event handlerp1136 's valuep1136 is being set to non-null, and the event handlerp1136

is not already activated. Since listeners are called in the order they were registered, assuming no deactivationp1138 occurred, the
order of event listeners for a particular event type will always be:

1. the event listeners registered with addEventListener() before the first time the event handlerp1136 's valuep1136 was set
to non-null

2. then the callback to which it is currently set, if any

3. and finally the event listeners registered with addEventListener() after the first time the event handlerp1136 's valuep1136

was set to non-null.

Note

This example demonstrates the order in which event listeners are invoked. If the button in this example is clicked by the user, the
page will show four alerts, with the text "ONE", "TWO", "THREE", and "FOUR" respectively.

<button id="test">Start Demo</button>
<script>
var button = document.getElementById('test');
button.addEventListener('click', function () { alert('ONE') }, false);
button.setAttribute('onclick', "alert('NOT CALLED')"); // event handler listener is registered

here
button.addEventListener('click', function () { alert('THREE') }, false);
button.onclick = function () { alert('TWO'); };
button.addEventListener('click', function () { alert('FOUR') }, false);

</script>

Example

1139

https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://webidl.spec.whatwg.org/#dfn-callback-context
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#event-listener-type
https://dom.spec.whatwg.org/#event-listener-callback
https://dom.spec.whatwg.org/#concept-event-listener
https://dom.spec.whatwg.org/#callbackdef-eventlistener
https://dom.spec.whatwg.org/#add-an-event-listener
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener

The event handler processing algorithm for an EventTarget object eventTarget, a string name representing the namep1136 of an
event handlerp1136, and an Event object event is as follows:

1. Let callback be the result of getting the current value of the event handlerp1142 given eventTarget and name.

2. If callback is null, then return.

3. Let special error event handling be true if event is an ErrorEventp1099 object, event's type is "errorp1471", and event's
currentTarget implements the WindowOrWorkerGlobalScopep1148 mixin. Otherwise, let special error event handling be false.

4. Process the Event object event as follows:

↪ If special error event handling is true
Let return value be the result of invoking callback with « event's messagep1100, event's filenamep1100, event's
linenop1100, event's colnop1100, event's errorp1100 », "rethrow", and with callback this value set to event's
currentTarget.

↪ Otherwise
Let return value be the result of invoking callback with « event », "rethrow", and with callback this value set to
event's currentTarget.

5. Process return value as follows:

↪ If event is a BeforeUnloadEventp983 object and event's type is "beforeunloadp1471"

If return value is not null, then:

1. Set event's canceled flag.

2. If event's returnValuep983 attribute's value is the empty string, then set event's returnValuep983 attribute's
value to return value.

However, in the following example, the event handler is deactivatedp1138 after its initial activation (and its event listener is
removed), before being reactivated at a later time. The page will show five alerts with "ONE", "TWO", "THREE", "FOUR", and "FIVE"
respectively, in order.

<button id="test">Start Demo</button>
<script>
var button = document.getElementById('test');
button.addEventListener('click', function () { alert('ONE') }, false);
button.setAttribute('onclick', "alert('NOT CALLED')"); // event handler is activated here
button.addEventListener('click', function () { alert('TWO') }, false);
button.onclick = null; // but deactivated here
button.addEventListener('click', function () { alert('THREE') }, false);
button.onclick = function () { alert('FOUR'); }; // and re-activated here
button.addEventListener('click', function () { alert('FIVE') }, false);

</script>

The interfaces implemented by the event object do not influence whether an event handlerp1136 is triggered or not.
Note

If an exception gets thrown by the callback, it will be rethrown, ending these steps. The exception will propagate to the
DOM event dispatch logic, which will then reportp1098 it.

Note

In this case, the event handler IDL attributep1137 's type will be OnBeforeUnloadEventHandlerp1141, so return value
will have been coerced into either null or a DOMString.

Note

1140

https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://dom.spec.whatwg.org/#interface-event
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://dom.spec.whatwg.org/#dom-event-currenttarget
https://dom.spec.whatwg.org/#concept-event-dispatch
https://dom.spec.whatwg.org/#dom-event-type
https://webidl.spec.whatwg.org/#idl-DOMString
https://dom.spec.whatwg.org/#canceled-flag

↪ If special error event handling is true
If return value is true, then set event's canceled flag.

↪ Otherwise
If return value is false, then set event's canceled flag.

The EventHandlerp1141 callback function type represents a callback used for event handlers. It is represented in Web IDL as follows:

[LegacyTreatNonObjectAsNull]
callback EventHandlerNonNull = any (Event event);
typedef EventHandlerNonNull? EventHandler;

For historical reasons, the onerrorp1145 handler has different arguments:

[LegacyTreatNonObjectAsNull]
callback OnErrorEventHandlerNonNull = any ((Event or DOMString) event, optional DOMString source,
optional unsigned long lineno, optional unsigned long colno, optional any error);
typedef OnErrorEventHandlerNonNull? OnErrorEventHandler;

Similarly, the onbeforeunloadp1145 handler has a different return value:

[LegacyTreatNonObjectAsNull]
callback OnBeforeUnloadEventHandlerNonNull = DOMString? (Event event);
typedef OnBeforeUnloadEventHandlerNonNull? OnBeforeUnloadEventHandler;

If we've gotten to this "Otherwise" clause because event's type is "beforeunloadp1471" but event is not a
BeforeUnloadEventp983 object, then return value will never be false, since in such cases return value will have
been coerced into either null or a DOMString.

Note

In JavaScript, any Function object implements this interface.
Note

For example, the following document fragment:

<body onload="alert(this)" onclick="alert(this)">

...leads to an alert saying "[object Window]" when the document is loaded, and an alert saying "[object HTMLBodyElement]"
whenever the user clicks something in the page.

Example

The return value of the function affects whether the event is canceled or not: as described above, if the return value is false, the
event is canceled.

There are two exceptions in the platform, for historical reasons:

• The onerrorp1145 handlers on global objects, where returning true cancels the event.

• The onbeforeunloadp1145 handler, where returning any non-null and non-undefined value will cancel the event.

Note

window.onerror = (message, source, lineno, colno, error) => { … };

Example

IDL

IDL

IDL

1141

https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#canceled-flag
https://dom.spec.whatwg.org/#dom-event-type
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#LegacyTreatNonObjectAsNull
https://dom.spec.whatwg.org/#interface-event
https://webidl.spec.whatwg.org/#common-Function
https://webidl.spec.whatwg.org/#LegacyTreatNonObjectAsNull
https://dom.spec.whatwg.org/#interface-event
https://webidl.spec.whatwg.org/#LegacyTreatNonObjectAsNull
https://dom.spec.whatwg.org/#interface-event

An internal raw uncompiled handler is a tuple with the following information:

• An uncompiled script body

• A location where the script body originated, in case an error needs to be reported

When the user agent is to get the current value of the event handler given an EventTarget object eventTarget and a string name
that is the namep1136 of an event handlerp1136, it must run these steps:

1. Let handlerMap be eventTarget's event handler mapp1137.

2. Let eventHandler be handlerMap[name].

3. If eventHandler's valuep1136 is an internal raw uncompiled handlerp1142, then:

1. If eventTarget is an element, then let element be eventTarget, and document be element's node document.
Otherwise, eventTarget is a Windowp922 object, let element be null, and document be eventTarget's associated
Documentp923.

2. If scripting is disabledp1083 for document, then return null.

3. Let body be the uncompiled script body in eventHandler's valuep1136.

4. Let location be the location where the script body originated, as given by eventHandler's valuep1136.

5. If element is not null and element has a form ownerp598, let form owner be that form ownerp598. Otherwise, let form
owner be null.

6. Let settings object be the relevant settings objectp1083 of document.

7. If body is not parsable as FunctionBody or if parsing detects an early error, then follow these substeps:

1. Set eventHandler's valuep1136 to null.

2. Let syntaxError be a new SyntaxError exception associated with settings object's realmp1077 which
describes the error while parsing. It should be based on location, where the script body originated.

3. Report an exceptionp1098 with syntaxError for settings object's global objectp1077.

4. Return null.

8. Push settings object's realm execution contextp1076 onto the JavaScript execution context stack; it is now the
running JavaScript execution context.

9. Let function be the result of calling OrdinaryFunctionCreate, with arguments:

functionPrototype
%Function.prototype%

sourceText
↪ If name is onerrorp1145 and eventTarget is a Windowp922 object

The string formed by concatenating "function ", name, "(event, source, lineno, colno, error)
{", U+000A LF, body, U+000A LF, and "}".

↪ Otherwise
The string formed by concatenating "function ", name, "(event) {", U+000A LF, body, U+000A LF,
and "}".

ParameterList
↪ If name is onerrorp1145 and eventTarget is a Windowp922 object

Let the function have five arguments, named event, source, lineno, colno, and error.

This does not deactivatep1138 the event handler, which additionally removes the event handler's
listenerp1136 (if present).

Note

This is necessary so the subsequent invocation of OrdinaryFunctionCreate takes place in the correct realm.
Note

1142

https://dom.spec.whatwg.org/#interface-eventtarget
https://dom.spec.whatwg.org/#concept-node-document
https://tc39.es/ecma262/#prod-FunctionBody
https://tc39.es/ecma262/#early-error-rule
https://dom.spec.whatwg.org/#remove-an-event-listener
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-syntaxerror
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
https://tc39.es/ecma262/#sec-code-realms
https://tc39.es/ecma262/#sec-ordinaryfunctioncreate
https://tc39.es/ecma262/#sec-properties-of-the-function-prototype-object

↪ Otherwise
Let the function have a single argument called event.

body
The result of parsing body above.

thisMode
non-lexical-this

scope

1. Let realm be settings object's realmp1077.

2. Let scope be realm.[[GlobalEnv]].

3. If eventHandler is an element's event handlerp1136, then set scope to
NewObjectEnvironment(document, true, scope).

(Otherwise, eventHandler is a Windowp922 object's event handlerp1136.)

4. If form owner is not null, then set scope to NewObjectEnvironment(form owner, true, scope).

5. If element is not null, then set scope to NewObjectEnvironment(element, true, scope).

6. Return scope.

10. Remove settings object's realm execution contextp1076 from the JavaScript execution context stack.

11. Set function.[[ScriptOrModule]] to null.

12. Set eventHandler's valuep1136 to the result of creating a Web IDL EventHandlerp1141 callback function object whose
object reference is function and whose callback context is settings object.

4. Return eventHandler's valuep1136.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported by all HTML
elementsp45, as both event handler content attributesp1138 and event handler IDL attributesp1137; and that must be supported by all
Documentp130 and Windowp922 objects, as event handler IDL attributesp1137:

Event handlerp1136 Event handler event typep1139

onabort abort

onauxclick auxclick

onbeforeinput beforeinput

onbeforematch beforematchp1471

onbeforetoggle beforetogglep1471

oncancel cancelp1471

oncanplay canplayp467

oncanplaythrough canplaythroughp467

This is done because the default behavior, of associating the created function with the nearest scriptp1084 on
the stack, can lead to path-dependent results. For example, an event handler which is first invoked by user
interaction would end up with null [[ScriptOrModule]] (since then this algorithm would be first invoked when
the active scriptp1085 is null), whereas one that is first invoked by dispatching an event from script would have
its [[ScriptOrModule]] set to that script.

Instead, we just always set [[ScriptOrModule]] to null. This is more intuitive anyway; the idea that the first
script which dispatches an event is somehow responsible for the event handler code is dubious.

In practice, this only affects the resolution of relative URLs via import(), which consult the base URLp1085 of the
associated script. Nulling out [[ScriptOrModule]] means that HostLoadImportedModulep1121 will fall back to the
current settings objectp1083 's API base URLp1076.

Note

8.1.8.2 Event handlers on elements, Documentp130 objects, and Windowp922 objects §p11

43

✔ MDN

MDN

✔ MDN

✔ MDN

✔ MDN

1143

https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#sec-newobjectenvironment
https://tc39.es/ecma262/#execution-context-stack
https://tc39.es/ecma262/#sec-import-calls
https://webidl.spec.whatwg.org/#dfn-callback-context
https://w3c.github.io/uievents/#event-type-auxclick
https://w3c.github.io/uievents/#event-type-beforeinput

Event handlerp1136 Event handler event typep1139

onchange changep1471

onclick click

onclose closep1471

oncontextlost contextlostp1471

oncontextmenu contextmenu

oncontextrestored contextrestoredp1471

oncopy copy

oncuechange cuechangep468

oncut cut

ondblclick dblclick

ondrag dragp884

ondragend dragendp885

ondragenter dragenterp884

ondragleave dragleavep884

ondragover dragoverp884

ondragstart dragstartp884

ondrop dropp885

ondurationchange durationchangep468

onemptied emptiedp467

onended endedp468

onformdata formdatap1471

oninput input

oninvalid invalidp1471

onkeydown keydown

onkeypress keypress

onkeyup keyup

onloadeddata loadeddatap467

onloadedmetadata loadedmetadatap467

onloadstart loadstartp467

onmousedown mousedown

onmouseenter mouseenter

onmouseleave mouseleave

onmousemove mousemove

onmouseout mouseout

onmouseover mouseover

onmouseup mouseup

onpaste paste

onpause pausep468

onplay playp468

onplaying playingp468

onprogress progressp467

onratechange ratechangep468

onreset resetp1472

onscrollend scrollend

onsecuritypolicyviolation securitypolicyviolation

onseeked seekedp468

onseeking seekingp468

onselect selectp1472

onslotchange slotchange

onstalled stalledp467

onsubmit submitp1472

onsuspend suspendp467

ontimeupdate timeupdatep468

ontoggle togglep1472

onvolumechange volumechangep468

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

1144

https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/uievents/#event-type-contextmenu
https://w3c.github.io/clipboard-apis/#clipboard-event-copy
https://w3c.github.io/clipboard-apis/#clipboard-event-cut
https://w3c.github.io/uievents/#event-type-dblclick
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keypress
https://w3c.github.io/uievents/#event-type-keyup
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mouseenter
https://w3c.github.io/uievents/#event-type-mouseleave
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-mouseout
https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mouseup
https://w3c.github.io/clipboard-apis/#clipboard-event-paste
https://drafts.csswg.org/cssom-view/#eventdef-document-scrollend
https://w3c.github.io/webappsec-csp/#eventdef-globaleventhandlers-securitypolicyviolation
https://dom.spec.whatwg.org/#eventdef-htmlslotelement-slotchange

Event handlerp1136 Event handler event typep1139

onwaiting waitingp468

onwebkitanimationend webkitAnimationEnd

onwebkitanimationiteration webkitAnimationIteration

onwebkitanimationstart webkitAnimationStart

onwebkittransitionend webkitTransitionEnd

onwheel wheel

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported by all HTML
elementsp45 other than bodyp205 and framesetp1433 elements, as both event handler content attributesp1138 and event handler IDL
attributesp1137; that must be supported by all Documentp130 objects, as event handler IDL attributesp1137; and that must be supported by
all Windowp922 objects, as event handler IDL attributesp1137 on the Windowp922 objects themselves, and with corresponding event handler
content attributesp1138 and event handler IDL attributesp1137 exposed on all bodyp205 and framesetp1433 elements that are owned by that
Windowp922 object's associated Documentp923:

Event handlerp1136 Event handler event typep1139

onblur blurp1471

onerror errorp1471

onfocus focusp1471

onload loadp1471

onresize resize

onscroll scroll

We call the set of the namesp1136 of the event handlersp1136 listed in the first column of this table the Window-reflecting body element
event handler set.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported by
Windowp922 objects, as event handler IDL attributesp1137 on the Windowp922 objects themselves, and with corresponding event handler
content attributesp1138 and event handler IDL attributesp1137 exposed on all bodyp205 and framesetp1433 elements that are owned by that
Windowp922 object's associated Documentp923:

Event handlerp1136 Event handler event typep1139

onafterprint afterprintp1471

onbeforeprint beforeprintp1471

onbeforeunload beforeunloadp1471

onhashchange hashchangep1471

onlanguagechange languagechangep1471

onmessage messagep1471

onmessageerror messageerrorp1472

onoffline offlinep1472

ononline onlinep1472

onpageswap pageswapp1472

onpagehide pagehidep1472

onpagereveal pagerevealp1472

onpageshow pageshowp1472

onpopstate popstatep1472

onrejectionhandled rejectionhandledp1472

onstorage storagep1472

onunhandledrejection unhandledrejectionp1472

onunload unloadp1472

This list of event handlersp1136 is reified as event handler IDL attributesp1137 through the WindowEventHandlersp1147 interface mixin.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported on
Documentp130 objects as event handler IDL attributesp1137:

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

1145

https://w3c.github.io/uievents/#event-type-wheel
https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://infra.spec.whatwg.org/#ordered-set

Event handlerp1136 Event handler event typep1139

onreadystatechange readystatechangep1472

onvisibilitychange visibilitychangep1472

interface mixin GlobalEventHandlers {
attribute EventHandler onabort;
attribute EventHandler onauxclick;
attribute EventHandler onbeforeinput;
attribute EventHandler onbeforematch;
attribute EventHandler onbeforetoggle;
attribute EventHandler onblur;
attribute EventHandler oncancel;
attribute EventHandler oncanplay;
attribute EventHandler oncanplaythrough;
attribute EventHandler onchange;
attribute EventHandler onclick;
attribute EventHandler onclose;
attribute EventHandler oncontextlost;
attribute EventHandler oncontextmenu;
attribute EventHandler oncontextrestored;
attribute EventHandler oncopy;
attribute EventHandler oncuechange;
attribute EventHandler oncut;
attribute EventHandler ondblclick;
attribute EventHandler ondrag;
attribute EventHandler ondragend;
attribute EventHandler ondragenter;
attribute EventHandler ondragleave;
attribute EventHandler ondragover;
attribute EventHandler ondragstart;
attribute EventHandler ondrop;
attribute EventHandler ondurationchange;
attribute EventHandler onemptied;
attribute EventHandler onended;
attribute OnErrorEventHandler onerror;
attribute EventHandler onfocus;
attribute EventHandler onformdata;
attribute EventHandler oninput;
attribute EventHandler oninvalid;
attribute EventHandler onkeydown;
attribute EventHandler onkeypress;
attribute EventHandler onkeyup;
attribute EventHandler onload;
attribute EventHandler onloadeddata;
attribute EventHandler onloadedmetadata;
attribute EventHandler onloadstart;
attribute EventHandler onmousedown;
[LegacyLenientThis] attribute EventHandler onmouseenter;
[LegacyLenientThis] attribute EventHandler onmouseleave;
attribute EventHandler onmousemove;
attribute EventHandler onmouseout;
attribute EventHandler onmouseover;
attribute EventHandler onmouseup;
attribute EventHandler onpaste;
attribute EventHandler onpause;
attribute EventHandler onplay;
attribute EventHandler onplaying;

8.1.8.2.1 IDL definitions §p11

46

IDL

✔ MDN

1146

https://webidl.spec.whatwg.org/#LegacyLenientThis
https://webidl.spec.whatwg.org/#LegacyLenientThis

attribute EventHandler onprogress;
attribute EventHandler onratechange;
attribute EventHandler onreset;
attribute EventHandler onresize;
attribute EventHandler onscroll;
attribute EventHandler onscrollend;
attribute EventHandler onsecuritypolicyviolation;
attribute EventHandler onseeked;
attribute EventHandler onseeking;
attribute EventHandler onselect;
attribute EventHandler onslotchange;
attribute EventHandler onstalled;
attribute EventHandler onsubmit;
attribute EventHandler onsuspend;
attribute EventHandler ontimeupdate;
attribute EventHandler ontoggle;
attribute EventHandler onvolumechange;
attribute EventHandler onwaiting;
attribute EventHandler onwebkitanimationend;
attribute EventHandler onwebkitanimationiteration;
attribute EventHandler onwebkitanimationstart;
attribute EventHandler onwebkittransitionend;
attribute EventHandler onwheel;

};

interface mixin WindowEventHandlers {
attribute EventHandler onafterprint;
attribute EventHandler onbeforeprint;
attribute OnBeforeUnloadEventHandler onbeforeunload;
attribute EventHandler onhashchange;
attribute EventHandler onlanguagechange;
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;
attribute EventHandler onoffline;
attribute EventHandler ononline;
attribute EventHandler onpagehide;
attribute EventHandler onpagereveal;
attribute EventHandler onpageshow;
attribute EventHandler onpageswap;
attribute EventHandler onpopstate;
attribute EventHandler onrejectionhandled;
attribute EventHandler onstorage;
attribute EventHandler onunhandledrejection;
attribute EventHandler onunload;

};

Certain operations and methods are defined as firing events on elements. For example, the click()p833 method on the
HTMLElementp142 interface is defined as firing a click event on the element. [UIEVENTS]p1483

Firing a synthetic pointer event named e at target, with an optional not trusted flag, means running these steps:

1. Let event be the result of creating an event using PointerEvent.

2. Initialize event's type attribute to e.

3. Initialize event's bubbles and cancelable attributes to true.

4. Set event's composed flag.

8.1.8.3 Event firing §p11

47

1147

https://w3c.github.io/uievents/#event-type-click
https://dom.spec.whatwg.org/#concept-event-create
https://w3c.github.io/pointerevents/#pointerevent-interface
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#dom-event-bubbles
https://dom.spec.whatwg.org/#dom-event-cancelable
https://dom.spec.whatwg.org/#composed-flag

5. If the not trusted flag is set, initialize event's isTrusted attribute to false.

6. Initialize event's ctrlKey, shiftKey, altKey, and metaKey attributes according to the current state of the key input device, if
any (false for any keys that are not available).

7. Initialize event's view attribute to target's node document's Windowp922 object, if any, and null otherwise.

8. event's getModifierState() method is to return values appropriately describing the current state of the key input device.

9. Return the result of dispatching event at target.

Firing a click event at target means firing a synthetic pointer event named clickp1147 at target.

The WindowOrWorkerGlobalScopep1148 mixin is for use of APIs that are to be exposed on Windowp922 and WorkerGlobalScopep1228

objects.

typedef (DOMString or Function or TrustedScript) TimerHandler;

interface mixin WindowOrWorkerGlobalScope {
[Replaceable] readonly attribute USVString origin;
readonly attribute boolean isSecureContext;
readonly attribute boolean crossOriginIsolated;

undefined reportError(any e);

// base64 utility methods
DOMString btoa(DOMString data);
ByteString atob(DOMString data);

// timers
long setTimeout(TimerHandler handler, optional long timeout = 0, any... arguments);
undefined clearTimeout(optional long id = 0);
long setInterval(TimerHandler handler, optional long timeout = 0, any... arguments);
undefined clearInterval(optional long id = 0);

// microtask queuing
undefined queueMicrotask(VoidFunction callback);

// ImageBitmap
Promise<ImageBitmap> createImageBitmap(ImageBitmapSource image, optional ImageBitmapOptions options =

{});
Promise<ImageBitmap> createImageBitmap(ImageBitmapSource image, long sx, long sy, long sw, long sh,

optional ImageBitmapOptions options = {});

// structured cloning
any structuredClone(any value, optional StructuredSerializeOptions options = {});

};
Window includes WindowOrWorkerGlobalScope;
WorkerGlobalScope includes WindowOrWorkerGlobalScope;

8.2 The WindowOrWorkerGlobalScopep1148 mixin §p11

48

Other standards are encouraged to further extend it using partial interface mixin WindowOrWorkerGlobalScopep1148 { … };
along with an appropriate reference.

Note

For web developers (non-normative)

IDL

1148

https://dom.spec.whatwg.org/#dom-event-istrusted
https://w3c.github.io/uievents/#dom-uievent-view
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-event-dispatch
https://webidl.spec.whatwg.org/#common-Function
https://w3c.github.io/trusted-types/dist/spec/#trusted-script
https://webidl.spec.whatwg.org/#VoidFunction
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-promise

The isSecureContext getter steps are to return true if this's relevant settings objectp1083 is a secure contextp1084, or false otherwise.

The origin getter steps are to return this's relevant settings objectp1083 's originp1076, serializedp898.

The crossOriginIsolated getter steps are to return this's relevant settings objectp1083 's cross-origin isolated capabilityp1076.

The atob()p1150 and btoa()p1149 methods allow developers to transform content to and from the base64 encoding.

The btoa(data) method must throw an "InvalidCharacterError" DOMException if data contains any character whose code point is
greater than U+00FF. Otherwise, the user agent must convert data to a byte sequence whose nth byte is the eight-bit representation
of the nth code point of data, and then must apply forgiving-base64 encode to that byte sequence and return the result.

self.isSecureContextp1149

Returns whether or not this global object represents a secure contextp1084. [SECURE-CONTEXTS]p1482

self.originp1149

Returns the global object's originp898, serialized as string.

self.crossOriginIsolatedp1149

Returns whether scripts running in this global are allowed to use APIs that require cross-origin isolation. This depends on the
`Cross-Origin-Opener-Policyp904` and `Cross-Origin-Embedder-Policyp913` HTTP response headers and the "cross-
origin-isolatedp75" feature.

Developers are strongly encouraged to use self.origin over location.origin. The former returns the originp898 of the
environment, the latter of the URL of the environment. Imagine the following script executing in a document on
https://stargate.example/:

var frame = document.createElement("iframe")
frame.onload = function() {

var frameWin = frame.contentWindow
console.log(frameWin.location.origin) // "null"
console.log(frameWin.origin) // "https://stargate.example"

}
document.body.appendChild(frame)

self.origin is a more reliable security indicator.

Example

8.3 Base64 utility methods §p11

49

In these APIs, for mnemonic purposes, the "b" can be considered to stand for "binary", and the "a" for "ASCII". In practice, though,
for primarily historical reasons, both the input and output of these functions are Unicode strings.

Note

result = self.btoap1149(data)
Takes the input data, in the form of a Unicode string containing only characters in the range U+0000 to U+00FF, each
representing a binary byte with values 0x00 to 0xFF respectively, and converts it to its base64 representation, which it returns.
Throws an "InvalidCharacterError" DOMException exception if the input string contains any out-of-range characters.

result = self.atobp1150(data)
Takes the input data, in the form of a Unicode string containing base64-encoded binary data, decodes it, and returns a string
consisting of characters in the range U+0000 to U+00FF, each representing a binary byte with values 0x00 to 0xFF
respectively, corresponding to that binary data.
Throws an "InvalidCharacterError" DOMException if the input string is not valid base64 data.

For web developers (non-normative)

1149

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidcharactererror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidcharactererror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidcharactererror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#forgiving-base64-encode

The atob(data) method steps are:

1. Let decodedData be the result of running forgiving-base64 decode on data.

2. If decodedData is failure, then throw an "InvalidCharacterError" DOMException.

3. Return decodedData.

Documentp130 objects have a throw-on-dynamic-markup-insertion counter, which is used in conjunction with the create an element
for the tokenp1320 algorithm to prevent custom element constructorsp759 from being able to use document.open()p1151,
document.close()p1152, and document.write()p1153 when they are invoked by the parser. Initially, the counter must be set to zero.

Documentp130 objects have an active parser was aborted boolean, which is used to prevent scripts from invoking the
document.open()p1151 and document.write()p1153 methods (directly or indirectly) after the document's active parserp134 has been
aborted. It is initially false.

The document open steps, given a document, are as follows:

1. If document is an XML document, then throw an "InvalidStateError" DOMException exception.

2. If document's throw-on-dynamic-markup-insertion counterp1150 is greater than 0, then throw an "InvalidStateError"
DOMException.

3. Let entryDocument be the entry global objectp1080 's associated Documentp923.

4. If document's origin is not same originp899 to entryDocument's origin, then throw a "SecurityError" DOMException.

5. If document has an active parserp134 whose script nesting levelp1273 is greater than 0, then return document.

6. Similarly, if document's unload counterp1064 is greater than 0, then return document.

8.4 Dynamic markup insertion §p11

50

APIs for dynamically inserting markup into the document interact with the parser, and thus their behavior varies depending on
whether they are used with HTML documents (and the HTML parserp1271) or XML documents (and the XML parserp1384).

Note

document = document.openp1151()
Causes the Documentp130 to be replaced in-place, as if it was a new Documentp130 object, but reusing the previous object, which is
then returned.
The resulting Documentp130 has an HTML parser associated with it, which can be given data to parse using
document.write()p1153.
The method has no effect if the Documentp130 is still being parsed.
Throws an "InvalidStateError" DOMException if the Documentp130 is an XML document.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp759.

window = document.openp1151(url, name, features)
Works like the window.open()p926 method.

For web developers (non-normative)

This basically causes document.open()p1151 to be ignored when it's called in an inline script found during parsing, while
still letting it have an effect when called from a non-parser task such as a timer callback or event handler.

Note

8.4.1 Opening the input stream §p11

50

1150

https://infra.spec.whatwg.org/#forgiving-base64-decode
https://webidl.spec.whatwg.org/#invalidcharactererror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException

7. If document's active parser was abortedp1150 is true, then return document.

8. If document's node navigablep989 is non-null and document's node navigablep989 's ongoing navigationp1027 is a navigation
IDp1014, then stop loadingp1067 document's node navigablep989.

9. For each shadow-including inclusive descendant node of document, erase all event listeners and handlersp1138 given node.

10. If document is the associated Documentp923 of document's relevant global objectp1083, then erase all event listeners and
handlersp1138 given document's relevant global objectp1083.

11. Replace all with null within document.

12. If document is fully activep1003, then:

1. Let newURL be a copy of entryDocument's URL.

2. If entryDocument is not document, then set newURL's fragment to null.

3. Run the URL and history update stepsp1028 with document and newURL.

13. Set document's is initial about:blankp131 to false.

14. If document's iframe load in progressp394 flag is set, then set document's mute iframe loadp394 flag.

15. Set document to no-quirks mode.

16. Create a new HTML parserp1271 and associate it with document. This is a script-created parser (meaning that it can be
closed by the document.open()p1151 and document.close()p1152 methods, and that the tokenizer will wait for an explicit call
to document.close()p1152 before emitting an end-of-file token). The encoding confidencep1278 is irrelevant.

17. Set the insertion pointp1285 to point at just before the end of the input streamp1284 (which at this point will be empty).

18. Update the current document readinessp133 of document to "loading".

19. Return document.

The open(unused1, unused2) method must return the result of running the document open stepsp1150 with this.

The open(url, name, features) method must run these steps:

1. If this is not fully activep1003, then throw an "InvalidAccessError" DOMException exception.

2. Return the result of running the window open stepsp925 with url, name, and features.

This basically causes document.open()p1151 to be ignored when it's called from a beforeunloadp1471, pagehidep1472, or
unloadp1472 event handler while the Documentp130 is being unloaded.

Note

This notably causes document.open()p1151 to be ignored if it is called after a navigationp1014 has started, but only during
the initial parse. See issue #4723 for more background.

Note

This causes a readystatechangep1472 event to fire, but the event is actually unobservable to author code, because of the
previous step which erased all event listeners and handlersp1138 that could observe it.

Note

The document open stepsp1150 do not affect whether a Documentp130 is ready for post-load tasksp1359 or completely loadedp1063.
Note

The unused1 and unused2 arguments are ignored, but kept in the IDL to allow code that calls the function with one or two
arguments to continue working. They are necessary due to Web IDL overload resolution algorithm rules, which would throw a
TypeError exception for such calls had the arguments not been there. whatwg/webidl issue #581 investigates changing the
algorithm to allow for their removal. [WEBIDL]p1483

Note

1151

https://github.com/whatwg/html/issues/4723
https://dom.spec.whatwg.org/#concept-shadow-including-inclusive-descendant
https://dom.spec.whatwg.org/#concept-node-replace-all
https://dom.spec.whatwg.org/#concept-document-url
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-overload-resolution-algorithm
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://github.com/whatwg/webidl/issues/581
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidaccesserror
https://webidl.spec.whatwg.org/#dfn-DOMException

The close() method must run the following steps:

1. If this is an XML document, then throw an "InvalidStateError" DOMException.

2. If this's throw-on-dynamic-markup-insertion counterp1150 is greater than zero, then throw an "InvalidStateError"
DOMException.

3. If there is no script-created parserp1151 associated with this, then return.

4. Insert an explicit "EOF" characterp1285 at the end of the parser's input streamp1284.

5. If this's pending parsing-blocking scriptp665 is not null, then return.

6. Run the tokenizer, processing resulting tokens as they are emitted, and stopping when the tokenizer reaches the explicit
"EOF" characterp1285 or spins the event loopp1131.

Documentp130 objects have an ignore-destructive-writes counter, which is used in conjunction with the processing of scriptp652

elements to prevent external scripts from being able to use document.write()p1153 to blow away the document by implicitly calling
document.open()p1151. Initially, the counter must be set to zero.

The document write steps, given a Documentp130 object document, a list text, a boolean lineFeed and a string sink, are as follows:

1. Let string be the empty string.

2. Let isTrusted be false if text contains a string; otherwise true.

3. For each value of text:

1. If value is a TrustedHTML object, then append value's associated data to string.

document.closep1152()
Closes the input stream that was opened by the document.open()p1151 method.
Throws an "InvalidStateError" DOMException if the Documentp130 is an XML document.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp759.

For web developers (non-normative)

document.writep1153(...text)
In general, adds the given string(s) to the Documentp130 's input stream.

Throws an "InvalidStateError" DOMException when invoked on XML documents.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp759.

This method has very idiosyncratic behavior. In some cases, this method can affect the state of the HTML
parserp1271 while the parser is running, resulting in a DOM that does not correspond to the source of the
document (e.g. if the string written is the string "<plaintext>" or "<!--"). In other cases, the call can clear the
current page first, as if document.open()p1151 had been called. In yet more cases, the method is simply ignored,
or throws an exception. Users agents are explicitly allowed to avoid executing script elements inserted via
this methodp1329. And to make matters even worse, the exact behavior of this method can in some cases be
dependent on network latency, which can lead to failures that are very hard to debug. For all these reasons,
use of this method is strongly discouraged.

⚠Warning!

For web developers (non-normative)

This method performs no sanitization to remove potentially-dangerous elements and attributes like scriptp652 or
event handler content attributesp1138.

⚠Warning!

8.4.2 Closing the input stream §p11

52

8.4.3 document.write()p1153 §p11

52

1152

https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list-contain
https://infra.spec.whatwg.org/#list-iterate
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml-data

2. Otherwise, append value to string.

4. If isTrusted is false, set string to the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML,
this's relevant global objectp1083, string, sink, and "script".

5. If lineFeed is true, append U+000A LINE FEED to string.

6. If document is an XML document, then throw an "InvalidStateError" DOMException.

7. If document's throw-on-dynamic-markup-insertion counterp1150 is greater than 0, then throw an "InvalidStateError"
DOMException.

8. If document's active parser was abortedp1150 is true, then return.

9. If the insertion pointp1285 is undefined, then:

1. If document's unload counterp1064 is greater than 0 or document's ignore-destructive-writes counterp1152 is greater
than 0, then return.

2. Run the document open stepsp1150 with document.

10. Insert string into the input streamp1284 just before the insertion pointp1285.

11. If document's pending parsing-blocking scriptp665 is null, then have the HTML parserp1271 process string, one code point at a
time, processing resulting tokens as they are emitted, and stopping when the tokenizer reaches the insertion point or when
the processing of the tokenizer is aborted by the tree construction stage (this can happen if a scriptp652 end tag token is
emitted by the tokenizer).

The document.write(...text) method steps are to run the document write stepsp1152 with this, text, false, and "Document write".

The document.writeln(...text) method steps are to run the document write stepsp1152 with this, text, true, and "Document
writeln".

partial interface Element {
[CEReactions] undefined setHTMLUnsafe((TrustedHTML or DOMString) html);
DOMString getHTML(optional GetHTMLOptions options = {});

If the document.write()p1153 method was called from script executing inline (i.e. executing because the parser parsed a
set of scriptp652 tags), then this is a reentrant invocation of the parserp1272. If the parser pause flagp1273 is set, the
tokenizer will abort immediately and no HTML will be parsed, per the tokenizer's parser pause flag checkp1290.

Note

document.writelnp1153(...text)
Adds the given string(s) to the Documentp130 's input stream, followed by a newline character. If necessary, calls the open()p1151

method implicitly first.
Throws an "InvalidStateError" DOMException when invoked on XML documents.
Throws an "InvalidStateError" DOMException if the parser is currently executing a custom element constructorp759.

For web developers (non-normative)

This method performs no sanitization to remove potentially-dangerous elements and attributes like scriptp652 or
event handler content attributesp1138.

⚠Warning!

8.5 DOM parsing and serialization APIs §p11

53

IDL

8.4.4 document.writeln()p1153 §p11

53

✔ MDN

1153

https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-element
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml

[CEReactions] attribute (TrustedHTML or [LegacyNullToEmptyString] DOMString) innerHTML;
[CEReactions] attribute (TrustedHTML or [LegacyNullToEmptyString] DOMString) outerHTML;
[CEReactions] undefined insertAdjacentHTML(DOMString position, (TrustedHTML or DOMString) string);

};

partial interface ShadowRoot {
[CEReactions] undefined setHTMLUnsafe((TrustedHTML or DOMString) html);
DOMString getHTML(optional GetHTMLOptions options = {});

[CEReactions] attribute (TrustedHTML or [LegacyNullToEmptyString] DOMString) innerHTML;
};

dictionary GetHTMLOptions {
boolean serializableShadowRoots = false;
sequence<ShadowRoot> shadowRoots = [];

};

The DOMParserp1154 interface allows authors to create new Documentp130 objects by parsing strings, as either HTML or XML.

[Exposed=Window]
interface DOMParser {

constructor();

[NewObject] Document parseFromString((TrustedHTML or DOMString) string, DOMParserSupportedType type);
};

enum DOMParserSupportedType {
"text/html",
"text/xml",
"application/xml",

parser = new DOMParserp1155()
Constructs a new DOMParserp1154 object.

document = parser.parseFromStringp1155(string, type)
Parses string using either the HTML or XML parser, according to type, and returns the resulting Documentp130. type can be "text/
htmlp1444" (which will invoke the HTML parser), or any of "text/xmlp1474", "application/xmlp1473", "application/
xhtml+xmlp1446", or "image/svg+xmlp1473" (which will invoke the XML parser).
For the XML parser, if string cannot be parsed, then the returned Documentp130 will contain elements describing the resulting
error.
Note that scriptp652 elements are not evaluated during parsing, and the resulting document's encoding will always be UTF-8.
The document's URL will be inherited from parser's relevant global objectp1083.
Values other than the above for type will cause a TypeError exception to be thrown.

For web developers (non-normative)

The design of DOMParserp1154, as a class that needs to be constructed and then have its parseFromString()p1155 method called, is
an unfortunate historical artifact. If we were designing this functionality today it would be a standalone function. For parsing HTML,
the modern alternative is Document.parseHTMLUnsafe()p1156.

Note

This method performs no sanitization to remove potentially-dangerous elements and attributes like scriptp652 or
event handler content attributesp1138.

⚠Warning!

IDL

8.5.1 The DOMParserp1154 interface §p11

54

1154

https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://dom.spec.whatwg.org/#interface-shadowroot
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://dom.spec.whatwg.org/#concept-document-url
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml

"application/xhtml+xml",
"image/svg+xml"

};

The new DOMParser() constructor steps are to do nothing.

The parseFromString(string, type) method steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, string, "DOMParser parseFromString", and "script".

2. Let document be a new Documentp130, whose content type is type and URL is this's relevant global objectp1083 's associated
Documentp923 's URL.

3. Switch on type:

↪ "text/html"

1. Parse HTML from a stringp1155 given document and compliantString.

↪ Otherwise

1. Create an XML parserp1384 parser, associated with document, and with XML scripting support disabledp1385.

2. Parse compliantString using parser.

3. If the previous step resulted in an XML well-formedness or XML namespace well-formedness error, then:

1. Assert: document has no child nodes.

2. Let root be the result of creating an element given document, "parsererror", and
"http://www.mozilla.org/newlayout/xml/parsererror.xml".

3. Optionally, add attributes or children to root to describe the nature of the parsing error.

4. Append root to document.

4. Return document.

To parse HTML from a string, given a Documentp130 document and a string html:

1. Set document's type to "html".

2. Create an HTML parserp1271 parser, associated with document.

3. Place html into the input streamp1284 for parser. The encoding confidencep1278 is irrelevant.

4. Start parser and let it run until it has consumed all the characters just inserted into the input stream.

The document's encoding will be left as its default, of UTF-8. In particular, any XML declarations or metap189 elements
found while parsing compliantString will have no effect.

Note

Since document does not have a browsing contextp999, scripting is disabledp1083.
Note

This might mutate the document's mode.
Note

For web developers (non-normative)

8.5.2 Unsafe HTML parsing methods §p11

55

1155

https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#concept-document-url
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-node-append
https://infra.spec.whatwg.org/#string
https://dom.spec.whatwg.org/#concept-document-type
https://dom.spec.whatwg.org/#concept-document-mode

Element's setHTMLUnsafe(html) method steps are:

1. Let compliantHTML be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, html, "Element setHTMLUnsafe", and "script".

2. Let target be this's template contentsp673 if this is a templatep671 element; otherwise this.

3. Unsafely set HTMLp1156 given target, this, and compliantHTML.

ShadowRoot's setHTMLUnsafe(html) method steps are:

1. Let compliantHTML be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, html, "ShadowRoot setHTMLUnsafe", and "script".

2. Unsafely set HTMLp1156 given this, this's shadow host, and compliantHTML.

To unsafely set HTML, given an Element or DocumentFragment target, an Element contextElement, and a string html:

1. Let newChildren be the result of the HTML fragment parsing algorithmp1373 given contextElement, html, and true.

2. Let fragment be a new DocumentFragment whose node document is contextElement's node document.

3. For each node in newChildren, append node to fragment.

4. Replace all with fragment within target.

The static parseHTMLUnsafe(html) method steps are:

1. Let compliantHTML be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, html, "Document parseHTMLUnsafe", and "script".

2. Let document be a new Documentp130, whose content type is "text/html".

3. Set document's allow declarative shadow roots to true.

4. Parse HTML from a stringp1155 given document and compliantHTML.

5. Return document.

element.setHTMLUnsafep1156(html)
Parses html using the HTML parser, and replaces the children of element with the result. element provides context for the HTML
parser.

shadowRoot.setHTMLUnsafep1156(html)
Parses html using the HTML parser, and replaces the children of shadowRoot with the result. shadowRoot's host provides
context for the HTML parser.

doc = Document.parseHTMLUnsafep1156(html)
Parses html using the HTML parser, and returns the resulting Documentp130.
Note that scriptp652 elements are not evaluated during parsing, and the resulting document's encoding will always be UTF-8.
The document's URL will be about:blankp53.

These methods perform no sanitization to remove potentially-dangerous elements and attributes like scriptp652 or
event handler content attributesp1138.

⚠Warning!

Since document does not have a browsing contextp999, scripting is disabledp1083.
Note

1156

https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-8
https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#interface-element
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-shadowroot
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#string
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#concept-node-replace-all
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-document-content-type
https://dom.spec.whatwg.org/#concept-document-allow-declarative-shadow-roots

Element's getHTML(options) method steps are to return the result of HTML fragment serialization algorithmp1368 with this,
options["serializableShadowRootsp1154"], and options["shadowRootsp1154"].

ShadowRoot's getHTML(options) method steps are to return the result of HTML fragment serialization algorithmp1368 with this,
options["serializableShadowRootsp1154"], and options["shadowRootsp1154"].

The innerHTMLp1158 property has a number of outstanding issues in the DOM Parsing and Serialization issue tracker, documenting
various problems with its specification.

The fragment serializing algorithm steps, given an Element, Documentp130 or DocumentFragment node and a boolean require well-
formed, are:

1. Let context document be node's node document.

2. If context document is an HTML document, return the result of HTML fragment serialization algorithmp1368 with node, false,
and « ».

3. Return the XML serialization of node given require well-formed.

The fragment parsing algorithm steps, given an Element context and a string markup, are:

html = element.getHTMLp1157({ serializableShadowRootsp1154, shadowRootsp1154 })
Returns the result of serializing element to HTML. Shadow roots within element are serialized according to the provided options:

• If serializableShadowRootsp1154 is true, then all shadow roots marked as serializable are serialized.

• If the shadowRootsp1154 array is provided, then all shadow roots specified in the array are serialized, regardless of
whether or not they are marked as serializable.

If neither option is provided, then no shadow roots are serialized.

html = shadowRoot.getHTMLp1157({ serializableShadowRootsp1154, shadowRootsp1154 })
Returns the result of serializing shadowRoot to HTML, using its shadow host as the context element. Shadow roots within
shadowRoot are serialized according to the provided options, as above.

For web developers (non-normative)

element.innerHTMLp1158

Returns a fragment of HTML or XML that represents the element's contents.
In the case of an XML document, throws a "InvalidStateError" DOMException if the element cannot be serialized to XML.

element.innerHTMLp1158 = value
Replaces the contents of the element with nodes parsed from the given string.
In the case of an XML document, throws a "SyntaxError" DOMException if the given string is not well-formed.

shadowRoot.innerHTMLp1158

Returns a fragment of HTML that represents the shadow roots's contents.

shadowRoot.innerHTMLp1158 = value
Replaces the contents of the shadow root with nodes parsed from the given string.

For web developers (non-normative)

These properties' setters perform no sanitization to remove potentially-dangerous elements and attributes like
scriptp652 or event handler content attributesp1138.

⚠Warning!

8.5.3 HTML serialization methods §p11

57

8.5.4 The innerHTMLp1158 property §p11

57

1157

https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#shadowroot-serializable
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-shadow-root
https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-shadowroot
https://webidl.spec.whatwg.org/#this
https://github.com/w3c/DOM-Parsing/issues
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#html-document
https://w3c.github.io/DOM-Parsing/#dfn-xml-serialization
https://dom.spec.whatwg.org/#interface-element

1. Let algorithm be the HTML fragment parsing algorithmp1373.

2. If context's node document is an XML document, then set algorithm to the XML fragment parsing algorithmp1387.

3. Let new children be the result of invoking algorithm given markup, with contextp1373 set to context.

4. Let fragment be a new DocumentFragment whose node document is context's node document.

5. Append each Node in new children to fragment (in tree order).

6. Return fragment.

Element's innerHTML getter steps are to return the result of running fragment serializing algorithm stepsp1157 with this and true.

ShadowRoot's innerHTML getter steps are to return the result of running fragment serializing algorithm stepsp1157 with this and true.

Element's innerHTMLp1158 setter steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, the given value, "Element innerHTML", and "script".

2. Let context be this.

3. Let fragment be the result of invoking the fragment parsing algorithm stepsp1157 with context and compliantString.

4. If context is a templatep671 element, then set context to the templatep671 element's template contentsp673 (a
DocumentFragment).

5. Replace all with fragment within context.

ShadowRoot's innerHTMLp1158 setter steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, the given value, "ShadowRoot innerHTML", and "script".

2. Let context be this's host.

3. Let fragment be the result of invoking the fragment parsing algorithm stepsp1157 with context and compliantString.

4. Replace all with fragment within this.

The outerHTMLp1159 property has a number of outstanding issues in the DOM Parsing and Serialization issue tracker, documenting
various problems with its specification.

This ensures the node document for the new nodes is correct.
Note

Setting innerHTMLp1158 on a templatep671 element will replace all the nodes in its template contentsp673 rather than its
children.

Note

element.outerHTMLp1159

Returns a fragment of HTML or XML that represents the element and its contents.
In the case of an XML document, throws a "InvalidStateError" DOMException if the element cannot be serialized to XML.

element.outerHTMLp1159 = value
Replaces the element with nodes parsed from the given string.
In the case of an XML document, throws a "SyntaxError" DOMException if the given string is not well-formed.

For web developers (non-normative)

8.5.5 The outerHTMLp1159 property §p11

58

1158

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-append
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-shadowroot
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-element
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-tree-child
https://dom.spec.whatwg.org/#concept-node-replace-all
https://dom.spec.whatwg.org/#interface-shadowroot
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-documentfragment-host
https://dom.spec.whatwg.org/#concept-node-replace-all
https://webidl.spec.whatwg.org/#this
https://github.com/w3c/DOM-Parsing/issues
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException

Element's outerHTML getter steps are:

1. Let element be a fictional node whose only child is this.

2. Return the result of running fragment serializing algorithm stepsp1157 with element and true.

Element's outerHTMLp1159 setter steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, the given value, "Element outerHTML", and "script".

2. Let parent be this's parent.

3. If parent is null, return. There would be no way to obtain a reference to the nodes created even if the remaining steps were
run.

4. If parent is a Documentp130, throw a "NoModificationAllowedError" DOMException.

5. If parent is a DocumentFragment, set parent to the result of creating an element given this's node document, bodyp205, and
the HTML namespace.

6. Let fragment be the result of invoking the fragment parsing algorithm stepsp1157 given parent and compliantString.

7. Replace this with fragment within this's parent.

The insertAdjacentHTML()p1160 method has a number of outstanding issues in the DOM Parsing and Serialization issue tracker,
documenting various problems with its specification.

Throws a "NoModificationAllowedError" DOMException if the parent of the element is a Documentp130.

This property's setter performs no sanitization to remove potentially-dangerous elements and attributes like
scriptp652 or event handler content attributesp1138.

⚠Warning!

element.insertAdjacentHTMLp1160(position, string)
Parses string as HTML or XML and inserts the resulting nodes into the tree in the position given by the position argument, as
follows:
"beforebegin"

Before the element itself (i.e., after element's previous sibling)
"afterbegin"

Just inside the element, before its first child.
"beforeend"

Just inside the element, after its last child.
"afterend"

After the element itself (i.e., before element's next sibling)
Throws a "SyntaxError" DOMException if the arguments have invalid values (e.g., in the case of an XML document, if the given
string is not well-formed).
Throws a "NoModificationAllowedError" DOMException if the given position isn't possible (e.g. inserting elements after the
root element of a Documentp130).

For web developers (non-normative)

This method performs no sanitization to remove potentially-dangerous elements and attributes like scriptp652 or
event handler content attributesp1138.

⚠Warning!

8.5.6 The insertAdjacentHTML()p1160 method §p11

59

1159

https://webidl.spec.whatwg.org/#nomodificationallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-element
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-parent
https://webidl.spec.whatwg.org/#nomodificationallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-create-element
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-replace
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-parent
https://github.com/w3c/DOM-Parsing/issues
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#xml-document
https://webidl.spec.whatwg.org/#nomodificationallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException

Element's insertAdjacentHTML(position, string) method steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, string, "Element insertAdjacentHTML", and "script".

2. Let context be null.

3. Use the first matching item from this list:

↪ If position is an ASCII case-insensitive match for the string "beforebegin"
↪ If position is an ASCII case-insensitive match for the string "afterend"

1. Set context to this's parentp931.

2. If context is null or a Documentp130, throw a "NoModificationAllowedError" DOMException.

↪ If position is an ASCII case-insensitive match for the string "afterbegin"
↪ If position is an ASCII case-insensitive match for the string "beforeend"

Set context to this.

↪ Otherwise
Throw a "SyntaxError" DOMException.

4. If context is not an Element or all of the following are true:

◦ context's node document is an HTML document;

◦ context's local name is "htmlp172"; and

◦ context's namespace is the HTML namespace,

set context to the result of creating an element given this's node document, bodyp205, and the HTML namespace.

5. Let fragment be the result of invoking the fragment parsing algorithm stepsp1157 with context and compliantString.

6. Use the first matching item from this list:

↪ If position is an ASCII case-insensitive match for the string "beforebegin"
Insert fragment into this's parentp931 before this.

↪ If position is an ASCII case-insensitive match for the string "afterbegin"
Insert fragment into this before its first child.

↪ If position is an ASCII case-insensitive match for the string "beforeend"
Append fragment to this.

↪ If position is an ASCII case-insensitive match for the string "afterend"
Insert fragment into this's parentp931 before this's next sibling.

The createContextualFragment()p1161 method has a number of outstanding issues in the DOM Parsing and Serialization issue
tracker, documenting various problems with its specification.

As with other direct Node-manipulation APIs (and unlike innerHTMLp1158), insertAdjacentHTML()p1160 does not include any special
handling for templatep671 elements. In most cases you will want to use templateEl.contentp674.insertAdjacentHTML()p1160

instead of directly manipulating the child nodes of a templatep671 element.

Note

For web developers (non-normative)

8.5.7 The createContextualFragment()p1161 method §p11

60

1160

https://dom.spec.whatwg.org/#interface-element
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#nomodificationallowederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-create-element
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-node-insert
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-node-insert
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-first-child
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-node-append
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-node-insert
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-tree-next-sibling
https://dom.spec.whatwg.org/#interface-node
https://github.com/w3c/DOM-Parsing/issues
https://github.com/w3c/DOM-Parsing/issues

partial interface Range {
[CEReactions, NewObject] DocumentFragment createContextualFragment((TrustedHTML or DOMString) string);

};

Range's createContextualFragment(string) method steps are:

1. Let compliantString be the result of invoking the Get Trusted Type compliant string algorithm with TrustedHTML, this's
relevant global objectp1083, string, "Range createContextualFragment", and "script".

2. Let node be this's start node.

3. Let element be null.

4. If node implements Element, set element to node.

5. Otherwise, if node implements Text or Comment, set element to node's parent element.

6. If element is null or all of the following are true:

◦ element's node document is an HTML document;

◦ element's local name is "htmlp172"; and

◦ element's namespace is the HTML namespace,

then set element to the result of creating an element given this's node document, bodyp205, and the HTML namespace.

7. Let fragment node be the result of invoking the fragment parsing algorithm stepsp1157 with element and compliantString.

8. For each script of fragment node's scriptp652 element descendants:

1. Set script's already startedp659 to false.

2. Set script's parser documentp659 to null.

9. Return fragment node.

The setTimeout()p1162 and setInterval()p1162 methods allow authors to schedule timer-based callbacks.

docFragment = range.createContextualFragmentp1161(string)
Returns a DocumentFragment created from the markup string string using range's start node as the context in which fragment is
parsed.

This method performs no sanitization to remove potentially-dangerous elements and attributes like scriptp652 or
event handler content attributesp1138.

⚠Warning!

8.6 Timers §p11

61

id = self.setTimeoutp1162(handler [, timeout [, ...arguments]])
Schedules a timeout to run handler after timeout milliseconds. Any arguments are passed straight through to the handler.

id = self.setTimeoutp1162(code [, timeout])
Schedules a timeout to compile and run code after timeout milliseconds.

self.clearTimeoutp1162(id)
Cancels the timeout set with setTimeout()p1162 or setInterval()p1162 identified by id.

id = self.setIntervalp1162(handler [, timeout [, ...arguments]])
Schedules a timeout to run handler every timeout milliseconds. Any arguments are passed straight through to the handler.

For web developers (non-normative)

IDL

1161

https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#concept-range-start-node
https://dom.spec.whatwg.org/#interface-range
https://dom.spec.whatwg.org/#interface-documentfragment
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://dom.spec.whatwg.org/#interface-range
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedhtml
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-range-start-node
https://webidl.spec.whatwg.org/#implements
https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#implements
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#parent-element
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-element-local-name
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-create-element
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-node-document
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-tree-descendant

Objects that implement the WindowOrWorkerGlobalScopep1148 mixin have a map of setTimeout and setInterval IDs, which is an
ordered map, initially empty. Each key in this map is a positive integer, corresponding to the return value of a setTimeout()p1162 or
setInterval()p1162 call. Each value is a unique internal valuep96, corresponding to a key in the object's map of active timersp1164.

The setTimeout(handler, timeout, ...arguments) method steps are to return the result of running the timer initialization
stepsp1162 given this, handler, timeout, arguments, and false.

The setInterval(handler, timeout, ...arguments) method steps are to return the result of running the timer initialization
stepsp1162 given this, handler, timeout, arguments, and true.

The clearTimeout(id) and clearInterval(id) method steps are to remove this's map of setTimeout and setInterval IDsp1162[id].

To perform the timer initialization steps, given a WindowOrWorkerGlobalScopep1148 global, a string or Function or TrustedScript
handler, a number timeout, a list arguments, a boolean repeat, and optionally (and only if repeat is true) a number previousId, perform
the following steps. They return a number.

1. Let thisArg be global if that is a WorkerGlobalScopep1228 object; otherwise let thisArg be the WindowProxyp934 that
corresponds to global.

2. If previousId was given, let id be previousId; otherwise, let id be an implementation-defined integer that is greater than zero
and does not already exist in global's map of setTimeout and setInterval IDsp1162.

3. If the surrounding agent's event loopp1123 's currently running taskp1124 is a task that was created by this algorithm, then let
nesting level be the taskp1124 's timer nesting levelp1164. Otherwise, let nesting level be zero.

4. If timeout is less than 0, then set timeout to 0.

5. If nesting level is greater than 5, and timeout is less than 4, then set timeout to 4.

6. Let realm be global's relevant realmp1083.

7. Let initiating script be the active scriptp1085.

8. Let uniqueHandle be null.

9. Let task be a taskp1124 that runs the following substeps:

1. Assert: uniqueHandle is a unique internal valuep96, not null.

id = self.setIntervalp1162(code [, timeout])
Schedules a timeout to compile and run code every timeout milliseconds.

self.clearIntervalp1162(id)
Cancels the timeout set with setInterval()p1162 or setTimeout()p1162 identified by id.

Timers can be nested; after five such nested timers, however, the interval is forced to be at least four milliseconds.
Note

This API does not guarantee that timers will run exactly on schedule. Delays due to CPU load, other tasks, etc, are to be expected.
Note

Because clearTimeout()p1162 and clearInterval()p1162 clear entries from the same map, either method can be used to clear
timers created by setTimeout()p1162 or setInterval()p1162.

Note

The task's timer nesting levelp1164 is used both for nested calls to setTimeout()p1162, and for the repeating timers created
by setInterval()p1162. (Or, indeed, for any combination of the two.) In other words, it represents nested invocations of
this algorithm, not of a particular method.

Note

1162

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#map-value
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-remove
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#common-Function
https://w3c.github.io/trusted-types/dist/spec/#trusted-script
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#map-exists
https://tc39.es/ecma262/#surrounding-agent
https://infra.spec.whatwg.org/#assert

2. If id does not exist in global's map of setTimeout and setInterval IDsp1162, then abort these steps.

3. If global's map of setTimeout and setInterval IDsp1162[id] does not equal uniqueHandle, then abort these steps.

4. Record timing info for timer handler given handler, global's relevant settings objectp1083, and repeat.

5. If handler is a Function, then invoke handler given arguments and "report", and with callback this value set to
thisArg.

6. Otherwise:

1. If previousId was not given:

1. Let globalName be "Window" if global is a Windowp922 object; "Worker" otherwise.

2. Let methodName be "setInterval" if repeat is true; "setTimeout" otherwise.

3. Let sink be a concatenation of globalName, U+0020 SPACE, and methodName.

4. Set handler to the result of invoking the Get Trusted Type compliant string algorithm with
TrustedScript, global, handler, sink, and "script".

2. Assert: handler is a string.

3. Perform EnsureCSPDoesNotBlockStringCompilation(realm, « », handler, handler, timer, « », handler). If
this throws an exception, catch it, reportp1098 it for global, and abort these steps.

4. Let settings object be global's relevant settings objectp1083.

5. Let fetch options be the default script fetch optionsp1086.

6. Let base URL be settings object's API base URLp1076.

7. If initiating script is not null, then:

1. Set fetch options to a script fetch optionsp1085 whose cryptographic noncep1086 is initiating
script's fetch optionsp1085 's cryptographic noncep1086, integrity metadatap1086 is the empty
string, parser metadatap1086 is "not-parser-inserted", credentials modep1086 is initiating
script's fetch optionsp1085 's credentials modep1086, referrer policyp1086 is initiating script's fetch
optionsp1085 's referrer policyp1086, and fetch priorityp1086 is "auto".

2. Set base URL to initiating script's base URLp1085.

8. Let script be the result of creating a classic scriptp1093 given handler, settings object, base URL, and fetch
options.

9. Run the classic scriptp1096 script.

7. If id does not exist in global's map of setTimeout and setInterval IDsp1162, then abort these steps.

8. If global's map of setTimeout and setInterval IDsp1162[id] does not equal uniqueHandle, then abort these steps.

9. If repeat is true, then perform the timer initialization stepsp1162 again, given global, handler, timeout, arguments,
true, and id.

This accommodates for the ID having been cleared by a clearTimeout()p1162 or clearInterval()p1162 call, and
being reused by a subsequent setTimeout()p1162 or setInterval()p1162 call.

Note

The effect of these steps ensures that the string compilation done by setTimeout()p1162 and
setInterval()p1162 behaves equivalently to that done by eval(). That is, module scriptp1085 fetches
via import() will behave the same in both contexts.

Note

The ID might have been removed via the author code in handler calling clearTimeout()p1162 or
clearInterval()p1162. Checking that uniqueHandle isn't different accounts for the possibility of the ID, after
having been cleared, being reused by a subsequent setTimeout()p1162 or setInterval()p1162 call.

Note

1163

https://infra.spec.whatwg.org/#map-exists
https://w3c.github.io/long-animation-frames/#record-timing-info-for-timer-handler
https://webidl.spec.whatwg.org/#common-Function
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trusted-script
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/webappsec-csp/#can-compile-strings
https://tc39.es/ecma262/#sec-eval-x
https://tc39.es/ecma262/#sec-import-calls
https://infra.spec.whatwg.org/#map-exists

10. Otherwise, remove global's map of setTimeout and setInterval IDsp1162[id].

10. Increment nesting level by one.

11. Set task's timer nesting level to nesting level.

12. Let completionStep be an algorithm step which queues a global taskp1125 on the timer task source given global to run task.

13. Set uniqueHandle to the result of running steps after a timeoutp1164 given global, "setTimeout/setInterval", timeout,
completionStep.

14. Set global's map of setTimeout and setInterval IDsp1162[id] to uniqueHandle.

15. Return id.

Objects that implement the WindowOrWorkerGlobalScopep1148 mixin have a map of active timers, which is an ordered map, initially
empty. Each key in this map is a unique internal valuep96 that represents a timer, and each value is a DOMHighResTimeStamp,
representing the expiry time for that timer.

To run steps after a timeout, given a WindowOrWorkerGlobalScopep1148 global, a string orderingIdentifier, a number milliseconds,

Argument conversion as defined by Web IDL (for example, invoking toString() methods on objects passed as the first argument)
happens in the algorithms defined in Web IDL, before this algorithm is invoked.

Note

So for example, the following rather silly code will result in the log containing "ONE TWO ":

var log = '';
function logger(s) { log += s + ' '; }

setTimeout({ toString: function () {
setTimeout("logger('ONE')", 100);
return "logger('TWO')";

} }, 100);

Example

To run tasks of several milliseconds back to back without any delay, while still yielding back to the browser to avoid starving the
user interface (and to avoid the browser killing the script for hogging the CPU), simply queue the next timer before performing
work:

function doExpensiveWork() {
var done = false;
// ...
// this part of the function takes up to five milliseconds
// set done to true if we're done
// ...
return done;

}

function rescheduleWork() {
var id = setTimeout(rescheduleWork, 0); // preschedule next iteration
if (doExpensiveWork())

clearTimeout(id); // clear the timeout if we don't need it
}

function scheduleWork() {
setTimeout(rescheduleWork, 0);

}

scheduleWork(); // queues a task to do lots of work

Example

1164

https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#map-key
https://infra.spec.whatwg.org/#map-value
https://w3c.github.io/hr-time/#dom-domhighrestimestamp

and a set of steps completionSteps, perform the following steps. They return a unique internal valuep96.

1. Let timerKey be a new unique internal valuep96.

2. Let startTime be the current high resolution time given global.

3. Set global's map of active timersp1164[timerKey] to startTime plus milliseconds.

4. Run the following steps in parallelp43:

1. If global is a Windowp922 object, wait until global's associated Documentp923 has been fully activep1003 for a further
milliseconds milliseconds (not necessarily consecutively).

Otherwise, global is a WorkerGlobalScopep1228 object; wait until milliseconds milliseconds have passed with the
worker not suspended (not necessarily consecutively).

2. Wait until any invocations of this algorithm that had the same global and orderingIdentifier, that started before this
one, and whose milliseconds is less than or equal to this one's, have completed.

3. Optionally, wait a further implementation-defined length of time.

4. Perform completionSteps.

5. Remove global's map of active timersp1164[timerKey].

5. Return timerKey.

The queueMicrotask(callback) method must queue a microtaskp1125 to invoke callback with « » and "report".

The queueMicrotask()p1165 method allows authors to schedule a callback on the microtask queuep1124. This allows their code to run
once the JavaScript execution context stack is next empty, which happens once all currently executing synchronous JavaScript has run
to completion. This doesn't yield control back to the event loopp1123, as would be the case when using, for example,
setTimeout(f, 0)p1162.

Authors ought to be aware that scheduling a lot of microtasks has the same performance downsides as running a lot of synchronous
code. Both will prevent the browser from doing its own work, such as rendering. In many cases, requestAnimationFrame()p1187 or
requestIdleCallback() is a better choice. In particular, if the goal is to run code before the next rendering cycle, that is the purpose
of requestAnimationFrame()p1187.

As can be seen from the following examples, the best way of thinking about queueMicrotask()p1165 is as a mechanism for rearranging
synchronous code, effectively placing the queued code immediately after the currently executing synchronous JavaScript has run to
completion.

This is intended to allow user agents to pad timeouts as needed to optimize the power usage of the device. For
example, some processors have a low-power mode where the granularity of timers is reduced; on such
platforms, user agents can slow timers down to fit this schedule instead of requiring the processor to use the
more accurate mode with its associated higher power usage.

Note

Run steps after a timeoutp1164 is meant to be used by other specifications that want to execute developer-supplied code after a
developer-supplied timeout, in a similar manner to setTimeout()p1162. (Note, however, it does not have the nesting and clamping
behavior of setTimeout()p1162.) Such specifications can choose an orderingIdentifier to ensure ordering within their specification's
timeouts, while not constraining ordering with respect to other specification's timeouts.

Note

8.7 Microtask queuing §p11

65

self.queueMicrotaskp1165(callback)
Queuesp1125 a microtaskp1124 to run the given callback.

For web developers (non-normative)

✔ MDN

1165

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://infra.spec.whatwg.org/#map-set
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#map-remove
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://tc39.es/ecma262/#execution-context-stack
https://w3c.github.io/requestidlecallback/#the-requestidlecallback-method

The most common reason for using queueMicrotask()p1165 is to create consistent ordering, even in the cases where information is
available synchronously, without introducing undue delay.

For example, consider a custom element firing a load event, that also maintains an internal cache of previously-loaded data. A
naïve implementation might look like:

MyElement.prototype.loadData = function (url) {
if (this._cache[url]) {

this._setData(this._cache[url]);
this.dispatchEvent(new Event("load"));

} else {
fetch(url).then(res => res.arrayBuffer()).then(data => {

this._cache[url] = data;
this._setData(data);
this.dispatchEvent(new Event("load"));

});
}

};

This naïve implementation is problematic, however, in that it causes its users to experience inconsistent behavior. For example,
code such as

element.addEventListener("load", () => console.log("loaded"));
console.log("1");
element.loadData();
console.log("2");

will sometimes log "1, 2, loaded" (if the data needs to be fetched), and sometimes log "1, loaded, 2" (if the data is already cached).
Similarly, after the call to loadData(), it will be inconsistent whether or not the data is set on the element.

To get a consistent ordering, queueMicrotask()p1165 can be used:

MyElement.prototype.loadData = function (url) {
if (this._cache[url]) {

queueMicrotask(() => {
this._setData(this._cache[url]);
this.dispatchEvent(new Event("load"));

});
} else {

fetch(url).then(res => res.arrayBuffer()).then(data => {
this._cache[url] = data;
this._setData(data);
this.dispatchEvent(new Event("load"));

});
}

};

By essentially rearranging the queued code to be after the JavaScript execution context stack empties, this ensures a consistent
ordering and update of the element's state.

Example

Another interesting use of queueMicrotask()p1165 is to allow uncoordinated "batching" of work by multiple callers. For example,
consider a library function that wants to send data somewhere as soon as possible, but doesn't want to make multiple network
requests if doing so is easily avoidable. One way to balance this would be like so:

const queuedToSend = [];

function sendData(data) {
queuedToSend.push(data);

Example

1166

https://tc39.es/ecma262/#execution-context-stack

The alert() and alert(message) method steps are:

1. If we cannot show simple dialogsp1168 for this, then return.

2. If the method was invoked with no arguments, then let message be the empty string; otherwise, let message be the
method's first argument.

3. Set message to the result of normalizing newlines given message.

4. Set message to the result of optionally truncatingp1168 message.

5. Let userPromptHandler be WebDriver BiDi user prompt opened with this, "alert", and message.

6. If userPromptHandler is "none", then:

1. Show message to the user, treating U+000A LF as a line break.

2. Optionally, pausep1133 while waiting for the user to acknowledge the message.

7. Invoke WebDriver BiDi user prompt closed with this, "alert", and true.

if (queuedToSend.length === 1) {
queueMicrotask(() => {

const stringToSend = JSON.stringify(queuedToSend);
queuedToSend.length = 0;

fetch("/endpoint", stringToSend);
});

}
}

With this architecture, multiple subsequent calls to sendData() within the currently executing synchronous JavaScript will be
batched together into one fetch() call, but with no intervening event loop tasks preempting the fetch (as would have happened
with similar code that instead used setTimeout()p1162).

8.8 User prompts §p11

67

window.alertp1167(message)
Displays a modal alert with the given message, and waits for the user to dismiss it.

result = window.confirmp1168(message)
Displays a modal OK/Cancel prompt with the given message, waits for the user to dismiss it, and returns true if the user clicks
OK and false if the user clicks Cancel.

result = window.promptp1168(message [, default])
Displays a modal text control prompt with the given message, waits for the user to dismiss it, and returns the value that the
user entered. If the user cancels the prompt, then returns null instead. If the second argument is present, then the given value
is used as a default.

For web developers (non-normative)

Logic that depends on tasksp1124 or microtasksp1124, such as media elementsp414 loading their media datap415, are stalled when
these methods are invoked.

Note

This method is defined using two overloads, instead of using an optional argument, for historical reasons. The practical impact of
Note

8.8.1 Simple dialogs §p11

67

1167

https://fetch.spec.whatwg.org/#dom-global-fetch
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#normalize-newlines
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-opened
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-closed
https://webidl.spec.whatwg.org/#this

The confirm(message) method steps are:

1. If we cannot show simple dialogsp1168 for this, then return false.

2. Set message to the result of normalizing newlines given message.

3. Set message to the result of optionally truncatingp1168 message.

4. Show message to the user, treating U+000A LF as a line break, and ask the user to respond with a positive or negative
response.

5. Let userPromptHandler be WebDriver BiDi user prompt opened with this, "confirm", and message.

6. Let accepted be false.

7. If userPromptHandler is "none", then:

1. Pausep1133 until the user responds either positively or negatively.

2. If the user responded positively, then set accepted to true.

8. If userPromptHandler is "accept", then set accepted to true.

9. Invoke WebDriver BiDi user prompt closed with this, "confirm", and accepted.

10. Return accepted.

The prompt(message, default) method steps are:

1. If we cannot show simple dialogsp1168 for this, then return null.

2. Set message to the result of normalizing newlines given message.

3. Set message to the result of optionally truncatingp1168 message.

4. Set default to the result of optionally truncatingp1168 default.

5. Show message to the user, treating U+000A LF as a line break, and ask the user to either respond with a string value or
abort. The response must be defaulted to the value given by default.

6. Let userPromptHandler be WebDriver BiDi user prompt opened with this, "prompt", and message.

7. Let result be null.

8. If userPromptHandler is "none", then:

1. Pausep1133 while waiting for the user's response.

2. If the user did not abort, then set result to the string that the user responded with.

9. Otherwise, if userPromptHandler is "accept", then set result to the empty string.

10. Invoke WebDriver BiDi user prompt closed with this, "prompt", false if result is null or true otherwise, and result.

11. Return result.

To optionally truncate a simple dialog string s, return either s itself or some string derived from s that is shorter. User agents
should not provide UI for displaying the elided portion of s, as this makes it too easy for abusers to create dialogs of the form
"Important security alert! Click 'Show More' for full details!".

We cannot show simple dialogs for a Windowp922 window when the following algorithm returns true:

this is that alert(undefined) is treated as alert("undefined"), but alert() is treated as alert("").

For example, a user agent might want to only display the first 100 characters of a message. Or, a user agent might replace the
middle of the string with "…". These types of modifications can be useful in limiting the abuse potential of unnaturally large,
trustworthy-looking system dialogs.

Note

1168

https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#normalize-newlines
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-opened
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-closed
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#normalize-newlines
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-opened
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-user-prompt-closed
https://webidl.spec.whatwg.org/#this

1. If the active sandboxing flag setp917 of window's associated Documentp923 has the sandboxed modals flagp915 set, then return
true.

2. If window's relevant settings objectp1083 's originp1076 and window's relevant settings objectp1083 's top-level originp1076 are not
same origin-domainp899, then return true.

3. If window's relevant agentp1073 's event loopp1123 's termination nesting levelp1064 is nonzero, then optionally return true.

4. Optionally, return true. (For example, the user agent might give the user the option to ignore all modal dialogs, and would
thus abort at this step whenever the method was invoked.)

5. Return false.

The print() method steps are:

1. Let document be this's associated Documentp923.

2. If document is not fully activep1003, then return.

3. If document's unload counterp1064 is greater than 0, then return.

4. If document is ready for post-load tasksp1359, then run the printing stepsp1169 for document.

5. Otherwise, set document's print when loaded flag.

User agents should also run the printing stepsp1169 whenever the user asks for the opportunity to obtain a physical formp1423 (e.g.
printed copy), or the representation of a physical form (e.g. PDF copy), of a document.

The printing steps for a Documentp130 document are:

1. The user agent may display a message to the user or return (or both).

2. If the active sandboxing flag setp917 of document has the sandboxed modals flagp915 set, then return.

3. The user agent must fire an event named beforeprintp1471 at the relevant global objectp1083 of document, as well as any
child navigablep992 in it.

Firing in children only doesn't seem right here, and some tasks likely need to be queued. See issue #5096.

4. The user agent should offer the user the opportunity to obtain a physical formp1423 (or the representation of a physical form)

window.printp1169()
Prompts the user to print the page.

For web developers (non-normative)

For instance, a kiosk browser could silently ignore any invocations of the print()p1169 method.
Example

For instance, a browser on a mobile device could detect that there are no printers in the vicinity and display a message
saying so before continuing to offer a "save to PDF" option.

Example

If the printing dialog is blocked by a Documentp130 's sandbox, then neither the beforeprintp1471 nor afterprintp1471

events will be fired.

Note

The beforeprintp1471 event can be used to annotate the printed copy, for instance adding the time at which the
document was printed.

Example

8.8.2 Printing §p11

69

✔ MDN

1169

https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#concept-event-fire
https://github.com/whatwg/html/issues/5096

of document. The user agent may wait for the user to either accept or decline before returning; if so, the user agent must
pausep1133 while the method is waiting. Even if the user agent doesn't wait at this point, the user agent must use the state of
the relevant documents as they are at this point in the algorithm if and when it eventually creates the alternate form.

5. The user agent must fire an event named afterprintp1471 at the relevant global objectp1083 of document, as well as any child
navigablesp992 in it.

Firing in children only doesn't seem right here, and some tasks likely need to be queued. See issue #5096.

Instances of Navigatorp1170 represent the identity and state of the user agent (the client). It has also been used as a generic global
under which various APIs are located, but this is not precedent to build upon. Instead use the WindowOrWorkerGlobalScopep1148 mixin
or equivalent.

[Exposed=Window]
interface Navigator {

// objects implementing this interface also implement the interfaces given below
};
Navigator includes NavigatorID;
Navigator includes NavigatorLanguage;
Navigator includes NavigatorOnLine;
Navigator includes NavigatorContentUtils;
Navigator includes NavigatorCookies;
Navigator includes NavigatorPlugins;
Navigator includes NavigatorConcurrentHardware;

Each Windowp922 has an associated Navigator, which is a Navigatorp1170 object. Upon creation of the Windowp922 object, its associated
Navigatorp1170 must be set to a new Navigatorp1170 object created in the Windowp922 object's relevant realmp1083.

The navigator and clientInformation getter steps are to return this's associated Navigatorp1170.

interface mixin NavigatorID {
readonly attribute DOMString appCodeName; // constant "Mozilla"
readonly attribute DOMString appName; // constant "Netscape"
readonly attribute DOMString appVersion;
readonly attribute DOMString platform;
readonly attribute DOMString product; // constant "Gecko"
[Exposed=Window] readonly attribute DOMString productSub;
readonly attribute DOMString userAgent;
[Exposed=Window] readonly attribute DOMString vendor;
[Exposed=Window] readonly attribute DOMString vendorSub; // constant ""

};

The afterprintp1471 event can be used to revert annotations added in the earlier event, as well as showing post-printing
UI. For instance, if a page is walking the user through the steps of applying for a home loan, the script could
automatically advance to the next step after having printed a form or other.

Example

8.9 System state and capabilities §p11

70

These interface mixins are defined separately so that WorkerNavigatorp1240 can reuse parts of the Navigatorp1170 interface.
Note

8.9.1.1 Client identification §p11

70

IDL

IDL

8.9.1 The Navigatorp1170 object §p11

70

✔ MDN

✔ MDN

1170

https://dom.spec.whatwg.org/#concept-event-fire
https://github.com/whatwg/html/issues/5096
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#this

In certain cases, despite the best efforts of the entire industry, web browsers have bugs and limitations that web authors are forced to
work around.

This section defines a collection of attributes that can be used to determine, from script, the kind of user agent in use, in order to work
around these issues.

The user agent has a navigator compatibility mode, which is either Chrome, Gecko, or WebKit.

Client detection should always be limited to detecting known current versions; future versions and unknown versions should always be
assumed to be fully compliant.

appCodeName
Must return the string "Mozilla".

appName
Must return the string "Netscape".

appVersion
Must return the appropriate string that starts with "5.0 (", as follows:

Let trail be the substring of default `User-Agent` value that follows the "Mozilla/" prefix.

↪ If the navigator compatibility modep1171 is Chrome or WebKit
Return trail.

↪ If the navigator compatibility modep1171 is Gecko
If trail starts with "5.0 (Windows", then return "5.0 (Windows)".

Otherwise, return the prefix of trail up to but not including the first U+003B (;), concatenated with the character U+0029
RIGHT PARENTHESIS. For example, "5.0 (Macintosh)", "5.0 (Android 10)", or "5.0 (X11)".

The navigator compatibility modep1171 constrains the NavigatorIDp1170 mixin to the combinations of attribute values and presence
of taintEnabled()p1172 and oscpup1172 that are known to be compatible with existing web content.

Note

self.navigatorp1170.appCodeNamep1171

Returns the string "Mozilla".

self.navigatorp1170.appNamep1171

Returns the string "Netscape".

self.navigatorp1170.appVersionp1171

Returns the version of the browser.

self.navigatorp1170.platformp1172

Returns the name of the platform.

self.navigatorp1170.productp1172

Returns the string "Gecko".

window.navigatorp1170.productSubp1172

Returns either the string "20030107", or the string "20100101".

self.navigatorp1170.userAgentp1172

Returns the complete `User-Agent` header.

window.navigatorp1170.vendorp1172

Returns either the empty string, the string "Apple Computer, Inc.", or the string "Google Inc.".

window.navigatorp1170.vendorSubp1172

Returns the empty string.

For web developers (non-normative)

1171

https://fetch.spec.whatwg.org/#default-user-agent-value

platform
Must return a string representing the platform on which the browser is executing (e.g. "MacIntel", "Win32", "Linux x86_64", "Linux
armv81") or, for privacy and compatibility, a string that is commonly returned on another platform.

product
Must return the string "Gecko".

productSub
Must return the appropriate string from the following list:

↪ If the navigator compatibility modep1171 is Chrome or WebKit
The string "20030107".

↪ If the navigator compatibility modep1171 is Gecko
The string "20100101".

userAgent
Must return the default `User-Agent` value.

vendor
Must return the appropriate string from the following list:

↪ If the navigator compatibility modep1171 is Chrome
The string "Google Inc.".

↪ If the navigator compatibility modep1171 is Gecko
The empty string.

↪ If the navigator compatibility modep1171 is WebKit
The string "Apple Computer, Inc.".

vendorSub
Must return the empty string.

If the navigator compatibility modep1171 is Gecko, then the user agent must also support the following partial interface:

partial interface mixin NavigatorID {
[Exposed=Window] boolean taintEnabled(); // constant false
[Exposed=Window] readonly attribute DOMString oscpu;

};

The taintEnabled() method must return false.

The oscpu attribute's getter must return either the empty string or a string representing the platform on which the browser is
executing, e.g. "Windows NT 10.0; Win64; x64", "Linux x86_64".

interface mixin NavigatorLanguage {
readonly attribute DOMString language;
readonly attribute FrozenArray<DOMString> languages;

};

Any information in this API that varies from user to user can be used to profile the user. In fact, if enough
such information is available, a user can actually be uniquely identified. For this reason, user agent
implementers are strongly urged to include as little information in this API as possible.

⚠Warning!

8.9.1.2 Language preferences §p11

72

For web developers (non-normative)

IDL

IDL

1172

https://fetch.spec.whatwg.org/#default-user-agent-value
https://infra.spec.whatwg.org/#tracking-vector

language
Must return a valid BCP 47 language tag representing either a plausible languagep1173 or the user's most preferred language.
[BCP47]p1475

languages
Must return a frozen array of valid BCP 47 language tags representing either one or more plausible languagesp1173, or the user's
preferred languages, ordered by preference with the most preferred language first. The same object must be returned until the user
agent needs to return different values, or values in a different order. [BCP47]p1475

Whenever the user agent needs to make the navigator.languagesp1173 attribute of a Windowp922 or WorkerGlobalScopep1228 object
global return a new set of language tags, the user agent must queue a global taskp1125 on the DOM manipulation task sourcep1134

given global to fire an event named languagechangep1471 at global, and wait until that task begins to be executed before actually
returning a new value.

To determine a plausible language, the user agent should bear in mind the following:

• Any information in this API that varies from user to user can be used to profile or identify the user.

• If the user is not using a service that obfuscates the user's point of origin (e.g. the Tor anonymity network), then the
value that is least likely to distinguish the user from other users with similar origins (e.g. from the same IP address
block) is the language used by the majority of such users. [TOR]p1482

• If the user is using an anonymizing service, then the value "en-US" is suggested; if all users of the service use that same
value, that reduces the possibility of distinguishing the users from each other.

To avoid introducing any more fingerprinting vectors, user agents should use the same list for the APIs defined in this function
as for the HTTP `Accept-Language` header.

interface mixin NavigatorOnLine {
readonly attribute boolean onLine;

};

The onLine attribute must return false if the user agent will not contact the network when the user follows links or when a script
requests a remote page (or knows that such an attempt would fail), and must return true otherwise.

When the value that would be returned by the navigator.onLinep1173 attribute of a Windowp922 or WorkerGlobalScopep1228 global
changes from true to false, the user agent must queue a global taskp1125 on the networking task sourcep1134 given global to fire an
event named offlinep1472 at global.

self.navigatorp1170.languagep1173

Returns a language tag representing the user's preferred language.

self.navigatorp1170.languagesp1173

Returns an array of language tags representing the user's preferred languages, with the most preferred language first.
The most preferred language is the one returned by navigator.languagep1173.

A languagechangep1471 event is fired at the Windowp922 or WorkerGlobalScopep1228 object when the user agent's understanding of
what the user's preferred languages are changes.

Note

8.9.1.3 Browser state §p11

73

self.navigatorp1170.onLinep1173

Returns false if the user agent is definitely offline (disconnected from the network). Returns true if the user agent might be
online.
The events onlinep1472 and offlinep1472 are fired when the value of this attribute changes.

For web developers (non-normative)

IDL

1173

https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://dom.spec.whatwg.org/#concept-event-fire
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#tracking-vector
https://httpwg.org/specs/rfc7231.html#header.accept-language
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

On the other hand, when the value that would be returned by the navigator.onLinep1173 attribute of a Windowp922 or
WorkerGlobalScopep1228 global changes from false to true, the user agent must queue a global taskp1125 on the networking task
sourcep1134 given global to fire an event named onlinep1472 at the Windowp922 or WorkerGlobalScopep1228 object.

interface mixin NavigatorContentUtils {
[SecureContext] undefined registerProtocolHandler(DOMString scheme, USVString url);
[SecureContext] undefined unregisterProtocolHandler(DOMString scheme, USVString url);

};

The registerProtocolHandler(scheme, url) method steps are:

1. Let (normalizedScheme, normalizedURLString) be the result of running normalize protocol handler parametersp1175 with
scheme, url, and this's relevant settings objectp1083.

2. In parallelp43: register a protocol handler for normalizedScheme and normalizedURLString. User agents may, within the
constraints described, do whatever they like. A user agent could, for instance, prompt the user and offer the user the
opportunity to add the site to a shortlist of handlers, or make the handlers their default, or cancel the request. User agents
could also silently collect the information, providing it only when relevant to the user.

This attribute is inherently unreliable. A computer can be connected to a network without having Internet access.
Note

In this example, an indicator is updated as the browser goes online and offline.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Online status</title>
<script>
function updateIndicator() {

document.getElementById('indicator').textContent = navigator.onLine ? 'online' : 'offline';
}

</script>
</head>
<body onload="updateIndicator()" ononline="updateIndicator()" onoffline="updateIndicator()">
<p>The network is: (state unknown)

</body>
</html>

Example

8.9.1.4 Custom scheme handlers: the registerProtocolHandler()p1174 method §p11

74

window.navigatorp1170.registerProtocolHandlerp1174(scheme, url)
Registers a handler for scheme at url. For example, an online telephone messaging service could register itself as a handler of
the sms: scheme, so that if the user clicks on such a link, they are given the opportunity to use that web site. [SMS]p1482

The string "%s" in url is used as a placeholder for where to put the URL of the content to be handled.
Throws a "SecurityError" DOMException if the user agent blocks the registration (this might happen if trying to register as a
handler for "http", for instance).
Throws a "SyntaxError" DOMException if the "%s" string is missing in url.

window.navigatorp1170.unregisterProtocolHandlerp1175(scheme, url)
Unregisters the handler given by the arguments.
Throws a "SecurityError" DOMException if the user agent blocks the deregistration (this might happen if with invalid schemes,
for instance).
Throws a "SyntaxError" DOMException if the "%s" string is missing in url.

For web developers (non-normative)

IDL

MDN

1174

https://dom.spec.whatwg.org/#concept-event-fire
https://www.rfc-editor.org/rfc/rfc5724#section-2
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

User agents should keep track of which sites have registered handlers (even if the user has declined such registrations) so
that the user is not repeatedly prompted with the same request.

If the registerProtocolHandler() automation modep1177 of this's relevant global objectp1083 's associated Documentp923 is
not "none", the user agent should first verify that it is in an automation context (see WebDriver's security considerations).
The user agent should then bypass the above communication of information and gathering of user consent, and instead do
the following based on the value of the registerProtocolHandler() automation modep1177:

"autoAccept"
Act as if the user has seen the registration details and accepted the request.

"autoReject"
Act as if the user has seen the registration details and rejected the request.

When the user agent uses this handler for a URL inputURL:

1. Assert: inputURL's scheme is normalizedScheme.

2. Set the username given inputURL and the empty string.

3. Set the password given inputURL and the empty string.

4. Let inputURLString be the serialization of inputURL.

5. Let encodedURL be the result of running UTF-8 percent-encode on inputURLString using the component percent-
encode set.

6. Let handlerURLString be normalizedURLString.

7. Replace the first instance of "%s" in handlerURLString with encodedURL.

8. Let resultURL be the result of parsing handlerURLString.

9. Navigatep1014 an appropriate navigablep989 to resultURL.

This does not define when the handler is used. To some extent, the processing model for navigating across documentsp1014

defines some cases where it is relevant, but in general user agents may use this information wherever they would otherwise
consider handing schemes to native plugins or helper applications.

The unregisterProtocolHandler(scheme, url) method steps are:

1. Let (normalizedScheme, normalizedURLString) be the result of running normalize protocol handler parametersp1175 with
scheme, url, and this's relevant settings objectp1083.

2. In parallelp43: unregister the handler described by normalizedScheme and normalizedURLString.

To normalize protocol handler parameters, given a string scheme, a string url, and an environment settings objectp1076

environment, run these steps:

1. Set scheme to scheme, converted to ASCII lowercase.

If the user had visited a site at https://example.com/ that made the following call:

navigator.registerProtocolHandler('web+soup', 'soup?url=%s')

...and then, much later, while visiting https://www.example.net/, clicked on a link such as:

Download our Chicken Kïwi soup!

...then the UA might navigate to the following URL:

https://example.com/soup?url=web+soup:chicken-k%C3%AFwi

This site could then do whatever it is that it does with soup (synthesize it and ship it to the user, or whatever).

Example

1175

https://webidl.spec.whatwg.org/#this
https://w3c.github.io/webdriver/#security
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#assert
https://url.spec.whatwg.org/#concept-url-scheme
https://url.spec.whatwg.org/#set-the-username
https://url.spec.whatwg.org/#set-the-password
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#string-utf-8-percent-encode
https://url.spec.whatwg.org/#component-percent-encode-set
https://url.spec.whatwg.org/#component-percent-encode-set
https://url.spec.whatwg.org/#concept-url-parser
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#ascii-lowercase

2. If scheme is neither a safelisted schemep1176 nor a string starting with "web+" followed by one or more ASCII lower alphas,
then throw a "SecurityError" DOMException.

The following schemes are the safelisted schemes:

◦ bitcoin
◦ ftp
◦ ftps
◦ geo
◦ im
◦ irc
◦ ircs
◦ magnet
◦ mailto
◦ matrix
◦ mms
◦ news
◦ nntp
◦ openpgp4fpr
◦ sftp
◦ sip
◦ sms
◦ smsto
◦ ssh
◦ tel
◦ urn
◦ webcal
◦ wtai
◦ xmpp

3. If url does not contain "%s", then throw a "SyntaxError" DOMException.

4. Let urlRecord be the result of encoding-parsing a URLp97 given url, relative to environment.

5. If urlRecord is failure, then throw a "SyntaxError" DOMException.

6. If urlRecord's scheme is not an HTTP(S) scheme or urlRecord's origin is not same originp899 with environment's originp1076,
then throw a "SecurityError" DOMException.

7. Assert: the result of Is url potentially trustworthy? given urlRecord is "Potentially Trustworthy".

8. Return (scheme, urlRecord).

Custom scheme handlers can introduce a number of concerns, in particular privacy concerns.

Hijacking all web usage. User agents should not allow schemes that are key to its normal operation, such as an HTTP(S) scheme, to
be rerouted through third-party sites. This would allow a user's activities to be trivially tracked, and would allow user information, even
in secure connections, to be collected.

This means that including a colon in scheme (as in "mailto:") will throw.
Note

This list can be changed. If there are schemes that ought to be added, please send feedback.
Note

This is forcibly the case if the %s placeholder is in the host or port of the URL.
Note

Because normalize protocol handler parametersp1175 is run within a secure contextp1084, this is implied by the same
originp899 condition.

Note

The serialization of urlRecord will by definition not be a valid URL string as it includes the string "%s" which is not a valid
component in a URL.

Note

8.9.1.4.1 Security and privacy §p11

76

1176

https://infra.spec.whatwg.org/#ascii-lower-alpha
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-scheme
https://fetch.spec.whatwg.org/#http-scheme
https://url.spec.whatwg.org/#concept-url-origin
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/webappsec-secure-contexts/#potentially-trustworthy-url
https://url.spec.whatwg.org/#concept-url-serializer
https://url.spec.whatwg.org/#valid-url-string
https://fetch.spec.whatwg.org/#http-scheme

Hijacking defaults. User agents are strongly urged to not automatically change any defaults, as this could lead the user to send data
to remote hosts that the user is not expecting. New handlers registering themselves should never automatically cause those sites to be
used.

Registration spamming. User agents should consider the possibility that a site will attempt to register a large number of handlers,
possibly from multiple domains (e.g., by redirecting through a series of pages each on a different domain, and each registering a
handler for web+spam: — analogous practices abusing other web browser features have been used by pornography web sites for many
years). User agents should gracefully handle such hostile attempts, protecting the user.

Hostile handler metadata. User agents should protect against typical attacks against strings embedded in their interface, for
example ensuring that markup or escape characters in such strings are not executed, that null bytes are properly handled, that over-
long strings do not cause crashes or buffer overruns, and so forth.

Leaking private data. Web page authors may reference a custom scheme handler using URL data considered private. They might do
so with the expectation that the user's choice of handler points to a page inside the organization, ensuring that sensitive data will not
be exposed to third parties. However, a user may have registered a handler pointing to an external site, resulting in a data leak to that
third party. Implementers might wish to consider allowing administrators to disable custom handlers on certain subdomains, content
types, or schemes.

Interface interference. User agents should be prepared to handle intentionally long arguments to the methods. For example, if the
user interface exposed consists of an "accept" button and a "deny" button, with the "accept" binding containing the name of the
handler, it's important that a long name not cause the "deny" button to be pushed off the screen.

Each Documentp130 has a registerProtocolHandler() automation mode. It defaults to "nonep1175", but it also can be either
"autoAcceptp1175" or "autoRejectp1175".

For the purposes of user agent automation and website testing, this standard defines Set RPH Registration Mode WebDriver
extension command. It instructs the user agent to place a Documentp130 into a mode where it will automatically simulate a user either
accepting or rejecting and registration confirmation prompt dialog.

HTTP Method URI Template

`POST` /session/{session id}/custom-handlers/set-mode

The remote end steps are:

1. If parameters is not a JSON Object, return a WebDriver error with WebDriver error code invalid argument.

2. Let mode be the result of getting a property named "mode" from parameters.

3. If mode is not "autoAcceptp1175", "autoRejectp1175", or "nonep1175", return a WebDriver error with WebDriver error code invalid
argument.

4. Let document be the current browsing context's active documentp998.

5. Set document's registerProtocolHandler() automation modep1177 to mode.

6. Return success with data null.

interface mixin NavigatorCookies {
readonly attribute boolean cookieEnabled;

};

8.9.1.4.2 User agent automation §p11

77

8.9.1.5 Cookies §p11

77

window.navigatorp1170.cookieEnabledp1178

Returns false if setting a cookie will be ignored, and true otherwise.

For web developers (non-normative)

IDL

1177

https://w3c.github.io/webdriver/#dfn-extension-commands
https://w3c.github.io/webdriver/#dfn-remote-end-steps
https://w3c.github.io/webdriver/#dfn-errors
https://w3c.github.io/webdriver/#dfn-error-code
https://w3c.github.io/webdriver/#dfn-invalid-argument
https://w3c.github.io/webdriver/#dfn-getting-properties
https://w3c.github.io/webdriver/#dfn-errors
https://w3c.github.io/webdriver/#dfn-error-code
https://w3c.github.io/webdriver/#dfn-invalid-argument
https://w3c.github.io/webdriver/#dfn-invalid-argument
https://w3c.github.io/webdriver/#dfn-current-browsing-context
https://w3c.github.io/webdriver/#dfn-success

The cookieEnabled attribute must return true if the user agent attempts to handle cookies according to HTTP State Management
Mechanism, and false if it ignores cookie change requests. [COOKIES]p1476

interface mixin NavigatorPlugins {
[SameObject] readonly attribute PluginArray plugins;
[SameObject] readonly attribute MimeTypeArray mimeTypes;
boolean javaEnabled();
readonly attribute boolean pdfViewerEnabled;

};

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface PluginArray {
undefined refresh();
readonly attribute unsigned long length;
getter Plugin? item(unsigned long index);
getter Plugin? namedItem(DOMString name);

};

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface MimeTypeArray {
readonly attribute unsigned long length;
getter MimeType? item(unsigned long index);
getter MimeType? namedItem(DOMString name);

};

[Exposed=Window,
LegacyUnenumerableNamedProperties]

interface Plugin {
readonly attribute DOMString name;
readonly attribute DOMString description;
readonly attribute DOMString filename;
readonly attribute unsigned long length;
getter MimeType? item(unsigned long index);
getter MimeType? namedItem(DOMString name);

};

[Exposed=Window]
interface MimeType {

readonly attribute DOMString type;
readonly attribute DOMString description;
readonly attribute DOMString suffixes;
readonly attribute Plugin enabledPlugin;

};

Although these days detecting PDF viewer support can be done via navigator.pdfViewerEnabledp1179, for historical reasons, there are
a number of complex and intertwined interfaces that provide the same capability, which legacy code relies on. This section specifies
both the simple modern variant and the complicated historical one.

Each user agent has a PDF viewer supported boolean, whose value is implementation-defined (and might vary according to user
preferences).

8.9.1.6 PDF viewing support §p11

78

window.navigatorp1170.pdfViewerEnabledp1179

Returns true if the user agent supports inline viewing of PDF files when navigatingp1014 to them, or false otherwise. In the latter
case, PDF files will be handled by external softwarep1024.

For web developers (non-normative)

IDL

1178

https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties
https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties
https://webidl.spec.whatwg.org/#LegacyUnenumerableNamedProperties
https://infra.spec.whatwg.org/#implementation-defined

Each Windowp922 object has a PDF viewer plugin objects list. If the user agent's PDF viewer supportedp1178 is false, then it is the
empty list. Otherwise, it is a list containing five Pluginp1178 objects, whose namesp1180 are, respectively:

0. "PDF Viewer"
1. "Chrome PDF Viewer"
2. "Chromium PDF Viewer"
3. "Microsoft Edge PDF Viewer"
4. "WebKit built-in PDF"

The values of the above list form the PDF viewer plugin names list.

Each Windowp922 object has a PDF viewer mime type objects list. If the user agent's PDF viewer supportedp1178 is false, then it is the
empty list. Otherwise, it is a list containing two MimeTypep1178 objects, whose typesp1180 are, respectively:

0. "application/pdf"
1. "text/pdf"

The values of the above list form the PDF viewer mime types list.

Each NavigatorPluginsp1178 object has a plugins array, which is a new PluginArrayp1178, and a mime types array, which is a new
MimeTypeArrayp1178.

The NavigatorPluginsp1178 mixin's plugins getter steps are to return this's plugins arrayp1179.

The NavigatorPluginsp1178 mixin's mimeTypes getter steps are to return this's mime types arrayp1179.

The NavigatorPluginsp1178 mixin's javaEnabled() method steps are to return false.

The NavigatorPluginsp1178 mixin's pdfViewerEnabled getter steps are to return the user agent's PDF viewer supportedp1178.

The PluginArrayp1178 interface supports named properties. If the user agent's PDF viewer supportedp1178 is true, then they are the PDF
viewer plugin namesp1179. Otherwise, they are the empty list.

The PluginArrayp1178 interface's namedItem(name) method steps are:

1. For each Pluginp1178 plugin of this's relevant global objectp1083 's PDF viewer plugin objectsp1179: if plugin's namep1180 is name,
then return plugin.

2. Return null.

The PluginArrayp1178 interface supports indexed properties. The supported property indices are the indices of this's relevant global
objectp1083 's PDF viewer plugin objectsp1179.

The PluginArrayp1178 interface's item(index) method steps are:

1. Let plugins be this's relevant global objectp1083 's PDF viewer plugin objectsp1179.

2. If index < plugins's size, then return plugins[index].

3. Return null.

The PluginArrayp1178 interface's length getter steps are to return this's relevant global objectp1083 's PDF viewer plugin objectsp1179 's
size.

The PluginArrayp1178 interface's refresh() method steps are to do nothing.

This value also impacts the navigationp1014 processing model.
Note

These names were chosen based on evidence of what websites historically search for, and thus what is necessary for user agents
to expose in order to maintain compatibility with existing content. They are ordered alphabetically. The "PDF Viewer" name was
then inserted in the 0th position so that the enabledPluginp1180 getter could point to a generic plugin name.

Note

✔ MDN

1179

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-support-named-properties
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-support-indexed-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-get-the-indices
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size

The MimeTypeArrayp1178 interface supports named properties. If the user agent's PDF viewer supportedp1178 is true, then they are the
PDF viewer mime typesp1179. Otherwise, they are the empty list.

The MimeTypeArrayp1178 interface's namedItem(name) method steps are:

1. For each MimeTypep1178 mimeType of this's relevant global objectp1083 's PDF viewer mime type objectsp1179: if mimeType's
typep1180 is name, then return mimeType.

2. Return null.

The MimeTypeArrayp1178 interface supports indexed properties. The supported property indices are the indices of this's relevant global
objectp1083 's PDF viewer mime type objectsp1179.

The MimeTypeArrayp1178 interface's item(index) method steps are:

1. Let mimeTypes be this's relevant global objectp1083 's PDF viewer mime type objectsp1179.

2. If index < mimeTypes's size, then return mimeTypes[index].

3. Return null.

The MimeTypeArrayp1178 interface's length getter steps are to return this's relevant global objectp1083 's PDF viewer mime type
objectsp1179 's size.

Each Pluginp1178 object has a name, which is set when the object is created.

The Pluginp1178 interface's name getter steps are to return this's namep1180.

The Pluginp1178 interface's description getter steps are to return "Portable Document Format".

The Pluginp1178 interface's filename getter steps are to return "internal-pdf-viewer".

The Pluginp1178 interface supports named properties. If the user agent's PDF viewer supportedp1178 is true, then they are the PDF
viewer mime typesp1179. Otherwise, they are the empty list.

The Pluginp1178 interface's namedItem(name) method steps are:

1. For each MimeTypep1178 mimeType of this's relevant global objectp1083 's PDF viewer mime type objectsp1179: if mimeType's
typep1180 is name, then return mimeType.

2. Return null.

The Pluginp1178 interface supports indexed properties. The supported property indices are the indices of this's relevant global
objectp1083 's PDF viewer mime type objectsp1179.

The Pluginp1178 interface's item(index) method steps are:

1. Let mimeTypes be this's relevant global objectp1083 's PDF viewer mime type objectsp1179.

2. If index < mimeType's size, then return mimeTypes[index].

3. Return null.

The Pluginp1178 interface's length getter steps are to return this's relevant global objectp1083 's PDF viewer mime type objectsp1179 's
size.

Each MimeTypep1178 object has a type, which is set when the object is created.

The MimeTypep1178 interface's type getter steps are to return this's typep1180.

The MimeTypep1178 interface's description getter steps are to return "Portable Document Format".

The MimeTypep1178 interface's suffixes getter steps are to return "pdf".

The MimeTypep1178 interface's enabledPlugin getter steps are to return this's relevant global objectp1083 's PDF viewer plugin
1180

https://webidl.spec.whatwg.org/#dfn-support-named-properties
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-support-indexed-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-get-the-indices
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-support-named-properties
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-support-indexed-properties
https://webidl.spec.whatwg.org/#dfn-supported-property-indices
https://infra.spec.whatwg.org/#list-get-the-indices
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

objectsp1179[0] (i.e., the generic "PDF Viewer" one).

[Exposed=(Window,Worker), Serializable, Transferable]
interface ImageBitmap {

readonly attribute unsigned long width;
readonly attribute unsigned long height;
undefined close();

};

typedef (CanvasImageSource or
Blob or
ImageData) ImageBitmapSource;

enum ImageOrientation { "from-image", "flipY" };
enum PremultiplyAlpha { "none", "premultiply", "default" };
enum ColorSpaceConversion { "none", "default" };
enum ResizeQuality { "pixelated", "low", "medium", "high" };

dictionary ImageBitmapOptions {
ImageOrientation imageOrientation = "from-image";
PremultiplyAlpha premultiplyAlpha = "default";
ColorSpaceConversion colorSpaceConversion = "default";
[EnforceRange] unsigned long resizeWidth;
[EnforceRange] unsigned long resizeHeight;
ResizeQuality resizeQuality = "low";

};

An ImageBitmapp1181 object represents a bitmap image that can be painted to a canvas without undue latency.

8.10 Images §p11

81

The exact judgement of what is undue latency of this is left up to the implementer, but in general if making use of the bitmap
requires network I/O, or even local disk I/O, then the latency is probably undue; whereas if it only requires a blocking read from a
GPU or system RAM, the latency is probably acceptable.

Note

promise = self.createImageBitmapp1182(image [, options])
promise = self.createImageBitmapp1182(image, sx, sy, sw, sh [, options])

Takes image, which can be an imgp346 element, an SVG image element, a videop406 element, a canvasp677 element, a Blob
object, an ImageDatap686 object, or another ImageBitmapp1181 object, and returns a promise that is resolved when a new
ImageBitmapp1181 is created.
If no ImageBitmapp1181 object can be constructed, for example because the provided image data is not actually an image, then
the promise is rejected instead.
If sx, sy, sw, and sh arguments are provided, the source image is cropped to the given pixels, with any pixels missing in the
original replaced by transparent black. These coordinates are in the source image's pixel coordinate space, not in CSS pixels.
If options is provided, the ImageBitmapp1181 object's bitmap data is modified according to options. For example, if the
premultiplyAlphap1185 option is set to "premultiplyp1185", the bitmap datap1182 's color channels are premultiplied by its alpha
channelp748.
Rejects the promise with an "InvalidStateError" DOMException if the source image is not in a valid state (e.g., an imgp346

element that hasn't loaded successfully, an ImageBitmapp1181 object whose [[Detached]]p118 internal slot value is true, an
ImageDatap686 object whose datap727 attribute value's [[ViewedArrayBuffer]] internal slot is detached, or a Blob whose data
cannot be interpreted as a bitmap image).
Rejects the promise with a "SecurityError" DOMException if the script is not allowed to access the image data of the source
image (e.g. a videop406 that is CORS-cross-originp98, or a canvasp677 being drawn on by a script in a worker from another

For web developers (non-normative)

IDL ✔ MDN

1181

https://w3c.github.io/FileAPI/#dfn-Blob
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://w3c.github.io/FileAPI/#dfn-Blob
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-values/#px
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException

An ImageBitmapp1181 object whose [[Detached]]p118 internal slot value is false always has associated bitmap data, with a width and a
height. However, it is possible for this data to be corrupted. If an ImageBitmapp1181 object's media data can be decoded without errors,
it is said to be fully decodable.

An ImageBitmapp1181 object's bitmap has an origin-cleanp678 flag, which indicates whether the bitmap is tainted by content from a
different originp898. The flag is initially set to true and may be changed to false by the steps of createImageBitmap()p1182.

ImageBitmapp1181 objects are serializable objectsp117 and transferable objectsp118.

Their serialization stepsp117, given value and serialized, are:

1. If value's origin-cleanp678 flag is not set, then throw a "DataCloneError" DOMException.

2. Set serialized.[[BitmapData]] to a copy of value's bitmap datap1182.

Their deserialization stepsp117, given serialized, value, and targetRealm, are:

1. Set value's bitmap datap1182 to serialized.[[BitmapData]].

Their transfer stepsp118, given value and dataHolder, are:

1. If value's origin-cleanp678 flag is not set, then throw a "DataCloneError" DOMException.

2. Set dataHolder.[[BitmapData]] to value's bitmap datap1182.

3. Unset value's bitmap datap1182.

Their transfer-receiving stepsp118, given dataHolder and value, are:

1. Set value's bitmap datap1182 to dataHolder.[[BitmapData]].

The createImageBitmap(image, options) and createImageBitmap(image sx, sy, sw, sh, options) methods, when invoked,
must run these steps:

1. If either sw or sh is given and is 0, then return a promise rejected with a RangeError.

2. If either options's resizeWidth or options's resizeHeight is present and is 0, then return a promise rejected with an
"InvalidStateError" DOMException.

3. Check the usability of the image argumentp711. If this throws an exception or returns bad, then return a promise rejected with
an "InvalidStateError" DOMException.

4. Let p be a new promise.

5. Let imageBitmap be a new ImageBitmapp1181 object.

6. Switch on image:

↪ imgp346

↪ SVG image

1. If image's media data has no natural dimensions (e.g., it's a vector graphic with no specified content size)
and either options's resizeWidthp1182 or options's resizeHeightp1182 is not present, then return a promise

originp898).

imageBitmap.closep1185()
Releases imageBitmap's underlying bitmap datap1182.

imageBitmap.widthp1185

Returns the natural width of the image, in CSS pixels.

imageBitmap.heightp1185

Returns the natural height of the image, in CSS pixels.

1182

https://drafts.csswg.org/css-images/#natural-width
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-values/#px
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-rangeerror
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://svgwg.org/svg2-draft/embedded.html#ImageElement
https://drafts.csswg.org/css-images/#natural-dimensions
https://webidl.spec.whatwg.org/#a-promise-rejected-with

rejected with an "InvalidStateError" DOMException.

2. If image's media data has no natural dimensions (e.g., it's a vector graphic with no specified content size), it
should be rendered to a bitmap of the size specified by the resizeWidthp1182 and the resizeHeightp1182

options.

3. Set imageBitmap's bitmap datap1182 to a copy of image's media data, cropped to the source rectangle with
formattingp1184. If this is an animated image, imageBitmap's bitmap datap1182 must only be taken from the
default image of the animation (the one that the format defines is to be used when animation is not
supported or is disabled), or, if there is no such image, the first frame of the animation.

4. If image is not origin-cleanp712, then set the origin-cleanp678 flag of imageBitmap's bitmap to false.

5. Run this step in parallelp43:

1. Resolve p with imageBitmap.

↪ videop406

1. If image's networkStatep418 attribute is NETWORK_EMPTYp418, then return a promise rejected with an
"InvalidStateError" DOMException.

2. Set imageBitmap's bitmap datap1182 to a copy of the frame at the current playback positionp432, at the media
resourcep415 's natural widthp409 and natural heightp409 (i.e., after any aspect-ratio correction has been
applied), cropped to the source rectangle with formattingp1184.

3. If image is not origin-cleanp712, then set the origin-cleanp678 flag of imageBitmap's bitmap to false.

4. Run this step in parallelp43:

1. Resolve p with imageBitmap.

↪ canvasp677

1. Set imageBitmap's bitmap datap1182 to a copy of image's bitmap datap1182, cropped to the source rectangle
with formattingp1184.

2. Set the origin-cleanp678 flag of the imageBitmap's bitmap to the same value as the origin-cleanp678 flag of
image's bitmap.

3. Run this step in parallelp43:

1. Resolve p with imageBitmap.

↪ Blob
Run these steps in parallelp43:

1. Let imageData be the result of reading image's data. If an error occurs during reading of the objectp61, then
reject p with an "InvalidStateError" DOMException and abort these steps.

2. Apply the image sniffing rules to determine the file format of imageData, with MIME type of image (as given
by image's type attribute) giving the official type.

3. If imageData is not in a supported image file format (e.g., it's not an image at all), or if imageData is
corrupted in some fatal way such that the image dimensions cannot be obtained (e.g., a vector graphic with
no natural size), then reject p with an "InvalidStateError" DOMException and abort these steps.

4. Set imageBitmap's bitmap datap1182 to imageData, cropped to the source rectangle with formattingp1184. If
this is an animated image, imageBitmap's bitmap datap1182 must only be taken from the default image of
the animation (the one that the format defines is to be used when animation is not supported or is
disabled), or, if there is no such image, the first frame of the animation.

5. Resolve p with imageBitmap.

↪ ImageDatap686

1. Let buffer be image's datap727 attribute value's [[ViewedArrayBuffer]] internal slot.

2. If IsDetachedBuffer(buffer) is true, then return a promise rejected with an "InvalidStateError"
DOMException.

1183

https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://drafts.csswg.org/css-images/#natural-dimensions
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://w3c.github.io/FileAPI/#dfn-Blob
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://mimesniff.spec.whatwg.org/#rules-for-sniffing-images-specifically
https://w3c.github.io/FileAPI/#dfn-type
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-isdetachedbuffer
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException

3. Set imageBitmap's bitmap datap1182 to image's image data, cropped to the source rectangle with
formattingp1184.

4. Run this step in parallelp43:

1. Resolve p with imageBitmap.

↪ ImageBitmapp1181

1. Set imageBitmap's bitmap datap1182 to a copy of image's bitmap datap1182, cropped to the source rectangle
with formattingp1184.

2. Set the origin-cleanp678 flag of imageBitmap's bitmap to the same value as the origin-cleanp678 flag of
image's bitmap.

3. Run this step in parallelp43:

1. Resolve p with imageBitmap.

↪ VideoFrame

1. Set imageBitmap's bitmap datap1182 to a copy of image's visible pixel data, cropped to the source rectangle
with formattingp1184.

2. Run this step in parallelp43:

1. Resolve p with imageBitmap.

7. Return p.

When the steps above require that the user agent crop bitmap data to the source rectangle with formatting, the user agent
must run the following steps:

1. Let input be the bitmap datap1182 being transformed.

2. If sx, sy, sw and sh are specified, let sourceRectangle be a rectangle whose corners are the four points (sx, sy), (sx+sw, sy),
(sx+sw, sy+sh), (sx, sy+sh). Otherwise, let sourceRectangle be a rectangle whose corners are the four points (0, 0), (width
of input, 0), (width of input, height of input), (0, height of input).

3. Let outputWidth be determined as follows:

↪ If the resizeWidthp1182 member of options is specified
the value of the resizeWidthp1182 member of options

↪ If the resizeWidthp1182 member of options is not specified, but the resizeHeightp1182 member is specified
the width of sourceRectangle, times the value of the resizeHeightp1182 member of options, divided by the height of
sourceRectangle, rounded up to the nearest integer

↪ If neither resizeWidthp1182 nor resizeHeightp1182 are specified
the width of sourceRectangle

4. Let outputHeight be determined as follows:

↪ If the resizeHeightp1182 member of options is specified
the value of the resizeHeightp1182 member of options

↪ If the resizeHeightp1182 member of options is not specified, but the resizeWidthp1182 member is specified
the height of sourceRectangle, times the value of the resizeWidthp1182 member of options, divided by the width of
sourceRectangle, rounded up to the nearest integer

↪ If neither resizeWidthp1182 nor resizeHeightp1182 are specified
the height of sourceRectangle

5. Place input on an infinite transparent black grid plane, positioned so that its top left corner is at the origin of the plane, with
the x-coordinate increasing to the right, and the y-coordinate increasing down, and with each pixel in the input image data
occupying a cell on the plane's grid.

If either sw or sh are negative, then the top-left corner of this rectangle will be to the left or above the (sx, sy) point.
Note

1184

https://w3c.github.io/webcodecs/#videoframe-interface
https://drafts.csswg.org/css-color/#transparent-black

6. Let output be the rectangle on the plane denoted by sourceRectangle.

7. Scale output to the size specified by outputWidth and outputHeight. The user agent should use the value of the
resizeQuality option to guide the choice of scaling algorithm.

8. If the value of the imageOrientation member of options is "flipY", output must be flipped vertically, disregarding any
image orientation metadata of the source (such as EXIF metadata), if any. [EXIF]p1478

9. If image is an imgp346 element or a Blob object, let val be the value of the colorSpaceConversion member of options, and
then run these substeps:

1. If val is "default", the color space conversion behavior is implementation-specific, and should be chosen according
to the default color space that the implementation uses for drawing images onto the canvas.

2. If val is "none", output must be decoded without performing any color space conversions. This means that the
image decoding algorithm must ignore color profile metadata embedded in the source data as well as the display
device color profile.

10. Let val be the value of premultiplyAlpha member of options, and then run these substeps:

1. If val is "default", the alpha premultiplication behavior is implementation-specific, and should be chosen
according to implementation deems optimal for drawing images onto the canvas.

2. If val is "premultiply", the output that is not premultiplied by alpha must have its color components multiplied by
alphap749 and that is premultiplied by alpha must be left untouched.

3. If val is "none", the output that is not premultiplied by alpha must be left untouched and that is premultiplied by
alpha must have its color components divided by alphap749.

11. Return output.

The close() method steps are:

1. Set this's [[Detached]]p118 internal slot value to true.

2. Unset this's bitmap datap1182.

The width getter steps are:

1. If this's [[Detached]]p118 internal slot's value is true, then return 0.

2. Return this's width, in CSS pixels.

The height getter steps are:

1. If this's [[Detached]]p118 internal slot's value is true, then return 0.

2. Return this's height, in CSS pixels.

The ResizeQualityp1181 enumeration is used to express a preference for the interpolation quality to use when scaling images.

The "pixelated" value indicates a preference for scaling the image to preserve the pixelation of the original as much as possible, with
minor smoothing as necessary to avoid distorting the image when the target size is not a clean multiple of the original.

To implement "pixelatedp1185", for each axis independently, first determine the integer multiple of its natural size that puts it closest
to the target size and is greater than zero. Scale it to this integer-multiple-size using nearest neighbor, then scale it the rest of the way
to the target size using bilinear interpolation.

The "low" value indicates a preference for a low level of image interpolation quality. Low-quality image interpolation may be more
computationally efficient than higher settings.

If the value is "from-image", no extra step is needed.
Note

There used to be a "none" enum value. It was renamed to "from-imagep1185". In the future, "nonep1185" will be added back
with a different meaning.

Note

1185

https://w3c.github.io/FileAPI/#dfn-Blob
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-values/#px
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://drafts.csswg.org/css-values/#px

The "medium" value indicates a preference for a medium level of image interpolation quality.

The "high" value indicates a preference for a high level of image interpolation quality. High-quality image interpolation may be more
computationally expensive than lower settings.

Some objects include the AnimationFrameProviderp1186 interface mixin.

callback FrameRequestCallback = undefined (DOMHighResTimeStamp time);

interface mixin AnimationFrameProvider {
unsigned long requestAnimationFrame(FrameRequestCallback callback);
undefined cancelAnimationFrame(unsigned long handle);

};
Window includes AnimationFrameProvider;
DedicatedWorkerGlobalScope includes AnimationFrameProvider;

Each AnimationFrameProviderp1186 object also has a target object that stores the provider's internal state. It is defined as follows:

Bilinear scaling is an example of a relatively fast, lower-quality image-smoothing algorithm. Bicubic or Lanczos scaling are
examples of image-scaling algorithms that produce higher-quality output. This specification does not mandate that specific
interpolation algorithms be used, except for "pixelatedp1185" as described above.

Note

Using this API, a sprite sheet can be precut and prepared:

var sprites = {};
function loadMySprites() {

var image = new Image();
image.src = 'mysprites.png';
var resolver;
var promise = new Promise(function (arg) { resolver = arg });
image.onload = function () {

resolver(Promise.all([
createImageBitmap(image, 0, 0, 40, 40).then(function (image) { sprites.person = image }),
createImageBitmap(image, 40, 0, 40, 40).then(function (image) { sprites.grass = image }),
createImageBitmap(image, 80, 0, 40, 40).then(function (image) { sprites.tree = image }),
createImageBitmap(image, 0, 40, 40, 40).then(function (image) { sprites.hut = image }),
createImageBitmap(image, 40, 40, 40, 40).then(function (image) { sprites.apple = image }),
createImageBitmap(image, 80, 40, 40, 40).then(function (image) { sprites.snake = image })

]));
};
return promise;

}

function runDemo() {
var canvas = document.querySelector('canvas#demo');
var context = canvas.getContext('2d');
context.drawImage(sprites.tree, 30, 10);
context.drawImage(sprites.snake, 70, 10);

}

loadMySprites().then(runDemo);

Example

8.11 Animation frames §p11

86

IDL

1186

https://w3c.github.io/hr-time/#dom-domhighrestimestamp

If the AnimationFrameProviderp1186 is a Windowp922

The Windowp922 's associated Documentp923

If the AnimationFrameProviderp1186 is a DedicatedWorkerGlobalScopep1230

The DedicatedWorkerGlobalScopep1230

Each target objectp1186 has a map of animation frame callbacks, which is an ordered map that must be initially empty, and an
animation frame callback identifier, which is a number that must initially be zero.

An AnimationFrameProviderp1186 provider is considered supported if any of the following are true:

• provider is a Windowp922.

• provider's owner setp1228 contains a Documentp130 object.

• Any of the DedicatedWorkerGlobalScopep1230 objects in provider's owner setp1228 are supportedp1187.

The requestAnimationFrame(callback) method steps are:

1. If this is not supportedp1187, then throw a "NotSupportedError" DOMException.

2. Let target be this's target objectp1186.

3. Increment target's animation frame callback identifierp1187 by one, and let handle be the result.

4. Let callbacks be target's map of animation frame callbacksp1187.

5. Set callbacks[handle] to callback.

6. Return handle.

The cancelAnimationFrame(handle) method steps are:

1. If this is not supportedp1187, then throw a "NotSupportedError" DOMException.

2. Let callbacks be this's target objectp1186 's map of animation frame callbacksp1187.

3. Remove callbacks[handle].

To run the animation frame callbacks for a target objectp1186 target with a timestamp now:

1. Let callbacks be target's map of animation frame callbacksp1187.

2. Let callbackHandles be the result of getting the keys of callbacks.

3. For each handle in callbackHandles, if handle exists in callbacks:

1. Let callback be callbacks[handle].

2. Remove callbacks[handle].

3. Invoke callback with « now » and "report".

Inside workers, requestAnimationFrame()p1187 can be used together with an OffscreenCanvasp741 transferred from a canvasp677

element. First, in the document, transfer control to the worker:

const offscreenCanvas = document.getElementById("c").transferControlToOffscreen();
worker.postMessage(offscreenCanvas, [offscreenCanvas]);

Then, in the worker, the following code will draw a rectangle moving from left to right:

let ctx, pos = 0;
function draw(dt) {

ctx.clearRect(0, 0, 100, 100);

Example

✔ MDN

✔ MDN

1187

https://infra.spec.whatwg.org/#ordered-map
https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-set
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#notsupportederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-remove
https://infra.spec.whatwg.org/#map-getting-the-keys
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#map-exists
https://infra.spec.whatwg.org/#map-remove
https://webidl.spec.whatwg.org/#invoke-a-callback-function

ctx.fillRect(pos, 0, 10, 10);
pos += 10 * dt;
requestAnimationFrame(draw);

}

self.onmessage = function(ev) {
const transferredCanvas = ev.data;
ctx = transferredCanvas.getContext("2d");
draw();

};

1188

Messages in server-sent eventsp1190, cross-document messagingp1199, channel messagingp1202, broadcast channelsp1209, and
WebSockets use the MessageEventp1189 interface for their messagep1471 events: [WEBSOCKETS]p1484

[Exposed=(Window,Worker,AudioWorklet)]
interface MessageEvent : Event {

constructor(DOMString type, optional MessageEventInit eventInitDict = {});

readonly attribute any data;
readonly attribute USVString origin;
readonly attribute DOMString lastEventId;
readonly attribute MessageEventSource? source;
readonly attribute FrozenArray<MessagePort> ports;

undefined initMessageEvent(DOMString type, optional boolean bubbles = false, optional boolean
cancelable = false, optional any data = null, optional USVString origin = "", optional DOMString
lastEventId = "", optional MessageEventSource? source = null, optional sequence<MessagePort> ports =
[]);
};

dictionary MessageEventInit : EventInit {
any data = null;
USVString origin = "";
DOMString lastEventId = "";
MessageEventSource? source = null;
sequence<MessagePort> ports = [];

};

typedef (WindowProxy or MessagePort or ServiceWorker) MessageEventSource;

The data attribute must return the value it was initialized to. It represents the message being sent.

9 Communication §p11

89

The WebSocket interface used to be defined here. It is now defined in WebSockets. [WEBSOCKETS]p1484

Note

9.1 The MessageEventp1189 interface §p11

89

event.datap1189

Returns the data of the message.

event.originp1190

Returns the origin of the message, for server-sent eventsp1190 and cross-document messagingp1199.

event.lastEventIdp1190

Returns the last event ID stringp1191, for server-sent eventsp1190.

event.sourcep1190

Returns the WindowProxyp934 of the source window, for cross-document messagingp1199, and the MessagePortp1205 being
attached, in the connectp1471 event fired at SharedWorkerGlobalScopep1230 objects.

event.portsp1190

Returns the MessagePortp1205 array sent with the message, for cross-document messagingp1199 and channel messagingp1202.

For web developers (non-normative)

IDL

✔ MDN

1189

https://websockets.spec.whatwg.org/#websocket
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#concept-event-constructor
https://dom.spec.whatwg.org/#dictdef-eventinit
https://w3c.github.io/ServiceWorker/#serviceworker

The origin attribute must return the value it was initialized to. It represents, in server-sent eventsp1190 and cross-document
messagingp1199, the origin of the document that sent the message (typically the scheme, hostname, and port of the document, but not
its path or fragment).

The lastEventId attribute must return the value it was initialized to. It represents, in server-sent eventsp1190, the last event ID
stringp1191 of the event source.

The source attribute must return the value it was initialized to. It represents, in cross-document messagingp1199, the WindowProxyp934 of
the browsing contextp998 of the Windowp922 object from which the message came; and in the connectp1471 events used by shared
workersp1230, the newly connecting MessagePortp1205.

The ports attribute must return the value it was initialized to. It represents, in cross-document messagingp1199 and channel
messagingp1202, the MessagePortp1205 array being sent.

The initMessageEvent(type, bubbles, cancelable, data, origin, lastEventId, source, ports) method must initialize the
event in a manner analogous to the similarly-named initEvent() method. [DOM]p1478

This section is non-normative.

To enable servers to push data to web pages over HTTP or using dedicated server-push protocols, this specification introduces the
EventSourcep1191 interface.

Using this API consists of creating an EventSourcep1191 object and registering an event listener.

var source = new EventSource('updates.cgi');
source.onmessage = function (event) {

alert(event.data);
};

On the server-side, the script ("updates.cgi" in this case) sends messages in the following form, with the text/event-streamp1449

MIME type:

data: This is the first message.

data: This is the second message, it
data: has two lines.

data: This is the third message.

Authors can separate events by using different event types. Here is a stream that has two event types, "add" and "remove":

event: add
data: 73857293

event: remove
data: 2153

event: add

Various APIs (e.g., WebSocket, EventSourcep1191) use the MessageEventp1189 interface for their messagep1471 event without using the
MessagePortp1205 API.

Note

9.2 Server-sent events §p11

90

9.2.1 Introduction §p11

90

✔ MDN

1190

https://dom.spec.whatwg.org/#concept-document-origin
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#dom-event-initevent
https://websockets.spec.whatwg.org/#websocket

data: 113411

The script to handle such a stream would look like this (where addHandler and removeHandler are functions that take one argument,
the event):

var source = new EventSource('updates.cgi');
source.addEventListener('add', addHandler, false);
source.addEventListener('remove', removeHandler, false);

The default event type is "message".

Event streams are always decoded as UTF-8. There is no way to specify another character encoding.

Event stream requests can be redirected using HTTP 301 and 307 redirects as with normal HTTP requests. Clients will reconnect if the
connection is closed; a client can be told to stop reconnecting using the HTTP 204 No Content response code.

Using this API rather than emulating it using XMLHttpRequest or an iframep390 allows the user agent to make better use of network
resources in cases where the user agent implementer and the network operator are able to coordinate in advance. Amongst other
benefits, this can result in significant savings in battery life on portable devices. This is discussed further in the section below on
connectionless pushp1197.

[Exposed=(Window,Worker)]
interface EventSource : EventTarget {

constructor(USVString url, optional EventSourceInit eventSourceInitDict = {});

readonly attribute USVString url;
readonly attribute boolean withCredentials;

// ready state
const unsigned short CONNECTING = 0;
const unsigned short OPEN = 1;
const unsigned short CLOSED = 2;
readonly attribute unsigned short readyState;

// networking
attribute EventHandler onopen;
attribute EventHandler onmessage;
attribute EventHandler onerror;
undefined close();

};

dictionary EventSourceInit {
boolean withCredentials = false;

};

Each EventSourcep1191 object has the following associated with it:

• A url (a URL record). Set during construction.

• A request. This must initially be null.

• A reconnection time, in milliseconds. This must initially be an implementation-defined value, probably in the region of a
few seconds.

• A last event ID string. This must initially be the empty string.

Apart from urlp1191 these are not currently exposed on the EventSourcep1191 object.

IDL

9.2.2 The EventSourcep1191 interface §p11

91

✔ MDN

1191

https://xhr.spec.whatwg.org/#xmlhttprequest
https://dom.spec.whatwg.org/#interface-eventtarget
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined

The EventSource(url, eventSourceInitDict) constructor, when invoked, must run these steps:

1. Let ev be a new EventSourcep1191 object.

2. Let settings be ev's relevant settings objectp1083.

3. Let urlRecord be the result of encoding-parsing a URLp97 given url, relative to settings.

4. If urlRecord is failure, then throw a "SyntaxError" DOMException.

5. Set ev's urlp1191 to urlRecord.

6. Let corsAttributeState be Anonymousp99.

7. If the value of eventSourceInitDict's withCredentialsp1191 member is true, then set corsAttributeState to Use Credentialsp99

and set ev's withCredentialsp1193 attribute to true.

8. Let request be the result of creating a potential-CORS requestp98 given urlRecord, the empty string, and corsAttributeState.

9. Set request's client to settings.

10. User agents may set (`Accept`, `text/event-streamp1449`) in request's header list.

11. Set request's cache mode to "no-store".

12. Set request's initiator type to "other".

13. Set ev's requestp1191 to request.

14. Let processEventSourceEndOfBody given response res be the following step: if res is not a network error, then reestablish
the connectionp1193.

15. Fetch request, with processResponseEndOfBody set to processEventSourceEndOfBody and processResponse set to the
following steps given response res:

1. If res is an aborted network error, then fail the connectionp1194.

2. Otherwise, if res is a network error, then reestablish the connectionp1193, unless the user agent knows that to be
futile, in which case the user agent may fail the connectionp1194.

3. Otherwise, if res's status is not 200, or if res's `Content-Typep98` is not `text/event-streamp1449`, then fail the
connectionp1194.

4. Otherwise, announce the connectionp1193 and interpretp1195 res's body line by line.

16. Return ev.

source = new EventSourcep1192(url [, { withCredentialsp1191: true }])
Creates a new EventSourcep1191 object.
url is a string giving the URL that will provide the event stream.
Setting withCredentialsp1191 to true will set the credentials mode for connection requests to url to "include".

source.closep1193()
Aborts any instances of the fetch algorithm started for this EventSourcep1191 object, and sets the readyStatep1193 attribute to
CLOSEDp1193.

source.urlp1193

Returns the URL providing the event streamp1191.

source.withCredentialsp1193

Returns true if the credentials mode for connection requests to the URL providing the event streamp1191 is set to "include", and
false otherwise.

source.readyStatep1193

Returns the state of this EventSourcep1191 object's connection. It can have the values described below.

For web developers (non-normative)

1192

https://url.spec.whatwg.org/#concept-url
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://fetch.spec.whatwg.org/#concept-request-client
https://fetch.spec.whatwg.org/#concept-header-list-set
https://httpwg.org/specs/rfc7231.html#header.accept
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-request-cache-mode
https://fetch.spec.whatwg.org/#request-initiator-type
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#fetch-processresponseendofbody
https://fetch.spec.whatwg.org/#process-response
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-aborted-network-error
https://fetch.spec.whatwg.org/#concept-network-error
https://fetch.spec.whatwg.org/#concept-response-status
https://fetch.spec.whatwg.org/#concept-response-body

The url attribute's getter must return the serialization of this EventSourcep1191 object's urlp1191.

The withCredentials attribute must return the value to which it was last initialized. When the object is created, it must be initialized
to false.

The readyState attribute represents the state of the connection. It can have the following values:

CONNECTING (numeric value 0)
The connection has not yet been established, or it was closed and the user agent is reconnecting.

OPEN (numeric value 1)
The user agent has an open connection and is dispatching events as it receives them.

CLOSED (numeric value 2)
The connection is not open, and the user agent is not trying to reconnect. Either there was a fatal error or the close()p1193 method
was invoked.

When the object is created its readyStatep1193 must be set to CONNECTINGp1193 (0). The rules given below for handling the connection
define when the value changes.

The close() method must abort any instances of the fetch algorithm started for this EventSourcep1191 object, and must set the
readyStatep1193 attribute to CLOSEDp1193.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the EventSourcep1191 interface:

Event handlerp1136 Event handler event typep1139

onopen openp1472

onmessage messagep1471

onerror errorp1471

When a user agent is to announce the connection, the user agent must queue a taskp1125 which, if the readyStatep1193 attribute is
set to a value other than CLOSEDp1193, sets the readyStatep1193 attribute to OPENp1193 and fires an event named openp1472 at the
EventSourcep1191 object.

When a user agent is to reestablish the connection, the user agent must run the following steps. These steps are run in parallelp43,
not as part of a taskp1124. (The tasks that it queues, of course, are run like normal tasks and not themselves in parallelp43.)

1. Queue a taskp1125 to run the following steps:

1. If the readyStatep1193 attribute is set to CLOSEDp1193, abort the task.

2. Set the readyStatep1193 attribute to CONNECTINGp1193.

3. Fire an event named errorp1471 at the EventSourcep1191 object.

2. Wait a delay equal to the reconnection time of the event source.

3. Optionally, wait some more. In particular, if the previous attempt failed, then user agents might introduce an exponential
backoff delay to avoid overloading a potentially already overloaded server. Alternatively, if the operating system has
reported that there is no network connectivity, user agents might wait for the operating system to announce that the
network connection has returned before retrying.

4. Wait until the aforementioned task has run, if it has not yet run.

5. Queue a taskp1125 to run the following steps:

1. If the EventSourcep1191 object's readyStatep1193 attribute is not set to CONNECTINGp1193, then return.

2. Let request be the EventSourcep1191 object's requestp1191.

3. If the EventSourcep1191 object's last event ID stringp1191 is not the empty string, then:

9.2.3 Processing model §p11

93

✔ MDN

✔ MDN

✔ MDN

1193

https://url.spec.whatwg.org/#concept-url-serializer
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire

1. Let lastEventIDValue be the EventSourcep1191 object's last event ID stringp1191, encoded as UTF-8.

2. Set (`Last-Event-IDp1194`, lastEventIDValue) in request's header list.

4. Fetch request and process the response obtained in this fashion, if any, as described earlier in this section.

When a user agent is to fail the connection, the user agent must queue a taskp1125 which, if the readyStatep1193 attribute is set to a
value other than CLOSEDp1193, sets the readyStatep1193 attribute to CLOSEDp1193 and fires an event named errorp1471 at the
EventSourcep1191 object. Once the user agent has failed the connectionp1194, it does not attempt to reconnect.

The task sourcep1124 for any tasksp1124 that are queuedp1125 by EventSourcep1191 objects is the remote event task source.

The Last-Event-ID` HTTP request header reports an EventSourcep1191 object's last event ID stringp1191 to the server when the user
agent is to reestablish the connectionp1193.

See whatwg/html issue #7363 to define the value space better. It is essentially any UTF-8 encoded string, that does not contain
U+0000 NULL, U+000A LF, or U+000D CR.

This event stream format's MIME type is text/event-streamp1449.

The event stream format is as described by the stream production of the following ABNF, the character set for which is Unicode.
[ABNF]p1475

stream = [bom] *event
event = *(comment / field) end-of-line
comment = colon *any-char end-of-line
field = 1*name-char [colon [space] *any-char] end-of-line
end-of-line = (cr lf / cr / lf)

; characters
lf = %x000A ; U+000A LINE FEED (LF)
cr = %x000D ; U+000D CARRIAGE RETURN (CR)
space = %x0020 ; U+0020 SPACE
colon = %x003A ; U+003A COLON (:)
bom = %xFEFF ; U+FEFF BYTE ORDER MARK
name-char = %x0000-0009 / %x000B-000C / %x000E-0039 / %x003B-10FFFF

; a scalar value other than U+000A LINE FEED (LF), U+000D CARRIAGE RETURN (CR), or
U+003A COLON (:)
any-char = %x0000-0009 / %x000B-000C / %x000E-10FFFF

; a scalar value other than U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)

Event streams in this format must always be encoded as UTF-8. [ENCODING]p1478

Lines must be separated by either a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pair, a single U+000A LINE FEED
(LF) character, or a single U+000D CARRIAGE RETURN (CR) character.

Since connections established to remote servers for such resources are expected to be long-lived, UAs should ensure that appropriate
buffering is used. In particular, while line buffering with lines are defined to end with a single U+000A LINE FEED (LF) character is safe,
block buffering or line buffering with different expected line endings can cause delays in event dispatch.

9.2.4 The `Last-Event-IDp1194` header §p11

94

9.2.5 Parsing an event stream §p11

94

1194

https://encoding.spec.whatwg.org/#utf-8-encode
https://fetch.spec.whatwg.org/#concept-header-list-set
https://fetch.spec.whatwg.org/#concept-request-header-list
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-event-fire
https://github.com/whatwg/html/issues/7363
https://mimesniff.spec.whatwg.org/#mime-type
https://infra.spec.whatwg.org/#scalar-value
https://infra.spec.whatwg.org/#scalar-value

Streams must be decoded using the UTF-8 decode algorithm.

The stream must then be parsed by reading everything line by line, with a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF)
character pair, a single U+000A LINE FEED (LF) character not preceded by a U+000D CARRIAGE RETURN (CR) character, and a single
U+000D CARRIAGE RETURN (CR) character not followed by a U+000A LINE FEED (LF) character being the ways in which a line can end.

When a stream is parsed, a data buffer, an event type buffer, and a last event ID buffer must be associated with it. They must be
initialized to the empty string.

Lines must be processed, in the order they are received, as follows:

↪ If the line is empty (a blank line)
Dispatch the eventp1195, as defined below.

↪ If the line starts with a U+003A COLON character (:)
Ignore the line.

↪ If the line contains a U+003A COLON character (:)
Collect the characters on the line before the first U+003A COLON character (:), and let field be that string.

Collect the characters on the line after the first U+003A COLON character (:), and let value be that string. If value starts with a
U+0020 SPACE character, remove it from value.

Process the fieldp1195 using the steps described below, using field as the field name and value as the field value.

↪ Otherwise, the string is not empty but does not contain a U+003A COLON character (:)
Process the fieldp1195 using the steps described below, using the whole line as the field name, and the empty string as the field
value.

Once the end of the file is reached, any pending data must be discarded. (If the file ends in the middle of an event, before the final
empty line, the incomplete event is not dispatched.)

The steps to process the field given a field name and a field value depend on the field name, as given in the following list. Field
names must be compared literally, with no case folding performed.

↪ If the field name is "event"
Set the event type buffer to field value.

↪ If the field name is "data"
Append the field value to the data buffer, then append a single U+000A LINE FEED (LF) character to the data buffer.

↪ If the field name is "id"
If the field value does not contain U+0000 NULL, then set the last event ID buffer to the field value. Otherwise, ignore the field.

↪ If the field name is "retry"
If the field value consists of only ASCII digits, then interpret the field value as an integer in base ten, and set the event stream's
reconnection timep1191 to that integer. Otherwise, ignore the field.

↪ Otherwise
The field is ignored.

When the user agent is required to dispatch the event, the user agent must process the data buffer, the event type buffer, and the
last event ID buffer using steps appropriate for the user agent.

For web browsers, the appropriate steps to dispatch the eventp1195 are as follows:

1. Set the last event ID stringp1191 of the event source to the value of the last event ID buffer. The buffer does not get reset, so

The UTF-8 decode algorithm strips one leading UTF-8 Byte Order Mark (BOM), if any.
Note

9.2.6 Interpreting an event stream §p11

95

1195

https://encoding.spec.whatwg.org/#utf-8-decode
https://encoding.spec.whatwg.org/#utf-8-decode
https://infra.spec.whatwg.org/#ascii-digit

the last event ID stringp1191 of the event source remains set to this value until the next time it is set by the server.

2. If the data buffer is an empty string, set the data buffer and the event type buffer to the empty string and return.

3. If the data buffer's last character is a U+000A LINE FEED (LF) character, then remove the last character from the data buffer.

4. Let event be the result of creating an event using MessageEventp1189, in the relevant realmp1083 of the EventSourcep1191

object.

5. Initialize event's type attribute to "messagep1471", its datap1189 attribute to data, its originp1190 attribute to the
serializationp898 of the origin of the event stream's final URL (i.e., the URL after redirects), and its lastEventIdp1190 attribute
to the last event ID stringp1191 of the event source.

6. If the event type buffer has a value other than the empty string, change the type of the newly created event to equal the
value of the event type buffer.

7. Set the data buffer and the event type buffer to the empty string.

8. Queue a taskp1125 which, if the readyStatep1193 attribute is set to a value other than CLOSEDp1193, dispatches the newly
created event at the EventSourcep1191 object.

For other user agents, the appropriate steps to dispatch the eventp1195 are implementation dependent, but at a minimum they must set
the data and event type buffers to the empty string before returning.

If an event doesn't have an "id" field, but an earlier event did set the event source's last event ID stringp1191, then the event's
lastEventIdp1190 field will be set to the value of whatever the last seen "id" field was.

Note

The following event stream, once followed by a blank line:

data: YHOO
data: +2
data: 10

...would cause an event messagep1471 with the interface MessageEventp1189 to be dispatched on the EventSourcep1191 object. The
event's datap1189 attribute would contain the string "YHOO\n+2\n10" (where "\n" represents a newline).

This could be used as follows:

var stocks = new EventSource("https://stocks.example.com/ticker.php");
stocks.onmessage = function (event) {

var data = event.data.split('\n');
updateStocks(data[0], data[1], data[2]);

};

...where updateStocks() is a function defined as:

function updateStocks(symbol, delta, value) { ... }

...or some such.

Example

The following stream contains four blocks. The first block has just a comment, and will fire nothing. The second block has two fields
with names "data" and "id" respectively; an event will be fired for this block, with the data "first event", and will then set the last
event ID to "1" so that if the connection died between this block and the next, the server would be sent a `Last-Event-IDp1194`
header with the value `1`. The third block fires an event with data "second event", and also has an "id" field, this time with no
value, which resets the last event ID to the empty string (meaning no `Last-Event-IDp1194` header will now be sent in the event of
a reconnection being attempted). Finally, the last block just fires an event with the data " third event" (with a single leading space
character). Note that the last still has to end with a blank line, the end of the stream is not enough to trigger the dispatch of the
last event.

Example

1196

https://dom.spec.whatwg.org/#concept-event-create
https://dom.spec.whatwg.org/#dom-event-type
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#dom-event-type
https://dom.spec.whatwg.org/#concept-event-dispatch

Legacy proxy servers are known to, in certain cases, drop HTTP connections after a short timeout. To protect against such proxy
servers, authors can include a comment line (one starting with a ':' character) every 15 seconds or so.

Authors wishing to relate event source connections to each other or to specific documents previously served might find that relying on
IP addresses doesn't work, as individual clients can have multiple IP addresses (due to having multiple proxy servers) and individual IP
addresses can have multiple clients (due to sharing a proxy server). It is better to include a unique identifier in the document when it is
served and then pass that identifier as part of the URL when the connection is established.

Authors are also cautioned that HTTP chunking can have unexpected negative effects on the reliability of this protocol, in particular if
the chunking is done by a different layer unaware of the timing requirements. If this is a problem, chunking can be disabled for serving
event streams.

Clients that support HTTP's per-server connection limitation might run into trouble when opening multiple pages from a site if each
page has an EventSourcep1191 to the same domain. Authors can avoid this using the relatively complex mechanism of using unique
domain names per connection, or by allowing the user to enable or disable the EventSourcep1191 functionality on a per-page basis, or
by sharing a single EventSourcep1191 object using a shared workerp1230.

User agents running in controlled environments, e.g. browsers on mobile handsets tied to specific carriers, may offload the
management of the connection to a proxy on the network. In such a situation, the user agent for the purposes of conformance is

: test stream

data: first event
id: 1

data:second event
id

data: third event

The following stream fires two events:

data

data
data

data:

The first block fires events with the data set to the empty string, as would the last block if it was followed by a blank line. The
middle block fires an event with the data set to a single newline character. The last block is discarded because it is not followed by
a blank line.

Example

The following stream fires two identical events:

data:test

data: test

This is because the space after the colon is ignored if present.

Example

9.2.7 Authoring notes §p11

97

9.2.8 Connectionless push and other features §p11

97

1197

considered to include both the handset software and the network proxy.

This can reduce the total data usage, and can therefore result in considerable power savings.

As well as implementing the existing API and text/event-streamp1449 wire format as defined by this specification and in more
distributed ways as described above, formats of event framing defined by other applicable specificationsp73 may be supported. This
specification does not define how they are to be parsed or processed.

While an EventSourcep1191 object's readyStatep1193 is CONNECTINGp1193, and the object has one or more event listeners registered for
openp1472, messagep1471 or errorp1471 events, there must be a strong reference from the Windowp922 or WorkerGlobalScopep1228 object
that the EventSourcep1191 object's constructor was invoked from to the EventSourcep1191 object itself.

While an EventSourcep1191 object's readyStatep1193 is OPENp1193, and the object has one or more event listeners registered for
messagep1471 or errorp1471 events, there must be a strong reference from the Windowp922 or WorkerGlobalScopep1228 object that the
EventSourcep1191 object's constructor was invoked from to the EventSourcep1191 object itself.

While there is a task queued by an EventSourcep1191 object on the remote event task sourcep1194, there must be a strong reference
from the Windowp922 or WorkerGlobalScopep1228 object that the EventSourcep1191 object's constructor was invoked from to that
EventSourcep1191 object.

If a user agent is to forcibly close an EventSourcep1191 object (this happens when a Documentp130 object goes away permanently), the
user agent must abort any instances of the fetch algorithm started for this EventSourcep1191 object, and must set the readyStatep1193

attribute to CLOSEDp1193.

If an EventSourcep1191 object is garbage collected while its connection is still open, the user agent must abort any instance of the fetch
algorithm opened by this EventSourcep1191.

This section is non-normative.

For example, a browser on a mobile device, after having established a connection, might detect that it is on a supporting network
and request that a proxy server on the network take over the management of the connection. The timeline for such a situation
might be as follows:

1. Browser connects to a remote HTTP server and requests the resource specified by the author in the EventSourcep1192

constructor.

2. The server sends occasional messages.

3. In between two messages, the browser detects that it is idle except for the network activity involved in keeping the TCP
connection alive, and decides to switch to sleep mode to save power.

4. The browser disconnects from the server.

5. The browser contacts a service on the network, and requests that the service, a "push proxy", maintain the connection
instead.

6. The "push proxy" service contacts the remote HTTP server and requests the resource specified by the author in the
EventSourcep1192 constructor (possibly including a `Last-Event-IDp1194` HTTP header, etc.).

7. The browser allows the mobile device to go to sleep.

8. The server sends another message.

9. The "push proxy" service uses a technology such as OMA push to convey the event to the mobile device, which wakes
only enough to process the event and then returns to sleep.

Example

9.2.9 Garbage collection §p11

98

9.2.10 Implementation advice §p11

98

1198

https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#concept-fetch

User agents are strongly urged to provide detailed diagnostic information about EventSourcep1191 objects and their related network
connections in their development consoles, to aid authors in debugging code using this API.

For example, a user agent could have a panel displaying all the EventSourcep1191 objects a page has created, each listing the
constructor's arguments, whether there was a network error, what the CORS status of the connection is and what headers were sent by
the client and received from the server to lead to that status, the messages that were received and how they were parsed, and so
forth.

Implementations are especially encouraged to report detailed information to their development consoles whenever an errorp1471 event
is fired, since little to no information can be made available in the events themselves.

Web browsers, for security and privacy reasons, prevent documents in different domains from affecting each other; that is, cross-site
scripting is disallowed.

While this is an important security feature, it prevents pages from different domains from communicating even when those pages are
not hostile. This section introduces a messaging system that allows documents to communicate with each other regardless of their
source domain, in a way designed to not enable cross-site scripting attacks.

This section is non-normative.

9.3 Cross-document messaging §p11

99

The postMessage()p1201 API can be used as a tracking vector.
Note

For example, if document A contains an iframep390 element that contains document B, and script in document A calls
postMessage()p1201 on the Windowp922 object of document B, then a message event will be fired on that object, marked as
originating from the Windowp922 of document A. The script in document A might look like:

var o = document.getElementsByTagName('iframe')[0];
o.contentWindow.postMessage('Hello world', 'https://b.example.org/');

To register an event handler for incoming events, the script would use addEventListener() (or similar mechanisms). For example,
the script in document B might look like:

window.addEventListener('message', receiver, false);
function receiver(e) {

if (e.origin == 'https://example.com') {
if (e.data == 'Hello world') {

e.source.postMessage('Hello', e.origin);
} else {

alert(e.data);
}

}
}

This script first checks the domain is the expected domain, and then looks at the message, which it either displays to the user, or
responds to by sending a message back to the document which sent the message in the first place.

Example

9.3.1 Introduction §p11

99

✔ MDN

1199

https://infra.spec.whatwg.org/#tracking-vector

Authors should check the originp1190 attribute to ensure that messages are only accepted from domains that they expect to receive
messages from. Otherwise, bugs in the author's message handling code could be exploited by hostile sites.

Furthermore, even after checking the originp1190 attribute, authors should also check that the data in question is of the expected
format. Otherwise, if the source of the event has been attacked using a cross-site scripting flaw, further unchecked processing of
information sent using the postMessage()p1201 method could result in the attack being propagated into the receiver.

Authors should not use the wildcard keyword (*) in the targetOrigin argument in messages that contain any confidential information, as
otherwise there is no way to guarantee that the message is only delivered to the recipient to which it was intended.

Authors who accept messages from any origin are encouraged to consider the risks of a denial-of-service attack. An attacker could
send a high volume of messages; if the receiving page performs expensive computation or causes network traffic to be sent for each
such message, the attacker's message could be multiplied into a denial-of-service attack. Authors are encouraged to employ rate
limiting (only accepting a certain number of messages per minute) to make such attacks impractical.

The integrity of this API is based on the inability for scripts of one originp898 to post arbitrary events (using dispatchEvent() or
otherwise) to objects in other origins (those that are not the samep899).

User agents are also encouraged to consider rate-limiting message traffic between different originsp898, to protect naïve sites from
denial-of-service attacks.

9.3.2.1 Authors §p12

00

Use of this API requires extra care to protect users from hostile entities abusing a site for their own purposes.
⚠Warning!

9.3.2.2 User agents §p12

00

Implementers are urged to take extra care in the implementation of this feature. It allows authors to transmit information from one
domain to another domain, which is normally disallowed for security reasons. It also requires that UAs be careful to allow access to
certain properties but not others.

Note

window.postMessagep1201(message [, options])
Posts a message to the given window. Messages can be structured objects, e.g. nested objects and arrays, can contain
JavaScript values (strings, numbers, Date objects, etc.), and can contain certain data objects such as File Blob, FileList, and
ArrayBuffer objects.
Objects listed in the transferp1205 member of options are transferred, not just cloned, meaning that they are no longer usable
on the sending side.
A target origin can be specified using the targetOriginp923 member of options. If not provided, it defaults to "/". This default
restricts the message to same-origin targets only.
If the origin of the target window doesn't match the given target origin, the message is discarded, to avoid information leakage.
To send the message to the target regardless of origin, set the target origin to "*".
Throws a "DataCloneError" DOMException if transfer array contains duplicate objects or if message could not be cloned.

window.postMessagep1201(message, targetOrigin [, transfer])
This is an alternate version of postMessage()p1201 where the target origin is specified as a parameter. Calling
window.postMessage(message, target, transfer) is equivalent to window.postMessage(message, {targetOrigin,
transfer}).

For web developers (non-normative)

9.3.2 Security §p12

00

9.3.3 Posting messages §p12

00

1200

https://tc39.es/ecma262/#sec-date-objects
https://w3c.github.io/FileAPI/#dfn-file
https://w3c.github.io/FileAPI/#dfn-Blob
https://w3c.github.io/FileAPI/#filelist-section
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException

The window post message steps, given a targetWindow, message, and options, are as follows:

1. Let targetRealm be targetWindow's realmp1077.

2. Let incumbentSettings be the incumbent settings objectp1081.

3. Let targetOrigin be options["targetOriginp923"].

4. If targetOrigin is a single U+002F SOLIDUS character (/), then set targetOrigin to incumbentSettings's originp1076.

5. Otherwise, if targetOrigin is not a single U+002A ASTERISK character (*), then:

1. Let parsedURL be the result of running the URL parser on targetOrigin.

2. If parsedURL is failure, then throw a "SyntaxError" DOMException.

3. Set targetOrigin to parsedURL's origin.

6. Let transfer be options["transferp1205"].

7. Let serializeWithTransferResult be StructuredSerializeWithTransferp125(message, transfer). Rethrow any exceptions.

8. Queue a global taskp1125 on the posted message task source given targetWindow to run the following steps:

1. If the targetOrigin argument is not a single literal U+002A ASTERISK character (*) and targetWindow's associated
Documentp923 's origin is not same originp899 with targetOrigin, then return.

2. Let origin be the serializationp898 of incumbentSettings's originp1076.

3. Let source be the WindowProxyp934 object corresponding to incumbentSettings's global objectp1077 (a Windowp922

object).

4. Let deserializeRecord be StructuredDeserializeWithTransferp127(serializeWithTransferResult, targetRealm).

If this throws an exception, catch it, fire an event named messageerrorp1472 at targetWindow, using
MessageEventp1189, with the originp1190 attribute initialized to origin and the sourcep1190 attribute initialized to
source, and then return.

5. Let messageClone be deserializeRecord.[[Deserialized]].

6. Let newPorts be a new frozen array consisting of all MessagePortp1205 objects in
deserializeRecord.[[TransferredValues]], if any, maintaining their relative order.

7. Fire an event named messagep1471 at targetWindow, using MessageEventp1189, with the originp1190 attribute
initialized to origin, the sourcep1190 attribute initialized to source, the datap1189 attribute initialized to
messageClone, and the portsp1190 attribute initialized to newPorts.

The Windowp922 interface's postMessage(message, options) method steps are to run the window post message stepsp1201 given this,
message, and options.

The Windowp922 interface's postMessage(message, targetOrigin, transfer) method steps are to run the window post message
stepsp1201 given this, message, and «["targetOriginp923" → targetOrigin, "transferp1205" → transfer]».

When posting a message to a Windowp922 of a browsing contextp998 that has just been navigated to a new Documentp130 is likely to
result in the message not receiving its intended recipient: the scripts in the target browsing contextp998 have to have had time to
set up listeners for the messages. Thus, for instance, in situations where a message is to be sent to the Windowp922 of newly
created child iframep390, authors are advised to have the child Documentp130 post a message to their parent announcing their
readiness to receive messages, and for the parent to wait for this message before beginning posting messages.

Note

1201

https://url.spec.whatwg.org/#concept-url-parser
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://url.spec.whatwg.org/#concept-url-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

This section is non-normative.

To enable independent pieces of code (e.g. running in different browsing contextsp998) to communicate directly, authors can use
channel messagingp1202.

Communication channels in this mechanism are implemented as two-ways pipes, with a port at each end. Messages sent in one port
are delivered at the other port, and vice-versa. Messages are delivered as DOM events, without interrupting or blocking running
tasksp1124.

To create a connection (two "entangled" ports), the MessageChannel() constructor is called:

var channel = new MessageChannel();

One of the ports is kept as the local port, and the other port is sent to the remote code, e.g. using postMessage()p1201:

otherWindow.postMessage('hello', 'https://example.com', [channel.port2]);

To send messages, the postMessage()p1208 method on the port is used:

channel.port1.postMessage('hello');

To receive messages, one listens to messagep1471 events:

channel.port1.onmessage = handleMessage;
function handleMessage(event) {

// message is in event.data
// ...

}

Data sent on a port can be structured data; for example here an array of strings is passed on a MessagePortp1205:

port1.postMessage(['hello', 'world']);

This section is non-normative.

9.4 Channel messaging §p12

02

9.4.1.1 Examples §p12

02

In this example, two JavaScript libraries are connected to each other using MessagePortp1205s. This allows the libraries to later be
hosted in different frames, or in Workerp1236 objects, without any change to the APIs.

<script src="contacts.js"></script> <!-- exposes a contacts object -->
<script src="compose-mail.js"></script> <!-- exposes a composer object -->
<script>
var channel = new MessageChannel();
composer.addContactsProvider(channel.port1);
contacts.registerConsumer(channel.port2);

</script>

Here's what the "addContactsProvider()" function's implementation could look like:

Example

9.4.1 Introduction §p12

02

✔ MDN

1202

This section is non-normative.

Ports can be viewed as a way to expose limited capabilities (in the object-capability model sense) to other actors in the system. This
can either be a weak capability system, where the ports are merely used as a convenient model within a particular origin, or as a
strong capability model, where they are provided by one origin provider as the only mechanism by which another origin consumer can
effect change in or obtain information from provider.

For example, consider a situation in which a social web site embeds in one iframep390 the user's email contacts provider (an address
book site, from a second origin), and in a second iframep390 a game (from a third origin). The outer social site and the game in the
second iframep390 cannot access anything inside the first iframep390; together they can only:

• Navigatep1014 the iframep390 to a new URL, such as the same URL but with a different fragment, causing the Windowp922 in the
iframep390 to receive a hashchangep1471 event.

• Resize the iframep390, causing the Windowp922 in the iframep390 to receive a resize event.

• Send a messagep1471 event to the Windowp922 in the iframep390 using the window.postMessage()p1201 API.

The contacts provider can use these methods, most particularly the third one, to provide an API that can be accessed by other origins
to manipulate the user's address book. For example, it could respond to a message "add-contact Guillaume Tell

function addContactsProvider(port) {
port.onmessage = function (event) {

switch (event.data.messageType) {
case 'search-result': handleSearchResult(event.data.results); break;
case 'search-done': handleSearchDone(); break;
case 'search-error': handleSearchError(event.data.message); break;
// ...

}
};

};

Alternatively, it could be implemented as follows:

function addContactsProvider(port) {
port.addEventListener('message', function (event) {

if (event.data.messageType == 'search-result')
handleSearchResult(event.data.results);

});
port.addEventListener('message', function (event) {

if (event.data.messageType == 'search-done')
handleSearchDone();

});
port.addEventListener('message', function (event) {

if (event.data.messageType == 'search-error')
handleSearchError(event.data.message);

});
// ...
port.start();

};

The key difference is that when using addEventListener(), the start()p1208 method must also be invoked. When using
onmessagep1205, the call to start()p1208 is implied.

The start()p1208 method, whether called explicitly or implicitly (by setting onmessagep1205), starts the flow of messages: messages
posted on message ports are initially paused, so that they don't get dropped on the floor before the script has had a chance to set
up its handlers.

9.4.1.2 Ports as the basis of an object-capability model on the web §p12

03

1203

https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url-fragment
https://drafts.csswg.org/cssom-view/#eventdef-window-resize

<tell@pomme.example.net>" by adding the given person and email address to the user's address book.

To avoid any site on the web being able to manipulate the user's contacts, the contacts provider might only allow certain trusted sites,
such as the social site, to do this.

Now suppose the game wanted to add a contact to the user's address book, and that the social site was willing to allow it to do so on
its behalf, essentially "sharing" the trust that the contacts provider had with the social site. There are several ways it could do this;
most simply, it could just proxy messages between the game site and the contacts site. However, this solution has a number of
difficulties: it requires the social site to either completely trust the game site not to abuse the privilege, or it requires that the social
site verify each request to make sure it's not a request that it doesn't want to allow (such as adding multiple contacts, reading the
contacts, or deleting them); it also requires some additional complexity if there's ever the possibility of multiple games simultaneously
trying to interact with the contacts provider.

Using message channels and MessagePortp1205 objects, however, all of these problems can go away. When the game tells the social
site that it wants to add a contact, the social site can ask the contacts provider not for it to add a contact, but for the capability to add
a single contact. The contacts provider then creates a pair of MessagePortp1205 objects, and sends one of them back to the social site,
who forwards it on to the game. The game and the contacts provider then have a direct connection, and the contacts provider knows
to only honor a single "add contact" request, nothing else. In other words, the game has been granted the capability to add a single
contact.

This section is non-normative.

Continuing the example from the previous section, consider the contacts provider in particular. While an initial implementation might
have simply used XMLHttpRequest objects in the service's iframep390, an evolution of the service might instead want to use a shared
workerp1237 with a single WebSocket connection.

If the initial design used MessagePortp1205 objects to grant capabilities, or even just to allow multiple simultaneous independent
sessions, the service implementation can switch from the XMLHttpRequests-in-each-iframep390 model to the shared-WebSocket model
without changing the API at all: the ports on the service provider side can all be forwarded to the shared worker without it affecting the
users of the API in the slightest.

[Exposed=(Window,Worker)]
interface MessageChannel {

constructor();

readonly attribute MessagePort port1;
readonly attribute MessagePort port2;

};

A MessageChannelp1204 object has an associated port 1 and an associated port 2, both MessagePortp1205 objects.

The new MessageChannel() constructor steps are:

1. Set this's port 1p1204 to a new MessagePortp1205 in this's relevant realmp1083.

9.4.1.3 Ports as the basis of abstracting out service implementations §p12

04

channel = new MessageChannelp1204()
Returns a new MessageChannelp1204 object with two new MessagePortp1205 objects.

channel.port1p1205

Returns the first MessagePortp1205 object.

channel.port2p1205

Returns the second MessagePortp1205 object.

For web developers (non-normative)

IDL

9.4.2 Message channels §p12

04

✔ MDN

1204

https://xhr.spec.whatwg.org/#xmlhttprequest
https://websockets.spec.whatwg.org/#websocket
https://xhr.spec.whatwg.org/#xmlhttprequest
https://websockets.spec.whatwg.org/#websocket
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#this

2. Set this's port 2p1204 to a new MessagePortp1205 in this's relevant realmp1083.

3. Entanglep1206 this's port 1p1204 and this's port 2p1204.

The port1 getter steps are to return this's port 1p1204.

The port2 getter steps are to return this's port 2p1204.

interface mixin MessageEventTarget {
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

};

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by objects implementing the MessageEventTargetp1205 interface:

Event handlerp1136 Event handler event typep1139

onmessage messagep1471

onmessageerror messageerrorp1472

Each channel has two message ports. Data sent through one port is received by the other port, and vice versa.

[Exposed=(Window,Worker,AudioWorklet), Transferable]
interface MessagePort : EventTarget {

undefined postMessage(any message, sequence<object> transfer);
undefined postMessage(any message, optional StructuredSerializeOptions options = {});
undefined start();
undefined close();

// event handlers
attribute EventHandler onclose;

};

MessagePort includes MessageEventTarget;

dictionary StructuredSerializeOptions {
sequence<object> transfer = [];

};

port.postMessagep1208(message [, transfer])
port.postMessagep1208(message [, { transfer }])

Posts a message through the channel. Objects listed in transfer are transferred, not just cloned, meaning that they are no longer
usable on the sending side.
Throws a "DataCloneError" DOMException if transfer contains duplicate objects or port, or if message could not be cloned.

port.startp1208()
Begins dispatching messages received on the port.

port.closep1208()
Disconnects the port, so that it is no longer active.

For web developers (non-normative)

IDL

IDL

9.4.3 The MessageEventTargetp1205 mixin §p12

05

9.4.4 Message ports §p12

05

✔ MDN

✔ MDN

✔ MDN

1205

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#new
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-eventtarget
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException

Each MessagePortp1205 object has a message event target (a MessageEventTargetp1205), to which the messagep1471 and
messageerrorp1472 events are dispatched. Unless otherwise specified, it defaults to the MessagePortp1205 object itself.

Each MessagePortp1205 object can be entangled with another (a symmetric relationship). Each MessagePortp1205 object also has a task
sourcep1124 called the port message queue, initially empty. A port message queuep1206 can be enabled or disabled, and is initially
disabled. Once enabled, a port can never be disabled again (though messages in the queue can get moved to another queue or
removed altogether, which has much the same effect). A MessagePortp1205 also has a has been shipped flag, which must initially be
false.

When a port's port message queuep1206 is enabled, the event loopp1123 must use it as one of its task sourcesp1124. When a port's
relevant global objectp1083 is a Windowp922, all tasksp1124 queuedp1125 on its port message queuep1206 must be associated with the port's
relevant global objectp1083 's associated Documentp923.

Each event loopp1123 has a task sourcep1124 called the unshipped port message queue. This is a virtual task sourcep1124: it must act
as if it contained the tasksp1124 of each port message queuep1206 of each MessagePortp1205 whose has been shippedp1206 flag is false,
whose port message queuep1206 is enabled, and whose relevant agentp1073 's event loopp1123 is that event loopp1123, in the order in which
they were added to their respective task sourcep1124. When a taskp1124 would be removed from the unshipped port message queuep1206,
it must instead be removed from its port message queuep1206.

When a MessagePortp1205 's has been shippedp1206 flag is false, its port message queuep1206 must be ignored for the purposes of the
event loopp1123. (The unshipped port message queuep1206 is used instead.)

When the user agent is to entangle two MessagePortp1205 objects, it must run the following steps:

1. If one of the ports is already entangled, then disentangle it and the port that it was entangled with.

2. Associate the two ports to be entangled, so that they form the two parts of a new channel. (There is no MessageChannelp1204

object that represents this channel.)

Two ports A and B that have gone through this step are now said to be entangled; one is entangled to the other, and vice
versa.

The disentangle steps, given a MessagePortp1205 initiatorPort which initiates disentangling, are as follows:

1. Let otherPort be the MessagePortp1205 which initiatorPort was entangled with.

2. Assert: otherPort exists.

3. Disentangle initiatorPort and otherPort, so that they are no longer entangled or associated with each other.

4. Fire an event named closep1471 at otherPort.

If the document is fully activep1003, but the event listeners were all created in the context of documents that are not fully
activep1003, then the messages will not be received unless and until the documents become fully activep1003 again.

Note

The has been shippedp1206 flag is set to true when a port, its twin, or the object it was cloned from, is or has been transferred.
When a MessagePortp1205 's has been shippedp1206 flag is true, its port message queuep1206 acts as a first-class task sourcep1124,
unaffected to any unshipped port message queuep1206.

Note

If those two previously entangled ports were the two ports of a MessageChannelp1204 object, then that
MessageChannelp1204 object no longer represents an actual channel: the two ports in that object are no longer entangled.

Note

While this specification describes this process as instantaneous, implementations are more likely to implement it via
message passing. As with all algorithms, the key is "merely" that the end result be indistinguishable, in a black-box
sense, from the specification.

Note

Note

1206

https://infra.spec.whatwg.org/#assert
https://dom.spec.whatwg.org/#concept-event-fire

MessagePortp1205 objects are transferable objectsp118. Their transfer stepsp118, given value and dataHolder, are:

1. Set value's has been shippedp1206 flag to true.

2. Set dataHolder.[[PortMessageQueue]] to value's port message queuep1206.

3. If value is entangled with another port remotePort, then:

1. Set remotePort's has been shippedp1206 flag to true.

2. Set dataHolder.[[RemotePort]] to remotePort.

4. Otherwise, set dataHolder.[[RemotePort]] to null.

Their transfer-receiving stepsp118, given dataHolder and value, are:

1. Set value's has been shippedp1206 flag to true.

2. Move all the tasksp1124 that are to fire messagep1471 events in dataHolder.[[PortMessageQueue]] to the port message
queuep1206 of value, if any, leaving value's port message queuep1206 in its initial disabled state, and, if value's relevant global
objectp1083 is a Windowp922, associating the moved tasksp1124 with value's relevant global objectp1083 's associated Documentp923.

3. If dataHolder.[[RemotePort]] is not null, then entanglep1206 dataHolder.[[RemotePort]] and value. (This will disentangle
dataHolder.[[RemotePort]] from the original port that was transferred.)

The message port post message steps, given sourcePort, targetPort, message and options are as follows:

1. Let transfer be options["transferp1205"].

2. If transfer contains sourcePort, then throw a "DataCloneError" DOMException.

3. Let doomed be false.

4. If targetPort is not null and transfer contains targetPort, then set doomed to true and optionally report to a developer console
that the target port was posted to itself, causing the communication channel to be lost.

5. Let serializeWithTransferResult be StructuredSerializeWithTransferp125(message, transfer). Rethrow any exceptions.

6. If targetPort is null, or if doomed is true, then return.

7. Add a taskp1124 that runs the following steps to the port message queuep1206 of targetPort:

1. Let finalTargetPort be the MessagePortp1205 in whose port message queuep1206 the task now finds itself.

2. Let messageEventTarget be finalTargetPort's message event targetp1206.

3. Let targetRealm be finalTargetPort's relevant realmp1083.

4. Let deserializeRecord be StructuredDeserializeWithTransferp127(serializeWithTransferResult, targetRealm).

The closep1471 event will be fired even if the port is not explicitly closed. The cases where this event is dispatched are:

• the close()p1208 method was called;

• the Documentp130 was destroyedp1066; or

• the MessagePortp1205 was garbage collectedp1208.

We only dispatch the event on otherPort because initiatorPort explicitly triggered the close, its Documentp130 no longer exists, or it
was already garbage collected, as described above.

This can be different from targetPort, if targetPort itself was transferred and thus all its tasks moved along with
it.

Note

1207

https://infra.spec.whatwg.org/#list-contain
https://webidl.spec.whatwg.org/#datacloneerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list-contain

If this throws an exception, catch it, fire an event named messageerrorp1472 at messageEventTarget, using
MessageEventp1189, and then return.

5. Let messageClone be deserializeRecord.[[Deserialized]].

6. Let newPorts be a new frozen array consisting of all MessagePortp1205 objects in
deserializeRecord.[[TransferredValues]], if any, maintaining their relative order.

7. Fire an event named messagep1471 at messageEventTarget, using MessageEventp1189, with the datap1189 attribute
initialized to messageClone and the portsp1190 attribute initialized to newPorts.

The postMessage(message, options) method steps are:

1. Let targetPort be the port with which this is entangled, if any; otherwise let it be null.

2. Run the message port post message stepsp1207 providing this, targetPort, message and options.

The postMessage(message, transfer) method steps are:

1. Let targetPort be the port with which this is entangled, if any; otherwise let it be null.

2. Let options be «["transferp1205" → transfer]».

3. Run the message port post message stepsp1207 providing this, targetPort, message and options.

The start() method steps are to enable this's port message queuep1206, if it is not already enabled.

The close() method steps are:

1. Set this's [[Detached]]p118 internal slot value to true.

2. If this is entangled, disentanglep1206 it.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the MessagePortp1205 interface:

Event handlerp1136 Event handler event typep1139

onclose closep1471

The first time a MessagePortp1205 object's onmessagep1205 IDL attribute is set, the port's port message queuep1206 must be enabled, as if
the start()p1208 method had been called.

When a MessagePortp1205 object o is garbage collected, if o is entangled, then the user agent must disentanglep1206 o.

When a MessagePortp1205 object o is entangled and messagep1471 or messageerrorp1472 event listener is registered, user agents must act
as if o's entangled MessagePortp1205 object has a strong reference to o.

Furthermore, a MessagePortp1205 object must not be garbage collected while there exists an event referenced by a taskp1124 in a task
queuep1123 that is to be dispatched on that MessagePortp1205 object, or while the MessagePortp1205 object's port message queuep1206 is
enabled and not empty.

Thus, a message port can be received, given an event listener, and then forgotten, and so long as that event listener could receive
a message, the channel will be maintained.

Of course, if this was to occur on both sides of the channel, then both ports could be garbage collected, since they would not be
reachable from live code, despite having a strong reference to each other. However, if a message port has a pending message, it is

Note

9.4.5 Ports and garbage collection §p12

08

1208

https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

Pages on a single originp898 opened by the same user in the same user agent but in different unrelated browsing contextsp998

sometimes need to send notifications to each other, for example "hey, the user logged in over here, check your credentials again".

For elaborate cases, e.g. to manage locking of shared state, to manage synchronization of resources between a server and multiple
local clients, to share a WebSocket connection with a remote host, and so forth, shared workersp1237 are the most appropriate solution.

For simple cases, though, where a shared worker would be an unreasonable overhead, authors can use the simple channel-based
broadcast mechanism described in this section.

[Exposed=(Window,Worker)]
interface BroadcastChannel : EventTarget {

constructor(DOMString name);

readonly attribute DOMString name;
undefined postMessage(any message);
undefined close();
attribute EventHandler onmessage;
attribute EventHandler onmessageerror;

};

A BroadcastChannelp1209 object has a channel name and a closed flag.

The new BroadcastChannel(name) constructor steps are:

1. Set this's channel namep1209 to name.

2. Set this's closed flagp1209 to false.

The name getter steps are to return this's channel namep1209.

A BroadcastChannelp1209 object is said to be eligible for messaging when its relevant global objectp1083 is either:

• a Windowp922 object whose associated Documentp923 is fully activep1003, or

not garbage collected.

Authors are strongly encouraged to explicitly close MessagePortp1205 objects to disentangle them, so that their resources can be
recollected. Creating many MessagePortp1205 objects and discarding them without closing them can lead to high transient memory
usage since garbage collection is not necessarily performed promptly, especially for MessagePortp1205s where garbage collection
can involve cross-process coordination.

Note

9.5 Broadcasting to other browsing contexts §p12

09

broadcastChannel = new BroadcastChannelp1209(name)
Returns a new BroadcastChannelp1209 object via which messages for the given channel name can be sent and received.

broadcastChannel.namep1209

Returns the channel name (as passed to the constructor).

broadcastChannel.postMessagep1210(message)
Sends the given message to other BroadcastChannelp1209 objects set up for this channel. Messages can be structured objects,
e.g. nested objects and arrays.

broadcastChannel.closep1210()
Closes the BroadcastChannelp1209 object, opening it up to garbage collection.

For web developers (non-normative)

IDL

✔ MDN

1209

https://websockets.spec.whatwg.org/#websocket
https://dom.spec.whatwg.org/#interface-eventtarget
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

• a WorkerGlobalScopep1228 object whose closingp1231 flag is false and whose workerp1236 is not a suspendable workerp1232.

The postMessage(message) method steps are:

1. If this is not eligible for messagingp1209, then return.

2. If this's closed flagp1209 is true, then throw an "InvalidStateError" DOMException.

3. Let serialized be StructuredSerializep122(message). Rethrow any exceptions.

4. Let sourceOrigin be this's relevant settings objectp1083 's originp1076.

5. Let sourceStorageKey be the result of running obtain a storage key for non-storage purposes with this's relevant settings
objectp1083.

6. Let destinations be a list of BroadcastChannelp1209 objects that match the following criteria:

◦ They are eligible for messagingp1209.

◦ The result of running obtain a storage key for non-storage purposes with their relevant settings objectp1083 equals
sourceStorageKey.

◦ Their channel namep1209 is this's channel namep1209.

7. Remove source from destinations.

8. Sort destinations such that all BroadcastChannelp1209 objects whose relevant agentsp1073 are the same are sorted in creation
order, oldest first. (This does not define a complete ordering. Within this constraint, user agents may sort the list in any
implementation-defined manner.)

9. For each destination in destinations, queue a global taskp1125 on the DOM manipulation task sourcep1134 given destination's
relevant global objectp1083 to perform the following steps:

1. If destination's closed flagp1209 is true, then abort these steps.

2. Let targetRealm be destination's relevant realmp1083.

3. Let data be StructuredDeserializep122(serialized, targetRealm).

If this throws an exception, catch it, fire an event named messageerrorp1472 at destination, using
MessageEventp1189, with the originp1190 attribute initialized to the serializationp898 of sourceOrigin, and then abort
these steps.

4. Fire an event named messagep1471 at destination, using MessageEventp1189, with the datap1189 attribute initialized to
data and the originp1190 attribute initialized to the serializationp898 of sourceOrigin.

While a BroadcastChannelp1209 object whose closed flagp1209 is false has an event listener registered for messagep1471 or
messageerrorp1472 events, there must be a strong reference from the BroadcastChannelp1209 object's relevant global objectp1083 to the
BroadcastChannelp1209 object itself.

The close() method steps are to set this's closed flagp1209 to true.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by all objects implementing the BroadcastChannelp1209 interface:

Event handlerp1136 Event handler event typep1139

onmessage messagep1471

onmessageerror messageerrorp1472

Authors are strongly encouraged to explicitly close BroadcastChannelp1209 objects when they are no longer needed, so that they
can be garbage collected. Creating many BroadcastChannelp1209 objects and discarding them while leaving them with an event
listener and without closing them can lead to an apparent memory leak, since the objects will continue to live for as long as they
have an event listener (or until their page or worker is closed).

Note

✔ MDN

✔ MDN

1210

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://storage.spec.whatwg.org/#obtain-a-storage-key-for-non-storage-purposes
https://webidl.spec.whatwg.org/#this
https://storage.spec.whatwg.org/#obtain-a-storage-key-for-non-storage-purposes
https://storage.spec.whatwg.org/#storage-key-equal
https://infra.spec.whatwg.org/#string-is
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this

Suppose a page wants to know when the user logs out, even when the user does so from another tab at the same site:

var authChannel = new BroadcastChannel('auth');
authChannel.onmessage = function (event) {

if (event.data == 'logout')
showLogout();

}

function logoutRequested() {
// called when the user asks us to log them out
doLogout();
showLogout();
authChannel.postMessage('logout');

}

function doLogout() {
// actually log the user out (e.g. clearing cookies)
// ...

}

function showLogout() {
// update the UI to indicate we're logged out
// ...

}

Example

1211

This section is non-normative.

This specification defines an API for running scripts in the background independently of any user interface scripts.

This allows for long-running scripts that are not interrupted by scripts that respond to clicks or other user interactions, and allows long
tasks to be executed without yielding to keep the page responsive.

Workers (as these background scripts are called herein) are relatively heavy-weight, and are not intended to be used in large numbers.
For example, it would be inappropriate to launch one worker for each pixel of a four megapixel image. The examples below show some
appropriate uses of workers.

Generally, workers are expected to be long-lived, have a high start-up performance cost, and a high per-instance memory cost.

This section is non-normative.

There are a variety of uses that workers can be put to. The following subsections show various examples of this use.

This section is non-normative.

The simplest use of workers is for performing a computationally expensive task without interrupting the user interface.

In this example, the main document spawns a worker to (naïvely) compute prime numbers, and progressively displays the most
recently found prime number.

The main page is as follows:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Worker example: One-core computation</title>

</head>
<body>
<p>The highest prime number discovered so far is: <output id="result"></output></p>
<script>
var worker = new Worker('worker.js');
worker.onmessage = function (event) {

document.getElementById('result').textContent = event.data;
};

</script>
</body>

</html>

The Worker()p1236 constructor call creates a worker and returns a Workerp1236 object representing that worker, which is used to

10 Web workers §p12

12

10.1 Introduction §p12

12

10.1.2.1 A background number-crunching worker §p12

12

10.1.1 Scope §p12

12

10.1.2 Examples §p12

12

✔ MDN

1212

communicate with the worker. That object's onmessagep1205 event handler allows the code to receive messages from the worker.

The worker itself is as follows:

var n = 1;
search: while (true) {

n += 1;
for (var i = 2; i <= Math.sqrt(n); i += 1)

if (n % i == 0)
continue search;

// found a prime!
postMessage(n);

}

The bulk of this code is simply an unoptimized search for a prime number. The postMessage()p1230 method is used to send a message
back to the page when a prime is found.

View this example online.

This section is non-normative.

All of our examples so far show workers that run classic scriptsp1085. Workers can instead be instantiated using module scriptsp1085,
which have the usual benefits: the ability to use the JavaScript import statement to import other modules; strict mode by default; and
top-level declarations not polluting the worker's global scope.

As the import statement is available, the importScripts()p1239 method will automatically fail inside module workers.

In this example, the main document uses a worker to do off-main-thread image manipulation. It imports the filters used from another
module.

The main page is as follows:

<!DOCTYPE html>
<html lang="en">
<meta charset="utf-8">
<title>Worker example: image decoding</title>

<p>
<label>

Type an image URL to decode
<input type="url" id="image-url" list="image-list">
<datalist id="image-list">

<option value="https://html.spec.whatwg.org/images/drawImage.png">
<option value="https://html.spec.whatwg.org/images/robots.jpeg">
<option value="https://html.spec.whatwg.org/images/arcTo2.png">

</datalist>
</label>

</p>

<p>
<label>

Choose a filter to apply
<select id="filter">

<option value="none">none</option>
<option value="grayscale">grayscale</option>
<option value="brighten">brighten by 20%</option>

</select>
</label>

</p>

10.1.2.2 Using a JavaScript module as a worker §p12

13

1213

https://html.spec.whatwg.org/demos/workers/primes/page.html

<div id="output"></div>

<script type="module">
const worker = new Worker("worker.js", { type: "module" });
worker.onmessage = receiveFromWorker;

const url = document.querySelector("#image-url");
const filter = document.querySelector("#filter");
const output = document.querySelector("#output");

url.oninput = updateImage;
filter.oninput = sendToWorker;

let imageData, context;

function updateImage() {
const img = new Image();
img.src = url.value;

img.onload = () => {
const canvas = document.createElement("canvas");
canvas.width = img.width;
canvas.height = img.height;

context = canvas.getContext("2d");
context.drawImage(img, 0, 0);
imageData = context.getImageData(0, 0, canvas.width, canvas.height);

sendToWorker();
output.replaceChildren(canvas);

};
}

function sendToWorker() {
worker.postMessage({ imageData, filter: filter.value });

}

function receiveFromWorker(e) {
context.putImageData(e.data, 0, 0);

}
</script>

The worker file is then:

import * as filters from "./filters.js";

self.onmessage = e => {
const { imageData, filter } = e.data;
filters[filter](imageData);
self.postMessage(imageData, [imageData.data.buffer]);

};

Which imports the file filters.js:

export function none() {}

export function grayscale({ data: d }) {
for (let i = 0; i < d.length; i += 4) {

const [r, g, b] = [d[i], d[i + 1], d[i + 2]];

1214

// CIE luminance for the RGB
// The human eye is bad at seeing red and blue, so we de-emphasize them.
d[i] = d[i + 1] = d[i + 2] = 0.2126 * r + 0.7152 * g + 0.0722 * b;

}
};

export function brighten({ data: d }) {
for (let i = 0; i < d.length; ++i) {

d[i] *= 1.2;
}

};

View this example online.

This section is non-normative.

This section introduces shared workers using a Hello World example. Shared workers use slightly different APIs, since each worker can
have multiple connections.

This first example shows how you connect to a worker and how a worker can send a message back to the page when it connects to it.
Received messages are displayed in a log.

Here is the HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 1</title>
<pre id="log">Log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.onmessage = function(e) { // note: not worker.onmessage!

log.textContent += '\n' + e.data;
}

</script>

Here is the JavaScript worker:

onconnect = function(e) {
var port = e.ports[0];
port.postMessage('Hello World!');

}

View this example online.

This second example extends the first one by changing two things: first, messages are received using addEventListener() instead of
an event handler IDL attributep1137, and second, a message is sent to the worker, causing the worker to send another message in
return. Received messages are again displayed in a log.

Here is the HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 2</title>
<pre id="log">Log:</pre>

10.1.2.3 Shared workers introduction §p12

15

✔ MDN

1215

https://html.spec.whatwg.org/demos/workers/modules/page.html
https://html.spec.whatwg.org/demos/workers/shared/001/test.html

<script>
var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.addEventListener('message', function(e) {

log.textContent += '\n' + e.data;
}, false);
worker.port.start(); // note: need this when using addEventListener
worker.port.postMessage('ping');

</script>

Here is the JavaScript worker:

onconnect = function(e) {
var port = e.ports[0];
port.postMessage('Hello World!');
port.onmessage = function(e) {

port.postMessage('pong'); // not e.ports[0].postMessage!
// e.target.postMessage('pong'); would work also

}
}

View this example online.

Finally, the example is extended to show how two pages can connect to the same worker; in this case, the second page is merely in an
iframep390 on the first page, but the same principle would apply to an entirely separate page in a separate top-level traversablep990.

Here is the outer HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 3</title>
<pre id="log">Log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.addEventListener('message', function(e) {

log.textContent += '\n' + e.data;
}, false);
worker.port.start();
worker.port.postMessage('ping');

</script>
<iframe src="inner.html"></iframe>

Here is the inner HTML page:

<!DOCTYPE HTML>
<html lang="en">
<meta charset="utf-8">
<title>Shared workers: demo 3 inner frame</title>
<pre id=log>Inner log:</pre>
<script>

var worker = new SharedWorker('test.js');
var log = document.getElementById('log');
worker.port.onmessage = function(e) {
log.textContent += '\n' + e.data;

}
</script>

Here is the JavaScript worker:
1216

https://html.spec.whatwg.org/demos/workers/shared/002/test.html

var count = 0;
onconnect = function(e) {

count += 1;
var port = e.ports[0];
port.postMessage('Hello World! You are connection #' + count);
port.onmessage = function(e) {

port.postMessage('pong');
}

}

View this example online.

This section is non-normative.

In this example, multiple windows (viewers) can be opened that are all viewing the same map. All the windows share the same map
information, with a single worker coordinating all the viewers. Each viewer can move around independently, but if they set any data on
the map, all the viewers are updated.

The main page isn't interesting, it merely provides a way to open the viewers:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Workers example: Multiviewer</title>
<script>
function openViewer() {

window.open('viewer.html');
}

</script>
</head>
<body>
<p><button type=button onclick="openViewer()">Open a new
viewer</button></p>
<p>Each viewer opens in a new window. You can have as many viewers
as you like, they all view the same data.</p>

</body>
</html>

The viewer is more involved:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Workers example: Multiviewer viewer</title>
<script>
var worker = new SharedWorker('worker.js', 'core');

// CONFIGURATION
function configure(event) {

if (event.data.substr(0, 4) != 'cfg ') return;
var name = event.data.substr(4).split(' ', 1)[0];
// update display to mention our name is name
document.getElementsByTagName('h1')[0].textContent += ' ' + name;
// no longer need this listener
worker.port.removeEventListener('message', configure, false);

}

10.1.2.4 Shared state using a shared worker §p12

17

1217

https://html.spec.whatwg.org/demos/workers/shared/003/test.html

worker.port.addEventListener('message', configure, false);

// MAP
function paintMap(event) {

if (event.data.substr(0, 4) != 'map ') return;
var data = event.data.substr(4).split(',');
// display tiles data[0] .. data[8]
var canvas = document.getElementById('map');
var context = canvas.getContext('2d');
for (var y = 0; y < 3; y += 1) {

for (var x = 0; x < 3; x += 1) {
var tile = data[y * 3 + x];
if (tile == '0')

context.fillStyle = 'green';
else

context.fillStyle = 'maroon';
context.fillRect(x * 50, y * 50, 50, 50);

}
}

}
worker.port.addEventListener('message', paintMap, false);

// PUBLIC CHAT
function updatePublicChat(event) {

if (event.data.substr(0, 4) != 'txt ') return;
var name = event.data.substr(4).split(' ', 1)[0];
var message = event.data.substr(4 + name.length + 1);
// display "<name> message" in public chat
var public = document.getElementById('public');
var p = document.createElement('p');
var n = document.createElement('button');
n.textContent = '<' + name + '> ';
n.onclick = function () { worker.port.postMessage('msg ' + name); };
p.appendChild(n);
var m = document.createElement('span');
m.textContent = message;
p.appendChild(m);
public.appendChild(p);

}
worker.port.addEventListener('message', updatePublicChat, false);

// PRIVATE CHAT
function startPrivateChat(event) {

if (event.data.substr(0, 4) != 'msg ') return;
var name = event.data.substr(4).split(' ', 1)[0];
var port = event.ports[0];
// display a private chat UI
var ul = document.getElementById('private');
var li = document.createElement('li');
var h3 = document.createElement('h3');
h3.textContent = 'Private chat with ' + name;
li.appendChild(h3);
var div = document.createElement('div');
var addMessage = function(name, message) {

var p = document.createElement('p');
var n = document.createElement('strong');
n.textContent = '<' + name + '> ';
p.appendChild(n);
var t = document.createElement('span');
t.textContent = message;
p.appendChild(t);
div.appendChild(p);

1218

};
port.onmessage = function (event) {

addMessage(name, event.data);
};
li.appendChild(div);
var form = document.createElement('form');
var p = document.createElement('p');
var input = document.createElement('input');
input.size = 50;
p.appendChild(input);
p.appendChild(document.createTextNode(' '));
var button = document.createElement('button');
button.textContent = 'Post';
p.appendChild(button);
form.onsubmit = function () {

port.postMessage(input.value);
addMessage('me', input.value);
input.value = '';
return false;

};
form.appendChild(p);
li.appendChild(form);
ul.appendChild(li);

}
worker.port.addEventListener('message', startPrivateChat, false);

worker.port.start();
</script>

</head>
<body>
<h1>Viewer</h1>
<h2>Map</h2>
<p><canvas id="map" height=150 width=150></canvas></p>
<p>
<button type=button onclick="worker.port.postMessage('mov left')">Left</button>
<button type=button onclick="worker.port.postMessage('mov up')">Up</button>
<button type=button onclick="worker.port.postMessage('mov down')">Down</button>
<button type=button onclick="worker.port.postMessage('mov right')">Right</button>
<button type=button onclick="worker.port.postMessage('set 0')">Set 0</button>
<button type=button onclick="worker.port.postMessage('set 1')">Set 1</button>

</p>
<h2>Public Chat</h2>
<div id="public"></div>
<form onsubmit="worker.port.postMessage('txt ' + message.value); message.value = ''; return false;">
<p>
<input type="text" name="message" size="50">
<button>Post</button>

</p>
</form>
<h2>Private Chat</h2>
<ul id="private">

</body>
</html>

There are several key things worth noting about the way the viewer is written.

Multiple listeners. Instead of a single message processing function, the code here attaches multiple event listeners, each one
performing a quick check to see if it is relevant for the message. In this example it doesn't make much difference, but if multiple
authors wanted to collaborate using a single port to communicate with a worker, it would allow for independent code instead of
changes having to all be made to a single event handling function.

Registering event listeners in this way also allows you to unregister specific listeners when you are done with them, as is done with the
configure() method in this example.

1219

Finally, the worker:

var nextName = 0;
function getNextName() {

// this could use more friendly names
// but for now just return a number
return nextName++;

}

var map = [
[0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 0, 1, 1],
[0, 1, 0, 1, 0, 0, 0],
[0, 1, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 0, 1],

];

function wrapX(x) {
if (x < 0) return wrapX(x + map[0].length);
if (x >= map[0].length) return wrapX(x - map[0].length);
return x;

}

function wrapY(y) {
if (y < 0) return wrapY(y + map.length);
if (y >= map[0].length) return wrapY(y - map.length);
return y;

}

function wrap(val, min, max) {
if (val < min)

return val + (max-min)+1;
if (val > max)

return val - (max-min)-1;
return val;

}

function sendMapData(viewer) {
var data = '';
for (var y = viewer.y-1; y <= viewer.y+1; y += 1) {

for (var x = viewer.x-1; x <= viewer.x+1; x += 1) {
if (data != '')

data += ',';
data += map[wrap(y, 0, map[0].length-1)][wrap(x, 0, map.length-1)];

}
}
viewer.port.postMessage('map ' + data);

}

var viewers = {};
onconnect = function (event) {

var name = getNextName();
event.ports[0]._data = { port: event.ports[0], name: name, x: 0, y: 0, };
viewers[name] = event.ports[0]._data;
event.ports[0].postMessage('cfg ' + name);
event.ports[0].onmessage = getMessage;
sendMapData(event.ports[0]._data);

};

function getMessage(event) {

1220

switch (event.data.substr(0, 4)) {
case 'mov ':

var direction = event.data.substr(4);
var dx = 0;
var dy = 0;
switch (direction) {

case 'up': dy = -1; break;
case 'down': dy = 1; break;
case 'left': dx = -1; break;
case 'right': dx = 1; break;

}
event.target._data.x = wrapX(event.target._data.x + dx);
event.target._data.y = wrapY(event.target._data.y + dy);
sendMapData(event.target._data);
break;

case 'set ':
var value = event.data.substr(4);
map[event.target._data.y][event.target._data.x] = value;
for (var viewer in viewers)

sendMapData(viewers[viewer]);
break;

case 'txt ':
var name = event.target._data.name;
var message = event.data.substr(4);
for (var viewer in viewers)

viewers[viewer].port.postMessage('txt ' + name + ' ' + message);
break;

case 'msg ':
var party1 = event.target._data;
var party2 = viewers[event.data.substr(4).split(' ', 1)[0]];
if (party2) {

var channel = new MessageChannel();
party1.port.postMessage('msg ' + party2.name, [channel.port1]);
party2.port.postMessage('msg ' + party1.name, [channel.port2]);

}
break;

}
}

Connecting to multiple pages. The script uses the onconnectp1231 event listener to listen for multiple connections.

Direct channels. When the worker receives a "msg" message from one viewer naming another viewer, it sets up a direct connection
between the two, so that the two viewers can communicate directly without the worker having to proxy all the messages.

View this example online.

This section is non-normative.

With multicore CPUs becoming prevalent, one way to obtain better performance is to split computationally expensive tasks amongst
multiple workers. In this example, a computationally expensive task that is to be performed for every number from 1 to 10,000,000 is
farmed out to ten subworkers.

The main page is as follows, it just reports the result:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Worker example: Multicore computation</title>

10.1.2.5 Delegation §p12

21

1221

https://html.spec.whatwg.org/demos/workers/multiviewer/page.html

</head>
<body>
<p>Result: <output id="result"></output></p>
<script>
var worker = new Worker('worker.js');
worker.onmessage = function (event) {

document.getElementById('result').textContent = event.data;
};

</script>
</body>

</html>

The worker itself is as follows:

// settings
var num_workers = 10;
var items_per_worker = 1000000;

// start the workers
var result = 0;
var pending_workers = num_workers;
for (var i = 0; i < num_workers; i += 1) {

var worker = new Worker('core.js');
worker.postMessage(i * items_per_worker);
worker.postMessage((i+1) * items_per_worker);
worker.onmessage = storeResult;

}

// handle the results
function storeResult(event) {

result += 1*event.data;
pending_workers -= 1;
if (pending_workers <= 0)

postMessage(result); // finished!
}

It consists of a loop to start the subworkers, and then a handler that waits for all the subworkers to respond.

The subworkers are implemented as follows:

var start;
onmessage = getStart;
function getStart(event) {

start = 1*event.data;
onmessage = getEnd;

}

var end;
function getEnd(event) {

end = 1*event.data;
onmessage = null;
work();

}

function work() {
var result = 0;
for (var i = start; i < end; i += 1) {

// perform some complex calculation here
result += 1;

}
postMessage(result);
close();

1222

}

They receive two numbers in two events, perform the computation for the range of numbers thus specified, and then report the result
back to the parent.

View this example online.

This section is non-normative.

Suppose that a cryptography library is made available that provides three tasks:

Generate a public/private key pair
Takes a port, on which it will send two messages, first the public key and then the private key.

Given a plaintext and a public key, return the corresponding ciphertext
Takes a port, to which any number of messages can be sent, the first giving the public key, and the remainder giving the plaintext,
each of which is encrypted and then sent on that same channel as the ciphertext. The user can close the port when it is done
encrypting content.

Given a ciphertext and a private key, return the corresponding plaintext
Takes a port, to which any number of messages can be sent, the first giving the private key, and the remainder giving the
ciphertext, each of which is decrypted and then sent on that same channel as the plaintext. The user can close the port when it is
done decrypting content.

The library itself is as follows:

function handleMessage(e) {
if (e.data == "genkeys")

genkeys(e.ports[0]);
else if (e.data == "encrypt")

encrypt(e.ports[0]);
else if (e.data == "decrypt")

decrypt(e.ports[0]);
}

function genkeys(p) {
var keys = _generateKeyPair();
p.postMessage(keys[0]);
p.postMessage(keys[1]);

}

function encrypt(p) {
var key, state = 0;
p.onmessage = function (e) {

if (state == 0) {
key = e.data;
state = 1;

} else {
p.postMessage(_encrypt(key, e.data));

}
};

}

function decrypt(p) {
var key, state = 0;
p.onmessage = function (e) {

if (state == 0) {
key = e.data;
state = 1;

10.1.2.6 Providing libraries §p12

23

1223

https://html.spec.whatwg.org/demos/workers/multicore/page.html

} else {
p.postMessage(_decrypt(key, e.data));

}
};

}

// support being used as a shared worker as well as a dedicated worker
if ('onmessage' in this) // dedicated worker

onmessage = handleMessage;
else // shared worker

onconnect = function (e) { e.port.onmessage = handleMessage; }

// the "crypto" functions:

function _generateKeyPair() {
return [Math.random(), Math.random()];

}

function _encrypt(k, s) {
return 'encrypted-' + k + ' ' + s;

}

function _decrypt(k, s) {
return s.substr(s.indexOf(' ')+1);

}

Note that the crypto functions here are just stubs and don't do real cryptography.

This library could be used as follows:

<!DOCTYPE HTML>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Worker example: Crypto library</title>
<script>
const cryptoLib = new Worker('libcrypto-v1.js'); // or could use 'libcrypto-v2.js'
function startConversation(source, message) {

const messageChannel = new MessageChannel();
source.postMessage(message, [messageChannel.port2]);
return messageChannel.port1;

}
function getKeys() {

let state = 0;
startConversation(cryptoLib, "genkeys").onmessage = function (e) {

if (state === 0)
document.getElementById('public').value = e.data;

else if (state === 1)
document.getElementById('private').value = e.data;

state += 1;
};

}
function enc() {

const port = startConversation(cryptoLib, "encrypt");
port.postMessage(document.getElementById('public').value);
port.postMessage(document.getElementById('input').value);
port.onmessage = function (e) {

document.getElementById('input').value = e.data;
port.close();

};
}

1224

function dec() {
const port = startConversation(cryptoLib, "decrypt");
port.postMessage(document.getElementById('private').value);
port.postMessage(document.getElementById('input').value);
port.onmessage = function (e) {

document.getElementById('input').value = e.data;
port.close();

};
}

</script>
<style>
textarea { display: block; }

</style>
</head>
<body onload="getKeys()">
<fieldset>
<legend>Keys</legend>
<p><label>Public Key: <textarea id="public"></textarea></label></p>
<p><label>Private Key: <textarea id="private"></textarea></label></p>

</fieldset>
<p><label>Input: <textarea id="input"></textarea></label></p>
<p><button onclick="enc()">Encrypt</button> <button onclick="dec()">Decrypt</button></p>

</body>
</html>

A later version of the API, though, might want to offload all the crypto work onto subworkers. This could be done as follows:

function handleMessage(e) {
if (e.data == "genkeys")

genkeys(e.ports[0]);
else if (e.data == "encrypt")

encrypt(e.ports[0]);
else if (e.data == "decrypt")

decrypt(e.ports[0]);
}

function genkeys(p) {
var generator = new Worker('libcrypto-v2-generator.js');
generator.postMessage('', [p]);

}

function encrypt(p) {
p.onmessage = function (e) {

var key = e.data;
var encryptor = new Worker('libcrypto-v2-encryptor.js');
encryptor.postMessage(key, [p]);

};
}

function encrypt(p) {
p.onmessage = function (e) {

var key = e.data;
var decryptor = new Worker('libcrypto-v2-decryptor.js');
decryptor.postMessage(key, [p]);

};
}

// support being used as a shared worker as well as a dedicated worker
if ('onmessage' in this) // dedicated worker

onmessage = handleMessage;
else // shared worker

onconnect = function (e) { e.ports[0].onmessage = handleMessage };

1225

The little subworkers would then be as follows.

For generating key pairs:

onmessage = function (e) {
var k = _generateKeyPair();
e.ports[0].postMessage(k[0]);
e.ports[0].postMessage(k[1]);
close();

}

function _generateKeyPair() {
return [Math.random(), Math.random()];

}

For encrypting:

onmessage = function (e) {
var key = e.data;
e.ports[0].onmessage = function (e) {

var s = e.data;
postMessage(_encrypt(key, s));

}
}

function _encrypt(k, s) {
return 'encrypted-' + k + ' ' + s;

}

For decrypting:

onmessage = function (e) {
var key = e.data;
e.ports[0].onmessage = function (e) {

var s = e.data;
postMessage(_decrypt(key, s));

}
}

function _decrypt(k, s) {
return s.substr(s.indexOf(' ')+1);

}

Notice how the users of the API don't have to even know that this is happening — the API hasn't changed; the library can delegate to
subworkers without changing its API, even though it is accepting data using message channels.

View this example online.

This section is non-normative.

Creating a worker requires a URL to a JavaScript file. The Worker()p1236 constructor is invoked with the URL to that file as its only
argument; a worker is then created and returned:

var worker = new Worker('helper.js');

If you want your worker script to be interpreted as a module scriptp1085 instead of the default classic scriptp1085, you need to use a

10.1.3.1 Creating a dedicated worker §p12

26

10.1.3 Tutorials §p12

26

1226

https://html.spec.whatwg.org/demos/workers/crypto/page.html

slightly different signature:

var worker = new Worker('helper.mjs', { type: "module" });

This section is non-normative.

Dedicated workers use MessagePortp1205 objects behind the scenes, and thus support all the same features, such as sending structured
data, transferring binary data, and transferring other ports.

To receive messages from a dedicated worker, use the onmessagep1205 event handler IDL attributep1137 on the Workerp1236 object:

worker.onmessage = function (event) { ... };

You can also use the addEventListener() method.

To send data to a worker, use the postMessage()p1236 method. Structured data can be sent over this communication channel. To send
ArrayBuffer objects efficiently (by transferring them rather than cloning them), list them in an array in the second argument.

worker.postMessage({
operation: 'find-edges',
input: buffer, // an ArrayBuffer object
threshold: 0.6,

}, [buffer]);

To receive a message inside the worker, the onmessagep1205 event handler IDL attributep1137 is used.

onmessage = function (event) { ... };

You can again also use the addEventListener() method.

In either case, the data is provided in the event object's datap1189 attribute.

To send messages back, you again use postMessage()p1230. It supports the structured data in the same manner.

postMessage(event.data.input, [event.data.input]); // transfer the buffer back

This section is non-normative.

Shared workers are identified by the URL of the script used to create it, optionally with an explicit name. The name allows multiple
instances of a particular shared worker to be started.

Shared workers are scoped by originp898. Two different sites using the same names will not collide. However, if a page tries to use the
same shared worker name as another page on the same site, but with a different script URL, it will fail.

Creating shared workers is done using the SharedWorker()p1237 constructor. This constructor takes the URL to the script to use for its
first argument, and the name of the worker, if any, as the second argument.

var worker = new SharedWorker('service.js');

10.1.3.2 Communicating with a dedicated worker §p12

27

The implicit MessagePortp1205 used by dedicated workers has its port message queuep1206 implicitly enabled when it is created, so
there is no equivalent to the MessagePortp1205 interface's start()p1208 method on the Workerp1236 interface.

Note

10.1.3.3 Shared workers §p12

27

✔ MDN

1227

https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener
https://webidl.spec.whatwg.org/#idl-ArrayBuffer
https://dom.spec.whatwg.org/#dom-eventtarget-addeventlistener

Communicating with shared workers is done with explicit MessagePortp1205 objects. The object returned by the SharedWorker()p1237

constructor holds a reference to the port on its portp1237 attribute.

worker.port.onmessage = function (event) { ... };
worker.port.postMessage('some message');
worker.port.postMessage({ foo: 'structured', bar: ['data', 'also', 'possible']});

Inside the shared worker, new clients of the worker are announced using the connectp1471 event. The port for the new client is given by
the event object's sourcep1190 attribute.

onconnect = function (event) {
var newPort = event.source;
// set up a listener
newPort.onmessage = function (event) { ... };
// send a message back to the port
newPort.postMessage('ready!'); // can also send structured data, of course

};

This standard defines two kinds of workers: dedicated workers, and shared workers. Dedicated workers, once created, are linked to
their creator, but message ports can be used to communicate from a dedicated worker to multiple other browsing contexts or workers.
Shared workers, on the other hand, are named, and once created any script running in the same originp898 can obtain a reference to
that worker and communicate with it. Service Workers defines a third kind. [SW]p1482

The global scope is the "inside" of a worker.

[Exposed=Worker]
interface WorkerGlobalScope : EventTarget {

readonly attribute WorkerGlobalScope self;
readonly attribute WorkerLocation location;
readonly attribute WorkerNavigator navigator;
undefined importScripts((TrustedScriptURL or USVString)... urls);

attribute OnErrorEventHandler onerror;
attribute EventHandler onlanguagechange;
attribute EventHandler onoffline;
attribute EventHandler ononline;
attribute EventHandler onrejectionhandled;
attribute EventHandler onunhandledrejection;

};

WorkerGlobalScopep1228 serves as the base class for specific types of worker global scope objects, including
DedicatedWorkerGlobalScopep1230, SharedWorkerGlobalScopep1230, and ServiceWorkerGlobalScope.

A WorkerGlobalScopep1228 object has an associated owner set (a set of Documentp130 and WorkerGlobalScopep1228 objects). It is
initially empty and populated when the worker is created or obtained.

10.2 Infrastructure §p12

28

10.2.1.1 The WorkerGlobalScopep1228 common interface §p12

28

It is a set, instead of a single owner, to accommodate SharedWorkerGlobalScopep1230 objects.
Note

IDL

10.2.1 The global scope §p12

28

✔ MDN

1228

https://dom.spec.whatwg.org/#interface-eventtarget
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://infra.spec.whatwg.org/#ordered-set
https://infra.spec.whatwg.org/#ordered-set

A WorkerGlobalScopep1228 object has an associated type ("classic" or "module"). It is set during creation.

A WorkerGlobalScopep1228 object has an associated url (null or a URL). It is initially null.

A WorkerGlobalScopep1228 object has an associated name (a string). It is set during creation.

A WorkerGlobalScopep1228 object has an associated policy container (a policy containerp917). It is initially a new policy containerp917.

A WorkerGlobalScopep1228 object has an associated embedder policy (an embedder policyp912).

A WorkerGlobalScopep1228 object has an associated module map. It is a module mapp1119, initially empty.

A WorkerGlobalScopep1228 object has an associated cross-origin isolated capability boolean. It is initially false.

The self attribute must return the WorkerGlobalScopep1228 object itself.

The location attribute must return the WorkerLocationp1240 object whose associated WorkerGlobalScope objectp1240 is the
WorkerGlobalScopep1228 object.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by objects implementing the WorkerGlobalScopep1228 interface:

Event handlerp1136 Event handler event typep1139

onerror errorp1471

onlanguagechange languagechangep1471

onoffline offlinep1472

ononline onlinep1472

onrejectionhandled rejectionhandledp1472

onunhandledrejection unhandledrejectionp1472

[Global=(Worker,DedicatedWorker),Exposed=DedicatedWorker]

The namep1229 can have different semantics for each subclass of WorkerGlobalScopep1228. For DedicatedWorkerGlobalScopep1230

instances, it is simply a developer-supplied name, useful mostly for debugging purposes. For SharedWorkerGlobalScopep1230

instances, it allows obtaining a reference to a common shared worker via the SharedWorker()p1237 constructor. For
ServiceWorkerGlobalScope objects, it doesn't make sense (and as such isn't exposed through the JavaScript API at all).

Note

workerGlobal.selfp1229

Returns workerGlobal.

workerGlobal.locationp1229

Returns workerGlobal's WorkerLocationp1240 object.

workerGlobal.navigatorp1240

Returns workerGlobal's WorkerNavigatorp1240 object.

workerGlobal.importScriptsp1239(...urls)
Fetches each URL in urls, executes them one-by-one in the order they are passed, and then returns (or throws if something went
amiss).

For web developers (non-normative)

While the WorkerLocationp1240 object is created after the WorkerGlobalScopep1228 object, this is not problematic as it cannot be
observed from script.

Note

10.2.1.2 Dedicated workers and the DedicatedWorkerGlobalScopep1230 interface §p12

29

IDL

✔ MDN

✔ MDN

MDN

MDN

✔ MDN

1229

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/ServiceWorker/#serviceworkerglobalscope
https://url.spec.whatwg.org/#concept-url

interface DedicatedWorkerGlobalScope : WorkerGlobalScope {
[Replaceable] readonly attribute DOMString name;

undefined postMessage(any message, sequence<object> transfer);
undefined postMessage(any message, optional StructuredSerializeOptions options = {});

undefined close();
};

DedicatedWorkerGlobalScope includes MessageEventTarget;

DedicatedWorkerGlobalScopep1230 objects have an associated inside port (a MessagePortp1205). This port is part of a channel that is
set up when the worker is created, but it is not exposed. This object must never be garbage collected before the
DedicatedWorkerGlobalScopep1230 object.

The name getter steps are to return this's namep1229. Its value represents the name given to the worker using the Workerp1236

constructor, used primarily for debugging purposes.

The postMessage(message, transfer) and postMessage(message, options) methods on DedicatedWorkerGlobalScopep1230

objects act as if, when invoked, it immediately invoked the respective postMessage(message, transfer)p1208 and
postMessage(message, options)p1208 on the port, with the same arguments, and returned the same return value.

To close a worker, given a workerGlobal, run these steps:

1. Discard any tasksp1124 that have been added to workerGlobal's relevant agentp1073 's event loopp1123 's task queuesp1123.

2. Set workerGlobal's closingp1231 flag to true. (This prevents any further tasks from being queued.)

The close() method steps are to close a workerp1230 given this.

[Global=(Worker,SharedWorker),Exposed=SharedWorker]
interface SharedWorkerGlobalScope : WorkerGlobalScope {

[Replaceable] readonly attribute DOMString name;

undefined close();

attribute EventHandler onconnect;
};

A SharedWorkerGlobalScopep1230 object has an associated constructor origin, constructor url, and credentials. They are
initialized when the SharedWorkerGlobalScopep1230 object is created, in the run a workerp1232 algorithm.

Shared workers receive message ports through connectp1471 events on their SharedWorkerGlobalScopep1230 object for each
connection.

dedicatedWorkerGlobal.namep1230

Returns dedicatedWorkerGlobal's namep1229, i.e. the value given to the Workerp1236 constructor. Primarily useful for debugging.

dedicatedWorkerGlobal.postMessagep1230(message [, transfer])
dedicatedWorkerGlobal.postMessagep1230(message [, { transferp1205 }])

Clones message and transmits it to the Workerp1236 object associated with dedicatedWorkerGlobal. transfer can be passed as a
list of objects that are to be transferred rather than cloned.

dedicatedWorkerGlobal.closep1230()
Aborts dedicatedWorkerGlobal.

For web developers (non-normative)

10.2.1.3 Shared workers and the SharedWorkerGlobalScopep1230 interface §p12

30

IDL

✔ MDN

1230

https://webidl.spec.whatwg.org/#idl-object
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

The name getter steps are to return this's namep1229. Its value represents the name that can be used to obtain a reference to the worker
using the SharedWorkerp1237 constructor.

The close() method steps are to close a workerp1230 given this.

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by objects implementing the SharedWorkerGlobalScopep1230 interface:

Event handlerp1136 Event handler event typep1139

onconnect connectp1471

A worker event loopp1123 's task queuesp1123 only have events, callbacks, and networking activity as tasksp1124. These worker event
loopsp1123 are created by the run a workerp1232 algorithm.

Each WorkerGlobalScopep1228 object has a closing flag, which must be initially false, but which can get set to true by the algorithms in
the processing model section below.

Once the WorkerGlobalScopep1228 's closingp1231 flag is set to true, the event loopp1123 's task queuesp1123 must discard any further
tasksp1124 that would be added to them (tasks already on the queue are unaffected except where otherwise specified). Effectively, once
the closingp1231 flag is true, timers stop firing, notifications for all pending background operations are dropped, etc.

Workers communicate with other workers and with Windowp922s through message channelsp1202 and their MessagePortp1205 objects.

Each WorkerGlobalScopep1228 object worker global scope has a list of the worker's ports, which consists of all the MessagePortp1205

objects that are entangled with another port and that have one (but only one) port owned by worker global scope. This list includes the
implicit MessagePortp1205 in the case of dedicated workersp1230.

Given an environment settings objectp1076 o when creating or obtaining a worker, the relevant owner to add depends on the type of
global objectp1077 specified by o. If o's global objectp1077 is a WorkerGlobalScopep1228 object (i.e., if we are creating a nested dedicated
worker), then the relevant owner is that global object. Otherwise, o's global objectp1077 is a Windowp922 object, and the relevant owner is
that Windowp922 's associated Documentp923.

A worker is said to be a permissible worker if its WorkerGlobalScopep1228 's owner setp1228 is not empty or:

• its owner setp1228 has been empty for no more than a short implementation-defined timeout value,
• its WorkerGlobalScopep1228 object is a SharedWorkerGlobalScopep1230 object (i.e., the worker is a shared worker), and
• the user agent has a navigablep989 whose active documentp989 is not completely loadedp1063.

A worker is said to be an active needed worker if any of its ownersp1228 are either Documentp130 objects that are fully activep1003 or

sharedWorkerGlobal.namep1231

Returns sharedWorkerGlobal's namep1229, i.e. the value given to the SharedWorkerp1237 constructor. Multiple SharedWorkerp1237

objects can correspond to the same shared worker (and SharedWorkerGlobalScopep1230), by reusing the same name.

sharedWorkerGlobal.closep1231()
Aborts sharedWorkerGlobal.

For web developers (non-normative)

The second part of this definition allows a shared worker to survive for a short time while a page is loading, in case that page is
going to contact the shared worker again. This can be used by user agents as a way to avoid the cost of restarting a shared worker
used by a site when the user is navigating from page to page within that site.

Note

10.2.2 The event loop §p12

31

10.2.3 The worker's lifetime §p12

31

✔ MDN

1231

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#implementation-defined

active needed workersp1231.

A worker is said to be a protected worker if it is an active needed workerp1231 and either it has outstanding timers, database
transactions, or network connections, or its list of the worker's portsp1231 is not empty, or its WorkerGlobalScopep1228 is actually a
SharedWorkerGlobalScopep1230 object (i.e., the worker is a shared worker).

A worker is said to be a suspendable worker if it is not an active needed workerp1231 but it is a permissible workerp1231.

When a user agent is to run a worker for a script with Workerp1236 or SharedWorkerp1237 object worker, URL url, environment settings
objectp1076 outside settings, MessagePortp1205 outside port, and a WorkerOptionsp1236 dictionary options, it must run the following
steps.

1. Let is shared be true if worker is a SharedWorkerp1237 object, and false otherwise.

2. Let owner be the relevant owner to addp1231 given outside settings.

3. Let unsafeWorkerCreationTime be the unsafe shared current time.

4. Let agent be the result of obtaining a dedicated/shared worker agentp1074 given outside settings and is shared. Run the rest
of these steps in that agent.

5. Let realm execution context be the result of creating a new realmp1077 given agent and the following customizations:

◦ For the global object, if is shared is true, create a new SharedWorkerGlobalScopep1230 object. Otherwise, create a
new DedicatedWorkerGlobalScopep1230 object.

6. Let worker global scope be the global objectp1077 of realm execution context's Realm component.

7. Set up a worker environment settings objectp1235 with realm execution context, outside settings, and
unsafeWorkerCreationTime, and let inside settings be the result.

8. Set worker global scope's namep1229 to the value of options's name member.

9. Append owner to worker global scope's owner setp1228.

10. If is shared is true, then:

1. Set worker global scope's constructor originp1230 to outside settings's originp1076.

2. Set worker global scope's constructor urlp1230 to url.

3. Set worker global scope's typep1229 to the value of options's type member.

4. Set worker global scope's credentialsp1230 to the value of options's credentials member.

11. Let destination be "sharedworker" if is shared is true, and "worker" otherwise.

12. Obtain script by switching on the value of options's type member:

↪ "classic"
Fetch a classic worker scriptp1088 given url, outside settings, destination, inside settings, and with onComplete and
performFetch as defined below.

↪ "module"
Fetch a module worker script graphp1090 given url, outside settings, destination, the value of the credentials member
of options, inside settings, and with onComplete and performFetch as defined below.

In both cases, let performFetch be the following perform the fetch hookp1087 given request, isTopLevelp1087 and
processCustomFetchResponsep1087:

1. If isTopLevel is false, fetch request with processResponseConsumeBody set to processCustomFetchResponse, and

This is the DedicatedWorkerGlobalScopep1230 or SharedWorkerGlobalScopep1230 object created in the previous step.
Note

10.2.4 Processing model §p12

32

1232

https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/hr-time/#dfn-unsafe-shared-current-time
https://infra.spec.whatwg.org/#set-append
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body

abort these steps.

2. Set request's reserved client to inside settings.

3. Fetch request with processResponseConsumeBody set to the following steps given response response and null,
failure, or a byte sequence bodyBytes:

1. Set worker global scope's urlp1229 to response's url.

2. Initialize worker global scope's policy containerp918 given worker global scope, response, and inside
settings.

3. If the Run CSP initialization for a global object algorithm returns "Blocked" when executed upon worker
global scope, set response to a network error. [CSP]p1476

4. If worker global scope's embedder policyp1229 's valuep912 is compatible with cross-origin isolationp912 and
is shared is true, then set agent's agent cluster's cross-origin isolation modep1073 to "logicalp1002" or
"concretep1002". The one chosen is implementation-defined.

This really ought to be set when the agent cluster is created, which requires a redesign of this
section.

5. If the result of checking a global object's embedder policyp914 with worker global scope, outside settings,
and response is false, then set response to a network error.

6. Set worker global scope's cross-origin isolated capabilityp1229 to true if agent's agent cluster's cross-origin
isolation modep1073 is "concretep1002".

7. If is shared is false and owner's cross-origin isolated capabilityp1076 is false, then set worker global scope's
cross-origin isolated capabilityp1229 to false.

8. If is shared is false and response's url's scheme is "data", then set worker global scope's cross-origin
isolated capabilityp1229 to false.

9. Run processCustomFetchResponse with response and bodyBytes.

In both cases, let onComplete given script be the following steps:

1. If script is null or if script's error to rethrowp1084 is non-null, then:

1. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given worker's relevant global
objectp1083 to fire an event named errorp1471 at worker.

2. Run the environment discarding stepsp1076 for inside settings.

3. Abort these steps.

2. Associate worker with worker global scope.

3. Let inside port be a new MessagePortp1205 object in inside settings's realmp1077.

4. If shared is false, then:

1. Set inside port's message event targetp1206 to worker global scope.

2. Set worker global scope's inside portp1230 to inside port.

5. Entanglep1206 outside port and inside port.

6. Create a new WorkerLocationp1240 object and associate it with worker global scope.

7. Closing orphan workers: Start monitoring the worker such that no sooner than it stops being a protected
workerp1232, and no later than it stops being a permissible workerp1231, worker global scope's closingp1231 flag is set
to true.

This is a conservative default for now, while we figure out how workers in general, and data: URL
workers in particular (which are cross-origin from their owner), will be treated in the context of
permissions policies. See w3c/webappsec-permissions-policy issue #207 for more details.

Note

1233

https://fetch.spec.whatwg.org/#concept-request-reserved-client
https://fetch.spec.whatwg.org/#concept-fetch
https://fetch.spec.whatwg.org/#process-response-end-of-body
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence
https://fetch.spec.whatwg.org/#concept-response-url
https://w3c.github.io/webappsec-csp/#run-global-object-csp-initialization
https://fetch.spec.whatwg.org/#concept-network-error
https://tc39.es/ecma262/#sec-agent-clusters
https://infra.spec.whatwg.org/#implementation-defined
https://fetch.spec.whatwg.org/#concept-network-error
https://tc39.es/ecma262/#sec-agent-clusters
https://fetch.spec.whatwg.org/#concept-response-url
https://url.spec.whatwg.org/#concept-url-scheme
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://github.com/w3c/webappsec-permissions-policy/issues/207
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#new

8. Suspending workers: Start monitoring the worker, such that whenever worker global scope's closingp1231 flag is
false and the worker is a suspendable workerp1232, the user agent suspends execution of script in that worker until
such time as either the closingp1231 flag switches to true or the worker stops being a suspendable workerp1232.

9. Set inside settings's execution ready flagp1076.

10. If script is a classic scriptp1085, then run the classic scriptp1096 script. Otherwise, it is a module scriptp1085; run the
module scriptp1096 script.

11. Enable outside port's port message queuep1206.

12. If is shared is false, enable the port message queuep1206 of the worker's implicit port.

13. If is shared is true, then queue a global taskp1125 on DOM manipulation task sourcep1134 given worker global scope
to fire an event named connectp1471 at worker global scope, using MessageEventp1189, with the datap1189 attribute
initialized to the empty string, the portsp1190 attribute initialized to a new frozen array containing inside port, and
the sourcep1190 attribute initialized to inside port.

14. Enable the client message queue of the ServiceWorkerContainer object whose associated service worker client is
worker global scope's relevant settings objectp1083.

15. Event loop: Run the responsible event loopp1076 specified by inside settings until it is destroyed.

16. Clear the worker global scope's map of active timersp1164.

17. Disentangle all the ports in the list of the worker's portsp1231.

18. Empty worker global scope's owner setp1228.

When a user agent is to terminate a worker it must run the following steps in parallelp43 with the worker's main loop (the "run a
workerp1232" processing model defined above):

1. Set the worker's WorkerGlobalScopep1228 object's closingp1231 flag to true.

2. If there are any tasksp1124 queued in the WorkerGlobalScopep1228 object's relevant agentp1073 's event loopp1123 's task
queuesp1123, discard them without processing them.

3. Abort the scriptp1097 currently running in the worker.

4. If the worker's WorkerGlobalScopep1228 object is actually a DedicatedWorkerGlobalScopep1230 object (i.e. the worker is a
dedicated worker), then empty the port message queuep1206 of the port that the worker's implicit port is entangled with.

User agents may invoke the terminate a workerp1234 algorithm when a worker stops being an active needed workerp1231 and the worker
continues executing even after its closingp1231 flag was set to true.

Whenever an uncaught runtime script error occurs in one of the worker's scripts, if the error did not occur while handling a previous
script error, the user agent will reportp1098 it for the worker's WorkerGlobalScopep1228 object.

In addition to the usual possibilities of returning a value or failing due to an exception, this could be
prematurely abortedp1097 by the terminate a workerp1234 algorithm defined below.

Note

The handling of events or the execution of callbacks by tasksp1124 run by the event loopp1123 might get
prematurely abortedp1097 by the terminate a workerp1234 algorithm defined below.

Note

The worker processing model remains on this step until the event loop is destroyed, which happens after the
closingp1231 flag is set to true, as described in the event loopp1123 processing model.

Note

10.2.5 Runtime script errors §p12

34

1234

https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://w3c.github.io/ServiceWorker/#dfn-client-message-queue
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://infra.spec.whatwg.org/#map-clear
https://infra.spec.whatwg.org/#list-empty

interface mixin AbstractWorker {
attribute EventHandler onerror;

};

The following are the event handlersp1136 (and their corresponding event handler event typesp1139) that must be supported, as event
handler IDL attributesp1137, by objects implementing the AbstractWorkerp1235 interface:

Event handlerp1136 Event handler event typep1139

onerror errorp1471

To set up a worker environment settings object, given a JavaScript execution context execution context, an environment settings
objectp1076 outside settings, and a number unsafeWorkerCreationTime:

1. Let inherited origin be outside settings's originp1076.

2. Let realm be the value of execution context's Realm component.

3. Let worker global scope be realm's global objectp1077.

4. Let settings object be a new environment settings objectp1076 whose algorithms are defined as follows:

The realm execution contextp1076

Return execution context.

The module mapp1076

Return worker global scope's module mapp1229.

The API base URLp1076

Return worker global scope's urlp1229.

The originp1076

Return a unique opaque originp898 if worker global scope's urlp1229 's scheme is "data", and inherited origin otherwise.

The policy containerp1076

Return worker global scope's policy containerp1229.

The cross-origin isolated capabilityp1076

Return worker global scope's cross-origin isolated capabilityp1229.

The time originp1076

Return the result of coarsening unsafeWorkerCreationTime with worker global scope's cross-origin isolated capabilityp1229.

5. Set settings object's idp1075 to a new unique opaque string, creation URLp1075 to worker global scope's url, top-level creation
URLp1075 to null, target browsing contextp1076 to null, and active service workerp1076 to null.

6. If worker global scope is a DedicatedWorkerGlobalScopep1230 object, then set settings object's top-level originp1076 to outside
settings's top-level originp1076.

7. Otherwise, set settings object's top-level originp1076 to an implementation-defined value.

See Client-Side Storage Partitioning for the latest on properly defining this.

8. Set realm's [[HostDefined]] field to settings object.

9. Return settings object.

10.2.6.1 The AbstractWorkerp1235 mixin §p12

35

10.2.6.2 Script settings for workers §p12

35

IDL

10.2.6 Creating workers §p12

35

✔ MDN

1235

https://tc39.es/ecma262/#sec-execution-contexts
https://url.spec.whatwg.org/#concept-url-scheme
https://w3c.github.io/hr-time/#dfn-coarsen-time
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#implementation-defined
https://privacycg.github.io/storage-partitioning/

[Exposed=(Window,DedicatedWorker,SharedWorker)]
interface Worker : EventTarget {

constructor((TrustedScriptURL or USVString) scriptURL, optional WorkerOptions options = {});

undefined terminate();

undefined postMessage(any message, sequence<object> transfer);
undefined postMessage(any message, optional StructuredSerializeOptions options = {});

};

dictionary WorkerOptions {
WorkerType type = "classic";
RequestCredentials credentials = "same-origin"; // credentials is only used if type is "module"
DOMString name = "";

};

enum WorkerType { "classic", "module" };

Worker includes AbstractWorker;
Worker includes MessageEventTarget;

Each Workerp1236 object has an associated outside port (a MessagePortp1205). This port is part of a channel that is set up when the
worker is created, but it is not exposed. This object must never be garbage collected before the Workerp1236 object.

The terminate() method, when invoked, must cause the terminate a workerp1234 algorithm to be run on the worker with which the
object is associated.

The postMessage(message, transfer) and postMessage(message, options) methods on Workerp1236 objects act as if, when
invoked, they immediately invoked the respective postMessage(message, transfer)p1208 and postMessage(message, options)p1208

on this's outside portp1236, with the same arguments, and returned the same return value.

When the Worker(scriptURL, options) constructor is invoked, the user agent must run the following steps:

1. Let compliantScriptURL be the result of invoking the Get Trusted Type compliant string algorithm with TrustedScriptURL,
this's relevant global objectp1083, scriptURL, "Worker constructor", and "script".

2. Let outside settings be the current settings objectp1083.

10.2.6.3 Dedicated workers and the Workerp1236 interface §p12

36

worker = new Workerp1236(scriptURL [, options])
Returns a new Workerp1236 object. scriptURL will be fetched and executed in the background, creating a new global environment
for which worker represents the communication channel. options can be used to define the namep1229 of that global
environment via the name option, primarily for debugging purposes. It can also ensure this new global environment supports
JavaScript modules (specify type: "module"), and if that is specified, can also be used to specify how scriptURL is fetched
through the credentials option.

worker.terminatep1236()
Aborts worker's associated global environment.

worker.postMessagep1236(message [, transfer])
worker.postMessagep1236(message [, { transferp1205 }])

Clones message and transmits it to worker's global environment. transfer can be passed as a list of objects that are to be
transferred rather than cloned.

For web developers (non-normative)

The postMessage()p1236 method's first argument can be structured data:

worker.postMessage({opcode: 'activate', device: 1938, parameters: [23, 102]});

Example

IDL

✔ MDN

1236

https://dom.spec.whatwg.org/#interface-eventtarget
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl
https://webidl.spec.whatwg.org/#idl-object
https://fetch.spec.whatwg.org/#requestcredentials
https://webidl.spec.whatwg.org/#this
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl
https://webidl.spec.whatwg.org/#this

3. Let worker URL be the result of encoding-parsing a URLp97 given compliantScriptURL, relative to outside settings.

4. If worker URL is failure, then throw a "SyntaxError" DOMException.

5. Let worker be a new Workerp1236 object.

6. Let outside port be a new MessagePortp1205 in outside settings's realmp1077.

7. Set outside port's message event targetp1206 to worker.

8. Set worker's outside portp1236 to outside port.

9. Run this step in parallelp43:

1. Run a workerp1232 given worker, worker URL, outside settings, outside port, and options.

10. Return worker.

[Exposed=Window]
interface SharedWorker : EventTarget {

constructor((TrustedScriptURL or USVString) scriptURL, optional (DOMString or WorkerOptions) options =
{});

readonly attribute MessagePort port;
};
SharedWorker includes AbstractWorker;

The port attribute must return the value it was assigned by the object's constructor. It represents the MessagePortp1205 for
communicating with the shared worker.

A user agent has an associated shared worker manager which is the result of starting a new parallel queuep43.

When the SharedWorker(scriptURL, options) constructor is invoked:

Any same-originp899 URL (including blob: URLs) can be used. data: URLs can also be used, but they create a worker with
an opaque originp898.

Note

10.2.6.4 Shared workers and the SharedWorkerp1237 interface §p12

37

sharedWorker = new SharedWorkerp1237(scriptURL [, name])
Returns a new SharedWorkerp1237 object. scriptURL will be fetched and executed in the background, creating a new global
environment for which sharedWorker represents the communication channel. name can be used to define the namep1229 of that
global environment.

sharedWorker = new SharedWorkerp1237(scriptURL [, options])
Returns a new SharedWorkerp1237 object. scriptURL will be fetched and executed in the background, creating a new global
environment for which sharedWorker represents the communication channel. options can be used to define the namep1229 of
that global environment via the name option. It can also ensure this new global environment supports JavaScript modules
(specify type: "module"), and if that is specified, can also be used to specify how scriptURL is fetched through the
credentials option. Note that attempting to construct a shared worker with options whose type or credentials values
mismatch an existing shared worker will cause the returned sharedWorker to fire an error event and not connect to the existing
shared worker.

sharedWorker.portp1237

Returns sharedWorker's MessagePortp1205 object which can be used to communicate with the global environment.

For web developers (non-normative)

Each user agent has a single shared worker managerp1237 for simplicity. Implementations could use one per originp898; that would
not be observably different and enables more concurrency.

Note

IDL

✔ MDN

1237

https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#new
https://dom.spec.whatwg.org/#interface-eventtarget
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl

1. Let compliantScriptURL be the result of invoking the Get Trusted Type compliant string algorithm with TrustedScriptURL,
this's relevant global objectp1083, scriptURL, "SharedWorker constructor", and "script".

2. If options is a DOMString, set options to a new WorkerOptionsp1236 dictionary whose name member is set to the value of
options and whose other members are set to their default values.

3. Let outside settings be the current settings objectp1083.

4. Let urlRecord be the result of encoding-parsing a URLp97 given compliantScriptURL, relative to outside settings.

5. If urlRecord is failure, then throw a "SyntaxError" DOMException.

6. Let worker be a new SharedWorkerp1237 object.

7. Let outside port be a new MessagePortp1205 in outside settings's realmp1077.

8. Assign outside port to the portp1237 attribute of worker.

9. Let callerIsSecureContext be true if outside settings is a secure contextp1084; otherwise, false.

10. Let outside storage key be the result of running obtain a storage key for non-storage purposes given outside settings.

11. Enqueue the following stepsp43 to the shared worker managerp1237:

1. Let worker global scope be null.

2. For each scope in the list of all SharedWorkerGlobalScopep1230 objects:

1. Let worker storage key be the result of running obtain a storage key for non-storage purposes given
scope's relevant settings objectp1083.

2. If all of the following are true:

▪ worker storage key equals outside storage key;

▪ scope's closingp1231 flag is false;

▪ scope's constructor urlp1230 equals urlRecord; and

▪ scope's namep1229 equals the value of option's name member,

then:

1. Set worker global scope to scope.

2. Break.

3. If worker global scope is not null, but the user agent has been configured to disallow communication between the
worker represented by the worker global scope and the scriptsp1084 whose settings objectp1084 is outside settings,
then set worker global scope to null.

4. If worker global scope is not null, then check if worker global scope's typep1229 and credentialsp1230 match the
options values. If not, queue a taskp1125 to fire an event named errorp1471 and abort these steps.

5. If worker global scope is not null, then run these subsubsteps:

Any same-originp899 URL (including blob: URLs) can be used. data: URLs can also be used, but they create a worker with
an opaque originp898.

Note

data: URLs create a worker with an opaque originp898. Both the constructor originp1230 and constructor urlp1230

are compared so the same data: URL can be used within an originp898 to get to the same
SharedWorkerGlobalScopep1230 object, but cannot be used to bypass the same originp899 restriction.

Note

For example, a user agent could have a development mode that isolates a particular top-level traversablep990

from all other pages, and scripts in that development mode could be blocked from connecting to shared
workers running in the normal browser mode.

Note

1238

https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#idl-DOMString
https://w3c.github.io/FileAPI/#DefinitionOfScheme
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#new
https://storage.spec.whatwg.org/#obtain-a-storage-key-for-non-storage-purposes
https://infra.spec.whatwg.org/#list-iterate
https://storage.spec.whatwg.org/#obtain-a-storage-key-for-non-storage-purposes
https://storage.spec.whatwg.org/#storage-key-equal
https://url.spec.whatwg.org/#concept-url-equals
https://infra.spec.whatwg.org/#iteration-break
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://www.rfc-editor.org/rfc/rfc2397#section-2
https://dom.spec.whatwg.org/#concept-event-fire

1. Let settings object be the relevant settings objectp1083 for worker global scope.

2. Let workerIsSecureContext be true if settings object is a secure contextp1084; otherwise, false.

3. If workerIsSecureContext is not callerIsSecureContext, then queue a taskp1125 to fire an event named
errorp1471 at worker and abort these steps. [SECURE-CONTEXTS]p1482

4. Associate worker with worker global scope.

5. Let inside port be a new MessagePortp1205 in settings object's realmp1077.

6. Entanglep1206 outside port and inside port.

7. Queue a taskp1125, using the DOM manipulation task sourcep1134, to fire an event named connectp1471 at
worker global scope, using MessageEventp1189, with the datap1189 attribute initialized to the empty string,
the portsp1190 attribute initialized to a new frozen array containing only inside port, and the sourcep1190

attribute initialized to inside port.

8. Append the relevant owner to addp1231 given outside settings to worker global scope's owner setp1228.

6. Otherwise, in parallelp43, run a workerp1232 given worker, urlRecord, outside settings, outside port, and options.

12. Return worker.

interface mixin NavigatorConcurrentHardware {
readonly attribute unsigned long long hardwareConcurrency;

};

The navigator.hardwareConcurrency attribute's getter must return a number between 1 and the number of logical
processors potentially available to the user agent. If this cannot be determined, the getter must return 1.

User agents should err toward exposing the number of logical processors available, using lower values only in cases where
there are user-agent specific limits in place (such as a limitation on the number of workersp1236 that can be created) or when
the user agent desires to limit fingerprinting possibilities.

The importScripts(...urls) method steps are:

1. Let urlStrings be « ».

2. For each url of urls:

1. Append the result of invoking the Get Trusted Type compliant string algorithm with TrustedScriptURL, this's
relevant global objectp1083, url, "Worker importScripts", and "script" to urlStrings.

3. Import scripts into worker global scopep1239 given this and urlStrings.

To import scripts into worker global scope, given a WorkerGlobalScopep1228 object worker global scope, a list of scalar value
strings urls, and an optional perform the fetch hookp1087 performFetch:

1. If worker global scope's typep1229 is "module", throw a TypeError exception.

self.navigatorp1170.hardwareConcurrencyp1239

Returns the number of logical processors potentially available to the user agent.

For web developers (non-normative)

10.3 APIs available to workers §p12

39

IDL

10.2.7 Concurrent hardware capabilities §p12

39

10.3.1 Importing scripts and libraries §p12

39

1239

https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#new
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#dfn-frozen-array-type
https://infra.spec.whatwg.org/#set-append
https://infra.spec.whatwg.org/#tracking-vector
https://infra.spec.whatwg.org/#list-iterate
https://infra.spec.whatwg.org/#list-append
https://w3c.github.io/trusted-types/dist/spec/#get-trusted-type-compliant-string-algorithm
https://w3c.github.io/trusted-types/dist/spec/#trustedscripturl
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#scalar-value-string
https://infra.spec.whatwg.org/#scalar-value-string
https://tc39.es/ecma262/#sec-native-error-types-used-in-this-standard-typeerror

2. Let settings object be the current settings objectp1083.

3. If urls is empty, return.

4. Let urlRecords be « ».

5. For each url of urls:

1. Let urlRecord be the result of encoding-parsing a URLp97 given url, relative to settings object.

2. If urlRecord is failure, then throw a "SyntaxError" DOMException.

3. Append urlRecord to urlRecords.

6. For each urlRecord of urlRecords:

1. Fetch a classic worker-imported scriptp1088 given urlRecord and settings object, passing along performFetch if
provided. If this succeeds, let script be the result. Otherwise, rethrow the exception.

2. Run the classic scriptp1096 script, with the rethrow errors argument set to true.

If an exception was thrown or if the script was prematurely abortedp1097, then abort all these steps, letting the
exception or aborting continue to be processed by the calling scriptp1084.

The navigator attribute of the WorkerGlobalScopep1228 interface must return an instance of the WorkerNavigatorp1240 interface, which
represents the identity and state of the user agent (the client):

[Exposed=Worker]
interface WorkerNavigator {};
WorkerNavigator includes NavigatorID;
WorkerNavigator includes NavigatorLanguage;
WorkerNavigator includes NavigatorOnLine;
WorkerNavigator includes NavigatorConcurrentHardware;

[Exposed=Worker]
interface WorkerLocation {

stringifier readonly attribute USVString href;
readonly attribute USVString origin;
readonly attribute USVString protocol;
readonly attribute USVString host;
readonly attribute USVString hostname;
readonly attribute USVString port;
readonly attribute USVString pathname;
readonly attribute USVString search;
readonly attribute USVString hash;

};

A WorkerLocationp1240 object has an associated WorkerGlobalScope object (a WorkerGlobalScopep1228 object).

script will run until it either returns, fails to parse, fails to catch an exception, or gets prematurely abortedp1097

by the terminate a workerp1234 algorithm defined above.

Note

Service Workers is an example of a specification that runs this algorithm with its own perform the fetch hookp1087. [SW]p1482

Note

IDL

IDL

10.3.2 The WorkerNavigatorp1240 interface §p12

40

10.3.3 The WorkerLocationp1240 interface §p12

40

✔ MDN

✔ MDN

✔ MDN

✔ MDN

1240

https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list-append

The href getter steps are to return this's WorkerGlobalScope objectp1240 's urlp1229, serialized.

The origin getter steps are to return the serializationp898 of this's WorkerGlobalScope objectp1240 's urlp1229 's origin.

The protocol getter steps are to return this's WorkerGlobalScope objectp1240 's urlp1229 's scheme, followed by ":".

The host getter steps are:

1. Let url be this's WorkerGlobalScope objectp1240 's urlp1229.

2. If url's host is null, return the empty string.

3. If url's port is null, return url's host, serialized.

4. Return url's host, serialized, followed by ":" and url's port, serialized.

The hostname getter steps are:

1. Let host be this's WorkerGlobalScope objectp1240 's urlp1229 's host.

2. If host is null, return the empty string.

3. Return host, serialized.

The port getter steps are:

1. Let port be this's WorkerGlobalScope objectp1240 's urlp1229 's port.

2. If port is null, return the empty string.

3. Return port, serialized.

The pathname getter steps are to return the result of URL path serializing this's WorkerGlobalScope objectp1240 's urlp1229.

The search getter steps are:

1. Let query be this's WorkerGlobalScope objectp1240 's urlp1229 's query.

2. If query is either null or the empty string, return the empty string.

3. Return "?", followed by query.

The hash getter steps are:

1. Let fragment be this's WorkerGlobalScope objectp1240 's urlp1229 's fragment.

2. If fragment is either null or the empty string, return the empty string.

3. Return "#", followed by fragment.

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN
✔ MDN

✔ MDN

1241

https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-serializer
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-origin
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-scheme
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-host
https://url.spec.whatwg.org/#concept-host-serializer
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-port
https://url.spec.whatwg.org/#serialize-an-integer
https://url.spec.whatwg.org/#url-path-serializer
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-query
https://webidl.spec.whatwg.org/#this
https://url.spec.whatwg.org/#concept-url-fragment

This section is non-normative.

Worklets are a piece of specification infrastructure which can be used for running scripts independent of the main JavaScript execution
environment, while not requiring any particular implementation model.

The worklet infrastructure specified here cannot be used directly by web developers. Instead, other specifications build upon it to
create directly-usable worklet types, specialized for running in particular parts of the browser implementation pipeline.

This section is non-normative.

Allowing extension points to rendering, or other sensitive parts of the implementation pipeline such as audio output, is difficult. If
extension points were done with full access to the APIs available on Windowp922, engines would need to abandon previously-held
assumptions for what could happen in the middle of those phases. For example, during the layout phase, rendering engines assume
that no DOM will be modified.

Additionally, defining extension points in the Windowp922 environment would restrict user agents to performing work in the same thread
as the Windowp922 object. (Unless implementations added complex, high-overhead infrastructure to allow thread-safe APIs, as well as
thread-joining guarantees.)

Worklets are designed to allow extension points, while keeping guarantees that user agents currently rely on. This is done through new
global environments, based on subclasses of WorkletGlobalScopep1245.

Worklets are similar to web workers. However, they:

• Are thread-agnostic. That is, they are not designed to run on a dedicated separate thread, like each worker is.
Implementations can run worklets wherever they choose (including on the main thread).

• Are able to have multiple duplicate instances of the global scope created, for the purpose of parallelism.

• Do not use an event-based API. Instead, classes are registered on the global scope, whose methods are invoked by the user
agent.

• Have a reduced API surface on the global scope.

• Have a lifetime for their global objectp1076 which is defined by other specifications, often in an implementation-defined
manner.

As worklets have relatively high overhead, they are best used sparingly. Due to this, a given WorkletGlobalScopep1245 is expected to
be shared between multiple separate scripts. (This is similar to how a single Windowp922 is shared between multiple separate scripts.)

Worklets are a general technology that serve different use cases. Some worklets, such as those defined in CSS Painting API, provide
extension points intended for stateless, idempotent, and short-running computations, which have special considerations as described
in the next couple of sections. Others, such as those defined in Web Audio API, are used for stateful, long-running operations.
[CSSPAINT]p1477 [WEBAUDIO]p1483

Some specifications which use worklets are intended to allow user agents to parallelize work over multiple threads, or to move work
between threads as required. In these specifications, user agents might invoke methods on a web-developer-provided class in an
implementation-defined order.

As a result of this, to prevent interoperability issues, authors who register classes on such WorkletGlobalScopep1245s should make their

11 Worklets §p12

42

11.1 Introduction §p12

42

11.1.1 Motivations §p12

42

11.1.2 Code idempotence §p12

42

1242

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#implementation-defined

code idempotent. That is, a method or set of methods on the class should produce the same output given a particular input.

This specification uses the following techniques in order to encourage authors to write code in an idempotent way:

• No reference to the global object is available (i.e., there is no counterpart to selfp1229 on WorkletGlobalScopep1245).

Although this was the intention when worklets were first specified, the introduction of globalThis has made it no longer
true. See issue #6059 for more discussion.

• Code is loaded as a module scriptp1085, which results in the code being executed in strict mode and with no shared this
referencing the global proxy.

Together, these restrictions help prevent two different scripts from sharing state using properties of the global objectp1076.

Additionally, specifications which use worklets and intend to allow implementation-defined behavior must obey the following:

• They must require user agents to always have at least two WorkletGlobalScopep1245 instances per Workletp1248, and
randomly assign a method or set of methods on a class to a particular WorkletGlobalScopep1245 instance. These
specifications may provide an opt-out under memory constraints.

• These specifications must allow user agents to create and destroy instances of their WorkletGlobalScopep1245 subclasses at
any time.

Some specifications which use worklets can invoke methods on a web-developer-provided class based on the state of the user agent.
To increase concurrency between threads, a user agent may invoke a method speculatively, based on potential future states.

In these specifications, user agents might invoke such methods at any time, and with any arguments, not just ones corresponding to
the current state of the user agent. The results of such speculative evaluations are not displayed immediately, but can be cached for
use if the user agent state matches the speculated state. This can increase the concurrency between the user agent and worklet
threads.

As a result of this, to prevent interoperability risks between user agents, authors who register classes on such
WorkletGlobalScopep1245s should make their code stateless. That is, the only effect of invoking a method should be its result, and not
any side effects such as updating mutable state.

The same techniques which encourage code idempotencep1242 also encourage authors to write stateless code.

This section is non-normative.

For these examples, we'll use a fake worklet. The Windowp922 object provides two Workletp1248 instances, which each run code in their
own collection of FakeWorkletGlobalScopep1244s:

partial interface Window {
[SameObject, SecureContext] readonly attribute Worklet fakeWorklet1;
[SameObject, SecureContext] readonly attribute Worklet fakeWorklet2;

};

Each Windowp922 has two Workletp1248 instances, fake worklet 1 and fake worklet 2. Both of these have their worklet global scope
typep1248 set to FakeWorkletGlobalScopep1244, and their worklet destination typep1248 set to "fakeworklet". User agents should create
at least two FakeWorkletGlobalScopep1244 instances per worklet.

11.2 Examples §p12

43

"fakeworklet" is not actually a valid destination per Fetch. But this illustrates how real worklets would generally have their own
worklet-type-specific destination. [FETCH]p1478

Note

IDL

11.1.3 Speculative evaluation §p12

43

1243

https://github.com/whatwg/html/issues/6059
https://infra.spec.whatwg.org/#implementation-defined
https://fetch.spec.whatwg.org/#concept-request-destination

The fakeWorklet1 getter steps are to return this's fake worklet 1p1243.

The fakeWorklet2 getter steps are to return this's fake worklet 2p1243.

[Global=(Worklet,FakeWorklet),
Exposed=FakeWorklet,
SecureContext]

interface FakeWorkletGlobalScope : WorkletGlobalScope {
undefined registerFake(DOMString type, Function classConstructor);

};

Each FakeWorkletGlobalScopep1244 has a registered class constructors map, which is an ordered map, initially empty.

The registerFake(type, classConstructor) method steps are to set this's registered class constructors mapp1244[type] to
classConstructor.

This section is non-normative.

To load scripts into fake worklet 1p1243, a web developer would write:

window.fakeWorklet1.addModule('script1.mjs');
window.fakeWorklet1.addModule('script2.mjs');

Note that which script finishes fetching and runs first is dependent on network timing: it could be either script1.mjs or script2.mjs.
This generally won't matter for well-written scripts intended to be loaded in worklets, if they follow the suggestions about preparing for
speculative evaluationp1243.

If a web developer wants to perform a task only after the scripts have successfully run and loaded into some worklets, they could
write:

Promise.all([
window.fakeWorklet1.addModule('script1.mjs'),
window.fakeWorklet2.addModule('script2.mjs')

]).then(() => {
// Do something which relies on those scripts being loaded.

});

Another important point about script-loading is that loaded scripts can be run in multiple WorkletGlobalScopep1245s per Workletp1248,
as discussed in the section on code idempotencep1242. In particular, the specification above for fake worklet 1p1243 and fake worklet
2p1243 require this. So, consider a scenario such as the following:

// script.mjs
console.log("Hello from a FakeWorkletGlobalScope!");

// app.mjs
window.fakeWorklet1.addModule("script.mjs");

This could result in output such as the following from a user agent's console:

[fakeWorklet1#1] Hello from a FakeWorkletGlobalScope!
[fakeWorklet1#4] Hello from a FakeWorkletGlobalScope!
[fakeWorklet1#2] Hello from a FakeWorkletGlobalScope!
[fakeWorklet1#3] Hello from a FakeWorkletGlobalScope!

IDL

11.2.1 Loading scripts §p12

44

1244

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#common-Function
https://infra.spec.whatwg.org/#ordered-map
https://webidl.spec.whatwg.org/#this

If the user agent at some point decided to kill and restart the third instance of FakeWorkletGlobalScopep1244, the console would again
print [fakeWorklet1#3] Hello from a FakeWorkletGlobalScope! when this occurs.

This section is non-normative.

Let's say that one of the intended usages of our fake worklet by web developers is to allow them to customize the highly-complex
process of boolean negation. They might register their customization as follows:

// script.mjs
registerFake('negation-processor', class {

process(arg) {
return !arg;

}
});

// app.mjs
window.fakeWorklet1.addModule("script.mjs");

To make use of such registered classes, the specification for fake worklets could define a find the opposite of true algorithm, given a
Workletp1248 worklet:

1. Optionally, create a worklet global scopep1246 for worklet.

2. Let workletGlobalScope be one of worklet's global scopesp1248, chosen in an implementation-defined manner.

3. Let classConstructor be workletGlobalScope's registered class constructors mapp1244["negation-processor"].

4. Let classInstance be the result of constructing classConstructor, with no arguments.

5. Let function be Get(classInstance, "process"). Rethrow any exceptions.

6. Let callback be the result of converting function to a Web IDL Function instance.

7. Return the result of invoking callback with « true » and "rethrow", and with callback this value set to classInstance.

Subclasses of WorkletGlobalScopep1245 are used to create global objectsp1076 wherein code loaded into a particular Workletp1248 can
execute.

[Exposed=Worklet, SecureContext]
interface WorkletGlobalScope {};

Each WorkletGlobalScopep1245 has an associated module map. It is a module mapp1119, initially empty.

Another, perhaps better, specification architecture would be to extract the "process" property and convert it into a Function at
registration time, as part of the registerFake()p1244 method steps.

Note

11.3 Infrastructure §p12

45

Other specifications are intended to subclass WorkletGlobalScopep1245, adding APIs to register a class, as well as other APIs
specific for their worklet type.

Note

IDL

11.2.2 Registering a class and invoking its methods §p12

45

11.3.1 The global scope §p12

45

1245

https://infra.spec.whatwg.org/#implementation-defined
https://webidl.spec.whatwg.org/#construct-a-callback-function
https://tc39.es/ecma262/#sec-get-o-p
https://webidl.spec.whatwg.org/#es-type-mapping
https://webidl.spec.whatwg.org/#common-Function
https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://webidl.spec.whatwg.org/#dfn-callback-this-value
https://webidl.spec.whatwg.org/#common-Function

This section is non-normative.

Each WorkletGlobalScopep1245 is contained in its own worklet agentp1072, which has its corresponding event loopp1123. However, in
practice, implementation of these agents and event loops is expected to be different from most others.

A worklet agentp1072 exists for each WorkletGlobalScopep1245 since, in theory, an implementation could use a separate thread for each
WorkletGlobalScopep1245 instance, and allowing this level of parallelism is best done using agents. However, because their
[[CanBlock]] value is false, there is no requirement that agents and threads are one-to-one. This allows implementations the freedom
to execute scripts loaded into a worklet on any thread, including one running code from other agents with [[CanBlock]] of false, such as
the thread of a similar-origin window agentp1072 ("the main thread"). Contrast this with dedicated worker agentsp1072, whose true value
for [[CanBlock]] effectively requires them to get a dedicated operating system thread.

Worklet event loopsp1123 are also somewhat special. They are only used for tasksp1124 associated with addModule()p1249, tasks wherein
the user agent invokes author-defined methods, and microtasksp1124. Thus, even though the event loop processing modelp1126 specifies
that all event loops run continuously, implementations can achieve observably-equivalent results using a simpler strategy, which just
invokes author-provided methods and then relies on that process to perform a microtask checkpointp1131.

To create a worklet global scope for a Workletp1248 worklet:

1. Let outsideSettings be worklet's relevant settings objectp1083.

2. Let agent be the result of obtaining a worklet agentp1074 given outsideSettings. Run the rest of these steps in that agent.

3. Let realmExecutionContext be the result of creating a new realmp1077 given agent and the following customizations:

◦ For the global object, create a new object of the type given by worklet's worklet global scope typep1248.

4. Let workletGlobalScope be the global objectp1077 of realmExecutionContext's Realm component.

5. Let insideSettings be the result of setting up a worklet environment settings objectp1247 given realmExecutionContext and
outsideSettings.

6. Let pendingAddedModules be a clone of worklet's added modules listp1248.

7. Let runNextAddedModule be the following steps:

1. If pendingAddedModules is not empty, then:

1. Let moduleURL be the result of dequeueing from pendingAddedModules.

2. Fetch a worklet script graphp1090 given moduleURL, insideSettings, worklet's worklet destination typep1248,
what credentials mode? , insideSettings, worklet's module responses mapp1248, and with the following

steps given script:

1. Assert: script is not null, since the fetch succeeded and the source text was successfully parsed
when worklet's module responses mapp1248 was initially populated with moduleURL.

2. Run a module scriptp1096 given script.

3. Run runNextAddedModule.

3. Abort these steps.

2. Append workletGlobalScope to outsideSettings's global objectp1077 's associated Documentp923 's worklet global
scopesp1250.

3. Append workletGlobalScope to worklet's global scopesp1248.

11.3.1.1 Agents and event loops §p12

46

11.3.1.2 Creation and termination §p12

46

This will not actually perform a network request, as it will just reuse responses from worklet's module
responses mapp1248. The main purpose of this step is to create a new workletGlobalScope-specific
module scriptp1085 from the response.

Note

1246

https://webidl.spec.whatwg.org/#invoke-a-callback-function
https://infra.spec.whatwg.org/#list-clone
https://infra.spec.whatwg.org/#list-is-empty
https://infra.spec.whatwg.org/#queue-dequeue
https://fetch.spec.whatwg.org/#concept-response
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#assert
https://infra.spec.whatwg.org/#list-append
https://infra.spec.whatwg.org/#list-append

4. Run the responsible event loopp1076 specified by insideSettings.

8. Run runNextAddedModule.

To terminate a worklet global scope given a WorkletGlobalScopep1245 workletGlobalScope:

1. Let eventLoop be workletGlobalScope's relevant agentp1073 's event loopp1123.

2. If there are any tasksp1124 queued in eventLoop's task queuesp1123, discard them without processing them.

3. Wait for eventLoop to complete the currently running taskp1124.

4. If the previous step doesn't complete within an implementation-defined period of time, then abort the scriptp1097 currently
running in the worklet.

5. Destroy eventLoop.

6. Remove workletGlobalScope from the global scopesp1248 of the Workletp1248 whose global scopesp1248 contains
workletGlobalScope.

7. Remove workletGlobalScope from the worklet global scopesp1250 of the Documentp130 whose worklet global scopesp1250

contains workletGlobalScope.

To set up a worklet environment settings object, given a JavaScript execution context executionContext and an environment
settings objectp1076 outsideSettings:

1. Let origin be a unique opaque originp898.

2. Let inheritedAPIBaseURL be outsideSettings's API base URLp1076.

3. Let inheritedPolicyContainer be a clonep917 of outsideSettings's policy containerp1076.

4. Let realm be the value of executionContext's Realm component.

5. Let workletGlobalScope be realm's global objectp1077.

6. Let settingsObject be a new environment settings objectp1076 whose algorithms are defined as follows:

The realm execution contextp1076

Return executionContext.

The module mapp1076

Return workletGlobalScope's module mapp1245.

The API base URLp1076

Return inheritedAPIBaseURL.

The originp1076

Return origin.

The policy containerp1076

Return inheritedPolicyContainer.

The cross-origin isolated capabilityp1076

Return TODO .

11.3.1.3 Script settings for worklets §p12

47

Unlike workers or other globals derived from a single resource, worklets have no primary resource; instead, multiple
scripts, each with their own URL, are loaded into the global scope via worklet.addModule()p1249. So this API base
URLp1076 is rather unlike that of other globals. However, so far this doesn't matter, as no APIs available to worklet code
make use of the API base URLp1076.

Note

1247

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#list-remove
https://infra.spec.whatwg.org/#list-remove
https://tc39.es/ecma262/#sec-execution-contexts

The time originp1076

Assert: this algorithm is never called, because the time originp1076 is not available in a worklet context.

7. Set settingsObject's idp1075 to a new unique opaque string, creation URLp1075 to inheritedAPIBaseURL, top-level creation
URLp1075 to null, top-level originp1076 to outsideSettings's top-level originp1076, target browsing contextp1076 to null, and active
service workerp1076 to null.

8. Set realm's [[HostDefined]] field to settingsObject.

9. Return settingsObject.

The Workletp1248 class provides the capability to add module scripts into its associated WorkletGlobalScopep1245s. The user agent can
then create classes registered on the WorkletGlobalScopep1245s and invoke their methods.

[Exposed=Window, SecureContext]
interface Worklet {

[NewObject] Promise<undefined> addModule(USVString moduleURL, optional WorkletOptions options = {});
};

dictionary WorkletOptions {
RequestCredentials credentials = "same-origin";

};

Specifications that create Workletp1248 instances must specify the following for a given instance:

• its worklet global scope type, which must be a Web IDL type that inherits from WorkletGlobalScopep1245; and

• its worklet destination type, which must be a destination, and is used when fetching scripts.

A Workletp1248 has a list of global scopes, which contains instances of the Workletp1248 's worklet global scope typep1248. It is initially
empty.

A Workletp1248 has an added modules list, which is a list of URLs, initially empty. Access to this list should be thread-safe.

A Workletp1248 has a module responses map, which is an ordered map from URLs to either "fetching" or tuples consisting of a
response and either null, failure, or a byte sequence representing the response body. This map is initially empty, and access to it
should be thread-safe.

await worklet.addModulep1249(moduleURL[, { credentialsp1248 }])
Loads and executes the module scriptp1085 given by moduleURL into all of worklet's global scopesp1248. It can also create
additional global scopes as part of this process, depending on the worklet type. The returned promise will fulfill once the script
has been successfully loaded and run in all global scopes.
The credentialsp1248 option can be set to a credentials mode to modify the script-fetching process. It defaults to "same-
origin".
Any failures in fetchingp1090 the script or its dependencies will cause the returned promise to be rejected with an "AbortError"
DOMException. Any errors in parsing the script or its dependencies will cause the returned promise to be rejected with the
exception generated during parsing.

For web developers (non-normative)

The added modules listp1248 and module responses mapp1248 exist to ensure that WorkletGlobalScopep1245s created at different
times get equivalent module scriptsp1085 run in them, based on the same source text. This allows the creation of additional
WorkletGlobalScopep1245s to be transparent to the author.

In practice, user agents are not expected to implement these data structures, and the algorithms that consult them, using thread-
safe programming techniques. Instead, when addModule()p1249 is called, user agents can fetch the module graph on the main

Note

IDL

11.3.2 The Workletp1248 class §p12

48

✔ MDN

1248

https://infra.spec.whatwg.org/#assert
https://webidl.spec.whatwg.org/#idl-promise
https://fetch.spec.whatwg.org/#requestcredentials
https://webidl.spec.whatwg.org/#dfn-inherit
https://fetch.spec.whatwg.org/#concept-request-destination
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#list
https://infra.spec.whatwg.org/#list
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ordered-map
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#tuple
https://fetch.spec.whatwg.org/#concept-response
https://infra.spec.whatwg.org/#byte-sequence

The addModule(moduleURL, options) method steps are:

1. Let outsideSettings be the relevant settings objectp1083 of this.

2. Let moduleURLRecord be the result of encoding-parsing a URLp97 given moduleURL, relative to outsideSettings.

3. If moduleURLRecord is failure, then return a promise rejected with a "SyntaxError" DOMException.

4. Let promise be a new promise.

5. Run the following steps in parallelp43:

1. If this's global scopesp1248 is empty, then:

1. Create a worklet global scopep1246 given this.

2. Optionally, createp1246 additional global scope instances given this, depending on the specific worklet in
question and its specification.

3. Wait for all steps of the creationp1246 process(es) — including those taking place within the worklet
agentsp1072 — to complete, before moving on.

2. Let pendingTasks be this's global scopesp1248 's size.

3. Let addedSuccessfully be false.

4. For each workletGlobalScope of this's global scopesp1248, queue a global taskp1125 on the networking task
sourcep1134 given workletGlobalScope to fetch a worklet script graphp1090 given moduleURLRecord, outsideSettings,
this's worklet destination typep1248, options["credentialsp1248"], workletGlobalScope's relevant settings objectp1083,
this's module responses mapp1248, and the following steps given script:

1. If script is null, then:

1. Queue a global taskp1125 on the networking task sourcep1134 given this's relevant global
objectp1083 to perform the following steps:

1. If pendingTasks is not −1, then:

1. Set pendingTasks to −1.

2. Reject promise with an "AbortError" DOMException.

2. Abort these steps.

2. If script's error to rethrowp1084 is not null, then:

1. Queue a global taskp1125 on the networking task sourcep1134 given this's relevant global
objectp1083 to perform the following steps:

1. If pendingTasks is not −1, then:

1. Set pendingTasks to −1.

2. Reject promise with script's error to rethrowp1084.

2. Abort these steps.

thread, and send the fetched source text (i.e., the important data contained in the module responses mapp1248) to each thread
which has a WorkletGlobalScopep1245.

Then, when a user agent createsp1246 a new WorkletGlobalScopep1245 for a given Workletp1248, it can simply send the map of
fetched source text and the list of entry points from the main thread to the thread containing the new WorkletGlobalScopep1245.

Only the first of these fetches will actually perform a network request; the ones for other
WorkletGlobalScopep1245s will reuse responses from this's module responses mapp1248.

Note

1249

https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#a-promise-rejected-with
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-is-empty
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#list-size
https://infra.spec.whatwg.org/#list-iterate
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://fetch.spec.whatwg.org/#concept-response
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#aborterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

3. If addedSuccessfully is false, then:

1. Append moduleURLRecord to this's added modules listp1248.

2. Set addedSuccessfully to true.

4. Run a module scriptp1096 given script.

5. Queue a global taskp1125 on the networking task sourcep1134 given this's relevant global objectp1083 to
perform the following steps:

1. If pendingTasks is not −1, then:

1. Set pendingTasks to pendingTasks − 1.

2. If pendingTasks is 0, then resolve promise.

6. Return promise.

The lifetime of a Workletp1248 has no special considerations; it is tied to the object it belongs to, such as the Windowp922.

Each Documentp130 has a worklet global scopes, which is a set of WorkletGlobalScopep1245s, initially empty.

The lifetime of a WorkletGlobalScopep1245 is, at a minimum, tied to the Documentp130 whose worklet global scopesp1250 contain it. In
particular, destroyingp1066 the Documentp130 will terminatep1247 the corresponding WorkletGlobalScopep1245 and allow it to be garbage-
collected.

Additionally, user agents may, at any time, terminatep1247 a given WorkletGlobalScopep1245, unless the specification defining the
corresponding worklet type says otherwise. For example, they might terminate them if the worklet agentp1072 's event loopp1123 has no
tasksp1124 queued, or if the user agent has no pending operations planning to make use of the worklet, or if the user agent detects
abnormal operations such as infinite loops or callbacks exceeding imposed time limits.

Finally, specifications for specific worklet types can give more specific details on when to createp1246 WorkletGlobalScopep1245s for a
given worklet type. For example, they might create them during specific processes that call upon worklet code, as in the examplep1245.

11.3.3 The worklet's lifetime §p12

50

1250

https://infra.spec.whatwg.org/#list-append
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#ordered-set

This section is non-normative.

This specification introduces two related mechanisms, similar to HTTP session cookies, for storing name-value pairs on the client side.
[COOKIES]p1476

The first is designed for scenarios where the user is carrying out a single transaction, but could be carrying out multiple transactions in
different windows at the same time.

Cookies don't really handle this case well. For example, a user could be buying plane tickets in two different windows, using the same
site. If the site used cookies to keep track of which ticket the user was buying, then as the user clicked from page to page in both
windows, the ticket currently being purchased would "leak" from one window to the other, potentially causing the user to buy two
tickets for the same flight without noticing.

To address this, this specification introduces the sessionStoragep1254 getter. Sites can add data to the session storage, and it will be
accessible to any page from the same site opened in that window.

The second storage mechanism is designed for storage that spans multiple windows, and lasts beyond the current session. In
particular, web applications might wish to store megabytes of user data, such as entire user-authored documents or a user's mailbox,
on the client side for performance reasons.

Again, cookies do not handle this case well, because they are transmitted with every request.

The localStoragep1255 getter is used to access a page's local storage area.

12 Web storage §p12

51

12.1 Introduction §p12

51

For example, a page could have a checkbox that the user ticks to indicate that they want insurance:

<label>
<input type="checkbox" onchange="sessionStorage.insurance = checked ? 'true' : ''">
I want insurance on this trip.

</label>

A later page could then check, from script, whether the user had checked the checkbox or not:

if (sessionStorage.insurance) { ... }

If the user had multiple windows opened on the site, each one would have its own individual copy of the session storage object.

Example

The site at example.com can display a count of how many times the user has loaded its page by putting the following at the
bottom of its page:

<p>
You have viewed this page
an untold number of
time(s).

</p>
<script>

if (!localStorage.pageLoadCount)
localStorage.pageLoadCount = 0;

Example

✔ MDN

1251

Each site has its own separate storage area.

[Exposed=Window]
interface Storage {

readonly attribute unsigned long length;
DOMString? key(unsigned long index);
getter DOMString? getItem(DOMString key);
setter undefined setItem(DOMString key, DOMString value);
deleter undefined removeItem(DOMString key);
undefined clear();

};

localStorage.pageLoadCount = parseInt(localStorage.pageLoadCount) + 1;
document.getElementById('count').textContent = localStorage.pageLoadCount;

</script>

The localStoragep1255 getter provides access to shared state. This specification does not define the interaction with
other agent clusters in a multiprocess user agent, and authors are encouraged to assume that there is no locking
mechanism. A site could, for instance, try to read the value of a key, increment its value, then write it back out,
using the new value as a unique identifier for the session; if the site does this twice in two different browser
windows at the same time, it might end up using the same "unique" identifier for both sessions, with potentially
disastrous effects.

⚠Warning!

12.2 The API §p12

52

storage.lengthp1253

Returns the number of key/value pairs.

storage.keyp1253 (n)
Returns the name of the nth key, or null if n is greater than or equal to the number of key/value pairs.

value = storage.getItemp1253 (key)
value = storage[key]

Returns the current value associated with the given key, or null if the given key does not exist.

storage.setItemp1253 (key, value)
storage[key] = value

Sets the value of the pair identified by key to value, creating a new key/value pair if none existed for key previously.
Throws a "QuotaExceededError" DOMException exception if the new value couldn't be set. (Setting could fail if, e.g., the user
has disabled storage for the site, or if the quota has been exceeded.)
Dispatches a storagep1472 event on Windowp922 objects holding an equivalent Storagep1252 object.

storage.removeItemp1254 (key)
delete storage[key]

Removes the key/value pair with the given key, if a key/value pair with the given key exists.
Dispatches a storagep1472 event on Windowp922 objects holding an equivalent Storagep1252 object.

For web developers (non-normative)

IDL

12.2.1 The Storagep1252 interface §p12

52

✔ MDN

1252

https://webidl.spec.whatwg.org/#quotaexceedederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://tc39.es/ecma262/#sec-delete-operator

A Storagep1252 object has an associated:

map
A storage proxy map.

type
"local" or "session".

To reorder a Storagep1252 object storage, reorder storage's mapp1253 's entries in an implementation-defined manner.

To broadcast a Storagep1252 object storage, given a key, oldValue, and newValue, run these steps:

1. Let thisDocument be storage's relevant global objectp1083 's associated Documentp923.

2. Let url be thisDocument's URL.

3. Let remoteStorages be all Storagep1252 objects excluding storage whose:

◦ typep1253 is storage's typep1253

◦ relevant settings objectp1083 's originp898 is same originp899 with storage's relevant settings objectp1083 's originp898.

and, if typep1253 is "session", whose relevant settings objectp1083 's associated Documentp923 's node navigablep989 's traversable
navigablep990 is thisDocument's node navigablep989 's traversable navigablep990.

4. For each remoteStorage of remoteStorages: queue a global taskp1125 on the DOM manipulation task sourcep1134 given
remoteStorage's relevant global objectp1083 to fire an event named storagep1472 at remoteStorage's relevant global
objectp1083, using StorageEventp1255, with keyp1256 initialized to key, oldValuep1256 initialized to oldValue, newValuep1256

initialized to newValue, urlp1256 initialized to url, and storageAreap1256 initialized to remoteStorage.

The length getter steps are to return this's mapp1253 's size.

The key(index) method steps are:

1. If index is greater than or equal to this's mapp1253 's size, then return null.

2. Let keys be the result of running get the keys on this's mapp1253.

3. Return keys[index].

The supported property names on a Storagep1252 object storage are the result of running get the keys on storage's mapp1253.

The getItem(key) method steps are:

1. If this's mapp1253[key] does not exist, then return null.

2. Return this's mapp1253[key].

The setItem(key, value) method are:

1. Let oldValue be null.

storage.clearp1254()
Removes all key/value pairs, if there are any.
Dispatches a storagep1472 event on Windowp922 objects holding an equivalent Storagep1252 object.

Unfortunate as it is, iteration order is not defined and can change upon most mutations.
Note

The Documentp130 object associated with the resulting taskp1124 is not necessarily fully activep1003, but events fired on such
objects are ignored by the event loopp1123 until the Documentp130 becomes fully activep1003 again.

Note

1253

https://storage.spec.whatwg.org/#storage-proxy-map
https://infra.spec.whatwg.org/#map-entry
https://infra.spec.whatwg.org/#implementation-defined
https://dom.spec.whatwg.org/#concept-document-url
https://infra.spec.whatwg.org/#list-iterate
https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-size
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-size
https://infra.spec.whatwg.org/#map-getting-the-keys
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#dfn-supported-property-names
https://infra.spec.whatwg.org/#map-getting-the-keys
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this

2. Let reorder be true.

3. If this's mapp1253[key] exists:

1. Set oldValue to this's mapp1253[key].

2. If oldValue is value, then return.

3. Set reorder to false.

4. If value cannot be stored, then throw a "QuotaExceededError" DOMException exception.

5. Set this's mapp1253[key] to value.

6. If reorder is true, then reorderp1253 this.

7. Broadcastp1253 this with key, oldValue, and value.

The removeItem(key) method steps are:

1. If this's mapp1253[key] does not exist, then return null.

2. Set oldValue to this's mapp1253[key].

3. Remove this's mapp1253[key].

4. Reorderp1253 this.

5. Broadcastp1253 this with key, oldValue, and null.

The clear() method steps are:

1. Clear this's mapp1253.

2. Broadcastp1253 this with null, null, and null.

interface mixin WindowSessionStorage {
readonly attribute Storage sessionStorage;

};
Window includes WindowSessionStorage;

A Documentp130 object has an associated session storage holder, which is null or a Storagep1252 object. It is initially null.

The sessionStorage getter steps are:

1. If this's associated Documentp923 's session storage holderp1254 is non-null, then return this's associated Documentp923 's
session storage holderp1254.

2. Let map be the result of running obtain a session storage bottle map with this's relevant settings objectp1083 and
"sessionStorage".

3. If map is failure, then throw a "SecurityError" DOMException.

4. Let storage be a new Storagep1252 object whose mapp1253 is map.

5. Set this's associated Documentp923 's session storage holderp1254 to storage.

window.sessionStoragep1254

Returns the Storagep1252 object associated with that window's origin's session storage area.
Throws a "SecurityError" DOMException if the Documentp130 's origin is an opaque originp898 or if the request violates a policy
decision (e.g., if the user agent is configured to not allow the page to persist data).

For web developers (non-normative)

IDL

12.2.2 The sessionStoragep1254 getter §p12

54

1254

https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#string-is
https://webidl.spec.whatwg.org/#quotaexceedederror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://infra.spec.whatwg.org/#map-set
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-exists
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-remove
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://infra.spec.whatwg.org/#map-clear
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#tracking-vector
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://storage.spec.whatwg.org/#obtain-a-session-storage-bottle-map
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this

6. Return storage.

interface mixin WindowLocalStorage {
readonly attribute Storage localStorage;

};
Window includes WindowLocalStorage;

A Documentp130 object has an associated local storage holder, which is null or a Storagep1252 object. It is initially null.

The localStorage getter steps are:

1. If this's associated Documentp923 's local storage holderp1255 is non-null, then return this's associated Documentp923 's
local storage holderp1255.

2. Let map be the result of running obtain a local storage bottle map with this's relevant settings objectp1083 and
"localStorage".

3. If map is failure, then throw a "SecurityError" DOMException.

4. Let storage be a new Storagep1252 object whose mapp1253 is map.

5. Set this's associated Documentp923 's local storage holderp1255 to storage.

6. Return storage.

[Exposed=Window]
interface StorageEvent : Event {

constructor(DOMString type, optional StorageEventInit eventInitDict = {});

readonly attribute DOMString? key;
readonly attribute DOMString? oldValue;
readonly attribute DOMString? newValue;
readonly attribute USVString url;
readonly attribute Storage? storageArea;

undefined initStorageEvent(DOMString type, optional boolean bubbles = false, optional boolean
cancelable = false, optional DOMString? key = null, optional DOMString? oldValue = null, optional
DOMString? newValue = null, optional USVString url = "", optional Storage? storageArea = null);
};

dictionary StorageEventInit : EventInit {
DOMString? key = null;
DOMString? oldValue = null;

After creating a new auxiliary browsing context and documentp1000, the session storage is copiedp991 over.
Note

window.localStoragep1255

Returns the Storagep1252 object associated with window's origin's local storage area.
Throws a "SecurityError" DOMException if the Documentp130 's origin is an opaque originp898 or if the request violates a policy
decision (e.g., if the user agent is configured to not allow the page to persist data).

For web developers (non-normative)

IDL

IDL

12.2.3 The localStoragep1255 getter §p12

55

12.2.4 The StorageEventp1255 interface §p12

55

✔ MDN

1255

https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#concept-document-origin
https://infra.spec.whatwg.org/#tracking-vector
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this
https://storage.spec.whatwg.org/#obtain-a-local-storage-bottle-map
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#securityerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#this
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#dictdef-eventinit

DOMString? newValue = null;
USVString url = "";
Storage? storageArea = null;

};

The key, oldValue, newValue, url, and storageArea attributes must return the values they were initialized to.

The initStorageEvent(type, bubbles, cancelable, key, oldValue, newValue, url, storageArea) method must initialize the
event in a manner analogous to the similarly-named initEvent() method. [DOM]p1478

A third-party advertiser (or any entity capable of getting content distributed to multiple sites) could use a unique identifier stored in its
local storage area to track a user across multiple sessions, building a profile of the user's interests to allow for highly targeted
advertising. In conjunction with a site that is aware of the user's real identity (for example an e-commerce site that requires
authenticated credentials), this could allow oppressive groups to target individuals with greater accuracy than in a world with purely
anonymous web usage.

There are a number of techniques that can be used to mitigate the risk of user tracking:

Blocking third-party storage
User agents may restrict access to the localStoragep1255 objects to scripts originating at the domain of the active documentp989 of
the top-level traversablep990, for instance denying access to the API for pages from other domains running in iframep390s.

Expiring stored data
User agents may, possibly in a manner configured by the user, automatically delete stored data after a period of time.

For example, a user agent could be configured to treat third-party local storage areas as session-only storage, deleting the data
once the user had closed all the navigablesp989 that could access it.

This can restrict the ability of a site to track a user, as the site would then only be able to track the user across multiple sessions
when they authenticate with the site itself (e.g. by making a purchase or logging in to a service).

However, this also reduces the usefulness of the API as a long-term storage mechanism. It can also put the user's data at risk, if the
user does not fully understand the implications of data expiration.

Treating persistent storage as cookies
If users attempt to protect their privacy by clearing cookies without also clearing data stored in the local storage area, sites can
defeat those attempts by using the two features as redundant backup for each other. User agents should present the interfaces for
clearing these in a way that helps users to understand this possibility and enables them to delete data in all persistent storage
features simultaneously. [COOKIES]p1476

event.keyp1256

Returns the key of the storage item being changed.

event.oldValuep1256

Returns the old value of the key of the storage item whose value is being changed.

event.newValuep1256

Returns the new value of the key of the storage item whose value is being changed.

event.urlp1256

Returns the URL of the document whose storage item changed.

event.storageAreap1256

Returns the Storagep1252 object that was affected.

For web developers (non-normative)

12.3 Privacy §p12

56

12.3.1 User tracking §p12

56

1256

https://dom.spec.whatwg.org/#concept-document-url
https://dom.spec.whatwg.org/#dom-event-initevent

Site-specific safelisting of access to local storage areas
User agents may allow sites to access session storage areas in an unrestricted manner, but require the user to authorize access to
local storage areas.

Origin-tracking of stored data
User agents may record the originsp898 of sites that contained content from third-party origins that caused data to be stored.

If this information is then used to present the view of data currently in persistent storage, it would allow the user to make informed
decisions about which parts of the persistent storage to prune. Combined with a blocklist ("delete this data and prevent this domain
from ever storing data again"), the user can restrict the use of persistent storage to sites that they trust.

Shared blocklists
User agents may allow users to share their persistent storage domain blocklists.

This would allow communities to act together to protect their privacy.

While these suggestions prevent trivial use of this API for user tracking, they do not block it altogether. Within a single domain, a site
can continue to track the user during a session, and can then pass all this information to the third party along with any identifying
information (names, credit card numbers, addresses) obtained by the site. If a third party cooperates with multiple sites to obtain such
information, a profile can still be created.

However, user tracking is to some extent possible even with no cooperation from the user agent whatsoever, for instance by using
session identifiers in URLs, a technique already commonly used for innocuous purposes but easily repurposed for user tracking (even
retroactively). This information can then be shared with other sites, using visitors' IP addresses and other user-specific data (e.g. user-
agent headers and configuration settings) to combine separate sessions into coherent user profiles.

User agents should treat persistently stored data as potentially sensitive; it's quite possible for emails, calendar appointments, health
records, or other confidential documents to be stored in this mechanism.

To this end, user agents should ensure that when deleting data, it is promptly deleted from the underlying storage.

Because of the potential for DNS spoofing attacks, one cannot guarantee that a host claiming to be in a certain domain really is from
that domain. To mitigate this, pages can use TLS. Pages using TLS can be sure that only the user, software working on behalf of the
user, and other pages using TLS that have certificates identifying them as being from the same domain, can access their storage
areas.

Different authors sharing one host name, for example users hosting content on the now defunct geocities.com, all share one local
storage object. There is no feature to restrict the access by pathname. Authors on shared hosts are therefore urged to avoid using
these features, as it would be trivial for other authors to read the data and overwrite it.

12.4 Security §p12

57

Even if a path-restriction feature was made available, the usual DOM scripting security model would make it trivial to bypass this
protection and access the data from any path.

Note

12.3.2 Sensitivity of data §p12

57

12.4.1 DNS spoofing attacks §p12

57

12.4.2 Cross-directory attacks §p12

57

1257

The two primary risks when implementing these persistent storage features are letting hostile sites read information from other
domains, and letting hostile sites write information that is then read from other domains.

Letting third-party sites read data that is not supposed to be read from their domain causes information leakage. For example, a user's
shopping wishlist on one domain could be used by another domain for targeted advertising; or a user's work-in-progress confidential
documents stored by a word-processing site could be examined by the site of a competing company.

Letting third-party sites write data to the persistent storage of other domains can result in information spoofing, which is equally
dangerous. For example, a hostile site could add items to a user's wishlist; or a hostile site could set a user's session identifier to a
known ID that the hostile site can then use to track the user's actions on the victim site.

Thus, strictly following the originp898 model described in this specification is important for user security.

12.4.3 Implementation risks §p12

58

1258

This section only applies to documents, authoring tools, and markup generators. In particular, it does not apply to conformance
checkers; conformance checkers must use the requirements given in the next section ("parsing HTML documents").

Documents must consist of the following parts, in the given order:

1. Optionally, a single U+FEFF BYTE ORDER MARK (BOM) character.

2. Any number of commentsp1270 and ASCII whitespace.

3. A DOCTYPEp1259.

4. Any number of commentsp1270 and ASCII whitespace.

5. The document element, in the form of an htmlp172 elementp1260.

6. Any number of commentsp1270 and ASCII whitespace.

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarationsp199 are to be serialized, as discussed in the section on
that topic.

Many strings in the HTML syntax (e.g. the names of elements and their attributes) are case-insensitive, but only for ASCII upper alphas
and ASCII lower alphas. For convenience, in this section this is just referred to as "case-insensitive".

A DOCTYPE is a required preamble.

A DOCTYPE must consist of the following components, in this order:

1. A string that is an ASCII case-insensitive match for the string "<!DOCTYPE".
2. One or more ASCII whitespace.

13 The HTML syntax §p12

59

This section only describes the rules for resources labeled with an HTML MIME type. Rules for XML resources are discussed in the
section below entitled "The XML syntaxp1384".

Note

13.1 Writing HTML documents §p12

59

ASCII whitespace before the htmlp172 element, at the start of the htmlp172 element and before the headp173 element, will be dropped
when the document is parsed; ASCII whitespace after the htmlp172 element will be parsed as if it were at the end of the bodyp205

element. Thus, ASCII whitespace around the document element does not round-trip.

It is suggested that newlines be inserted after the DOCTYPE, after any comments that are before the document element, after the
htmlp172 element's start tag (if it is not omittedp1263), and after any comments that are inside the htmlp172 element but before the
headp173 element.

Note

DOCTYPEs are required for legacy reasons. When omitted, browsers tend to use a different rendering mode that is incompatible
with some specifications. Including the DOCTYPE in a document ensures that the browser makes a best-effort attempt at following
the relevant specifications.

Note

13.1.1 The DOCTYPE §p12

59

1259

https://mimesniff.spec.whatwg.org/#html-mime-type
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace

3. A string that is an ASCII case-insensitive match for the string "html".
4. Optionally, a DOCTYPE legacy stringp1260.
5. Zero or more ASCII whitespace.
6. A U+003E GREATER-THAN SIGN character (>).

For the purposes of HTML generators that cannot output HTML markup with the short DOCTYPE "<!DOCTYPE html>", a DOCTYPE
legacy string may be inserted into the DOCTYPE (in the position defined above). This string must consist of:

1. One or more ASCII whitespace.
2. A string that is an ASCII case-insensitive match for the string "SYSTEM".
3. One or more ASCII whitespace.
4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the quote mark).
5. The literal string "about:legacy-compatp96".
6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step

labeled quote mark).

The DOCTYPE legacy stringp1260 should not be used unless the document is generated from a system that cannot output the shorter
string.

There are six different kinds of elements: void elementsp1260, the template elementp1260, raw text elementsp1260, escapable raw text
elementsp1260, foreign elementsp1260, and normal elementsp1260.

Void elements
areap471, basep175, brp299, colp488, embedp399, hrp231, imgp346, inputp520, linkp177, metap189, sourcep343, trackp411, wbrp300

The template element
templatep671

Raw text elements
scriptp652, stylep200

Escapable raw text elements
textareap579, titlep174

Foreign elements
Elements from the MathML namespace and the SVG namespace.

Normal elements
All other allowed HTML elementsp45 are normal elements.

Tags are used to delimit the start and end of elements in the markup. Raw textp1260, escapable raw textp1260, and normalp1260 elements
have a start tagp1261 to indicate where they begin, and an end tagp1262 to indicate where they end. The start and end tags of certain
normal elementsp1260 can be omittedp1263, as described below in the section on optional tagsp1263. Those that cannot be omitted must
not be omitted. Void elementsp1260 only have a start tag; end tags must not be specified for void elementsp1260. Foreign elementsp1260

must either have a start tag and an end tag, or a start tag that is marked as self-closing, in which case they must not have an end tag.

The contentsp147 of the element must be placed between just after the start tag (which might be implied, in certain casesp1263) and just
before the end tag (which again, might be implied in certain casesp1263). The exact allowed contents of each individual element depend
on the content modelp147 of that element, as described earlier in this specification. Elements must not contain content that their
content model disallows. In addition to the restrictions placed on the contents by those content models, however, the five types of
elements have additional syntactic requirements.

Void elementsp1260 can't have any contents (since there's no end tag, no content can be put between the start tag and the end tag).

In other words, <!DOCTYPE html>, case-insensitively.
Note

In other words, <!DOCTYPE html SYSTEM "about:legacy-compat"> or <!DOCTYPE html SYSTEM 'about:legacy-compat'>, case-
insensitively except for the part in single or double quotes.

Note

13.1.2 Elements §p12

60

1260

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace

The template elementp1260 can have template contentsp673, but such template contentsp673 are not children of the templatep671

element itself. Instead, they are stored in a DocumentFragment associated with a different Documentp130 — without a browsing
contextp998 — so as to avoid the templatep671 contents interfering with the main Documentp130. The markup for the template
contentsp673 of a templatep671 element is placed just after the templatep671 element's start tag and just before templatep671 element's
end tag (as with other elements), and may consist of any textp1269, character referencesp1269, elementsp1260, and commentsp1270, but the
text must not contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp1270.

Raw text elementsp1260 can have textp1269, though it has restrictionsp1269 described below.

Escapable raw text elementsp1260 can have textp1269 and character referencesp1269, but the text must not contain an ambiguous
ampersandp1270. There are also further restrictionsp1269 described below.

Foreign elementsp1260 whose start tag is marked as self-closing can't have any contents (since, again, as there's no end tag, no content
can be put between the start tag and the end tag). Foreign elementsp1260 whose start tag is not marked as self-closing can have
textp1269, character referencesp1269, CDATA sectionsp1270, other elementsp1260, and commentsp1270, but the text must not contain the
character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp1270.

Normal elementsp1260 can have textp1269, character referencesp1269, other elementsp1260, and commentsp1270, but the text must not
contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp1270. Some normal elementsp1260 also have yet more
restrictionsp1269 on what content they are allowed to hold, beyond the restrictions imposed by the content model and those described
in this paragraph. Those restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names that only use ASCII alphanumerics. In the HTML
syntax, tag names, even those for foreign elementsp1260, may be written with any mix of lower- and uppercase letters that, when
converted to all-lowercase, matches the element's tag name; tag names are case-insensitive.

Start tags must have the following format:

1. The first character of a start tag must be a U+003C LESS-THAN SIGN character (<).

2. The next few characters of a start tag must be the element's tag namep1261.

3. If there are to be any attributes in the next step, there must first be one or more ASCII whitespace.

4. Then, the start tag may have a number of attributes, the syntax for whichp1262 is described below. Attributes must be
separated from each other by one or more ASCII whitespace.

5. After the attributes, or after the tag namep1261 if there are no attributes, there may be one or more ASCII whitespace. (Some
attributes are required to be followed by a space. See the attributes sectionp1262 below.)

6. Then, if the element is one of the void elementsp1260, or if the element is a foreign elementp1260, then there may be a single
U+002F SOLIDUS character (/), which on foreign elementsp1260 marks the start tag as self-closing. On void elementsp1260, it

The HTML syntax does not support namespace declarations, even in foreign elementsp1260.

For instance, consider the following HTML fragment:

<p>
<svg>
<metadata>
<!-- this is invalid -->
<cdr:license xmlns:cdr="https://www.example.com/cdr/metadata" name="MIT"/>

</metadata>
</svg>

</p>

The innermost element, cdr:license, is actually in the SVG namespace, as the "xmlns:cdr" attribute has no effect (unlike in
XML). In fact, as the comment in the fragment above says, the fragment is actually non-conforming. This is because SVG 2 does
not define any elements called "cdr:license" in the SVG namespace.

Note

13.1.2.1 Start tags §p12

61

1261

https://dom.spec.whatwg.org/#interface-documentfragment
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

does not mark the start tag as self-closing but instead is unnecessary and has no effect of any kind. For such void elements,
it should be used only with caution — especially since, if directly preceded by an unquoted attribute valuep1262, it becomes
part of the attribute value rather than being discarded by the parser.

7. Finally, start tags must be closed by a U+003E GREATER-THAN SIGN character (>).

End tags must have the following format:

1. The first character of an end tag must be a U+003C LESS-THAN SIGN character (<).

2. The second character of an end tag must be a U+002F SOLIDUS character (/).

3. The next few characters of an end tag must be the element's tag namep1261.

4. After the tag name, there may be one or more ASCII whitespace.

5. Finally, end tags must be closed by a U+003E GREATER-THAN SIGN character (>).

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names must consist of one or more characters other than controls, U+0020 SPACE,
U+0022 ("), U+0027 ('), U+003E (>), U+002F (/), U+003D (=), and noncharacters. In the HTML syntax, attribute names, even those
for foreign elementsp1260, may be written with any mix of ASCII lower and ASCII upper alphas.

Attribute values are a mixture of textp1269 and character referencesp1269, except with the additional restriction that the text cannot
contain an ambiguous ampersandp1270.

Attributes can be specified in four different ways:

Empty attribute syntax
Just the attribute namep1262. The value is implicitly the empty string.

If an attribute using the empty attribute syntax is to be followed by another attribute, then there must be ASCII whitespace
separating the two.

Unquoted attribute value syntax
The attribute namep1262, followed by zero or more ASCII whitespace, followed by a single U+003D EQUALS SIGN character, followed
by zero or more ASCII whitespace, followed by the attribute valuep1262, which, in addition to the requirements given above for
attribute values, must not contain any literal ASCII whitespace, any U+0022 QUOTATION MARK characters ("), U+0027
APOSTROPHE characters ('), U+003D EQUALS SIGN characters (=), U+003C LESS-THAN SIGN characters (<), U+003E GREATER-
THAN SIGN characters (>), or U+0060 GRAVE ACCENT characters (`), and must not be the empty string.

If an attribute using the unquoted attribute syntax is to be followed by another attribute or by the optional U+002F SOLIDUS
character (/) allowed in step 6 of the start tagp1261 syntax above, then there must be ASCII whitespace separating the two.

13.1.2.2 End tags §p12

62

13.1.2.3 Attributes §p12

62

In the following example, the disabledp601 attribute is given with the empty attribute syntax:

<input disabled>

Example

In the following example, the valuep525 attribute is given with the unquoted attribute value syntax:

<input value=yes>

Example

1262

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

Single-quoted attribute value syntax
The attribute namep1262, followed by zero or more ASCII whitespace, followed by a single U+003D EQUALS SIGN character, followed
by zero or more ASCII whitespace, followed by a single U+0027 APOSTROPHE character ('), followed by the attribute valuep1262,
which, in addition to the requirements given above for attribute values, must not contain any literal U+0027 APOSTROPHE
characters ('), and finally followed by a second single U+0027 APOSTROPHE character (').

If an attribute using the single-quoted attribute syntax is to be followed by another attribute, then there must be ASCII whitespace
separating the two.

Double-quoted attribute value syntax
The attribute namep1262, followed by zero or more ASCII whitespace, followed by a single U+003D EQUALS SIGN character, followed
by zero or more ASCII whitespace, followed by a single U+0022 QUOTATION MARK character ("), followed by the attribute valuep1262,
which, in addition to the requirements given above for attribute values, must not contain any literal U+0022 QUOTATION MARK
characters ("), and finally followed by a second single U+0022 QUOTATION MARK character (").

If an attribute using the double-quoted attribute syntax is to be followed by another attribute, then there must be ASCII whitespace
separating the two.

There must never be two or more attributes on the same start tag whose names are an ASCII case-insensitive match for each other.

When a foreign elementp1260 has one of the namespaced attributes given by the local name and namespace of the first and second
cells of a row from the following table, it must be written using the name given by the third cell from the same row.

Local name Namespace Attribute name

actuate XLink namespace xlink:actuate

arcrole XLink namespace xlink:arcrole

href XLink namespace xlink:href

role XLink namespace xlink:role

show XLink namespace xlink:show

title XLink namespace xlink:title

type XLink namespace xlink:type

lang XML namespace xml:lang

space XML namespace xml:space

xmlns XMLNS namespace xmlns

xlink XMLNS namespace xmlns:xlink

No other namespaced attribute can be expressed in the HTML syntaxp1259.

Certain tags can be omitted.

In the following example, the typep523 attribute is given with the single-quoted attribute value syntax:

<input type='checkbox'>

Example

In the following example, the namep599 attribute is given with the double-quoted attribute value syntax:

<input name="be evil">

Example

Whether the attributes in the table above are conforming or not is defined by other specifications (e.g. SVG 2 and MathML); this
section only describes the syntax rules if the attributes are serialized using the HTML syntax.

Note

13.1.2.4 Optional tags §p12

63

1263

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace

An htmlp172 element's start tagp1261 may be omitted if the first thing inside the htmlp172 element is not a commentp1270.

Omitting an element's start tagp1261 in the situations described below does not mean the element is not present; it is implied, but it
is still there. For example, an HTML document always has a root htmlp172 element, even if the string <html> doesn't appear
anywhere in the markup.

Note

For example, in the following case it's ok to remove the "<html>" tag:

<!DOCTYPE HTML>
<html>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

Doing so would make the document look like this:

<!DOCTYPE HTML>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

This has the exact same DOM. In particular, note that whitespace around the document element is ignored by the parser. The
following example would also have the exact same DOM:

<!DOCTYPE HTML><head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

However, in the following example, removing the start tag moves the comment to before the htmlp172 element:

<!DOCTYPE HTML>
<html>

<!-- where is this comment in the DOM? -->
<head>

<title>Hello</title>
</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

With the tag removed, the document actually turns into the same as this:

<!DOCTYPE HTML>

Example

1264

https://dom.spec.whatwg.org/#document-element

An htmlp172 element's end tagp1262 may be omitted if the htmlp172 element is not immediately followed by a commentp1270.

A headp173 element's start tagp1261 may be omitted if the element is empty, or if the first thing inside the headp173 element is an
element.

A headp173 element's end tagp1262 may be omitted if the headp173 element is not immediately followed by ASCII whitespace or a
commentp1270.

A bodyp205 element's start tagp1261 may be omitted if the element is empty, or if the first thing inside the bodyp205 element is not ASCII
whitespace or a commentp1270, except if the first thing inside the bodyp205 element is a metap189, noscriptp669, linkp177, scriptp652,
stylep200, or templatep671 element.

A bodyp205 element's end tagp1262 may be omitted if the bodyp205 element is not immediately followed by a commentp1270.

<!-- where is this comment in the DOM? -->
<html>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

This is why the tag can only be removed if it is not followed by a comment: removing the tag when there is a comment there
changes the document's resulting parse tree. Of course, if the position of the comment does not matter, then the tag can be
omitted, as if the comment had been moved to before the start tag in the first place.

Note that in the example above, the headp173 element start and end tags, and the bodyp205 element start tag, can't be omitted,
because they are surrounded by whitespace:

<!DOCTYPE HTML>
<html>

<head>
<title>Hello</title>

</head>
<body>

<p>Welcome to this example.</p>
</body>

</html>

(The bodyp205 and htmlp172 element end tags could be omitted without trouble; any spaces after those get parsed into the bodyp205

element anyway.)

Usually, however, whitespace isn't an issue. If we first remove the whitespace we don't care about:

<!DOCTYPE HTML><html><head><title>Hello</title></head><body><p>Welcome to this
example.</p></body></html>

Then we can omit a number of tags without affecting the DOM:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.</p>

At that point, we can also add some whitespace back:

<!DOCTYPE HTML>
<title>Hello</title>

Example

1265

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

An lip241 element's end tagp1262 may be omitted if the lip241 element is immediately followed by another lip241 element or if there is
no more content in the parent element.

A dtp247 element's end tagp1262 may be omitted if the dtp247 element is immediately followed by another dtp247 element or a ddp248

element.

A ddp248 element's end tagp1262 may be omitted if the ddp248 element is immediately followed by another ddp248 element or a dtp247

element, or if there is no more content in the parent element.

A pp229 element's end tagp1262 may be omitted if the pp229 element is immediately followed by an addressp222, articlep206, asidep214,
blockquotep235, detailsp637, dialogp646, divp256, dlp244, fieldsetp594, figcaptionp252, figurep249, footerp220, formp514, h1p216, h2p216,
h3p216, h4p216, h5p216, h6p216, headerp218, hgroupp218, hrp231, mainp253, menup240, navp211, olp238, pp229, prep233, searchp254, sectionp209,
tablep478, or ulp239 element, or if there is no more content in the parent element and the parent element is an HTML elementp45 that is
not an ap257, audiop410, delp338, insp337, mapp470, noscriptp669, or videop406 element, or an autonomous custom elementp759.

An rtp277 element's end tagp1262 may be omitted if the rtp277 element is immediately followed by an rtp277 or rpp277 element, or if there
is no more content in the parent element.

An rpp277 element's end tagp1262 may be omitted if the rpp277 element is immediately followed by an rtp277 or rpp277 element, or if there
is no more content in the parent element.

An optgroupp576 element's end tagp1262 may be omitted if the optgroupp576 element is immediately followed by another optgroupp576

element, if it is immediately followed by an hrp231 element, or if there is no more content in the parent element.

An optionp577 element's end tagp1262 may be omitted if the optionp577 element is immediately followed by another optionp577 element,
if it is immediately followed by an optgroupp576 element, if it is immediately followed by an hrp231 element, or if there is no more
content in the parent element.

A colgroupp487 element's start tagp1261 may be omitted if the first thing inside the colgroupp487 element is a colp488 element, and if the
element is not immediately preceded by another colgroupp487 element whose end tagp1262 has been omitted. (It can't be omitted if the
element is empty.)

A colgroupp487 element's end tagp1262 may be omitted if the colgroupp487 element is not immediately followed by ASCII whitespace or
a commentp1270.

A captionp486 element's end tagp1262 may be omitted if the captionp486 element is not immediately followed by ASCII whitespace or a
commentp1270.

A theadp490 element's end tagp1262 may be omitted if the theadp490 element is immediately followed by a tbodyp489 or tfootp491

element.

A tbodyp489 element's start tagp1261 may be omitted if the first thing inside the tbodyp489 element is a trp492 element, and if the element
is not immediately preceded by a tbodyp489, theadp490, or tfootp491 element whose end tagp1262 has been omitted. (It can't be omitted
if the element is empty.)

A tbodyp489 element's end tagp1262 may be omitted if the tbodyp489 element is immediately followed by a tbodyp489 or tfootp491

<p>Welcome to this example.</p>

This would be equivalent to this document, with the omitted tags shown in their parser-implied positions; the only whitespace text
node that results from this is the newline at the end of the headp173 element:

<!DOCTYPE HTML>
<html><head><title>Hello</title>
</head><body><p>Welcome to this example.</p></body></html>

We can thus simplify the earlier example further:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.

Example

1266

https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace

element, or if there is no more content in the parent element.

A tfootp491 element's end tagp1262 may be omitted if there is no more content in the parent element.

A trp492 element's end tagp1262 may be omitted if the trp492 element is immediately followed by another trp492 element, or if there is no
more content in the parent element.

A tdp493 element's end tagp1262 may be omitted if the tdp493 element is immediately followed by a tdp493 or thp495 element, or if there is
no more content in the parent element.

A thp495 element's end tagp1262 may be omitted if the thp495 element is immediately followed by a tdp493 or thp495 element, or if there is
no more content in the parent element.

The ability to omit all these table-related tags makes table markup much terser.

Take this example:

<table>
<caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)</caption>
<colgroup><col><col><col></colgroup>
<thead>
<tr>
<th>Function</th>
<th>Control Unit</th>
<th>Central Station</th>

</tr>
</thead>
<tbody>
<tr>
<td>Headlights</td>
<td>✔</td>
<td>✔</td>

</tr>
<tr>
<td>Interior Lights</td>
<td>✔</td>
<td>✔</td>

</tr>
<tr>
<td>Electric locomotive operating sounds</td>
<td>✔</td>
<td>✔</td>

</tr>
<tr>
<td>Engineer's cab lighting</td>
<td></td>
<td>✔</td>

</tr>
<tr>
<td>Station Announcements - Swiss</td>
<td></td>
<td>✔</td>

</tr>
</tbody>

</table>

The exact same table, modulo some whitespace differences, could be marked up as follows:

<table>
<caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)

Example

1267

However, a start tagp1261 must never be omitted if it has any attributes.

<colgroup><col><col><col>
<thead>
<tr>
<th>Function
<th>Control Unit
<th>Central Station

<tbody>
<tr>
<td>Headlights
<td>✔
<td>✔

<tr>
<td>Interior Lights
<td>✔
<td>✔

<tr>
<td>Electric locomotive operating sounds
<td>✔
<td>✔

<tr>
<td>Engineer's cab lighting
<td>
<td>✔

<tr>
<td>Station Announcements - Swiss
<td>
<td>✔

</table>

Since the cells take up much less room this way, this can be made even terser by having each row on one line:

<table>
<caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)
<colgroup><col><col><col>
<thead>
<tr> <th>Function <th>Control Unit <th>Central Station

<tbody>
<tr> <td>Headlights <td>✔ <td>✔
<tr> <td>Interior Lights <td>✔ <td>✔
<tr> <td>Electric locomotive operating sounds <td>✔ <td>✔
<tr> <td>Engineer's cab lighting <td> <td>✔
<tr> <td>Station Announcements - Swiss <td> <td>✔

</table>

The only differences between these tables, at the DOM level, is with the precise position of the (in any case semantically-neutral)
whitespace.

Returning to the earlier example with all the whitespace removed and then all the optional tags removed:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.

If the bodyp205 element in this example had to have a classp154 attribute and the htmlp172 element had to have a langp158 attribute,
the markup would have to become:

<!DOCTYPE HTML><html lang="en"><title>Hello</title><body class="demo"><p>Welcome to this example.

Example

1268

For historical reasons, certain elements have extra restrictions beyond even the restrictions given by their content model.

A tablep478 element must not contain trp492 elements, even though these elements are technically allowed inside tablep478 elements
according to the content models described in this specification. (If a trp492 element is put inside a tablep478 in the markup, it will in fact
imply a tbodyp489 start tag before it.)

A single newlinep1269 may be placed immediately after the start tagp1261 of prep233 and textareap579 elements. This does not affect the
processing of the element. The otherwise optional newlinep1269 must be included if the element's contents themselves start with a
newlinep1269 (because otherwise the leading newline in the contents would be treated like the optional newline, and ignored).

The text in raw textp1260 and escapable raw text elementsp1260 must not contain any occurrences of the string "</" (U+003C LESS-THAN
SIGN, U+002F SOLIDUS) followed by characters that case-insensitively match the tag name of the element followed by one of U+0009
CHARACTER TABULATION (tab), U+000A LINE FEED (LF), U+000C FORM FEED (FF), U+000D CARRIAGE RETURN (CR), U+0020 SPACE,
U+003E GREATER-THAN SIGN (>), or U+002F SOLIDUS (/).

Text is allowed inside elements, attribute values, and comments. Extra constraints are placed on what is and what is not allowed in
text based on where the text is to be put, as described in the other sections.

Newlines in HTML may be represented either as U+000D CARRIAGE RETURN (CR) characters, U+000A LINE FEED (LF) characters, or
pairs of U+000D CARRIAGE RETURN (CR), U+000A LINE FEED (LF) characters in that order.

Where character referencesp1269 are allowed, a character reference of a U+000A LINE FEED (LF) character (but not a U+000D
CARRIAGE RETURN (CR) character) also represents a newlinep1269.

In certain cases described in other sections, textp1269 may be mixed with character references. These can be used to escape
characters that couldn't otherwise legally be included in textp1269.

Character references must start with a U+0026 AMPERSAND character (&). Following this, there are three possible kinds of character
references:

This section assumes that the document is conforming, in particular, that there are no content modelp147 violations. Omitting tags
in the fashion described in this section in a document that does not conform to the content modelsp147 described in this
specification is likely to result in unexpected DOM differences (this is, in part, what the content models are designed to avoid).

Note

13.1.2.5 Restrictions on content models §p12

69

The following two prep233 blocks are equivalent:

<pre>Hello</pre>

<pre>
Hello</pre>

Example

13.1.2.6 Restrictions on the contents of raw text and escapable raw text elements §p12

69

13.1.3.1 Newlines §p12

69

13.1.3 Text §p12

69

13.1.4 Character references §p12

69

1269

Named character references
The ampersand must be followed by one of the names given in the named character referencesp1374 section, using the same case.
The name must be one that is terminated by a U+003B SEMICOLON character (;).

Decimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN character (#), followed by one or more ASCII digits, representing a
base-ten integer that corresponds to a code point that is allowed according to the definition below. The digits must then be followed
by a U+003B SEMICOLON character (;).

Hexadecimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN character (#), which must be followed by either a U+0078 LATIN
SMALL LETTER X character (x) or a U+0058 LATIN CAPITAL LETTER X character (X), which must then be followed by one or more
ASCII hex digits, representing a hexadecimal integer that corresponds to a code point that is allowed according to the definition
below. The digits must then be followed by a U+003B SEMICOLON character (;).

The numeric character reference forms described above are allowed to reference any code point excluding U+000D CR, noncharacters,
and controls other than ASCII whitespace.

An ambiguous ampersand is a U+0026 AMPERSAND character (&) that is followed by one or more ASCII alphanumerics, followed by
a U+003B SEMICOLON character (;), where these characters do not match any of the names given in the named character
referencesp1374 section.

CDATA sections must consist of the following components, in this order:

1. The string "<![CDATA[".

2. Optionally, textp1269, with the additional restriction that the text must not contain the string "]]>".

3. The string "]]>".

Comments must have the following format:

1. The string "<!--".

2. Optionally, textp1269, with the additional restriction that the text must not start with the string ">", nor start with the string
"->", nor contain the strings "<!--", "-->", or "--!>", nor end with the string "<!-".

3. The string "-->".

CDATA sections can only be used in foreign content (MathML or SVG). In this example, a CDATA section is used to escape the
contents of a MathML ms element:

<p>You can add a string to a number, but this stringifies the number:</p>
<math>
<ms><![CDATA[x<y]]></ms>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<ms><![CDATA[x<y3]]></ms>

</math>

Example

The textp1269 is allowed to end with the string "<!", as in <!--My favorite operators are > and <!-->.
Note

13.1.5 CDATA sections §p12

70

13.1.6 Comments §p12

70

1270

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://w3c.github.io/mathml-core/#string-literal-ms

This section only applies to user agents, data mining tools, and conformance checkers.

User agents must use the parsing rules described in this section to generate the DOM trees from text/htmlp1444 resources. Together,
these rules define what is referred to as the HTML parser.

For the purposes of conformance checkers, if a resource is determined to be in the HTML syntaxp1259, then it is an HTML document.

13.2 Parsing HTML documents §p12

71

The rules for parsing XML documents into DOM trees are covered by the next section, entitled "The XML syntaxp1384".
Note

While the HTML syntax described in this specification bears a close resemblance to SGML and XML, it is a separate language with
its own parsing rules.

Some earlier versions of HTML (in particular from HTML2 to HTML4) were based on SGML and used SGML parsing rules. However,
few (if any) web browsers ever implemented true SGML parsing for HTML documents; the only user agents to strictly handle HTML
as an SGML application have historically been validators. The resulting confusion — with validators claiming documents to have
one representation while widely deployed web browsers interoperably implemented a different representation — has wasted
decades of productivity. This version of HTML thus returns to a non-SGML basis.

Authors interested in using SGML tools in their authoring pipeline are encouraged to use XML tools and the XML serialization of
HTML.

Note

As stated in the terminology sectionp45, references to element typesp45 that do not explicitly specify a namespace always refer to
elements in the HTML namespace. For example, if the spec talks about "a menup240 element", then that is an element with the local
name "menu", the namespace "http://www.w3.org/1999/xhtml", and the interface HTMLMenuElementp241. Where possible,
references to such elements are hyperlinked to their definition.

Note

1271

https://dom.spec.whatwg.org/#html-document
https://infra.spec.whatwg.org/#html-namespace

The input to the HTML parsing process consists of a stream of code points, which is passed through a tokenizationp1290 stage followed
by a tree constructionp1318 stage. The output is a Documentp130 object.

In the common case, the data handled by the tokenization stage comes from the network, but it can also come from scriptp1150 running
in the user agent, e.g. using the document.write()p1153 API.

There is only one set of states for the tokenizer stage and the tree construction stage, but the tree construction stage is reentrant,
meaning that while the tree construction stage is handling one token, the tokenizer might be resumed, causing further tokens to be
emitted and processed before the first token's processing is complete.

Implementations that do not support scriptingp48 do not have to actually create a DOM Documentp130 object, but the DOM tree in
such cases is still used as the model for the rest of the specification.

Note

In the following example, the tree construction stage will be called upon to handle a "p" start tag token while handling the "script"
end tag token:

...
<script>
document.write('<p>');

</script>
...

Example

Network

Byte Stream
Decoder

Input Stream
Preprocessor

Tokenizer

Tree
Construction

DOM

Script
Execution

document.write()

13.2.1 Overview of the parsing model §p12

72

1272

https://infra.spec.whatwg.org/#code-point

To handle these cases, parsers have a script nesting level, which must be initially set to zero, and a parser pause flag, which must
be initially set to false.

This specification defines the parsing rules for HTML documents, whether they are syntactically correct or not. Certain points in the
parsing algorithm are said to be parse errorsp1273. The error handling for parse errors is well-defined (that's the processing rules
described throughout this specification), but user agents, while parsing an HTML document, may abort the parserp1359 at the first parse
errorp1273 that they encounter for which they do not wish to apply the rules described in this specification.

Conformance checkers must report at least one parse error condition to the user if one or more parse error conditions exist in the
document and must not report parse error conditions if none exist in the document. Conformance checkers may report more than one
parse error condition if more than one parse error condition exists in the document.

Some parse errors have dedicated codes outlined in the table below that should be used by conformance checkers in reports.

Error descriptions in the table below are non-normative.

Code Description

abrupt-closing-of-
empty-comment

This error occurs if the parser encounters an empty commentp1270 that is abruptly closed by a U+003E (>) code point (i.e., <!--> or <!---
>). The parser behaves as if the comment is closed correctly.

abrupt-doctype-
public-identifier

This error occurs if the parser encounters a U+003E (>) code point in the DOCTYPEp1259 public identifier (e.g., <!DOCTYPE html PUBLIC
"foo>). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the Documentp130 to quirks mode.

abrupt-doctype-
system-identifier

This error occurs if the parser encounters a U+003E (>) code point in the DOCTYPEp1259 system identifier (e.g., <!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01//EN" "foo>). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the
Documentp130 to quirks mode.

absence-of-digits-
in-numeric-
character-
reference

This error occurs if the parser encounters a numeric character referencep1269 that doesn't contain any digits (e.g., &#qux;). In this case the
parser doesn't resolve the character reference.

cdata-in-html-
content

This error occurs if the parser encounters a CDATA sectionp1270 outside of foreign content (SVG or MathML). The parser treats such CDATA
sections (including leading "[CDATA[" and trailing "]]" strings) as comments.

character-
reference-
outside-unicode-
range

This error occurs if the parser encounters a numeric character referencep1269 that references a code point that is greater than the valid
Unicode range. The parser resolves such a character reference to a U+FFFD REPLACEMENT CHARACTER.

control-character-
in-input-stream

This error occurs if the input streamp1284 contains a control code point that is not ASCII whitespace or U+0000 NULL. Such code points are
parsed as-is and usually, where parsing rules don't apply any additional restrictions, make their way into the DOM.

control-character-
reference

This error occurs if the parser encounters a numeric character referencep1269 that references a control code point that is not ASCII
whitespace or is a U+000D CARRIAGE RETURN. The parser resolves such character references as-is except C1 control references that are
replaced according to the numeric character reference end statep1317.

duplicate-
attribute

This error occurs if the parser encounters an attributep1262 in a tag that already has an attribute with the same name. The parser ignores all
such duplicate occurrences of the attribute.

end-tag-with-
attributes

This error occurs if the parser encounters an end tagp1262 with attributesp1262. Attributes in end tags are ignored and do not make their way
into the DOM.

end-tag-with-
trailing-solidus

This error occurs if the parser encounters an end tagp1262 that has a U+002F (/) code point right before the closing U+003E (>) code point
(e.g., </div/>). Such a tag is treated as a regular end tag.

eof-before-tag-
name

This error occurs if the parser encounters the end of the input streamp1284 where a tag name is expected. In this case the parser treats the
beginning of a start tagp1261 (i.e., <) or an end tagp1262 (i.e., </) as text content.

Parse errors are only errors with the syntax of HTML. In addition to checking for parse errors, conformance checkers will also verify
that the document obeys all the other conformance requirements described in this specification.

Note

13.2.2 Parse errors §p12

73

1273

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#code-point

Code Description

eof-in-cdata This error occurs if the parser encounters the end of the input streamp1284 in a CDATA sectionp1270. The parser treats such CDATA sections as
if they are closed immediately before the end of the input stream.

eof-in-comment This error occurs if the parser encounters the end of the input streamp1284 in a commentp1270. The parser treats such comments as if they
are closed immediately before the end of the input stream.

eof-in-doctype This error occurs if the parser encounters the end of the input stream in a DOCTYPEp1259. In such a case, if the DOCTYPE is correctly placed
as a document preamble, the parser sets the Documentp130 to quirks mode.

eof-in-script-html-
comment-like-text

This error occurs if the parser encounters the end of the input streamp1284 in text that resembles an HTML commentp1270 inside scriptp652

element content (e.g., <script><!-- foo).

eof-in-tag This error occurs if the parser encounters the end of the input streamp1284 in a start tagp1261 or an end tagp1262 (e.g., <div id=). Such a tag
is ignored.

incorrectly-
closed-comment

This error occurs if the parser encounters a commentp1270 that is closed by the "--!>" code point sequence. The parser treats such
comments as if they are correctly closed by the "-->" code point sequence.

incorrectly-
opened-comment

This error occurs if the parser encounters the "<!" code point sequence that is not immediately followed by two U+002D (-) code points
and that is not the start of a DOCTYPEp1259 or a CDATA sectionp1270. All content that follows the "<!" code point sequence up to a U+003E
(>) code point (if present) or to the end of the input streamp1284 is treated as a comment.

invalid-character-
sequence-after-
doctype-name

This error occurs if the parser encounters any code point sequence other than "PUBLIC" and "SYSTEM" keywords after a DOCTYPEp1259 name.
In such a case, the parser ignores any following public or system identifiers, and if the DOCTYPE is correctly placed as a document
preamble, and if the parser cannot change the mode flagp1325 is false, sets the Documentp130 to quirks mode.

invalid-first-
character-of-tag-
name

This error occurs if the parser encounters a code point that is not an ASCII alpha where first code point of a start tagp1261 name or an end
tagp1262 name is expected. If a start tag was expected such code point and a preceding U+003C (<) is treated as text content, and all
content that follows is treated as markup. Whereas, if an end tag was expected, such code point and all content that follows up to a
U+003E (>) code point (if present) or to the end of the input streamp1284 is treated as a comment.

missing-attribute-
value

This error occurs if the parser encounters a U+003E (>) code point where an attributep1262 value is expected (e.g., <div id=>). The parser
treats the attribute as having an empty value.

missing-doctype-
name

This error occurs if the parser encounters a DOCTYPEp1259 that is missing a name (e.g., <!DOCTYPE>). In such a case, if the DOCTYPE is
correctly placed as a document preamble, the parser sets the Documentp130 to quirks mode.

missing-doctype-
public-identifier

This error occurs if the parser encounters a U+003E (>) code point where start of the DOCTYPEp1259 public identifier is expected (e.g.,
<!DOCTYPE html PUBLIC >). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the Documentp130

to quirks mode.

Syntactic structures that resemble HTML comments in scriptp652 elements are parsed as text content. They can be a part of a
scripting language-specific syntactic structure or be treated as an HTML-like comment, if the scripting language supports them (e.g.,
parsing rules for HTML-like comments can be found in Annex B of the JavaScript specification). The common reason for this error is a
violation of the restrictions for contents of script elementsp666. [JAVASCRIPT]p1479

Note

One possible cause of this error is using an XML markup declaration (e.g., <!ELEMENT br EMPTY>) in HTML.
Note

For example, consider the following markup:

<42></42>

This will be parsed into:

htmlp172

headp173

bodyp205

#text: <42>
#comment: 42

Example

While the first code point of a tag name is limited to an ASCII alpha, a wide range of code points (including ASCII digits) is allowed in
subsequent positions.

Note

1274

https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-alpha
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks

Code Description

missing-doctype-
system-identifier

This error occurs if the parser encounters a U+003E (>) code point where start of the DOCTYPEp1259 system identifier is expected (e.g.,
<!DOCTYPE html SYSTEM >). In such a case, if the DOCTYPE is correctly placed as a document preamble, the parser sets the Documentp130

to quirks mode.

missing-end-tag-
name

This error occurs if the parser encounters a U+003E (>) code point where an end tagp1262 name is expected, i.e., </>. The parser ignores
the whole "</>" code point sequence.

missing-quote-
before-doctype-
public-identifier

This error occurs if the parser encounters the DOCTYPEp1259 public identifier that is not preceded by a quote (e.g., <!DOCTYPE html PUBLIC
-//W3C//DTD HTML 4.01//EN">). In such a case, the parser ignores the public identifier, and if the DOCTYPE is correctly placed as a
document preamble, sets the Documentp130 to quirks mode.

missing-quote-
before-doctype-
system-identifier

This error occurs if the parser encounters the DOCTYPEp1259 system identifier that is not preceded by a quote (e.g., <!DOCTYPE html
SYSTEM http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">). In such a case, the parser ignores the system identifier, and
if the DOCTYPE is correctly placed as a document preamble, sets the Documentp130 to quirks mode.

missing-
semicolon-after-
character-
reference

This error occurs if the parser encounters a character referencep1269 that is not terminated by a U+003B (;) code point. Usually the parser
behaves as if character reference is terminated by the U+003B (;) code point; however, there are some ambiguous cases in which the
parser includes subsequent code points in the character reference.

missing-
whitespace-after-
doctype-public-
keyword

This error occurs if the parser encounters a DOCTYPEp1259 whose "PUBLIC" keyword and public identifier are not separated by ASCII
whitespace. In this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-after-
doctype-system-
keyword

This error occurs if the parser encounters a DOCTYPEp1259 whose "SYSTEM" keyword and system identifier are not separated by ASCII
whitespace. In this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-
before-doctype-
name

This error occurs if the parser encounters a DOCTYPEp1259 whose "DOCTYPE" keyword and name are not separated by ASCII whitespace. In
this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-
between-
attributes

This error occurs if the parser encounters attributesp1262 that are not separated by ASCII whitespace (e.g., <div id="foo"class="bar">). In
this case the parser behaves as if ASCII whitespace is present.

missing-
whitespace-
between-doctype-
public-and-
system-identifiers

This error occurs if the parser encounters a DOCTYPEp1259 whose public and system identifiers are not separated by ASCII whitespace. In
this case the parser behaves as if ASCII whitespace is present.

nested-comment This error occurs if the parser encounters a nested commentp1270 (e.g., <!-- <!-- nested --> -->). Such a comment will be closed by the
first occurring "-->" code point sequence and everything that follows will be treated as markup.

noncharacter-
character-
reference

This error occurs if the parser encounters a numeric character referencep1269 that references a noncharacter. The parser resolves such
character references as-is.

noncharacter-in-
input-stream

This error occurs if the input streamp1284 contains a noncharacter. Such code points are parsed as-is and usually, where parsing rules don't
apply any additional restrictions, make their way into the DOM.

non-void-html-
element-start-
tag-with-trailing-
solidus

This error occurs if the parser encounters a start tagp1261 for an element that is not in the list of void elementsp1260 or is not a part of foreign
content (i.e., not an SVG or MathML element) that has a U+002F (/) code point right before the closing U+003E (>) code point. The parser
behaves as if the U+002F (/) is not present.

For example, ¬in will be parsed as "¬in" whereas ¬in will be parsed as "∉".
Example

For example, consider the following markup:

<div/>

This will be parsed into:

htmlp172

headp173

bodyp205

divp256

Example

1275

https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point

Code Description

null-character-
reference

This error occurs if the parser encounters a numeric character referencep1269 that references a U+0000 NULL code point. The parser
resolves such character references to a U+FFFD REPLACEMENT CHARACTER.

surrogate-
character-
reference

This error occurs if the parser encounters a numeric character referencep1269 that references a surrogate. The parser resolves such
character references to a U+FFFD REPLACEMENT CHARACTER.

surrogate-in-
input-stream

This error occurs if the input streamp1284 contains a surrogate. Such code points are parsed as-is and usually, where parsing rules don't
apply any additional restrictions, make their way into the DOM.

unexpected-
character-after-
doctype-system-
identifier

This error occurs if the parser encounters any code points other than ASCII whitespace or closing U+003E (>) after the DOCTYPEp1259

system identifier. The parser ignores these code points.

unexpected-
character-in-
attribute-name

This error occurs if the parser encounters a U+0022 ("), U+0027 ('), or U+003C (<) code point in an attribute namep1262. The parser
includes such code points in the attribute name.

unexpected-
character-in-
unquoted-
attribute-value

This error occurs if the parser encounters a U+0022 ("), U+0027 ('), U+003C (<), U+003D (=), or U+0060 (`) code point in an unquoted
attribute valuep1262. The parser includes such code points in the attribute value.

spanp298

spanp298

The trailing U+002F (/) in a start tag name can be used only in foreign content to specify self-closing tags. (Self-closing tags don't
exist in HTML.) It is also allowed for void elements, but doesn't have any effect in this case.

Note

Surrogates can only find their way into the input stream via script APIs such as document.write()p1153.
Note

Code points that trigger this error are usually a part of another syntactic construct and can be a sign of a typo around the attribute
name.

Note

For example, consider the following markup:

<div foo<div>

Due to a forgotten U+003E (>) code point after foo the parser treats this markup as a single divp256 element with a "foo<div"
attribute.

As another example of this error, consider the following markup:

<div id'bar'>

Due to a forgotten U+003D (=) code point between an attribute name and value the parser treats this markup as a divp256 element
with the attribute "id'bar'" that has an empty value.

Example

Code points that trigger this error are usually a part of another syntactic construct and can be a sign of a typo around the attribute
value.

Note

U+0060 (`) is in the list of code points that trigger this error because certain legacy user agents treat it as a quote.
Note

For example, consider the following markup:

<div foo=b'ar'>

Due to a misplaced U+0027 (') code point the parser sets the value of the "foo" attribute to "b'ar'".

Example

1276

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point

Code Description

unexpected-
equals-sign-
before-attribute-
name

This error occurs if the parser encounters a U+003D (=) code point before an attribute name. In this case the parser treats U+003D (=) as
the first code point of the attribute name.

unexpected-null-
character

This error occurs if the parser encounters a U+0000 NULL code point in the input streamp1284 in certain positions. In general, such code
points are either ignored or, for security reasons, replaced with a U+FFFD REPLACEMENT CHARACTER.

unexpected-
question-mark-
instead-of-tag-
name

This error occurs if the parser encounters a U+003F (?) code point where first code point of a start tagp1261 name is expected. The U+003F
(?) and all content that follows up to a U+003E (>) code point (if present) or to the end of the input streamp1284 is treated as a comment.

unexpected-
solidus-in-tag

This error occurs if the parser encounters a U+002F (/) code point that is not a part of a quoted attributep1262 value and not immediately
followed by a U+003E (>) code point in a tag (e.g., <div / id="foo">). In this case the parser behaves as if it encountered ASCII
whitespace.

unknown-named-
character-
reference

This error occurs if the parser encounters an ambiguous ampersandp1270. In this case the parser doesn't resolve the character
referencep1269.

The stream of code points that comprises the input to the tokenization stage will be initially seen by the user agent as a stream of
bytes (typically coming over the network or from the local file system). The bytes encode the actual characters according to a
particular character encoding, which the user agent uses to decode the bytes into characters.

Usually, the encoding sniffing algorithmp1278 defined below is used to determine the character encoding.

Given a character encoding, the bytes in the input byte streamp1277 must be converted to characters for the tokenizer's input
streamp1284, by passing the input byte streamp1277 and character encoding to decode.

The common reason for this error is a forgotten attribute name.
Note

For example, consider the following markup:

<div foo="bar" ="baz">

Due to a forgotten attribute name the parser treats this markup as a divp256 element with two attributes: a "foo" attribute with a
"bar" value and a "="baz"" attribute with an empty value.

Example

For example, consider the following markup:

<?xml-stylesheet type="text/css" href="style.css"?>

This will be parsed into:

#comment: ?xml-stylesheet type="text/css" href="style.css"?
htmlp172

headp173

bodyp205

Example

The common reason for this error is an XML processing instruction (e.g., <?xml-stylesheet type="text/css"
href="style.css"?>) or an XML declaration (e.g., <?xml version="1.0" encoding="UTF-8"?>) being used in HTML.

Note

For XML documents, the algorithm user agents are required to use to determine the character encoding is given by XML. This
section does not apply to XML documents. [XML]p1484

Note

A leading Byte Order Mark (BOM) causes the character encoding argument to be ignored and will itself be skipped.
Note

13.2.3 The input byte stream §p12

77

1277

https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#code-point
https://dom.spec.whatwg.org/#interface-comment
https://infra.spec.whatwg.org/#code-point
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://encoding.spec.whatwg.org/#decode

When the HTML parser is decoding an input byte stream, it uses a character encoding and a confidence. The confidence is either
tentative, certain, or irrelevant. The encoding used, and whether the confidence in that encoding is tentative or certain, is used during
the parsingp1328 to determine whether to change the encodingp1284. If no encoding is necessary, e.g. because the parser is operating on
a Unicode stream and doesn't have to use a character encoding at all, then the confidencep1278 is irrelevant.

When the HTML parser is to operate on an input byte stream that has a known definite encoding, then the character encoding is
that encoding and the confidencep1278 is certain.

In some cases, it might be impractical to unambiguously determine the encoding before parsing the document. Because of this, this
specification provides for a two-pass mechanism with an optional pre-scan. Implementations are allowed, as described below, to apply
a simplified parsing algorithm to whatever bytes they have available before beginning to parse the document. Then, the real parser is
started, using a tentative encoding derived from this pre-parse and other out-of-band metadata. If, while the document is being loaded,
the user agent discovers a character encoding declaration that conflicts with this information, then the parser can get reinvoked to
perform a parse of the document with the real encoding.

User agents must use the following algorithm, called the encoding sniffing algorithm, to determine the character encoding to use
when decoding a document in the first pass. This algorithm takes as input any out-of-band metadata available to the user agent (e.g.
the Content-Type metadatap98 of the document) and all the bytes available so far, and returns a character encoding and a
confidencep1278 that is either tentative or certain.

1. If the result of BOM sniffing is an encoding, return that encoding with confidencep1278 certain.

2. If the user has explicitly instructed the user agent to override the document's character encoding with a specific encoding,
optionally return that encoding with the confidencep1278 certain.

3. The user agent may wait for more bytes of the resource to be available, either in this step or at any later step in this
algorithm. For instance, a user agent might wait 500ms or 1024 bytes, whichever came first. In general preparsing the
source to find the encoding improves performance, as it reduces the need to throw away the data structures used when
parsing upon finding the encoding information. However, if the user agent delays too long to obtain data to determine the
encoding, then the cost of the delay could outweigh any performance improvements from the preparse.

Bytes or sequences of bytes in the original byte stream that did not conform to the Encoding standard (e.g. invalid UTF-8 byte
sequences in a UTF-8 input byte stream) are errors that conformance checkers are expected to report. [ENCODING]p1478

Note

The decoder algorithms describe how to handle invalid input; for security reasons, it is imperative that those rules
be followed precisely. Differences in how invalid byte sequences are handled can result in, amongst other problems,
script injection vulnerabilities ("XSS").

⚠Warning!

Some algorithms feed the parser by directly adding characters to the input streamp1284 rather than adding bytes to the input byte
streamp1277.

Note

13.2.3.1 Parsing with a known character encoding §p12

78

13.2.3.2 Determining the character encoding §p12

78

Although the decode algorithm will itself change the encoding to use based on the presence of a byte order mark, this
algorithm sniffs the BOM as well in order to set the correct document's character encoding and confidencep1278.

Note

Typically, user agents remember such user requests across sessions, and in some cases apply them to documents in
iframep390s as well.

Note

1278

https://encoding.spec.whatwg.org/#bom-sniff
https://encoding.spec.whatwg.org/#decode
https://dom.spec.whatwg.org/#concept-document-encoding

4. If the transport layer specifies a character encoding, and it is supported, return that encoding with the confidencep1278

certain.

5. Optionally prescan the byte stream to determine its encodingp1280, with the end conditionp1280 being when the user agent
decides that scanning further bytes would not be efficient. User agents are encouraged to only prescan the first 1024 bytes.
User agents may decide that scanning any bytes is not efficient, in which case these substeps are entirely skipped.

The aforementioned algorithm returns either a character encoding or failure. If it returns a character encoding, then return
the same encoding, with confidencep1278 tentative.

6. If the HTML parserp1271 for which this algorithm is being run is associated with a Documentp130 d whose container
documentp992 is non-null, then:

1. Let parentDocument be d's container documentp992.

2. If parentDocument's origin is same originp899 with d's origin and parentDocument's character encoding is not
UTF-16BE/LE, then return parentDocument's character encoding, with the confidencep1278 tentative.

7. Otherwise, if the user agent has information on the likely encoding for this page, e.g. based on the encoding of the page
when it was last visited, then return that encoding, with the confidencep1278 tentative.

8. The user agent may attempt to autodetect the character encoding from applying frequency analysis or other algorithms to
the data stream. Such algorithms may use information about the resource other than the resource's contents, including the
address of the resource. If autodetection succeeds in determining a character encoding, and that encoding is a supported
encoding, then return that encoding, with the confidencep1278 tentative. [UNIVCHARDET]p1483

9. Otherwise, return an implementation-defined or user-specified default character encoding, with the confidencep1278 tentative.

In controlled environments or in environments where the encoding of documents can be prescribed (for example, for user
agents intended for dedicated use in new networks), the comprehensive UTF-8 encoding is suggested.

In other environments, the default encoding is typically dependent on the user's locale (an approximation of the languages,
and thus often encodings, of the pages that the user is likely to frequent). The following table gives suggested defaults based
on the user's locale, for compatibility with legacy content. Locales are identified by BCP 47 language tags. [BCP47]p1475

[ENCODING]p1478

Locale language Suggested default encoding

ar Arabic windows-1256
az Azeri windows-1254
ba Bashkir windows-1251
be Belarusian windows-1251
bg Bulgarian windows-1251
cs Czech windows-1250
el Greek ISO-8859-7
et Estonian windows-1257
fa Persian windows-1256
he Hebrew windows-1255

The authoring conformance requirements for character encoding declarations limit them to only appearing in the first
1024 bytesp199. User agents are therefore encouraged to use the prescan algorithm below (as invoked by these steps) on
the first 1024 bytes, but not to stall beyond that.

Note

User agents are generally discouraged from attempting to autodetect encodings for resources obtained over the
network, since doing so involves inherently non-interoperable heuristics. Attempting to detect encodings based on an
HTML document's preamble is especially tricky since HTML markup typically uses only ASCII characters, and HTML
documents tend to begin with a lot of markup rather than with text content.

Note

The UTF-8 encoding has a highly detectable bit pattern. Files from the local file system that contain bytes with values
greater than 0x7F which match the UTF-8 pattern are very likely to be UTF-8, while documents with byte sequences that
do not match it are very likely not. When a user agent can examine the whole file, rather than just the preamble,
detecting for UTF-8 specifically can be especially effective. [PPUTF8]p1481 [UTF8DET]p1483

Note

1279

https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-origin
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-16be-le
https://dom.spec.whatwg.org/#concept-document-encoding
https://infra.spec.whatwg.org/#implementation-defined
https://encoding.spec.whatwg.org/#windows-1256
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#iso-8859-7
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1256
https://encoding.spec.whatwg.org/#windows-1255

Locale language Suggested default encoding

hr Croatian windows-1250
hu Hungarian ISO-8859-2
ja Japanese Shift_JIS
kk Kazakh windows-1251
ko Korean EUC-KR
ku Kurdish windows-1254
ky Kyrgyz windows-1251
lt Lithuanian windows-1257
lv Latvian windows-1257
mk Macedonian windows-1251
pl Polish ISO-8859-2
ru Russian windows-1251
sah Yakut windows-1251
sk Slovak windows-1250
sl Slovenian ISO-8859-2
sr Serbian windows-1251
tg Tajik windows-1251
th Thai windows-874
tr Turkish windows-1254
tt Tatar windows-1251
uk Ukrainian windows-1251
vi Vietnamese windows-1258
zh-Hans, zh-CN, zh-SG Chinese, Simplified GBK
zh-Hant, zh-HK, zh-MO, zh-TW Chinese, Traditional Big5
All other locales windows-1252

The contents of this table are derived from the intersection of Windows, Chrome, and Firefox defaults.

The document's character encoding must immediately be set to the value returned from this algorithm, at the same time as the user
agent uses the returned value to select the decoder to use for the input byte stream.

When an algorithm requires a user agent to prescan a byte stream to determine its encoding, given some defined end
condition, then it must run the following steps. If at any point during these steps (including during instances of the get an
attributep1282 algorithm invoked by this one) the user agent either runs out of bytes (meaning the position pointer created in the first
step below goes beyond the end of the byte stream obtained so far) or reaches its end condition, then abort the prescan a byte stream
to determine its encodingp1280 algorithm and return the result get an XML encodingp1283 applied to the same bytes that the prescan a
byte stream to determine its encodingp1280 algorithm was applied to. Otherwise, these steps will return a character encoding.

1. Let fallback encoding be null.

2. Let position be a pointer to a byte in the input byte stream, initially pointing at the first byte.

3. Prescan for UTF-16 XML declarations: If position points to:

↪ A sequence of bytes starting with: 0x3C, 0x0, 0x3F, 0x0, 0x78, 0x0 (case-sensitive UTF-16 little-endian
'<?x')

Return UTF-16LE.

↪ A sequence of bytes starting with: 0x0, 0x3C, 0x0, 0x3F, 0x0, 0x78 (case-sensitive UTF-16 big-endian '<?x')
Return UTF-16BE.

4. Loop: If position points to:

↪ A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (`<!--`)
Advance the position pointer so that it points at the first 0x3E byte which is preceded by two 0x2D bytes (i.e. at the
end of an ASCII '-->' sequence) and comes after the 0x3C byte that was found. (The two 0x2D bytes can be the same

For historical reasons, the prefix is two bytes longer than in Appendix F of XML and the encoding name is not checked.
Note

1280

https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#shift_jis
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#euc-kr
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-874
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1258
https://encoding.spec.whatwg.org/#gbk
https://encoding.spec.whatwg.org/#big5
https://encoding.spec.whatwg.org/#windows-1252
https://dom.spec.whatwg.org/#concept-document-encoding
https://encoding.spec.whatwg.org/#utf-16le
https://encoding.spec.whatwg.org/#utf-16be
https://www.w3.org/TR/REC-xml/#sec-guessing

as those in the '<!--' sequence.)

↪ A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65, 0x54 or 0x74, 0x41 or 0x61, and one
of 0x09, 0x0A, 0x0C, 0x0D, 0x20, 0x2F (case-insensitive ASCII '<meta' followed by a space or slash)

1. Advance the position pointer so that it points at the next 0x09, 0x0A, 0x0C, 0x0D, 0x20, or 0x2F byte (the
one in sequence of characters matched above).

2. Let attribute list be an empty list of strings.

3. Let got pragma be false.

4. Let need pragma be null.

5. Let charset be the null value (which, for the purposes of this algorithm, is distinct from an unrecognized
encoding or the empty string).

6. Attributes: Get an attributep1282 and its value. If no attribute was sniffed, then jump to the processing step
below.

7. If the attribute's name is already in attribute list, then return to the step labeled attributes.

8. Add the attribute's name to attribute list.

9. Run the appropriate step from the following list, if one applies:

↪ If the attribute's name is "http-equiv"
If the attribute's value is "content-type", then set got pragma to true.

↪ If the attribute's name is "content"
Apply the algorithm for extracting a character encoding from a meta elementp99, giving the
attribute's value as the string to parse. If a character encoding is returned, and if charset is still set to
null, let charset be the encoding returned, and set need pragma to true.

↪ If the attribute's name is "charset"
Let charset be the result of getting an encoding from the attribute's value, and set need pragma to
false.

10. Return to the step labeled attributes.

11. Processing: If need pragma is null, then jump to the step below labeled next byte.

12. If need pragma is true but got pragma is false, then jump to the step below labeled next byte.

13. If charset is failure, then jump to the step below labeled next byte.

14. If charset is UTF-16BE/LE, then set charset to UTF-8.

15. If charset is x-user-defined, then set charset to windows-1252.

16. Return charset.

↪ A sequence of bytes starting with a 0x3C byte (<), optionally a 0x2F byte (/), and finally a byte in the range
0x41-0x5A or 0x61-0x7A (A-Z or a-z)

1. Advance the position pointer so that it points at the next 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), 0x20
(SP), or 0x3E (>) byte.

2. Repeatedly get an attributep1282 until no further attributes can be found, then jump to the step below labeled
next byte.

↪ A sequence of bytes starting with: 0x3C 0x21 (`<!`)
↪ A sequence of bytes starting with: 0x3C 0x2F (`</`)
↪ A sequence of bytes starting with: 0x3C 0x3F (`<?`)

Advance the position pointer so that it points at the first 0x3E byte (>) that comes after the 0x3C byte that was found.

↪ Any other byte
Do nothing with that byte.

1281

https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#utf-16be-le
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#windows-1252

5. Next byte: Move position so it points at the next byte in the input byte stream, and return to the step above labeled loop.

When the prescan a byte stream to determine its encodingp1280 algorithm says to get an attribute, it means doing this:

1. If the byte at position is one of 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), 0x20 (SP), or 0x2F (/) then advance position to
the next byte and redo this step.

2. If the byte at position is 0x3E (>), then abort the get an attributep1282 algorithm. There isn't one.

3. Otherwise, the byte at position is the start of the attribute name. Let attribute name and attribute value be the empty string.

4. Process the byte at position as follows:

↪ If it is 0x3D (=), and the attribute name is longer than the empty string
Advance position to the next byte and jump to the step below labeled value.

↪ If it is 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), or 0x20 (SP)
Jump to the step below labeled spaces.

↪ If it is 0x2F (/) or 0x3E (>)
Abort the get an attributep1282 algorithm. The attribute's name is the value of attribute name, its value is the empty
string.

↪ If it is in the range 0x41 (A) to 0x5A (Z)
Append the code point b+0x20 to attribute name (where b is the value of the byte at position). (This converts the
input to lowercase.)

↪ Anything else
Append the code point with the same value as the byte at position to attribute name. (It doesn't actually matter how
bytes outside the ASCII range are handled here, since only ASCII bytes can contribute to the detection of a character
encoding.)

5. Advance position to the next byte and return to the previous step.

6. Spaces: If the byte at position is one of 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), or 0x20 (SP) then advance position to the
next byte, then, repeat this step.

7. If the byte at position is not 0x3D (=), abort the get an attributep1282 algorithm. The attribute's name is the value of attribute
name, its value is the empty string.

8. Advance position past the 0x3D (=) byte.

9. Value: If the byte at position is one of 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), or 0x20 (SP) then advance position to the
next byte, then, repeat this step.

10. Process the byte at position as follows:

↪ If it is 0x22 (") or 0x27 (')

1. Let b be the value of the byte at position.

2. Quote loop: Advance position to the next byte.

3. If the value of the byte at position is the value of b, then advance position to the next byte and abort the
"get an attribute" algorithm. The attribute's name is the value of attribute name, and its value is the value
of attribute value.

4. Otherwise, if the value of the byte at position is in the range 0x41 (A) to 0x5A (Z), then append a code point
to attribute value whose value is 0x20 more than the value of the byte at position.

5. Otherwise, append a code point to attribute value whose value is the same as the value of the byte at
position.

6. Return to the step above labeled quote loop.

↪ If it is 0x3E (>)
Abort the get an attributep1282 algorithm. The attribute's name is the value of attribute name, its value is the empty
string.

1282

↪ If it is in the range 0x41 (A) to 0x5A (Z)
Append a code point b+0x20 to attribute value (where b is the value of the byte at position). Advance position to the
next byte.

↪ Anything else
Append a code point with the same value as the byte at position to attribute value. Advance position to the next byte.

11. Process the byte at position as follows:

↪ If it is 0x09 (HT), 0x0A (LF), 0x0C (FF), 0x0D (CR), 0x20 (SP), or 0x3E (>)
Abort the get an attributep1282 algorithm. The attribute's name is the value of attribute name and its value is the value
of attribute value.

↪ If it is in the range 0x41 (A) to 0x5A (Z)
Append a code point b+0x20 to attribute value (where b is the value of the byte at position).

↪ Anything else
Append a code point with the same value as the byte at position to attribute value.

12. Advance position to the next byte and return to the previous step.

When the prescan a byte stream to determine its encodingp1280 algorithm is aborted without returning an encoding, get an XML
encoding means doing this.

1. Let encodingPosition be a pointer to the start of the stream.

2. If encodingPosition does not point to the start of a byte sequence 0x3C, 0x3F, 0x78, 0x6D, 0x6C (`<?xml`), then return
failure.

3. Let xmlDeclarationEnd be a pointer to the next byte in the input byte stream which is 0x3E (>). If there is no such byte, then
return failure.

4. Set encodingPosition to the position of the first occurrence of the subsequence of bytes 0x65, 0x6E, 0x63, 0x6F, 0x64, 0x69,
0x6E, 0x67 (`encoding`) at or after the current encodingPosition. If there is no such sequence, then return failure.

5. Advance encodingPosition past the 0x67 (g) byte.

6. While the byte at encodingPosition is less than or equal to 0x20 (i.e., it is either an ASCII space or control character),
advance encodingPosition to the next byte.

7. If the byte at encodingPosition is not 0x3D (=), then return failure.

8. Advance encodingPosition to the next byte.

9. While the byte at encodingPosition is less than or equal to 0x20 (i.e., it is either an ASCII space or control character),
advance encodingPosition to the next byte.

10. Let quoteMark be the byte at encodingPosition.

11. If quoteMark is not either 0x22 (") or 0x27 ('), then return failure.

12. Advance encodingPosition to the next byte.

13. Let encodingEndPosition be the position of the next occurrence of quoteMark at or after encodingPosition. If quoteMark does
not occur again, then return failure.

14. Let potentialEncoding be the sequence of the bytes between encodingPosition (inclusive) and encodingEndPosition
(exclusive).

15. If potentialEncoding contains one or more bytes whose byte value is 0x20 or below, then return failure.

16. Let encoding be the result of getting an encoding given potentialEncoding isomorphic decoded.

17. If the encoding is UTF-16BE/LE, then change it to UTF-8.

18. Return encoding.

Looking for syntax resembling an XML declaration, even in text/htmlp1444, is necessary for compatibility with existing content.
Note

1283

https://encoding.spec.whatwg.org/#concept-encoding-get
https://infra.spec.whatwg.org/#isomorphic-decode
https://encoding.spec.whatwg.org/#utf-16be-le
https://encoding.spec.whatwg.org/#utf-8

For the sake of interoperability, user agents should not use a pre-scan algorithm that returns different results than the one described
above. (But, if you do, please at least let us know, so that we can improve this algorithm and benefit everyone...)

User agents must support the encodings defined in Encoding, including, but not limited to, UTF-8, ISO-8859-2, ISO-8859-7,
ISO-8859-8, windows-874, windows-1250, windows-1251, windows-1252, windows-1254, windows-1255, windows-1256,
windows-1257, windows-1258, GBK, Big5, ISO-2022-JP, Shift_JIS, EUC-KR, UTF-16BE, UTF-16LE, UTF-16BE/LE, and x-user-
defined. User agents must not support other encodings.

When the parser requires the user agent to change the encoding, it must run the following steps. This might happen if the encoding
sniffing algorithmp1278 described above failed to find a character encoding, or if it found a character encoding that was not the actual
encoding of the file.

1. If the encoding that is already being used to interpret the input stream is UTF-16BE/LE, then set the confidencep1278 to certain
and return. The new encoding is ignored; if it was anything but the same encoding, then it would be clearly incorrect.

2. If the new encoding is UTF-16BE/LE, then change it to UTF-8.

3. If the new encoding is x-user-defined, then change it to windows-1252.

4. If the new encoding is identical or equivalent to the encoding that is already being used to interpret the input stream, then
set the confidencep1278 to certain and return. This happens when the encoding information found in the file matches what the
encoding sniffing algorithmp1278 determined to be the encoding, and in the second pass through the parser if the first pass
found that the encoding sniffing algorithm described in the earlier section failed to find the right encoding.

5. If all the bytes up to the last byte converted by the current decoder have the same Unicode interpretations in both the
current encoding and the new encoding, and if the user agent supports changing the converter on the fly, then the user
agent may change to the new converter for the encoding on the fly. Set the document's character encoding and the encoding
used to convert the input stream to the new encoding, set the confidencep1278 to certain, and return.

6. Otherwise, restart the navigatep1014 algorithm, with historyHandlingp1014 set to "replacep1014" and other inputs kept the same,
but this time skip the encoding sniffing algorithmp1278 and instead just set the encoding to the new encoding and the
confidencep1278 to certain. Whenever possible, this should be done without actually contacting the network layer (the bytes
should be re-parsed from memory), even if, e.g., the document is marked as not being cacheable. If this is not possible and
contacting the network layer would involve repeating a request that uses a method other than `GET`, then instead set the
confidencep1278 to certain and ignore the new encoding. The resource will be misinterpreted. User agents may notify the user
of the situation, to aid in application development.

The input stream consists of the characters pushed into it as the input byte streamp1277 is decoded or from the various APIs that
directly manipulate the input stream.

Any occurrences of surrogates are surrogate-in-input-streamp1276 parse errorsp1273. Any occurrences of noncharacters are noncharacter-
in-input-streamp1275 parse errorsp1273 and any occurrences of controls other than ASCII whitespace and U+0000 NULL characters are
control-character-in-input-streamp1273 parse errorsp1273.

13.2.3.3 Character encodings §p12

84

The above prohibits supporting, for example, CESU-8, UTF-7, BOCU-1, SCSU, EBCDIC, and UTF-32. This specification does not make
any attempt to support prohibited encodings in its algorithms; support and use of prohibited encodings would thus lead to
unexpected behavior. [CESU8]p1475 [UTF7]p1483 [BOCU1]p1475 [SCSU]p1482

Note

13.2.3.4 Changing the encoding while parsing §p12

84

This algorithm is only invoked when a new encoding is found declared on a metap189 element.
Note

13.2.3.5 Preprocessing the input stream §p12

84

1284

https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#iso-8859-2
https://encoding.spec.whatwg.org/#iso-8859-7
https://encoding.spec.whatwg.org/#iso-8859-8
https://encoding.spec.whatwg.org/#windows-874
https://encoding.spec.whatwg.org/#windows-1250
https://encoding.spec.whatwg.org/#windows-1251
https://encoding.spec.whatwg.org/#windows-1252
https://encoding.spec.whatwg.org/#windows-1254
https://encoding.spec.whatwg.org/#windows-1255
https://encoding.spec.whatwg.org/#windows-1256
https://encoding.spec.whatwg.org/#windows-1257
https://encoding.spec.whatwg.org/#windows-1258
https://encoding.spec.whatwg.org/#gbk
https://encoding.spec.whatwg.org/#big5
https://encoding.spec.whatwg.org/#iso-2022-jp
https://encoding.spec.whatwg.org/#shift_jis
https://encoding.spec.whatwg.org/#euc-kr
https://encoding.spec.whatwg.org/#utf-16be
https://encoding.spec.whatwg.org/#utf-16le
https://encoding.spec.whatwg.org/#utf-16be-le
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#utf-16be-le
https://encoding.spec.whatwg.org/#utf-16be-le
https://encoding.spec.whatwg.org/#utf-8
https://encoding.spec.whatwg.org/#x-user-defined
https://encoding.spec.whatwg.org/#windows-1252
https://dom.spec.whatwg.org/#concept-document-encoding
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace

Before the tokenizationp1290 stage, the input stream must be preprocessed by normalizing newlines. Thus, newlines in HTML DOMs are
represented by U+000A LF characters, and there are never any U+000D CR characters in the input to the tokenizationp1290 stage.

The next input character is the first character in the input streamp1284 that has not yet been consumed or explicitly ignored by the
requirements in this section. Initially, the next input characterp1285 is the first character in the input. The current input character is
the last character to have been consumed.

The insertion point is the position (just before a character or just before the end of the input stream) where content inserted using
document.write()p1153 is actually inserted. The insertion point is relative to the position of the character immediately after it, it is not
an absolute offset into the input stream. Initially, the insertion point is undefined.

The "EOF" character in the tables below is a conceptual character representing the end of the input streamp1284. If the parser is a
script-created parserp1151, then the end of the input streamp1284 is reached when an explicit "EOF" character (inserted by the
document.close()p1152 method) is consumed. Otherwise, the "EOF" character is not a real character in the stream, but rather the lack
of any further characters.

The insertion mode is a state variable that controls the primary operation of the tree construction stage.

Initially, the insertion modep1285 is "initialp1325". It can change to "before htmlp1326", "before headp1327", "in headp1328", "in head
noscriptp1330", "after headp1331", "in bodyp1332", "textp1342", "in tablep1343", "in table textp1345", "in captionp1346", "in column groupp1346", "in
table bodyp1347", "in rowp1348", "in cellp1349", "in selectp1350", "in select in tablep1352", "in templatep1352", "after bodyp1353", "in
framesetp1354", "after framesetp1355", "after after bodyp1355", and "after after framesetp1355" during the course of the parsing, as
described in the tree constructionp1318 stage. The insertion mode affects how tokens are processed and whether CDATA sections are
supported.

Several of these modes, namely "in headp1328", "in bodyp1332", "in tablep1343", and "in selectp1350", are special, in that the other modes
defer to them at various times. When the algorithm below says that the user agent is to do something "using the rules for the m
insertion mode", where m is one of these modes, the user agent must use the rules described under the m insertion modep1285 's
section, but must leave the insertion modep1285 unchanged unless the rules in m themselves switch the insertion modep1285 to a new
value.

When the insertion mode is switched to "textp1342" or "in table textp1345", the original insertion mode is also set. This is the insertion
mode to which the tree construction stage will return.

Similarly, to parse nested templatep671 elements, a stack of template insertion modes is used. It is initially empty. The current
template insertion mode is the insertion mode that was most recently added to the stack of template insertion modesp1285. The
algorithms in the sections below will push insertion modes onto this stack, meaning that the specified insertion mode is to be added to
the stack, and pop insertion modes from the stack, which means that the most recently added insertion mode must be removed from
the stack.

When the steps below require the UA to reset the insertion mode appropriately, it means the UA must follow these steps:

1. Let last be false.

2. Let node be the last node in the stack of open elementsp1286.

3. Loop: If node is the first node in the stack of open elements, then set last to true, and, if the parser was created as part of
the HTML fragment parsing algorithmp1373 (fragment casep1373), set node to the contextp1373 element passed to that
algorithm.

4. If node is a selectp568 element, run these substeps:

The handling of U+0000 NULL characters varies based on where the characters are found and happens at the later stages of the
parsing. They are either ignored or, for security reasons, replaced with a U+FFFD REPLACEMENT CHARACTER. This handling is, by
necessity, spread across both the tokenization stage and the tree construction stage.

Note

13.2.4.1 The insertion mode §p12

85

13.2.4 Parse state §p12

85

1285

https://infra.spec.whatwg.org/#normalize-newlines

1. If last is true, jump to the step below labeled done.

2. Let ancestor be node.

3. Loop: If ancestor is the first node in the stack of open elementsp1286, jump to the step below labeled done.

4. Let ancestor be the node before ancestor in the stack of open elementsp1286.

5. If ancestor is a templatep671 node, jump to the step below labeled done.

6. If ancestor is a tablep478 node, switch the insertion modep1285 to "in select in tablep1352" and return.

7. Jump back to the step labeled loop.

8. Done: Switch the insertion modep1285 to "in selectp1350" and return.

5. If node is a tdp493 or thp495 element and last is false, then switch the insertion modep1285 to "in cellp1349" and return.

6. If node is a trp492 element, then switch the insertion modep1285 to "in rowp1348" and return.

7. If node is a tbodyp489, theadp490, or tfootp491 element, then switch the insertion modep1285 to "in table bodyp1347" and return.

8. If node is a captionp486 element, then switch the insertion modep1285 to "in captionp1346" and return.

9. If node is a colgroupp487 element, then switch the insertion modep1285 to "in column groupp1346" and return.

10. If node is a tablep478 element, then switch the insertion modep1285 to "in tablep1343" and return.

11. If node is a templatep671 element, then switch the insertion modep1285 to the current template insertion modep1285 and return.

12. If node is a headp173 element and last is false, then switch the insertion modep1285 to "in headp1328" and return.

13. If node is a bodyp205 element, then switch the insertion modep1285 to "in bodyp1332" and return.

14. If node is a framesetp1433 element, then switch the insertion modep1285 to "in framesetp1354" and return. (fragment casep1373)

15. If node is an htmlp172 element, run these substeps:

1. If the head element pointerp1289 is null, switch the insertion modep1285 to "before headp1327" and return. (fragment
casep1373)

2. Otherwise, the head element pointerp1289 is not null, switch the insertion modep1285 to "after headp1331" and return.

16. If last is true, then switch the insertion modep1285 to "in bodyp1332" and return. (fragment casep1373)

17. Let node now be the node before node in the stack of open elementsp1286.

18. Return to the step labeled loop.

Initially, the stack of open elements is empty. The stack grows downwards; the topmost node on the stack is the first one added to
the stack, and the bottommost node of the stack is the most recently added node in the stack (notwithstanding when the stack is
manipulated in a random access fashion as part of the handling for misnested tagsp1340).

The htmlp172 node, however it is created, is the topmost node of the stack. It only gets popped off the stack when the parser
finishesp1358.

The current node is the bottommost node in this stack of open elementsp1286.

13.2.4.2 The stack of open elements §p12

86

The "before htmlp1326" insertion modep1285 creates the htmlp172 document element, which is then added to the stack.
Note

In the fragment casep1373, the stack of open elementsp1286 is initialized to contain an htmlp172 element that is created as part of that
algorithmp1373. (The fragment casep1373 skips the "before htmlp1326" insertion modep1285.)

Note

1286

https://dom.spec.whatwg.org/#document-element

The adjusted current node is the contextp1373 element if the parser was created as part of the HTML fragment parsing algorithmp1373

and the stack of open elementsp1286 has only one element in it (fragment casep1373); otherwise, the adjusted current nodep1287 is the
current nodep1286.

When the current nodep1286 is removed from the stack of open elementsp1286, process internal resource linksp319 given the current
nodep1286 's node document.

Elements in the stack of open elementsp1286 fall into the following categories:

Special
The following elements have varying levels of special parsing rules: HTML's addressp222, appletp1426, areap471, articlep206,
asidep214, basep175, basefontp1427, bgsoundp1426, blockquotep235, bodyp205, brp299, buttonp566, captionp486, centerp1427, colp488,
colgroupp487, ddp248, detailsp637, dirp1426, divp256, dlp244, dtp247, embedp399, fieldsetp594, figcaptionp252, figurep249, footerp220,
formp514, framep1433, framesetp1433, h1p216, h2p216, h3p216, h4p216, h5p216, h6p216, headp173, headerp218, hgroupp218, hrp231, htmlp172,
iframep390, imgp346, inputp520, keygenp1426, lip241, linkp177, listingp1426, mainp253, marqueep1431, menup240, metap189, navp211,
noembedp1426, noframesp1426, noscriptp669, objectp402, olp238, pp229, paramp1426, plaintextp1426, prep233, scriptp652, searchp254,
sectionp209, selectp568, sourcep343, stylep200, summaryp643, tablep478, tbodyp489, tdp493, templatep671, textareap579, tfootp491, thp495,
theadp490, titlep174, trp492, trackp411, ulp239, wbrp300, xmpp1427; MathML mi, MathML mo, MathML mn, MathML ms, MathML mtext, and
MathML annotation-xml; and SVG foreignObject, SVG desc, and SVG title.

Formatting
The following HTML elements are those that end up in the list of active formatting elementsp1288: ap257, bp292, bigp1427, codep286,
emp260, fontp1427, ip291, nobrp1427, sp264, smallp262, strikep1427, strongp261, ttp1427, and up294.

Ordinary
All other elements found while parsing an HTML document.

The stack of open elementsp1286 is said to have an element target node in a specific scope consisting of a list of element types list
when the following algorithm terminates in a match state:

1. Initialize node to be the current nodep1286 (the bottommost node of the stack).

2. If node is the target node, terminate in a match state.

3. Otherwise, if node is one of the element types in list, terminate in a failure state.

4. Otherwise, set node to the previous entry in the stack of open elementsp1286 and return to step 2. (This will never fail, since
the loop will always terminate in the previous step if the top of the stack — an htmlp172 element — is reached.)

The stack of open elementsp1286 is said to have a particular element in scope when it has that element in the specific scopep1287

consisting of the following element types:

• appletp1426

• captionp486

• htmlp172

• tablep478

• tdp493

• thp495

• marqueep1431

• objectp402

• templatep671

• MathML mi
• MathML mo

An image start tag token is handled by the tree builder, but it is not in this list because it is not an element; it gets turned into
an imgp346 element.

Note

Typically, the specialp1287 elements have the start and end tag tokens handled specifically, while ordinaryp1287 elements' tokens fall
into "any other start tag" and "any other end tag" clauses, and some parts of the tree builder check if a particular element in the
stack of open elementsp1286 is in the specialp1287 category. However, some elements (e.g., the optionp577 element) have their start
or end tag tokens handled specifically, but are still not in the specialp1287 category, so that they get the ordinaryp1287 handling
elsewhere.

Note

1287

https://dom.spec.whatwg.org/#concept-node-document
https://w3c.github.io/mathml-core/#the-mi-element
https://w3c.github.io/mathml-core/#operator-fence-separator-or-accent-mo
https://w3c.github.io/mathml-core/#number-mn
https://w3c.github.io/mathml-core/#string-literal-ms
https://w3c.github.io/mathml-core/#text-mtext
https://w3c.github.io/mathml-core/#dfn-annotation-xml
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://w3c.github.io/mathml-core/#the-mi-element
https://w3c.github.io/mathml-core/#operator-fence-separator-or-accent-mo

• MathML mn
• MathML ms
• MathML mtext
• MathML annotation-xml
• SVG foreignObject
• SVG desc
• SVG title

The stack of open elementsp1286 is said to have a particular element in list item scope when it has that element in the specific
scopep1287 consisting of the following element types:

• All the element types listed above for the has an element in scopep1287 algorithm.
• olp238 in the HTML namespace
• ulp239 in the HTML namespace

The stack of open elementsp1286 is said to have a particular element in button scope when it has that element in the specific
scopep1287 consisting of the following element types:

• All the element types listed above for the has an element in scopep1287 algorithm.
• buttonp566 in the HTML namespace

The stack of open elementsp1286 is said to have a particular element in table scope when it has that element in the specific
scopep1287 consisting of the following element types:

• htmlp172 in the HTML namespace
• tablep478 in the HTML namespace
• templatep671 in the HTML namespace

The stack of open elementsp1286 is said to have a particular element in select scope when it has that element in the specific
scopep1287 consisting of all element types except the following:

• optgroupp576 in the HTML namespace
• optionp577 in the HTML namespace

Nothing happens if at any time any of the elements in the stack of open elementsp1286 are moved to a new location in, or removed
from, the Documentp130 tree. In particular, the stack is not changed in this situation. This can cause, amongst other strange effects,
content to be appended to nodes that are no longer in the DOM.

Initially, the list of active formatting elements is empty. It is used to handle mis-nested formatting element tagsp1287.

The list contains elements in the formattingp1287 category, and markersp1288. The markers are inserted when entering appletp1426,
objectp402, marqueep1431, templatep671, tdp493, thp495, and captionp486 elements, and are used to prevent formatting from "leaking" into
appletp1426, objectp402, marqueep1431, templatep671, tdp493, thp495, and captionp486 elements.

In addition, each element in the list of active formatting elementsp1288 is associated with the token for which it was created, so that
further elements can be created for that token if necessary.

When the steps below require the UA to push onto the list of active formatting elements an element element, the UA must
perform the following steps:

1. If there are already three elements in the list of active formatting elementsp1288 after the last markerp1288, if any, or anywhere
in the list if there are no markersp1288, that have the same tag name, namespace, and attributes as element, then remove the
earliest such element from the list of active formatting elementsp1288. For these purposes, the attributes must be compared
as they were when the elements were created by the parser; two elements have the same attributes if all their parsed
attributes can be paired such that the two attributes in each pair have identical names, namespaces, and values (the order
of the attributes does not matter).

In some cases (namely, when closing misnested formatting elementsp1340), the stack is manipulated in a random-access fashion.
Note

13.2.4.3 The list of active formatting elements §p12

88

This is the Noah's Ark clause. But with three per family instead of two.
Note

1288

https://w3c.github.io/mathml-core/#number-mn
https://w3c.github.io/mathml-core/#string-literal-ms
https://w3c.github.io/mathml-core/#text-mtext
https://w3c.github.io/mathml-core/#dfn-annotation-xml
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace

2. Add element to the list of active formatting elementsp1288.

When the steps below require the UA to reconstruct the active formatting elements, the UA must perform the following steps:

1. If there are no entries in the list of active formatting elementsp1288, then there is nothing to reconstruct; stop this algorithm.

2. If the last (most recently added) entry in the list of active formatting elementsp1288 is a markerp1288, or if it is an element that
is in the stack of open elementsp1286, then there is nothing to reconstruct; stop this algorithm.

3. Let entry be the last (most recently added) element in the list of active formatting elementsp1288.

4. Rewind: If there are no entries before entry in the list of active formatting elementsp1288, then jump to the step labeled
create.

5. Let entry be the entry one earlier than entry in the list of active formatting elementsp1288.

6. If entry is neither a markerp1288 nor an element that is also in the stack of open elementsp1286, go to the step labeled rewind.

7. Advance: Let entry be the element one later than entry in the list of active formatting elementsp1288.

8. Create: Insert an HTML elementp1321 for the token for which the element entry was created, to obtain new element.

9. Replace the entry for entry in the list with an entry for new element.

10. If the entry for new element in the list of active formatting elementsp1288 is not the last entry in the list, return to the step
labeled advance.

This has the effect of reopening all the formatting elements that were opened in the current body, cell, or caption (whichever is
youngest) that haven't been explicitly closed.

When the steps below require the UA to clear the list of active formatting elements up to the last marker, the UA must perform
the following steps:

1. Let entry be the last (most recently added) entry in the list of active formatting elementsp1288.

2. Remove entry from the list of active formatting elementsp1288.

3. If entry was a markerp1288, then stop the algorithm at this point. The list has been cleared up to the last markerp1288.

4. Go to step 1.

Initially, the head element pointer and the form element pointer are both null.

Once a headp173 element has been parsed (whether implicitly or explicitly) the head element pointerp1289 gets set to point to this node.

The form element pointerp1289 points to the last formp514 element that was opened and whose end tag has not yet been seen. It is used
to make form controls associate with forms in the face of dramatically bad markup, for historical reasons. It is ignored inside
templatep671 elements.

The scripting flag is set to "enabled" if scripting was enabledp1083 for the Documentp130 with which the parser is associated when the
parser was created, and "disabled" otherwise.

The way this specification is written, the list of active formatting elementsp1288 always consists of elements in chronological order
with the least recently added element first and the most recently added element last (except for while steps 7 to 10 of the above
algorithm are being executed, of course).

Note

13.2.4.4 The element pointers §p12

89

13.2.4.5 Other parsing state flags §p12

89

1289

The frameset-ok flag is set to "ok" when the parser is created. It is set to "not ok" after certain tokens are seen.

Implementations must act as if they used the following state machine to tokenize HTML. The state machine must start in the data
statep1291. Most states consume a single character, which may have various side-effects, and either switches the state machine to a
new state to reconsumep1290 the current input characterp1285, or switches it to a new state to consume the next characterp1285, or stays
in the same state to consume the next character. Some states have more complicated behavior and can consume several characters
before switching to another state. In some cases, the tokenizer state is also changed by the tree construction stage.

When a state says to reconsume a matched character in a specified state, that means to switch to that state, but when it attempts to
consume the next input characterp1285, provide it with the current input characterp1285 instead.

The exact behavior of certain states depends on the insertion modep1285 and the stack of open elementsp1286. Certain states also use a
temporary buffer to track progress, and the character reference statep1315 uses a return state to return to the state it was invoked
from.

The output of the tokenization step is a series of zero or more of the following tokens: DOCTYPE, start tag, end tag, comment,
character, end-of-file. DOCTYPE tokens have a name, a public identifier, a system identifier, and a force-quirks flag. When a
DOCTYPE token is created, its name, public identifier, and system identifier must be marked as missing (which is a distinct state from
the empty string), and the force-quirks flagp1290 must be set to off (its other state is on). Start and end tag tokens have a tag name, a
self-closing flag, and a list of attributes, each of which has a name and a value. When a start or end tag token is created, its self-
closing flagp1290 must be unset (its other state is that it be set), and its attributes list must be empty. Comment and character tokens
have data.

When a token is emitted, it must immediately be handled by the tree constructionp1318 stage. The tree construction stage can affect the
state of the tokenization stage, and can insert additional characters into the stream. (For example, the scriptp652 element can result in
scripts executing and using the dynamic markup insertionp1150 APIs to insert characters into the stream being tokenized.)

When a start tag token is emitted with its self-closing flagp1290 set, if the flag is not acknowledged when it is processed by the tree
construction stage, that is a non-void-html-element-start-tag-with-trailing-solidus p1275 parse errorp1273.

When an end tag token is emitted with attributes, that is an end-tag-with-attributesp1273 parse errorp1273.

When an end tag token is emitted with its self-closing flagp1290 set, that is an end-tag-with-trailing-solidusp1273 parse errorp1273.

An appropriate end tag token is an end tag token whose tag name matches the tag name of the last start tag to have been emitted
from this tokenizer, if any. If no start tag has been emitted from this tokenizer, then no end tag token is appropriate.

A character referencep1269 is said to be consumed as part of an attribute if the return statep1290 is either attribute value (double-
quoted) statep1302, attribute value (single-quoted) statep1303 or attribute value (unquoted) statep1303.

When a state says to flush code points consumed as a character reference, it means that for each code point in the temporary
bufferp1290 (in the order they were added to the buffer) user agent must append the code point from the buffer to the current
attribute's value if the character reference was consumed as part of an attributep1290, or emit the code point as a character token
otherwise.

Before each step of the tokenizer, the user agent must first check the parser pause flagp1273. If it is true, then the tokenizer must abort
the processing of any nested invocations of the tokenizer, yielding control back to the caller.

The tokenizer state machine consists of the states defined in the following subsections.

The scripting flagp1289 can be enabled even when the parser was created as part of the HTML fragment parsing algorithmp1373, even
though scriptp652 elements don't execute in that case.

Note

Creating a token and emitting it are distinct actions. It is possible for a token to be created but implicitly abandoned (never
emitted), e.g. if the file ends unexpectedly while processing the characters that are being parsed into a start tag token.

Note

13.2.5 Tokenization §p12

90

1290

https://infra.spec.whatwg.org/#code-point

Consume the next input characterp1285:

↪ U+0026 AMPERSAND (&)
Set the return statep1290 to the data statep1291. Switch to the character reference statep1315.

↪ U+003C LESS-THAN SIGN (<)
Switch to the tag open statep1292.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit the current input characterp1285 as a character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+0026 AMPERSAND (&)
Set the return statep1290 to the RCDATA statep1291. Switch to the character reference statep1315.

↪ U+003C LESS-THAN SIGN (<)
Switch to the RCDATA less-than sign statep1293.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+003C LESS-THAN SIGN (<)
Switch to the RAWTEXT less-than sign statep1294.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data less-than sign statep1295.

13.2.5.1 Data state §p12

91

13.2.5.2 RCDATA state §p12

91

13.2.5.3 RAWTEXT state §p12

91

13.2.5.4 Script data state §p12

91

1291

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+0021 EXCLAMATION MARK (!)
Switch to the markup declaration open statep1305.

↪ U+002F SOLIDUS (/)
Switch to the end tag open statep1292.

↪ ASCII alpha
Create a new start tag token, set its tag name to the empty string. Reconsumep1290 in the tag name statep1293.

↪ U+003F QUESTION MARK (?)
This is an unexpected-question-mark-instead-of-tag-namep1277 parse errorp1273. Create a comment token whose data is the
empty string. Reconsumep1290 in the bogus comment statep1304.

↪ EOF
This is an eof-before-tag-namep1273 parse errorp1273. Emit a U+003C LESS-THAN SIGN character token and an end-of-file token.

↪ Anything else
This is an invalid-first-character-of-tag-namep1274 parse errorp1273. Emit a U+003C LESS-THAN SIGN character token.
Reconsumep1290 in the data statep1291.

Consume the next input characterp1285:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1290 in the tag name statep1293.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-end-tag-namep1275 parse errorp1273. Switch to the data statep1291.

↪ EOF
This is an eof-before-tag-namep1273 parse errorp1273. Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS
character token and an end-of-file token.

13.2.5.5 PLAINTEXT state §p12

92

13.2.5.6 Tag open state §p12

92

13.2.5.7 End tag open state §p12

92

1292

https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-alpha

↪ Anything else
This is an invalid-first-character-of-tag-namep1274 parse errorp1273. Create a comment token whose data is the empty string.
Reconsumep1290 in the bogus comment statep1304.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep1301.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep1304.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current tag token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current tag
token's tag name.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
tag token's tag name.

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current tag token's tag name.

Consume the next input characterp1285:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1290 to the empty string. Switch to the RCDATA end tag open statep1293.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1290 in the RCDATA statep1291.

Consume the next input characterp1285:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1290 in the RCDATA end tag name statep1294.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1290 in the RCDATA
statep1291.

13.2.5.8 Tag name state §p12

93

13.2.5.9 RCDATA less-than sign state §p12

93

13.2.5.10 RCDATA end tag open state §p12

93

1293

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-alpha

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1290, then switch to the before attribute name statep1301. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the self-closing start tag statep1304. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the data statep1291 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1285 to the temporary bufferp1290.

↪ ASCII lower alpha
Append the current input characterp1285 to the current tag token's tag name. Append the current input characterp1285 to the
temporary bufferp1290.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary bufferp1290 (in the order they were added to the buffer). Reconsumep1290 in the RCDATA statep1291.

Consume the next input characterp1285:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1290 to the empty string. Switch to the RAWTEXT end tag open statep1294.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1290 in the RAWTEXT statep1291.

Consume the next input characterp1285:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1290 in the RAWTEXT end tag name statep1294.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1290 in the RAWTEXT
statep1291.

Consume the next input characterp1285:

13.2.5.11 RCDATA end tag name state §p12

94

13.2.5.12 RAWTEXT less-than sign state §p12

94

13.2.5.13 RAWTEXT end tag open state §p12

94

13.2.5.14 RAWTEXT end tag name state §p12

94

1294

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-alpha

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1290, then switch to the before attribute name statep1301. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the self-closing start tag statep1304. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the data statep1291 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1285 to the temporary bufferp1290.

↪ ASCII lower alpha
Append the current input characterp1285 to the current tag token's tag name. Append the current input characterp1285 to the
temporary bufferp1290.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary bufferp1290 (in the order they were added to the buffer). Reconsumep1290 in the RAWTEXT statep1291.

Consume the next input characterp1285:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1290 to the empty string. Switch to the script data end tag open statep1295.

↪ U+0021 EXCLAMATION MARK (!)
Switch to the script data escape start statep1296. Emit a U+003C LESS-THAN SIGN character token and a U+0021 EXCLAMATION
MARK character token.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1290 in the script data statep1291.

Consume the next input characterp1285:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1290 in the script data end tag name statep1295.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1290 in the script data
statep1291.

Consume the next input characterp1285:

13.2.5.15 Script data less-than sign state §p12

95

13.2.5.16 Script data end tag open state §p12

95

13.2.5.17 Script data end tag name state §p12

95

1295

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha
https://infra.spec.whatwg.org/#ascii-alpha

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1290, then switch to the before attribute name statep1301. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the self-closing start tag statep1304. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the data statep1291 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1285 to the temporary bufferp1290.

↪ ASCII lower alpha
Append the current input characterp1285 to the current tag token's tag name. Append the current input characterp1285 to the
temporary bufferp1290.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary bufferp1290 (in the order they were added to the buffer). Reconsumep1290 in the script data statep1291.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escape start dash statep1296. Emit a U+002D HYPHEN-MINUS character token.

↪ Anything else
Reconsumep1290 in the script data statep1291.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escaped dash dash statep1297. Emit a U+002D HYPHEN-MINUS character token.

↪ Anything else
Reconsumep1290 in the script data statep1291.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escaped dash statep1297. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign statep1297.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit a U+FFFD REPLACEMENT CHARACTER character token.

13.2.5.18 Script data escape start state §p12

96

13.2.5.19 Script data escape start dash state §p12

96

13.2.5.20 Script data escaped state §p12

96

1296

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

↪ EOF
This is an eof-in-script-html-comment-like-textp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data escaped dash dash statep1297. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign statep1297.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Switch to the script data escaped statep1296. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Switch to the script data escaped statep1296. Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign statep1297.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the script data statep1291. Emit a U+003E GREATER-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Switch to the script data escaped statep1296. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Switch to the script data escaped statep1296. Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1290 to the empty string. Switch to the script data escaped end tag open statep1298.

↪ ASCII alpha
Set the temporary bufferp1290 to the empty string. Emit a U+003C LESS-THAN SIGN character token. Reconsumep1290 in the
script data double escape start statep1298.

13.2.5.21 Script data escaped dash state §p12

97

13.2.5.22 Script data escaped dash dash state §p12

97

13.2.5.23 Script data escaped less-than sign state §p12

97

1297

https://infra.spec.whatwg.org/#ascii-alpha

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token. Reconsumep1290 in the script data escaped statep1296.

Consume the next input characterp1285:

↪ ASCII alpha
Create a new end tag token, set its tag name to the empty string. Reconsumep1290 in the script data escaped end tag name
statep1298.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsumep1290 in the script data
escaped statep1296.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp1290, then switch to the before attribute name statep1301. Otherwise,
treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the self-closing start tag statep1304. Otherwise,
treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp1290, then switch to the data statep1291 and emit the current tag
token. Otherwise, treat it as per the "anything else" entry below.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current tag
token's tag name. Append the current input characterp1285 to the temporary bufferp1290.

↪ ASCII lower alpha
Append the current input characterp1285 to the current tag token's tag name. Append the current input characterp1285 to the
temporary bufferp1290.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the
characters in the temporary buffer p1290 (in the order they were added to the buffer). Reconsumep1290 in the script data escaped
statep1296.

Consume the next input characterp1285:

13.2.5.24 Script data escaped end tag open state §p12

98

13.2.5.25 Script data escaped end tag name state §p12

98

13.2.5.26 Script data double escape start state §p12

98

1298

https://infra.spec.whatwg.org/#ascii-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)

If the temporary bufferp1290 is the string "script", then switch to the script data double escaped statep1299. Otherwise, switch to
the script data escaped statep1296. Emit the current input characterp1285 as a character token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the temporary
bufferp1290. Emit the current input characterp1285 as a character token.

↪ ASCII lower alpha
Append the current input characterp1285 to the temporary bufferp1290. Emit the current input characterp1285 as a character token.

↪ Anything else
Reconsumep1290 in the script data escaped statep1296.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data double escaped dash statep1299. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data double escaped less-than sign statep1300. Emit a U+003C LESS-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Emit a U+FFFD REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the script data double escaped dash dash statep1300. Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data double escaped less-than sign statep1300. Emit a U+003C LESS-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Switch to the script data double escaped statep1299. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Switch to the script data double escaped statep1299. Emit the current input characterp1285 as a character token.

13.2.5.27 Script data double escaped state §p12

99

13.2.5.28 Script data double escaped dash state §p12

99

1299

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data double escaped less-than sign statep1300. Emit a U+003C LESS-THAN SIGN character token.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the script data statep1291. Emit a U+003E GREATER-THAN SIGN character token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Switch to the script data double escaped statep1299. Emit a U+FFFD
REPLACEMENT CHARACTER character token.

↪ EOF
This is an eof-in-script-html-comment-like-textp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Switch to the script data double escaped statep1299. Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp1290 to the empty string. Switch to the script data double escape end statep1300. Emit a U+002F
SOLIDUS character token.

↪ Anything else
Reconsumep1290 in the script data double escaped statep1299.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)

If the temporary bufferp1290 is the string "script", then switch to the script data escaped statep1296. Otherwise, switch to the
script data double escaped statep1299. Emit the current input characterp1285 as a character token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the temporary
bufferp1290. Emit the current input characterp1285 as a character token.

↪ ASCII lower alpha
Append the current input characterp1285 to the temporary bufferp1290. Emit the current input characterp1285 as a character token.

↪ Anything else
Reconsumep1290 in the script data double escaped statep1299.

13.2.5.29 Script data double escaped dash dash state §p13

00

13.2.5.30 Script data double escaped less-than sign state §p13

00

13.2.5.31 Script data double escape end state §p13

00

1300

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-lower-alpha

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)
↪ EOF

Reconsumep1290 in the after attribute name statep1302.

↪ U+003D EQUALS SIGN (=)
This is an unexpected-equals-sign-before-attribute-namep1277 parse errorp1273. Start a new attribute in the current tag token. Set
that attribute's name to the current input characterp1285, and its value to the empty string. Switch to the attribute name
statep1301.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute name and value to the empty string. Reconsumep1290 in the
attribute name statep1301.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)
↪ EOF

Reconsumep1290 in the after attribute name statep1302.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value statep1302.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current
attribute's name.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's name.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)

This is an unexpected-character-in-attribute-namep1276 parse errorp1273. Treat it as per the "anything else" entry below.

↪ Anything else
Append the current input characterp1285 to the current attribute's name.

When the user agent leaves the attribute name state (and before emitting the tag token, if appropriate), the complete attribute's name
must be compared to the other attributes on the same token; if there is already an attribute on the token with the exact same name,
then this is a duplicate-attributep1273 parse errorp1273 and the new attribute must be removed from the token.

13.2.5.32 Before attribute name state §p13

01

13.2.5.33 Attribute name state §p13

01

1301

https://infra.spec.whatwg.org/#ascii-upper-alpha

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep1304.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value statep1302.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current tag token.

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute name and value to the empty string. Reconsumep1290 in the
attribute name statep1301.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+0022 QUOTATION MARK (")
Switch to the attribute value (double-quoted) statep1302.

↪ U+0027 APOSTROPHE (')
Switch to the attribute value (single-quoted) statep1303.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-attribute-valuep1274 parse errorp1273. Switch to the data statep1291. Emit the current tag token.

↪ Anything else
Reconsumep1290 in the attribute value (unquoted) statep1303.

Consume the next input characterp1285:

↪ U+0022 QUOTATION MARK (")
Switch to the after attribute value (quoted) statep1304.

If an attribute is so removed from a token, it, and the value that gets associated with it, if any, are never subsequently used by the
parser, and are therefore effectively discarded. Removing the attribute in this way does not change its status as the "current
attribute" for the purposes of the tokenizer, however.

Note

13.2.5.34 After attribute name state §p13

02

13.2.5.35 Before attribute value state §p13

02

13.2.5.36 Attribute value (double-quoted) state §p13

02

1302

↪ U+0026 AMPERSAND (&)
Set the return statep1290 to the attribute value (double-quoted) statep1302. Switch to the character reference statep1315.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's value.

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current attribute's value.

Consume the next input characterp1285:

↪ U+0027 APOSTROPHE (')
Switch to the after attribute value (quoted) statep1304.

↪ U+0026 AMPERSAND (&)
Set the return statep1290 to the attribute value (single-quoted) statep1303. Switch to the character reference statep1315.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's value.

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current attribute's value.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep1301.

↪ U+0026 AMPERSAND (&)
Set the return statep1290 to the attribute value (unquoted) statep1303. Switch to the character reference statep1315.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current tag token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
attribute's value.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)
↪ U+003D EQUALS SIGN (=)
↪ U+0060 GRAVE ACCENT (`)

This is an unexpected-character-in-unquoted-attribute-valuep1276 parse errorp1273. Treat it as per the "anything else" entry below.

13.2.5.37 Attribute value (single-quoted) state §p13

03

13.2.5.38 Attribute value (unquoted) state §p13

03

1303

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current attribute's value.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep1301.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep1304.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current tag token.

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
This is a missing-whitespace-between-attributesp1275 parse errorp1273. Reconsumep1290 in the before attribute name statep1301.

Consume the next input characterp1285:

↪ U+003E GREATER-THAN SIGN (>)
Set the self-closing flagp1290 of the current tag token. Switch to the data statep1291. Emit the current tag token.

↪ EOF
This is an eof-in-tagp1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
This is an unexpected-solidus-in-tagp1277 parse errorp1273. Reconsumep1290 in the before attribute name statep1301.

Consume the next input characterp1285:

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current comment token.

↪ EOF
Emit the comment. Emit an end-of-file token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the
comment token's data.

↪ Anything else
Append the current input characterp1285 to the comment token's data.

13.2.5.39 After attribute value (quoted) state §p13

04

13.2.5.40 Self-closing start tag state §p13

04

13.2.5.41 Bogus comment state §p13

04

1304

If the next few characters are:

↪ Two U+002D HYPHEN-MINUS characters (-)
Consume those two characters, create a comment token whose data is the empty string, and switch to the comment start
statep1305.

↪ ASCII case-insensitive match for the word "DOCTYPE"
Consume those characters and switch to the DOCTYPE statep1307.

↪ The string "[CDATA[" (the five uppercase letters "CDATA" with a U+005B LEFT SQUARE BRACKET character before
and after)

Consume those characters. If there is an adjusted current nodep1287 and it is not an element in the HTML namespace, then
switch to the CDATA section statep1314. Otherwise, this is a cdata-in-html-contentp1273 parse errorp1273. Create a comment token
whose data is the "[CDATA[" string. Switch to the bogus comment statep1304.

↪ Anything else
This is an incorrectly-opened-commentp1274 parse errorp1273. Create a comment token whose data is the empty string. Switch to
the bogus comment statep1304 (don't consume anything in the current state).

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment start dash statep1305.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-closing-of-empty-commentp1273 parse errorp1273. Switch to the data statep1291. Emit the current comment token.

↪ Anything else
Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end statep1307.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-closing-of-empty-commentp1273 parse errorp1273. Switch to the data statep1291. Emit the current comment token.

↪ EOF
This is an eof-in-commentp1274 parse errorp1273. Emit the current comment token. Emit an end-of-file token.

↪ Anything else
Append a U+002D HYPHEN-MINUS character (-) to the comment token's data. Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+003C LESS-THAN SIGN (<)
Append the current input characterp1285 to the comment token's data. Switch to the comment less-than sign statep1306.

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end dash statep1307.

13.2.5.42 Markup declaration open state §p13

05

13.2.5.43 Comment start state §p13

05

13.2.5.44 Comment start dash state §p13

05

13.2.5.45 Comment state §p13

05

1305

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#html-namespace

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the
comment token's data.

↪ EOF
This is an eof-in-commentp1274 parse errorp1273. Emit the current comment token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the comment token's data.

Consume the next input characterp1285:

↪ U+0021 EXCLAMATION MARK (!)
Append the current input characterp1285 to the comment token's data. Switch to the comment less-than sign bang statep1306.

↪ U+003C LESS-THAN SIGN (<)
Append the current input characterp1285 to the comment token's data.

↪ Anything else
Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment less-than sign bang dash statep1306.

↪ Anything else
Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment less-than sign bang dash dash statep1306.

↪ Anything else
Reconsumep1290 in the comment end dash statep1307.

Consume the next input characterp1285:

↪ U+003E GREATER-THAN SIGN (>)
↪ EOF

Reconsumep1290 in the comment end statep1307.

↪ Anything else
This is a nested-commentp1275 parse errorp1273. Reconsumep1290 in the comment end statep1307.

13.2.5.46 Comment less-than sign state §p13

06

13.2.5.47 Comment less-than sign bang state §p13

06

13.2.5.48 Comment less-than sign bang dash state §p13

06

13.2.5.49 Comment less-than sign bang dash dash state §p13

06

1306

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end statep1307.

↪ EOF
This is an eof-in-commentp1274 parse errorp1273. Emit the current comment token. Emit an end-of-file token.

↪ Anything else
Append a U+002D HYPHEN-MINUS character (-) to the comment token's data. Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current comment token.

↪ U+0021 EXCLAMATION MARK (!)
Switch to the comment end bang statep1307.

↪ U+002D HYPHEN-MINUS (-)
Append a U+002D HYPHEN-MINUS character (-) to the comment token's data.

↪ EOF
This is an eof-in-commentp1274 parse errorp1273. Emit the current comment token. Emit an end-of-file token.

↪ Anything else
Append two U+002D HYPHEN-MINUS characters (-) to the comment token's data. Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+002D HYPHEN-MINUS (-)
Append two U+002D HYPHEN-MINUS characters (-) and a U+0021 EXCLAMATION MARK character (!) to the comment token's
data. Switch to the comment end dash statep1307.

↪ U+003E GREATER-THAN SIGN (>)
This is an incorrectly-closed-commentp1274 parse errorp1273. Switch to the data statep1291. Emit the current comment token.

↪ EOF
This is an eof-in-commentp1274 parse errorp1273. Emit the current comment token. Emit an end-of-file token.

↪ Anything else
Append two U+002D HYPHEN-MINUS characters (-) and a U+0021 EXCLAMATION MARK character (!) to the comment token's
data. Reconsumep1290 in the comment statep1305.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE name statep1308.

13.2.5.50 Comment end dash state §p13

07

13.2.5.51 Comment end state §p13

07

13.2.5.52 Comment end bang state §p13

07

13.2.5.53 DOCTYPE state §p13

07

1307

↪ U+003E GREATER-THAN SIGN (>)
Reconsumep1290 in the before DOCTYPE name statep1308.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Create a new DOCTYPE token. Set its force-quirks flagp1290 to on. Emit the current
token. Emit an end-of-file token.

↪ Anything else
This is a missing-whitespace-before-doctype-namep1275 parse errorp1273. Reconsumep1290 in the before DOCTYPE name statep1308.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ ASCII upper alpha
Create a new DOCTYPE token. Set the token's name to the lowercase version of the current input characterp1285 (add 0x0020 to
the character's code point). Switch to the DOCTYPE name statep1308.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Create a new DOCTYPE token. Set the token's name to a U+FFFD
REPLACEMENT CHARACTER character. Switch to the DOCTYPE name statep1308.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-namep1274 parse errorp1273. Create a new DOCTYPE token. Set its force-quirks flagp1290 to on. Switch to
the data statep1291. Emit the current token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Create a new DOCTYPE token. Set its force-quirks flagp1290 to on. Emit the current
token. Emit an end-of-file token.

↪ Anything else
Create a new DOCTYPE token. Set the token's name to the current input characterp1285. Switch to the DOCTYPE name statep1308.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the after DOCTYPE name statep1309.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ ASCII upper alpha
Append the lowercase version of the current input characterp1285 (add 0x0020 to the character's code point) to the current
DOCTYPE token's name.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's name.

13.2.5.54 Before DOCTYPE name state §p13

08

13.2.5.55 DOCTYPE name state §p13

08

1308

https://infra.spec.whatwg.org/#ascii-upper-alpha
https://infra.spec.whatwg.org/#ascii-upper-alpha

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current DOCTYPE token's name.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
If the six characters starting from the current input characterp1285 are an ASCII case-insensitive match for the word "PUBLIC",
then consume those characters and switch to the after DOCTYPE public keyword statep1309.

Otherwise, if the six characters starting from the current input characterp1285 are an ASCII case-insensitive match for the word
"SYSTEM", then consume those characters and switch to the after DOCTYPE system keyword statep1312.

Otherwise, this is an invalid-character-sequence-after-doctype-namep1274 parse errorp1273. Set the current DOCTYPE token's
force-quirks flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE public identifier statep1310.

↪ U+0022 QUOTATION MARK (")
This is a missing-whitespace-after-doctype-public-keywordp1275 parse errorp1273. Set the current DOCTYPE token's public identifier
to the empty string (not missing), then switch to the DOCTYPE public identifier (double-quoted) statep1310.

↪ U+0027 APOSTROPHE (')
This is a missing-whitespace-after-doctype-public-keywordp1275 parse errorp1273. Set the current DOCTYPE token's public identifier
to the empty string (not missing), then switch to the DOCTYPE public identifier (single-quoted) statep1310.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-public-identifierp1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

13.2.5.56 After DOCTYPE name state §p13

09

13.2.5.57 After DOCTYPE public keyword state §p13

09

1309

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

↪ Anything else
This is a missing-quote-before-doctype-public-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks
flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+0022 QUOTATION MARK (")
Set the current DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier
(double-quoted) statep1310.

↪ U+0027 APOSTROPHE (')
Set the current DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier
(single-quoted) statep1310.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-public-identifierp1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-public-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks
flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE public identifier statep1311.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's public identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-public-identifierp1273 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current DOCTYPE token's public identifier.

Consume the next input characterp1285:

13.2.5.58 Before DOCTYPE public identifier state §p13

10

13.2.5.59 DOCTYPE public identifier (double-quoted) state §p13

10

13.2.5.60 DOCTYPE public identifier (single-quoted) state §p13

10

1310

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE public identifier statep1311.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's public identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-public-identifierp1273 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current DOCTYPE token's public identifier.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the between DOCTYPE public and system identifiers statep1311.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ U+0022 QUOTATION MARK (")
This is a missing-whitespace-between-doctype-public-and-system-identifiers p1275 parse errorp1273. Set the current DOCTYPE
token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted)
statep1313.

↪ U+0027 APOSTROPHE (')
This is a missing-whitespace-between-doctype-public-and-system-identifiers p1275 parse errorp1273. Set the current DOCTYPE
token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted)
statep1313.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks
flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current DOCTYPE token.

13.2.5.61 After DOCTYPE public identifier state §p13

11

13.2.5.62 Between DOCTYPE public and system identifiers state §p13

11

1311

↪ U+0022 QUOTATION MARK (")
Set the current DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system
identifier (double-quoted) statep1313.

↪ U+0027 APOSTROPHE (')
Set the current DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system
identifier (single-quoted) statep1313.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks
flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE system identifier statep1312.

↪ U+0022 QUOTATION MARK (")
This is a missing-whitespace-after-doctype-system-keywordp1275 parse errorp1273. Set the current DOCTYPE token's system
identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) statep1313.

↪ U+0027 APOSTROPHE (')
This is a missing-whitespace-after-doctype-system-keywordp1275 parse errorp1273. Set the current DOCTYPE token's system
identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) statep1313.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-system-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks
flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+0022 QUOTATION MARK (")
Set the current DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system
identifier (double-quoted) statep1313.

13.2.5.63 After DOCTYPE system keyword state §p13

12

13.2.5.64 Before DOCTYPE system identifier state §p13

12

1312

↪ U+0027 APOSTROPHE (')
Set the current DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system
identifier (single-quoted) statep1313.

↪ U+003E GREATER-THAN SIGN (>)
This is a missing-doctype-system-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
This is a missing-quote-before-doctype-system-identifierp1275 parse errorp1273. Set the current DOCTYPE token's force-quirks
flagp1290 to on. Reconsumep1290 in the bogus DOCTYPE statep1314.

Consume the next input characterp1285:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE system identifier statep1314.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's system identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-system-identifierp1273 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current DOCTYPE token's system identifier.

Consume the next input characterp1285:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE system identifier statep1314.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Append a U+FFFD REPLACEMENT CHARACTER character to the current
DOCTYPE token's system identifier.

↪ U+003E GREATER-THAN SIGN (>)
This is an abrupt-doctype-system-identifierp1273 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on.
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Append the current input characterp1285 to the current DOCTYPE token's system identifier.

13.2.5.65 DOCTYPE system identifier (double-quoted) state §p13

13

13.2.5.66 DOCTYPE system identifier (single-quoted) state §p13

13

1313

Consume the next input characterp1285:

↪ U+0009 CHARACTER TABULATION (tab)
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Ignore the character.

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the current DOCTYPE token.

↪ EOF
This is an eof-in-doctypep1274 parse errorp1273. Set the current DOCTYPE token's force-quirks flagp1290 to on. Emit the current
DOCTYPE token. Emit an end-of-file token.

↪ Anything else
This is an unexpected-character-after-doctype-system-identifierp1276 parse errorp1273. Reconsumep1290 in the bogus DOCTYPE
statep1314. (This does not set the current DOCTYPE token's force-quirks flagp1290 to on.)

Consume the next input characterp1285:

↪ U+003E GREATER-THAN SIGN (>)
Switch to the data statep1291. Emit the DOCTYPE token.

↪ U+0000 NULL
This is an unexpected-null-characterp1277 parse errorp1273. Ignore the character.

↪ EOF
Emit the DOCTYPE token. Emit an end-of-file token.

↪ Anything else
Ignore the character.

Consume the next input characterp1285:

↪ U+005D RIGHT SQUARE BRACKET (])
Switch to the CDATA section bracket statep1314.

↪ EOF
This is an eof-in-cdatap1274 parse errorp1273. Emit an end-of-file token.

↪ Anything else
Emit the current input characterp1285 as a character token.

Consume the next input characterp1285:

13.2.5.67 After DOCTYPE system identifier state §p13

14

13.2.5.68 Bogus DOCTYPE state §p13

14

13.2.5.69 CDATA section state §p13

14

U+0000 NULL characters are handled in the tree construction stage, as part of the in foreign contentp1356 insertion mode, which is
the only place where CDATA sections can appear.

Note

13.2.5.70 CDATA section bracket state §p13

14

1314

↪ U+005D RIGHT SQUARE BRACKET (])
Switch to the CDATA section end statep1315.

↪ Anything else
Emit a U+005D RIGHT SQUARE BRACKET character token. Reconsumep1290 in the CDATA section statep1314.

Consume the next input characterp1285:

↪ U+005D RIGHT SQUARE BRACKET (])
Emit a U+005D RIGHT SQUARE BRACKET character token.

↪ U+003E GREATER-THAN SIGN character
Switch to the data statep1291.

↪ Anything else
Emit two U+005D RIGHT SQUARE BRACKET character tokens. Reconsumep1290 in the CDATA section statep1314.

Set the temporary bufferp1290 to the empty string. Append a U+0026 AMPERSAND (&) character to the temporary bufferp1290. Consume
the next input characterp1285:

↪ ASCII alphanumeric
Reconsumep1290 in the named character reference statep1315.

↪ U+0023 NUMBER SIGN (#)
Append the current input characterp1285 to the temporary bufferp1290. Switch to the numeric character reference statep1316.

↪ Anything else
Flush code points consumed as a character referencep1290. Reconsumep1290 in the return statep1290.

Consume the maximum number of characters possible, where the consumed characters are one of the identifiers in the first column of
the named character referencesp1374 table. Append each character to the temporary bufferp1290 when it's consumed.

↪ If there is a match
If the character reference was consumed as part of an attributep1290, and the last character matched is not a U+003B
SEMICOLON character (;), and the next input characterp1285 is either a U+003D EQUALS SIGN character (=) or an ASCII
alphanumeric, then, for historical reasons, flush code points consumed as a character referencep1290 and switch to the return
statep1290.

Otherwise:

1. If the last character matched is not a U+003B SEMICOLON character (;), then this is a missing-semicolon-after-
character-referencep1275 parse errorp1273.

2. Set the temporary bufferp1290 to the empty string. Append one or two characters corresponding to the character
reference name (as given by the second column of the named character referencesp1374 table) to the temporary
bufferp1290.

3. Flush code points consumed as a character referencep1290. Switch to the return statep1290.

↪ Otherwise
Flush code points consumed as a character referencep1290. Switch to the ambiguous ampersand statep1316.

13.2.5.71 CDATA section end state §p13

15

13.2.5.72 Character reference state §p13

15

13.2.5.73 Named character reference state §p13

15

Example
1315

https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-alphanumeric

Consume the next input characterp1285:

↪ ASCII alphanumeric
If the character reference was consumed as part of an attributep1290, then append the current input characterp1285 to the current
attribute's value. Otherwise, emit the current input characterp1285 as a character token.

↪ U+003B SEMICOLON (;)
This is an unknown-named-character-referencep1277 parse errorp1273. Reconsumep1290 in the return statep1290.

↪ Anything else
Reconsumep1290 in the return statep1290.

Set the character reference code to zero (0).

Consume the next input characterp1285:

↪ U+0078 LATIN SMALL LETTER X
↪ U+0058 LATIN CAPITAL LETTER X

Append the current input characterp1285 to the temporary bufferp1290. Switch to the hexadecimal character reference start
statep1316.

↪ Anything else
Reconsumep1290 in the decimal character reference start statep1316.

Consume the next input characterp1285:

↪ ASCII hex digit
Reconsumep1290 in the hexadecimal character reference statep1317.

↪ Anything else
This is an absence-of-digits-in-numeric-character-referencep1273 parse errorp1273. Flush code points consumed as a character
referencep1290. Reconsumep1290 in the return statep1290.

Consume the next input characterp1285:

↪ ASCII digit
Reconsumep1290 in the decimal character reference statep1317.

↪ Anything else
This is an absence-of-digits-in-numeric-character-referencep1273 parse errorp1273. Flush code points consumed as a character
referencep1290. Reconsumep1290 in the return statep1290.

If the markup contains (not in an attribute) the string I'm ¬it; I tell you, the character reference is parsed as "not", as in,
I'm ¬it; I tell you (and this is a parse error). But if the markup was I'm ∉ I tell you, the character reference would
be parsed as "notin;", resulting in I'm ∉ I tell you (and no parse error).

However, if the markup contains the string I'm ¬it; I tell you in an attribute, no character reference is parsed and string
remains intact (and there is no parse error).

13.2.5.74 Ambiguous ampersand state §p13

16

13.2.5.75 Numeric character reference state §p13

16

13.2.5.76 Hexadecimal character reference start state §p13

16

13.2.5.77 Decimal character reference start state §p13

16

1316

https://infra.spec.whatwg.org/#ascii-alphanumeric
https://infra.spec.whatwg.org/#ascii-hex-digit
https://infra.spec.whatwg.org/#ascii-digit

Consume the next input characterp1285:

↪ ASCII digit
Multiply the character reference codep1316 by 16. Add a numeric version of the current input characterp1285 (subtract 0x0030
from the character's code point) to the character reference codep1316.

↪ ASCII upper hex digit
Multiply the character reference codep1316 by 16. Add a numeric version of the current input characterp1285 as a hexadecimal
digit (subtract 0x0037 from the character's code point) to the character reference codep1316.

↪ ASCII lower hex digit
Multiply the character reference codep1316 by 16. Add a numeric version of the current input characterp1285 as a hexadecimal
digit (subtract 0x0057 from the character's code point) to the character reference codep1316.

↪ U+003B SEMICOLON
Switch to the numeric character reference end statep1317.

↪ Anything else
This is a missing-semicolon-after-character-referencep1275 parse errorp1273. Reconsumep1290 in the numeric character reference
end statep1317.

Consume the next input characterp1285:

↪ ASCII digit
Multiply the character reference codep1316 by 10. Add a numeric version of the current input characterp1285 (subtract 0x0030
from the character's code point) to the character reference codep1316.

↪ U+003B SEMICOLON
Switch to the numeric character reference end statep1317.

↪ Anything else
This is a missing-semicolon-after-character-referencep1275 parse errorp1273. Reconsumep1290 in the numeric character reference
end statep1317.

Check the character reference codep1316:

• If the number is 0x00, then this is a null-character-referencep1276 parse errorp1273. Set the character reference codep1316 to
0xFFFD.

• If the number is greater than 0x10FFFF, then this is a character-reference-outside-unicode-rangep1273 parse errorp1273. Set the
character reference codep1316 to 0xFFFD.

• If the number is a surrogate, then this is a surrogate-character-referencep1276 parse errorp1273. Set the character reference
codep1316 to 0xFFFD.

• If the number is a noncharacter, then this is a noncharacter-character-referencep1275 parse errorp1273.

• If the number is 0x0D, or a control that's not ASCII whitespace, then this is a control-character-referencep1273 parse errorp1273.
If the number is one of the numbers in the first column of the following table, then find the row with that number in the first
column, and set the character reference codep1316 to the number in the second column of that row.

Number Code point

0x80 0x20AC EURO SIGN (€)
0x82 0x201A SINGLE LOW-9 QUOTATION MARK (‚)
0x83 0x0192 LATIN SMALL LETTER F WITH HOOK (ƒ)
0x84 0x201E DOUBLE LOW-9 QUOTATION MARK („)

13.2.5.78 Hexadecimal character reference state §p13

17

13.2.5.79 Decimal character reference state §p13

17

13.2.5.80 Numeric character reference end state §p13

17

1317

https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#ascii-upper-hex-digit
https://infra.spec.whatwg.org/#ascii-lower-hex-digit
https://infra.spec.whatwg.org/#ascii-digit
https://infra.spec.whatwg.org/#surrogate
https://infra.spec.whatwg.org/#noncharacter
https://infra.spec.whatwg.org/#control
https://infra.spec.whatwg.org/#ascii-whitespace

Number Code point

0x85 0x2026 HORIZONTAL ELLIPSIS (…)
0x86 0x2020 DAGGER (†)
0x87 0x2021 DOUBLE DAGGER (‡)
0x88 0x02C6 MODIFIER LETTER CIRCUMFLEX ACCENT (ˆ)
0x89 0x2030 PER MILLE SIGN (‰)
0x8A 0x0160 LATIN CAPITAL LETTER S WITH CARON (Š)
0x8B 0x2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK (‹)
0x8C 0x0152 LATIN CAPITAL LIGATURE OE (Œ)
0x8E 0x017D LATIN CAPITAL LETTER Z WITH CARON (Ž)
0x91 0x2018 LEFT SINGLE QUOTATION MARK (‘)
0x92 0x2019 RIGHT SINGLE QUOTATION MARK (’)
0x93 0x201C LEFT DOUBLE QUOTATION MARK (“)
0x94 0x201D RIGHT DOUBLE QUOTATION MARK (”)
0x95 0x2022 BULLET (•)
0x96 0x2013 EN DASH (–)
0x97 0x2014 EM DASH (—)
0x98 0x02DC SMALL TILDE (˜)
0x99 0x2122 TRADE MARK SIGN (™)
0x9A 0x0161 LATIN SMALL LETTER S WITH CARON (š)
0x9B 0x203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK (›)
0x9C 0x0153 LATIN SMALL LIGATURE OE (œ)
0x9E 0x017E LATIN SMALL LETTER Z WITH CARON (ž)
0x9F 0x0178 LATIN CAPITAL LETTER Y WITH DIAERESIS (Ÿ)

Set the temporary bufferp1290 to the empty string. Append a code point equal to the character reference codep1316 to the temporary
bufferp1290. Flush code points consumed as a character referencep1290. Switch to the return statep1290.

The input to the tree construction stage is a sequence of tokens from the tokenizationp1290 stage. The tree construction stage is
associated with a DOM Documentp130 object when a parser is created. The "output" of this stage consists of dynamically modifying or
extending that document's DOM tree.

This specification does not define when an interactive user agent has to render the Documentp130 so that it is available to the user, or
when it has to begin accepting user input.

As each token is emitted from the tokenizer, the user agent must follow the appropriate steps from the following list, known as the
tree construction dispatcher:

↪ If the stack of open elementsp1286 is empty
↪ If the adjusted current nodep1287 is an element in the HTML namespace
↪ If the adjusted current nodep1287 is a MathML text integration pointp1319 and the token is a start tag whose tag name

is neither "mglyph" nor "malignmark"
↪ If the adjusted current nodep1287 is a MathML text integration pointp1319 and the token is a character token
↪ If the adjusted current nodep1287 is a MathML annotation-xml element and the token is a start tag whose tag name is

"svg"
↪ If the adjusted current nodep1287 is an HTML integration pointp1319 and the token is a start tag
↪ If the adjusted current nodep1287 is an HTML integration pointp1319 and the token is a character token
↪ If the token is an end-of-file token

Process the token according to the rules given in the section corresponding to the current insertion modep1285 in HTML content.

↪ Otherwise
Process the token according to the rules given in the section for parsing tokens in foreign contentp1356.

The next token is the token that is about to be processed by the tree construction dispatcherp1318 (even if the token is subsequently

13.2.6 Tree construction §p13

18

1318

https://infra.spec.whatwg.org/#html-namespace
https://w3c.github.io/mathml-core/#dfn-annotation-xml

just ignored).

A node is a MathML text integration point if it is one of the following elements:

• A MathML mi element
• A MathML mo element
• A MathML mn element
• A MathML ms element
• A MathML mtext element

A node is an HTML integration point if it is one of the following elements:

• A MathML annotation-xml element whose start tag token had an attribute with the name "encoding" whose value was an
ASCII case-insensitive match for the string "text/html"

• A MathML annotation-xml element whose start tag token had an attribute with the name "encoding" whose value was an
ASCII case-insensitive match for the string "application/xhtml+xml"

• An SVG foreignObject element
• An SVG desc element
• An SVG title element

While the parser is processing a token, it can enable or disable foster parenting. This affects the following algorithm.

The appropriate place for inserting a node, optionally using a particular override target, is the position in an element returned by
running the following steps:

1. If there was an override target specified, then let target be the override target.

Otherwise, let target be the current nodep1286.

2. Determine the adjusted insertion location using the first matching steps from the following list:

↪ If foster parentingp1319 is enabled and target is a tablep478, tbodyp489, tfootp491, theadp490, or trp492 element

Run these substeps:

1. Let last template be the last templatep671 element in the stack of open elementsp1286, if any.

2. Let last table be the last tablep478 element in the stack of open elementsp1286, if any.

3. If there is a last template and either there is no last table, or there is one, but last template is lower (more
recently added) than last table in the stack of open elementsp1286, then: let adjusted insertion location be
inside last template's template contentsp673, after its last child (if any), and abort these steps.

4. If there is no last table, then let adjusted insertion location be inside the first element in the stack of open
elementsp1286 (the htmlp172 element), after its last child (if any), and abort these steps. (fragment casep1373)

If the node in question is the contextp1373 element passed to the HTML fragment parsing algorithmp1373, then the start tag token for
that element is the "fake" token created during by that HTML fragment parsing algorithmp1373.

Note

Not all of the tag names mentioned below are conformant tag names in this specification; many are included to handle legacy
content. They still form part of the algorithm that implementations are required to implement to claim conformance.

Note

The algorithm described below places no limit on the depth of the DOM tree generated, or on the length of tag names, attribute
names, attribute values, Text nodes, etc. While implementers are encouraged to avoid arbitrary limits, it is recognized that
practical concerns will likely force user agents to impose nesting depth constraints.

Note

13.2.6.1 Creating and inserting nodes §p13

19

Foster parenting happens when content is misnested in tables.
Note

1319

https://w3c.github.io/mathml-core/#the-mi-element
https://w3c.github.io/mathml-core/#operator-fence-separator-or-accent-mo
https://w3c.github.io/mathml-core/#number-mn
https://w3c.github.io/mathml-core/#string-literal-ms
https://w3c.github.io/mathml-core/#text-mtext
https://w3c.github.io/mathml-core/#dfn-annotation-xml
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://w3c.github.io/mathml-core/#dfn-annotation-xml
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://svgwg.org/svg2-draft/embedded.html#ForeignObjectElement
https://svgwg.org/svg2-draft/struct.html#DescElement
https://svgwg.org/svg2-draft/struct.html#TitleElement
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#algorithm-limits

5. If last table has a parent node, then let adjusted insertion location be inside last table's parent node,
immediately before last table, and abort these steps.

6. Let previous element be the element immediately above last table in the stack of open elementsp1286.

7. Let adjusted insertion location be inside previous element, after its last child (if any).

↪ Otherwise
Let adjusted insertion location be inside target, after its last child (if any).

3. If the adjusted insertion location is inside a templatep671 element, let it instead be inside the templatep671 element's
template contentsp673, after its last child (if any).

4. Return the adjusted insertion location.

When the steps below require the UA to create an element for a token in a particular given namespace and with a particular
intended parent, the UA must run the following steps:

1. If the active speculative HTML parserp1360 is not null, then return the result of creating a speculative mock elementp1361 given
given namespace, the tag name of the given token, and the attributes of the given token.

2. Otherwise, optionally create a speculative mock elementp1361 given given namespace, the tag name of the given token, and
the attributes of the given token.

3. Let document be intended parent's node document.

4. Let local name be the tag name of the token.

5. Let is be the value of the "isp759" attribute in the given token, if such an attribute exists, or null otherwise.

6. Let definition be the result of looking up a custom element definitionp761 given document, given namespace, local name, and
is.

7. If definition is non-null and the parser was not created as part of the HTML fragment parsing algorithmp1373, then let will
execute script be true. Otherwise, let it be false.

8. If will execute script is true, then:

1. Increment document's throw-on-dynamic-markup-insertion counterp1150.

2. If the JavaScript execution context stack is empty, then perform a microtask checkpointp1131.

3. Push a new element queuep768 onto document's relevant agentp1073 's custom element reactions stackp768.

9. Let element be the result of creating an element given document, localName, given namespace, null, and is. If will execute
script is true, set the synchronous custom elements flag; otherwise, leave it unset.

10. Append each attribute in the given token to element.

These steps are involved in part because it's possible for elements, the tablep478 element in this case in
particular, to have been moved by a script around in the DOM, or indeed removed from the DOM entirely, after the
element was inserted by the parser.

Note

The result is not used. This step allows for a speculative fetchp1360 to be initiated from non-speculative parsing. The fetch
is still speculative at this point, because, for example, by the time the element is inserted, intended parent might have
been removed from the document.

Note

This will cause custom element constructorsp759 to run, if will execute script is true. However, since we incremented the
throw-on-dynamic-markup-insertion counterp1150, this cannot cause new characters to be inserted into the tokenizerp1153,
or the document to be blown awayp1151.

Note

1320

https://dom.spec.whatwg.org/#concept-node-document
https://tc39.es/ecma262/#execution-context-stack
https://dom.spec.whatwg.org/#concept-create-element
https://dom.spec.whatwg.org/#concept-element-attributes-append

11. If will execute script is true, then:

1. Let queue be the result of popping from document's relevant agentp1073 's custom element reactions stackp768. (This
will be the same element queuep768 as was pushed above.)

2. Invoke custom element reactionsp769 in queue.

3. Decrement document's throw-on-dynamic-markup-insertion counterp1150.

12. If element has an xmlns attribute in the XMLNS namespace whose value is not exactly the same as the element's
namespace, that is a parse errorp1273. Similarly, if element has an xmlns:xlink attribute in the XMLNS namespace whose
value is not the XLink Namespace, that is a parse errorp1273.

13. If element is a resettable elementp514, invoke its reset algorithmp637. (This initializes the element's valuep597 and
checkednessp597 based on the element's attributes.)

14. If element is a form-associated elementp513 and not a form-associated custom elementp760, the form element pointerp1289 is
not null, there is no templatep671 element on the stack of open elementsp1286, element is either not listedp513 or doesn't have
a formp598 attribute, and the intended parent is in the same tree as the element pointed to by the form element pointerp1289,
then associatep598 element with the formp514 element pointed to by the form element pointerp1289 and set element's parser
inserted flagp598.

15. Return element.

To insert an element at the adjusted insertion location with an element element:

1. Let the adjusted insertion location be the appropriate place for inserting a nodep1319.

2. If it is not possible to insert element at the adjusted insertion location, abort these steps.

3. If the parser was not created as part of the HTML fragment parsing algorithmp1373, then push a new element queuep768 onto
element's relevant agentp1073 's custom element reactions stackp768.

4. Insert element at the adjusted insertion location.

5. If the parser was not created as part of the HTML fragment parsing algorithmp1373, then pop the element queuep768 from
element's relevant agentp1073 's custom element reactions stackp768, and invoke custom element reactionsp769 in that queue.

When the steps below require the user agent to insert a foreign element for a token in a given namespace and with a boolean
onlyAddToElementStack, the user agent must run these steps:

1. Let the adjusted insertion location be the appropriate place for inserting a nodep1319.

2. Let element be the result of creating an element for the tokenp1320 in the given namespace, with the intended parent being
the element in which the adjusted insertion location finds itself.

3. If onlyAddToElementStack is false, then run insert an element at the adjusted insertion locationp1321 with element.

4. Push element onto the stack of open elementsp1286 so that it is the new current nodep1286.

5. Return element.

When the steps below require the user agent to insert an HTML element for a token, the user agent must insert a foreign

This can enqueue a custom element callback reactionp769 for the attributeChangedCallback, which might run
immediately (in the next step).

Note

Even though the isp759 attribute governs the creation of a customized built-in elementp759, it is not present during the
execution of the relevant custom element constructorp759; it is appended in this step, along with all other attributes.

Note

If the adjusted insertion location cannot accept more elements, e.g., because it's a Documentp130 that already has an element child,
then element is dropped on the floor.

Note

1321

https://dom.spec.whatwg.org/#concept-create-element
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://dom.spec.whatwg.org/#concept-tree

elementp1321 for the token, with the HTML namespace and false.

When the steps below require the user agent to adjust MathML attributes for a token, then, if the token has an attribute named
definitionurl, change its name to definitionURL (note the case difference).

When the steps below require the user agent to adjust SVG attributes for a token, then, for each attribute on the token whose
attribute name is one of the ones in the first column of the following table, change the attribute's name to the name given in the
corresponding cell in the second column. (This fixes the case of SVG attributes that are not all lowercase.)

Attribute name on token Attribute name on element

attributename attributeName

attributetype attributeType

basefrequency baseFrequency

baseprofile baseProfile

calcmode calcMode

clippathunits clipPathUnits

diffuseconstant diffuseConstant

edgemode edgeMode

filterunits filterUnits

glyphref glyphRef

gradienttransform gradientTransform

gradientunits gradientUnits

kernelmatrix kernelMatrix

kernelunitlength kernelUnitLength

keypoints keyPoints

keysplines keySplines

keytimes keyTimes

lengthadjust lengthAdjust

limitingconeangle limitingConeAngle

markerheight markerHeight

markerunits markerUnits

markerwidth markerWidth

maskcontentunits maskContentUnits

maskunits maskUnits

numoctaves numOctaves

pathlength pathLength

patterncontentunits patternContentUnits

patterntransform patternTransform

patternunits patternUnits

pointsatx pointsAtX

pointsaty pointsAtY

pointsatz pointsAtZ

preservealpha preserveAlpha

preserveaspectratio preserveAspectRatio

primitiveunits primitiveUnits

refx refX

refy refY

repeatcount repeatCount

repeatdur repeatDur

requiredextensions requiredExtensions

requiredfeatures requiredFeatures

specularconstant specularConstant

specularexponent specularExponent

spreadmethod spreadMethod

startoffset startOffset

stddeviation stdDeviation

stitchtiles stitchTiles
1322

https://infra.spec.whatwg.org/#html-namespace

Attribute name on token Attribute name on element

surfacescale surfaceScale

systemlanguage systemLanguage

tablevalues tableValues

targetx targetX

targety targetY

textlength textLength

viewbox viewBox

viewtarget viewTarget

xchannelselector xChannelSelector

ychannelselector yChannelSelector

zoomandpan zoomAndPan

When the steps below require the user agent to adjust foreign attributes for a token, then, if any of the attributes on the token
match the strings given in the first column of the following table, let the attribute be a namespaced attribute, with the prefix being the
string given in the corresponding cell in the second column, the local name being the string given in the corresponding cell in the third
column, and the namespace being the namespace given in the corresponding cell in the fourth column. (This fixes the use of
namespaced attributes, in particular lang attributes in the XML namespace.)

Attribute name Prefix Local name Namespace

xlink:actuate xlink actuate XLink namespace
xlink:arcrole xlink arcrole XLink namespace
xlink:href xlink href XLink namespace
xlink:role xlink role XLink namespace
xlink:show xlink show XLink namespace
xlink:title xlink title XLink namespace
xlink:type xlink type XLink namespace
xml:lang xml lang XML namespace
xml:space xml space XML namespace
xmlns (none) xmlns XMLNS namespace
xmlns:xlink xmlns xlink XMLNS namespace

When the steps below require the user agent to insert a character while processing a token, the user agent must run the following
steps:

1. Let data be the characters passed to the algorithm, or, if no characters were explicitly specified, the character of the
character token being processed.

2. Let the adjusted insertion location be the appropriate place for inserting a nodep1319.

3. If the adjusted insertion location is in a Documentp130 node, then return.

4. If there is a Text node immediately before the adjusted insertion location, then append data to that Text node's data.

Otherwise, create a new Text node whose data is data and whose node document is the same as that of the element in
which the adjusted insertion location finds itself, and insert the newly created node at the adjusted insertion location.

The DOM will not let Documentp130 nodes have Text node children, so they are dropped on the floor.
Note

Here are some sample inputs to the parser and the corresponding number of Text nodes that they result in, assuming a user agent
that executes scripts.

Input Number of Text nodes

A<script>
var script = document.getElementsByTagName('script')[0];
document.body.removeChild(script);

One Text node in the document, containing "AB".

Example

1323

https://www.w3.org/TR/xml/#sec-lang-tag
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

When the steps below require the user agent to insert a comment while processing a comment token, optionally with an explicitly
insertion position position, the user agent must run the following steps:

1. Let data be the data given in the comment token being processed.

2. If position was specified, then let the adjusted insertion location be position. Otherwise, let adjusted insertion location be the
appropriate place for inserting a nodep1319.

3. Create a Comment node whose data attribute is set to data and whose node document is the same as that of the node in
which the adjusted insertion location finds itself.

4. Insert the newly created node at the adjusted insertion location.

The generic raw text element parsing algorithm and the generic RCDATA element parsing algorithm consist of the following
steps. These algorithms are always invoked in response to a start tag token.

1. Insert an HTML elementp1321 for the token.

2. If the algorithm that was invoked is the generic raw text element parsing algorithmp1324, switch the tokenizer to the RAWTEXT
statep1291; otherwise the algorithm invoked was the generic RCDATA element parsing algorithmp1324, switch the tokenizer to
the RCDATA statep1291.

3. Let the original insertion modep1285 be the current insertion modep1285.

4. Then, switch the insertion modep1285 to "textp1342".

When the steps below require the UA to generate implied end tags, then, while the current nodep1286 is a ddp248 element, a dtp247

element, an lip241 element, an optgroupp576 element, an optionp577 element, a pp229 element, an rbp1427 element, an rpp277 element, an
rtp277 element, or an rtcp1427 element, the UA must pop the current nodep1286 off the stack of open elementsp1286.

Input Number of Text nodes

</script>B

A<script>
var text = document.createTextNode('B');
document.body.appendChild(text);
</script>C

Three Text nodes; "A" before the script, the script's contents, and
"BC" after the script (the parser appends to the Text node
created by the script).

A<script>
var text = document.getElementsByTagName('script')[0].firstChild;
text.data = 'B';
document.body.appendChild(text);
</script>C

Two adjacent Text nodes in the document, containing "A" and
"BC".

A<table>B<tr>C</tr>D</table>
One Text node before the table, containing "ABCD". (This is
caused by foster parentingp1319.)

A<table><tr> B</tr> C</table>
One Text node before the table, containing "A B C" (A-space-B-
space-C). (This is caused by foster parentingp1319.)

A<table><tr> B</tr> C</table>
One Text node before the table, containing "A BC" (A-space-B-C),
and one Text node inside the table (as a child of a tbodyp489) with
a single space character. (Space characters separated from non-
space characters by non-character tokens are not affected by
foster parentingp1319, even if those other tokens then get
ignored.)

13.2.6.2 Parsing elements that contain only text §p13

24

13.2.6.3 Closing elements that have implied end tags §p13

24

1324

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#concept-node-document

If a step requires the UA to generate implied end tags but lists an element to exclude from the process, then the UA must perform the
above steps as if that element was not in the above list.

When the steps below require the UA to generate all implied end tags thoroughly, then, while the current nodep1286 is a
captionp486 element, a colgroupp487 element, a ddp248 element, a dtp247 element, an lip241 element, an optgroupp576 element, an
optionp577 element, a pp229 element, an rbp1427 element, an rpp277 element, an rtp277 element, an rtcp1427 element, a tbodyp489 element,
a tdp493 element, a tfootp491 element, a thp495 element, a theadp490 element, or a trp492 element, the UA must pop the current
nodep1286 off the stack of open elementsp1286.

A Documentp130 object has an associated parser cannot change the mode flag (a boolean). It is initially false.

When the user agent is to apply the rules for the "initialp1325" insertion modep1285, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A comment token
Insert a commentp1324 as the last child of the Documentp130 object.

↪ A DOCTYPE token
If the DOCTYPE token's name is not "html", or the token's public identifier is not missing, or the token's system identifier is
neither missing nor "about:legacy-compatp96", then there is a parse errorp1273.

Append a DocumentType node to the Documentp130 node, with its name set to the name given in the DOCTYPE token, or the
empty string if the name was missing; its public ID set to the public identifier given in the DOCTYPE token, or the empty string if
the public identifier was missing; and its system ID set to the system identifier given in the DOCTYPE token, or the empty string
if the system identifier was missing.

Then, if the document is not an iframe srcdoc documentp391, and the parser cannot change the mode flagp1325 is false, and the
DOCTYPE token matches one of the conditions in the following list, then set the Documentp130 to quirks mode:

• The force-quirks flagp1290 is set to on.
• The name is not "html".
• The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"
• The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"
• The public identifier is set to: "HTML"
• The system identifier is set to: "http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd"
• The public identifier starts with: "+//Silmaril//dtd html Pro v0r11 19970101//"
• The public identifier starts with: "-//AS//DTD HTML 3.0 asWedit + extensions//"
• The public identifier starts with: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit + extensions//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0//"
• The public identifier starts with: "-//IETF//DTD HTML 2.1E//"
• The public identifier starts with: "-//IETF//DTD HTML 3.0//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2//"
• The public identifier starts with: "-//IETF//DTD HTML 3//"
• The public identifier starts with: "-//IETF//DTD HTML Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict//"

13.2.6.4 The rules for parsing tokens in HTML content §p13

25

13.2.6.4.1 The "initial" insertion mode §p13

25

This also ensures that the DocumentType node is returned as the value of the doctype attribute of the Documentp130 object.
Note

1325

https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#concept-doctype-name
https://dom.spec.whatwg.org/#concept-doctype-publicid
https://dom.spec.whatwg.org/#concept-doctype-systemid
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#dom-document-doctype
https://dom.spec.whatwg.org/#concept-document-quirks

• The public identifier starts with: "-//IETF//DTD HTML//"
• The public identifier starts with: "-//Metrius//DTD Metrius Presentational//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 Tables//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 Tables//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD HTML//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD Strict HTML//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML 2.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended 1.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended Relaxed 1.0//"
• The public identifier starts with: "-//SQ//DTD HTML 2.0 HoTMetaL + extensions//"
• The public identifier starts with: "-//SoftQuad Software//DTD HoTMetaL PRO 6.0::19990601::extensions to

HTML 4.0//"
• The public identifier starts with: "-//SoftQuad//DTD HoTMetaL PRO 4.0::19971010::extensions to HTML 4.0//"
• The public identifier starts with: "-//Spyglass//DTD HTML 2.0 Extended//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava HTML//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava Strict HTML//"
• The public identifier starts with: "-//W3C//DTD HTML 3 1995-03-24//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2S Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Transitional//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 19960712//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 970421//"
• The public identifier starts with: "-//W3C//DTD W3 HTML//"
• The public identifier starts with: "-//W3O//DTD W3 HTML 3.0//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML 2.0//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML//"
• The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"
• The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

Otherwise, if the document is not an iframe srcdoc documentp391, and the parser cannot change the mode flagp1325 is false,
and the DOCTYPE token matches one of the conditions in the following list, then set the Documentp130 to limited-quirks mode:

• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Transitional//"
• The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"
• The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

The system identifier and public identifier strings must be compared to the values given in the lists above in an ASCII case-
insensitive manner. A system identifier whose value is the empty string is not considered missing for the purposes of the
conditions above.

Then, switch the insertion modep1285 to "before htmlp1326".

↪ Anything else
If the document is not an iframe srcdoc documentp391, then this is a parse errorp1273; if the parser cannot change the mode
flagp1325 is false, set the Documentp130 to quirks mode.

In any case, switch the insertion modep1285 to "before htmlp1326", then reprocess the token.

When the user agent is to apply the rules for the "before htmlp1326" insertion modep1285, the user agent must handle the token as
follows:

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A comment token
Insert a commentp1324 as the last child of the Documentp130 object.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

13.2.6.4.2 The "before html" insertion mode §p13

26

1326

https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-document-quirks

↪ A start tag whose tag name is "html"
Create an element for the tokenp1320 in the HTML namespace, with the Documentp130 as the intended parent. Append it to the
Documentp130 object. Put this element in the stack of open elementsp1286.

Switch the insertion modep1285 to "before headp1327".

↪ An end tag whose tag name is one of: "head", "body", "html", "br"
Act as described in the "anything else" entry below.

↪ Any other end tag
Parse errorp1273. Ignore the token.

↪ Anything else
Create an htmlp172 element whose node document is the Documentp130 object. Append it to the Documentp130 object. Put this
element in the stack of open elementsp1286.

Switch the insertion modep1285 to "before headp1327", then reprocess the token.

The document element can end up being removed from the Documentp130 object, e.g. by scripts; nothing in particular happens in such
cases, content continues being appended to the nodes as described in the next section.

When the user agent is to apply the rules for the "before headp1327" insertion modep1285, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is "head"
Insert an HTML elementp1321 for the token.

Set the head element pointerp1289 to the newly created headp173 element.

Switch the insertion modep1285 to "in headp1328".

↪ An end tag whose tag name is one of: "head", "body", "html", "br"
Act as described in the "anything else" entry below.

↪ Any other end tag
Parse errorp1273. Ignore the token.

↪ Anything else
Insert an HTML elementp1321 for a "head" start tag token with no attributes.

Set the head element pointerp1289 to the newly created headp173 element.

Switch the insertion modep1285 to "in headp1328".

Reprocess the current token.

13.2.6.4.3 The "before head" insertion mode §p13

27

1327

https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#document-element

When the user agent is to apply the rules for the "in headp1328" insertion modep1285, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1323.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link"
Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

↪ A start tag whose tag name is "meta"
Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

If the active speculative HTML parserp1360 is null, then:

1. If the element has a charsetp190 attribute, and getting an encoding from its value results in an encoding, and the
confidencep1278 is currently tentative, then change the encodingp1284 to the resulting encoding.

2. Otherwise, if the element has an http-equivp195 attribute whose value is an ASCII case-insensitive match for the
string "Content-Type", and the element has a contentp190 attribute, and applying the algorithm for extracting a
character encoding from a meta elementp99 to that attribute's value returns an encoding, and the confidencep1278 is
currently tentative, then change the encodingp1284 to the extracted encoding.

↪ A start tag whose tag name is "title"
Follow the generic RCDATA element parsing algorithmp1324.

↪ A start tag whose tag name is "noscript", if the scripting flagp1289 is enabled
↪ A start tag whose tag name is one of: "noframes", "style"

Follow the generic raw text element parsing algorithmp1324.

↪ A start tag whose tag name is "noscript", if the scripting flagp1289 is disabled
Insert an HTML elementp1321 for the token.

Switch the insertion modep1285 to "in head noscriptp1330".

↪ A start tag whose tag name is "script"
Run these steps:

1. Let the adjusted insertion location be the appropriate place for inserting a nodep1319.

2. Create an element for the tokenp1320 in the HTML namespace, with the intended parent being the element in which the
adjusted insertion location finds itself.

3. Set the element's parser documentp659 to the Documentp130, and set the element's force asyncp659 to false.

13.2.6.4.4 The "in head" insertion mode §p13

28

The speculative HTML parserp1360 doesn't speculatively apply character encoding declarations in order to reduce
implementation complexity.

Note

1328

https://encoding.spec.whatwg.org/#concept-encoding-get
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#encoding
https://infra.spec.whatwg.org/#html-namespace

4. If the parser was created as part of the HTML fragment parsing algorithmp1373, then set the scriptp652 element's
already startedp659 to true. (fragment casep1373)

5. If the parser was invoked via the document.write()p1153 or document.writeln()p1153 methods, then optionally set the
scriptp652 element's already startedp659 to true. (For example, the user agent might use this clause to prevent
execution of cross-originp898 scripts inserted via document.write()p1153 under slow network conditions, or when the
page has already taken a long time to load.)

6. Insert the newly created element at the adjusted insertion location.

7. Push the element onto the stack of open elementsp1286 so that it is the new current nodep1286.

8. Switch the tokenizer to the script data statep1291.

9. Let the original insertion modep1285 be the current insertion modep1285.

10. Switch the insertion modep1285 to "textp1342".

↪ An end tag whose tag name is "head"
Pop the current nodep1286 (which will be the headp173 element) off the stack of open elementsp1286.

Switch the insertion modep1285 to "after headp1331".

↪ An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "template"
Let template start tag be the start tag.

Insert a markerp1288 at the end of the list of active formatting elementsp1288.

Set the frameset-ok flagp1290 to "not ok".

Switch the insertion modep1285 to "in templatep1352".

Push "in templatep1352" onto the stack of template insertion modesp1285 so that it is the new current template insertion
modep1285.

Let the adjusted insertion location be the appropriate place for inserting a nodep1319.

Let intended parent be the element in which the adjusted insertion location finds itself.

Let document be intended parent's node document.

If any of the following are false:

• template start tag's shadowrootmodep672 is not in the nonep672 state;

• document's allow declarative shadow roots is true; or

• the adjusted current nodep1287 is not the topmost element in the stack of open elementsp1286,

then insert an HTML elementp1321 for the token.

Otherwise:

1. Let declarative shadow host element be adjusted current nodep1287.

2. Let template be the result of insert a foreign elementp1321 for template start tag, with HTML namespace and true.

3. Let mode be template start tag's shadowrootmodep672 attribute's value.

4. Let clonable be true if template start tag has a shadowrootclonablep672 attribute; otherwise false.

This ensures that, if the script is external, any document.write()p1153 calls in the script will execute in-line,
instead of blowing the document away, as would happen in most other cases. It also prevents the script from
executing until the end tag is seen.

Note

1329

https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-allow-declarative-shadow-roots
https://infra.spec.whatwg.org/#html-namespace

5. Let serializable be true if template start tag has a shadowrootserializablep672 attribute; otherwise false.

6. Let delegatesFocus be true if template start tag has a shadowrootdelegatesfocusp672 attribute; otherwise false.

7. If declarative shadow host element is a shadow host, then insert an element at the adjusted insertion locationp1321

with template.

8. Otherwise:

1. Attach a shadow root with declarative shadow host element, mode, clonable, serializable, delegatesFocus,
and "named".

If an exception is thrown, then catch it and:

1. Insert an element at the adjusted insertion locationp1321 with template.

2. The user agent may report an error to the developer console.

3. Return.

2. Let shadow be declarative shadow host element's shadow root.

3. Set shadow's declarative to true.

4. Set templatep671 's template contentsp673 property to shadow.

5. Set shadow's available to element internals to true.

↪ An end tag whose tag name is "template"
If there is no templatep671 element on the stack of open elementsp1286, then this is a parse errorp1273; ignore the token.

Otherwise, run these steps:

1. Generate all implied end tags thoroughlyp1325.

2. If the current nodep1286 is not a templatep671 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until a templatep671 element has been popped from the stack.

4. Clear the list of active formatting elements up to the last markerp1289.

5. Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

6. Reset the insertion mode appropriatelyp1285.

↪ A start tag whose tag name is "head"
↪ Any other end tag

Parse errorp1273. Ignore the token.

↪ Anything else
Pop the current nodep1286 (which will be the headp173 element) off the stack of open elementsp1286.

Switch the insertion modep1285 to "after headp1331".

Reprocess the token.

When the user agent is to apply the rules for the "in head noscriptp1330" insertion modep1285, the user agent must handle the token as
follows:

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

13.2.6.4.5 The "in head noscript" insertion mode §p13

30

1330

https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-attach-a-shadow-root
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-declarative
https://dom.spec.whatwg.org/#shadowroot-available-to-element-internals

↪ An end tag whose tag name is "noscript"
Pop the current nodep1286 (which will be a noscriptp669 element) from the stack of open elementsp1286; the new current nodep1286

will be a headp173 element.

Switch the insertion modep1285 to "in headp1328".

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

↪ A comment token
↪ A start tag whose tag name is one of: "basefont", "bgsound", "link", "meta", "noframes", "style"

Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ An end tag whose tag name is "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is one of: "head", "noscript"
↪ Any other end tag

Parse errorp1273. Ignore the token.

↪ Anything else
Parse errorp1273.

Pop the current nodep1286 (which will be a noscriptp669 element) from the stack of open elementsp1286; the new current nodep1286

will be a headp173 element.

Switch the insertion modep1285 to "in headp1328".

Reprocess the token.

When the user agent is to apply the rules for the "after headp1331" insertion modep1285, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1323.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is "body"
Insert an HTML elementp1321 for the token.

Set the frameset-ok flagp1290 to "not ok".

Switch the insertion modep1285 to "in bodyp1332".

↪ A start tag whose tag name is "frameset"
Insert an HTML elementp1321 for the token.

Switch the insertion modep1285 to "in framesetp1354".

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style",
"template", "title"

Parse errorp1273.

13.2.6.4.6 The "after head" insertion mode §p13

31

1331

Push the node pointed to by the head element pointerp1289 onto the stack of open elementsp1286.

Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

Remove the node pointed to by the head element pointerp1289 from the stack of open elementsp1286. (It might not be the current
nodep1286 at this point.)

↪ An end tag whose tag name is "template"
Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "head"
↪ Any other end tag

Parse errorp1273. Ignore the token.

↪ Anything else
Insert an HTML elementp1321 for a "body" start tag token with no attributes.

Switch the insertion modep1285 to "in bodyp1332".

Reprocess the current token.

When the user agent is to apply the rules for the "in bodyp1332" insertion modep1285, the user agent must handle the token as follows:

↪ A character token that is U+0000 NULL
Parse errorp1273. Ignore the token.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Reconstruct the active formatting elementsp1289, if any.

Insert the token's characterp1323.

↪ Any other character token
Reconstruct the active formatting elementsp1289, if any.

Insert the token's characterp1323.

Set the frameset-ok flagp1290 to "not ok".

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Parse errorp1273.

If there is a templatep671 element on the stack of open elementsp1286, then ignore the token.

Otherwise, for each attribute on the token, check to see if the attribute is already present on the top element of the stack of
open elementsp1286. If it is not, add the attribute and its corresponding value to that element.

The head element pointerp1289 cannot be null at this point.
Note

13.2.6.4.7 The "in body" insertion mode §p13

32

1332

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style",
"template", "title"

↪ An end tag whose tag name is "template"
Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ A start tag whose tag name is "body"
Parse errorp1273.

If the stack of open elementsp1286 has only one node on it, if the second element on the stack of open elementsp1286 is not a
bodyp205 element, or if there is a templatep671 element on the stack of open elementsp1286, then ignore the token. (fragment
casep1373 or there is a templatep671 element on the stack)

Otherwise, set the frameset-ok flagp1290 to "not ok"; then, for each attribute on the token, check to see if the attribute is already
present on the bodyp205 element (the second element) on the stack of open elementsp1286, and if it is not, add the attribute and
its corresponding value to that element.

↪ A start tag whose tag name is "frameset"
Parse errorp1273.

If the stack of open elementsp1286 has only one node on it, or if the second element on the stack of open elementsp1286 is not a
bodyp205 element, then ignore the token. (fragment casep1373 or there is a templatep671 element on the stack)

If the frameset-ok flagp1290 is set to "not ok", ignore the token.

Otherwise, run the following steps:

1. Remove the second element on the stack of open elementsp1286 from its parent node, if it has one.

2. Pop all the nodes from the bottom of the stack of open elementsp1286, from the current nodep1286 up to, but not
including, the root htmlp172 element.

3. Insert an HTML elementp1321 for the token.

4. Switch the insertion modep1285 to "in framesetp1354".

↪ An end-of-file token
If the stack of template insertion modesp1285 is not empty, then process the token using the rules forp1285 the "in templatep1352"
insertion modep1285.

Otherwise, follow these steps:

1. If there is a node in the stack of open elementsp1286 that is not either a ddp248 element, a dtp247 element, an lip241

element, an optgroupp576 element, an optionp577 element, a pp229 element, an rbp1427 element, an rpp277 element, an
rtp277 element, an rtcp1427 element, a tbodyp489 element, a tdp493 element, a tfootp491 element, a thp495 element, a
theadp490 element, a trp492 element, the bodyp205 element, or the htmlp172 element, then this is a parse errorp1273.

2. Stop parsingp1358.

↪ An end tag whose tag name is "body"
If the stack of open elementsp1286 does not have a body element in scopep1287, this is a parse errorp1273; ignore the token.

Otherwise, if there is a node in the stack of open elementsp1286 that is not either a ddp248 element, a dtp247 element, an lip241

element, an optgroupp576 element, an optionp577 element, a pp229 element, an rbp1427 element, an rpp277 element, an rtp277

element, an rtcp1427 element, a tbodyp489 element, a tdp493 element, a tfootp491 element, a thp495 element, a theadp490 element,
a trp492 element, the bodyp205 element, or the htmlp172 element, then this is a parse errorp1273.

Switch the insertion modep1285 to "after bodyp1353".

↪ An end tag whose tag name is "html"
If the stack of open elementsp1286 does not have a body element in scopep1287, this is a parse errorp1273; ignore the token.

Otherwise, if there is a node in the stack of open elementsp1286 that is not either a ddp248 element, a dtp247 element, an lip241

element, an optgroupp576 element, an optionp577 element, a pp229 element, an rbp1427 element, an rpp277 element, an rtp277

element, an rtcp1427 element, a tbodyp489 element, a tdp493 element, a tfootp491 element, a thp495 element, a theadp490 element,
a trp492 element, the bodyp205 element, or the htmlp172 element, then this is a parse errorp1273.

1333

Switch the insertion modep1285 to "after bodyp1353".

Reprocess the token.

↪ A start tag whose tag name is one of: "address", "article", "aside", "blockquote", "center", "details", "dialog", "dir",
"div", "dl", "fieldset", "figcaption", "figure", "footer", "header", "hgroup", "main", "menu", "nav", "ol", "p", "search",
"section", "summary", "ul"

If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

Insert an HTML elementp1321 for the token.

↪ A start tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

If the current nodep1286 is an HTML elementp45 whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse
errorp1273; pop the current nodep1286 off the stack of open elementsp1286.

Insert an HTML elementp1321 for the token.

↪ A start tag whose tag name is one of: "pre", "listing"
If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

Insert an HTML elementp1321 for the token.

If the next tokenp1318 is a U+000A LINE FEED (LF) character token, then ignore that token and move on to the next one.
(Newlines at the start of prep233 blocks are ignored as an authoring convenience.)

Set the frameset-ok flagp1290 to "not ok".

↪ A start tag whose tag name is "form"
If the form element pointerp1289 is not null, and there is no templatep671 element on the stack of open elementsp1286, then this is
a parse errorp1273; ignore the token.

Otherwise:

If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

Insert an HTML elementp1321 for the token, and, if there is no templatep671 element on the stack of open elementsp1286, set the
form element pointerp1289 to point to the element created.

↪ A start tag whose tag name is "li"
Run these steps:

1. Set the frameset-ok flagp1290 to "not ok".

2. Initialize node to be the current nodep1286 (the bottommost node of the stack).

3. Loop: If node is an lip241 element, then run these substeps:

1. Generate implied end tagsp1324, except for lip241 elements.

2. If the current nodep1286 is not an lip241 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until an lip241 element has been popped from the stack.

4. Jump to the step labeled done below.

4. If node is in the specialp1287 category, but is not an addressp222, divp256, or pp229 element, then jump to the step
labeled done below.

5. Otherwise, set node to the previous entry in the stack of open elementsp1286 and return to the step labeled loop.

6. Done: If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

7. Finally, insert an HTML elementp1321 for the token.

1334

↪ A start tag whose tag name is one of: "dd", "dt"
Run these steps:

1. Set the frameset-ok flagp1290 to "not ok".

2. Initialize node to be the current nodep1286 (the bottommost node of the stack).

3. Loop: If node is a ddp248 element, then run these substeps:

1. Generate implied end tagsp1324, except for ddp248 elements.

2. If the current nodep1286 is not a ddp248 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until a ddp248 element has been popped from the stack.

4. Jump to the step labeled done below.

4. If node is a dtp247 element, then run these substeps:

1. Generate implied end tagsp1324, except for dtp247 elements.

2. If the current nodep1286 is not a dtp247 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until a dtp247 element has been popped from the stack.

4. Jump to the step labeled done below.

5. If node is in the specialp1287 category, but is not an addressp222, divp256, or pp229 element, then jump to the step
labeled done below.

6. Otherwise, set node to the previous entry in the stack of open elementsp1286 and return to the step labeled loop.

7. Done: If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

8. Finally, insert an HTML elementp1321 for the token.

↪ A start tag whose tag name is "plaintext"
If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

Insert an HTML elementp1321 for the token.

Switch the tokenizer to the PLAINTEXT statep1292.

↪ A start tag whose tag name is "button"

1. If the stack of open elementsp1286 has a button element in scopep1287, then run these substeps:

1. Parse errorp1273.

2. Generate implied end tagsp1324.

3. Pop elements from the stack of open elementsp1286 until a buttonp566 element has been popped from the
stack.

2. Reconstruct the active formatting elementsp1289, if any.

3. Insert an HTML elementp1321 for the token.

4. Set the frameset-ok flagp1290 to "not ok".

↪ An end tag whose tag name is one of: "address", "article", "aside", "blockquote", "button", "center", "details",
"dialog", "dir", "div", "dl", "fieldset", "figcaption", "figure", "footer", "header", "hgroup", "listing", "main", "menu",

Once a start tag with the tag name "plaintext" has been seen, all remaining tokens will be character tokens (and a final end-
of-file token) because there is no way to switch the tokenizer out of the PLAINTEXT statep1292. However, as the tree builder
remains in its existing insertion mode, it might reconstruct the active formatting elementsp1289 while processing those
character tokens. This means that the parser can insert other elements into the plaintextp1426 element.

Note

1335

"nav", "ol", "pre", "search", "section", "summary", "ul"
If the stack of open elementsp1286 does not have an element in scopep1287 that is an HTML elementp45 with the same tag name as
that of the token, then this is a parse errorp1273; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1324.

2. If the current nodep1286 is not an HTML elementp45 with the same tag name as that of the token, then this is a parse
errorp1273.

3. Pop elements from the stack of open elementsp1286 until an HTML elementp45 with the same tag name as the token has
been popped from the stack.

↪ An end tag whose tag name is "form"
If there is no templatep671 element on the stack of open elementsp1286, then run these substeps:

1. Let node be the element that the form element pointerp1289 is set to, or null if it is not set to an element.

2. Set the form element pointerp1289 to null.

3. If node is null or if the stack of open elementsp1286 does not have node in scopep1287, then this is a parse errorp1273;
return and ignore the token.

4. Generate implied end tagsp1324.

5. If the current nodep1286 is not node, then this is a parse errorp1273.

6. Remove node from the stack of open elementsp1286.

If there is a templatep671 element on the stack of open elementsp1286, then run these substeps instead:

1. If the stack of open elementsp1286 does not have a form element in scopep1287, then this is a parse errorp1273; return
and ignore the token.

2. Generate implied end tagsp1324.

3. If the current nodep1286 is not a formp514 element, then this is a parse errorp1273.

4. Pop elements from the stack of open elementsp1286 until a formp514 element has been popped from the stack.

↪ An end tag whose tag name is "p"
If the stack of open elementsp1286 does not have a p element in button scopep1288, then this is a parse errorp1273; insert an HTML
elementp1321 for a "p" start tag token with no attributes.

Close a p elementp1340.

↪ An end tag whose tag name is "li"
If the stack of open elementsp1286 does not have an li element in list item scopep1288, then this is a parse errorp1273; ignore the
token.

Otherwise, run these steps:

1. Generate implied end tagsp1324, except for lip241 elements.

2. If the current nodep1286 is not an lip241 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until an lip241 element has been popped from the stack.

↪ An end tag whose tag name is one of: "dd", "dt"
If the stack of open elementsp1286 does not have an element in scopep1287 that is an HTML elementp45 with the same tag name as
that of the token, then this is a parse errorp1273; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1324, except for HTML elementsp45 with the same tag name as the token.

2. If the current nodep1286 is not an HTML elementp45 with the same tag name as that of the token, then this is a parse
1336

errorp1273.

3. Pop elements from the stack of open elementsp1286 until an HTML elementp45 with the same tag name as the token has
been popped from the stack.

↪ An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elementsp1286 does not have an element in scopep1287 that is an HTML elementp45 and whose tag name is
one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse errorp1273; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1324.

2. If the current nodep1286 is not an HTML elementp45 with the same tag name as that of the token, then this is a parse
errorp1273.

3. Pop elements from the stack of open elementsp1286 until an HTML elementp45 whose tag name is one of "h1", "h2",
"h3", "h4", "h5", or "h6" has been popped from the stack.

↪ An end tag whose tag name is "sarcasm"
Take a deep breath, then act as described in the "any other end tag" entry below.

↪ A start tag whose tag name is "a"
If the list of active formatting elementsp1288 contains an ap257 element between the end of the list and the last markerp1288 on the
list (or the start of the list if there is no markerp1288 on the list), then this is a parse errorp1273; run the adoption agency
algorithmp1340 for the token, then remove that element from the list of active formatting elementsp1288 and the stack of open
elementsp1286 if the adoption agency algorithmp1340 didn't already remove it (it might not have if the element is not in table
scopep1288).

Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token. Push onto the list of active formatting elementsp1288 that element.

↪ A start tag whose tag name is one of: "b", "big", "code", "em", "font", "i", "s", "small", "strike", "strong", "tt", "u"
Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token. Push onto the list of active formatting elementsp1288 that element.

↪ A start tag whose tag name is "nobr"
Reconstruct the active formatting elementsp1289, if any.

If the stack of open elementsp1286 has a nobr element in scopep1287, then this is a parse errorp1273; run the adoption agency
algorithmp1340 for the token, then once again reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token. Push onto the list of active formatting elementsp1288 that element.

↪ An end tag whose tag name is one of: "a", "b", "big", "code", "em", "font", "i", "nobr", "s", "small", "strike", "strong",
"tt", "u"

Run the adoption agency algorithmp1340 for the token.

↪ A start tag whose tag name is one of: "applet", "marquee", "object"
Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token.

Insert a markerp1288 at the end of the list of active formatting elementsp1288.

In the non-conforming stream a<table>b</table>x, the first ap257 element would be closed
upon seeing the second one, and the "x" character would be inside a link to "b", not to "a". This is despite the fact that the
outer ap257 element is not in table scope (meaning that a regular end tag at the start of the table wouldn't close the
outer ap257 element). The result is that the two ap257 elements are indirectly nested inside each other — non-conforming
markup will often result in non-conforming DOMs when parsed.

Example

1337

Set the frameset-ok flagp1290 to "not ok".

↪ An end tag token whose tag name is one of: "applet", "marquee", "object"
If the stack of open elementsp1286 does not have an element in scopep1287 that is an HTML elementp45 with the same tag name as
that of the token, then this is a parse errorp1273; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp1324.

2. If the current nodep1286 is not an HTML elementp45 with the same tag name as that of the token, then this is a parse
errorp1273.

3. Pop elements from the stack of open elementsp1286 until an HTML elementp45 with the same tag name as the token has
been popped from the stack.

4. Clear the list of active formatting elements up to the last markerp1289.

↪ A start tag whose tag name is "table"
If the Documentp130 is not set to quirks mode, and the stack of open elementsp1286 has a p element in button scopep1288, then
close a p elementp1340.

Insert an HTML elementp1321 for the token.

Set the frameset-ok flagp1290 to "not ok".

Switch the insertion modep1285 to "in tablep1343".

↪ An end tag whose tag name is "br"
Parse errorp1273. Drop the attributes from the token, and act as described in the next entry; i.e. act as if this was a "br" start tag
token with no attributes, rather than the end tag token that it actually is.

↪ A start tag whose tag name is one of: "area", "br", "embed", "img", "keygen", "wbr"
Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

Set the frameset-ok flagp1290 to "not ok".

↪ A start tag whose tag name is "input"
Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an ASCII case-
insensitive match for the string "hidden", then: set the frameset-ok flagp1290 to "not ok".

↪ A start tag whose tag name is one of: "param", "source", "track"
Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

↪ A start tag whose tag name is "hr"
If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

Set the frameset-ok flagp1290 to "not ok".

1338

https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

↪ A start tag whose tag name is "image"
Parse errorp1273. Change the token's tag name to "img" and reprocess it. (Don't ask.)

↪ A start tag whose tag name is "textarea"
Run these steps:

1. Insert an HTML elementp1321 for the token.

2. If the next tokenp1318 is a U+000A LINE FEED (LF) character token, then ignore that token and move on to the next
one. (Newlines at the start of textareap579 elements are ignored as an authoring convenience.)

3. Switch the tokenizer to the RCDATA statep1291.

4. Let the original insertion modep1285 be the current insertion modep1285.

5. Set the frameset-ok flagp1290 to "not ok".

6. Switch the insertion modep1285 to "textp1342".

↪ A start tag whose tag name is "xmp"
If the stack of open elementsp1286 has a p element in button scopep1288, then close a p elementp1340.

Reconstruct the active formatting elementsp1289, if any.

Set the frameset-ok flagp1290 to "not ok".

Follow the generic raw text element parsing algorithmp1324.

↪ A start tag whose tag name is "iframe"
Set the frameset-ok flagp1290 to "not ok".

Follow the generic raw text element parsing algorithmp1324.

↪ A start tag whose tag name is "noembed"
↪ A start tag whose tag name is "noscript", if the scripting flagp1289 is enabled

Follow the generic raw text element parsing algorithmp1324.

↪ A start tag whose tag name is "select"
Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token.

Set the frameset-ok flagp1290 to "not ok".

If the insertion modep1285 is one of "in tablep1343", "in captionp1346", "in table bodyp1347", "in rowp1348", or "in cellp1349", then switch
the insertion modep1285 to "in select in tablep1352". Otherwise, switch the insertion modep1285 to "in selectp1350".

↪ A start tag whose tag name is one of: "optgroup", "option"
If the current nodep1286 is an optionp577 element, then pop the current nodep1286 off the stack of open elementsp1286.

Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token.

↪ A start tag whose tag name is one of: "rb", "rtc"
If the stack of open elementsp1286 has a ruby element in scopep1287, then generate implied end tagsp1324. If the current nodep1286

is not now a rubyp270 element, this is a parse errorp1273.

Insert an HTML elementp1321 for the token.

↪ A start tag whose tag name is one of: "rp", "rt"
If the stack of open elementsp1286 has a ruby element in scopep1287, then generate implied end tagsp1324, except for rtcp1427

elements. If the current nodep1286 is not now a rtcp1427 element or a rubyp270 element, this is a parse errorp1273.

Insert an HTML elementp1321 for the token.
1339

↪ A start tag whose tag name is "math"
Reconstruct the active formatting elementsp1289, if any.

Adjust MathML attributesp1322 for the token. (This fixes the case of MathML attributes that are not all lowercase.)

Adjust foreign attributesp1323 for the token. (This fixes the use of namespaced attributes, in particular XLink.)

Insert a foreign elementp1321 for the token, with MathML namespace and false.

If the token has its self-closing flagp1290 set, pop the current nodep1286 off the stack of open elementsp1286 and acknowledge the
token's self-closing flagp1290.

↪ A start tag whose tag name is "svg"
Reconstruct the active formatting elementsp1289, if any.

Adjust SVG attributesp1322 for the token. (This fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributesp1323 for the token. (This fixes the use of namespaced attributes, in particular XLink in SVG.)

Insert a foreign elementp1321 for the token, with SVG namespace and false.

If the token has its self-closing flagp1290 set, pop the current nodep1286 off the stack of open elementsp1286 and acknowledge the
token's self-closing flagp1290.

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "frame", "head", "tbody", "td", "tfoot", "th",
"thead", "tr"

Parse errorp1273. Ignore the token.

↪ Any other start tag
Reconstruct the active formatting elementsp1289, if any.

Insert an HTML elementp1321 for the token.

↪ Any other end tag
Run these steps:

1. Initialize node to be the current nodep1286 (the bottommost node of the stack).

2. Loop: If node is an HTML elementp45 with the same tag name as the token, then:

1. Generate implied end tagsp1324, except for HTML elementsp45 with the same tag name as the token.

2. If node is not the current nodep1286, then this is a parse errorp1273.

3. Pop all the nodes from the current nodep1286 up to node, including node, then stop these steps.

3. Otherwise, if node is in the specialp1287 category, then this is a parse errorp1273; ignore the token, and return.

4. Set node to the previous entry in the stack of open elementsp1286.

5. Return to the step labeled loop.

When the steps above say the user agent is to close a p element, it means that the user agent must run the following steps:

1. Generate implied end tagsp1324, except for pp229 elements.

2. If the current nodep1286 is not a pp229 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until a pp229 element has been popped from the stack.

The adoption agency algorithm, which takes as its only argument a token token for which the algorithm is being run, consists of the
following steps:

This element will be an ordinaryp1287 element. With one exception: if the scripting flagp1289 is disabled, it can also be a
noscriptp669 element.

Note

1340

https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace

1. Let subject be token's tag name.

2. If the current nodep1286 is an HTML elementp45 whose tag name is subject, and the current nodep1286 is not in the list of active
formatting elementsp1288, then pop the current nodep1286 off the stack of open elementsp1286 and return.

3. Let outerLoopCounter be 0.

4. While true:

1. If outerLoopCounter is greater than or equal to 8, then return.

2. Increment outerLoopCounter by 1.

3. Let formattingElement be the last element in the list of active formatting elementsp1288 that:

▪ is between the end of the list and the last markerp1288 in the list, if any, or the start of the list otherwise,
and

▪ has the tag name subject.

If there is no such element, then return and instead act as described in the "any other end tag" entry above.

4. If formattingElement is not in the stack of open elementsp1286, then this is a parse errorp1273; remove the element
from the list, and return.

5. If formattingElement is in the stack of open elementsp1286, but the element is not in scopep1287, then this is a parse
errorp1273; return.

6. If formattingElement is not the current nodep1286, this is a parse errorp1273. (But do not return.)

7. Let furthestBlock be the topmost node in the stack of open elementsp1286 that is lower in the stack than
formattingElement, and is an element in the specialp1287 category. There might not be one.

8. If there is no furthestBlock, then the UA must first pop all the nodes from the bottom of the stack of open
elementsp1286, from the current nodep1286 up to and including formattingElement, then remove formattingElement
from the list of active formatting elementsp1288, and finally return.

9. Let commonAncestor be the element immediately above formattingElement in the stack of open elementsp1286.

10. Let a bookmark note the position of formattingElement in the list of active formatting elementsp1288 relative to the
elements on either side of it in the list.

11. Let node and lastNode be furthestBlock.

12. Let innerLoopCounter be 0.

13. While true:

1. Increment innerLoopCounter by 1.

2. Let node be the element immediately above node in the stack of open elementsp1286, or if node is no
longer in the stack of open elementsp1286 (e.g. because it got removed by this algorithm), the element
that was immediately above node in the stack of open elementsp1286 before node was removed.

3. If node is formattingElement, then break.

4. If innerLoopCounter is greater than 3 and node is in the list of active formatting elementsp1288, then
remove node from the list of active formatting elementsp1288.

5. If node is not in the list of active formatting elementsp1288, then remove node from the stack of open
elementsp1286 and continue.

6. Create an element for the tokenp1320 for which the element node was created, in the HTML namespace,
with commonAncestor as the intended parent; replace the entry for node in the list of active formatting
elementsp1288 with an entry for the new element, replace the entry for node in the stack of open
elementsp1286 with an entry for the new element, and let node be the new element.

7. If lastNode is furthestBlock, then move the aforementioned bookmark to be immediately after the new
node in the list of active formatting elementsp1288.

8. Append lastNode to node.
1341

https://infra.spec.whatwg.org/#iteration-break
https://infra.spec.whatwg.org/#iteration-continue
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#concept-node-append

9. Set lastNode to node.

14. Insert whatever lastNode ended up being in the previous step at the appropriate place for inserting a nodep1319, but
using commonAncestor as the override target.

15. Create an element for the tokenp1320 for which formattingElement was created, in the HTML namespace, with
furthestBlock as the intended parent.

16. Take all of the child nodes of furthestBlock and append them to the element created in the last step.

17. Append that new element to furthestBlock.

18. Remove formattingElement from the list of active formatting elementsp1288, and insert the new element into the list
of active formatting elementsp1288 at the position of the aforementioned bookmark.

19. Remove formattingElement from the stack of open elementsp1286, and insert the new element into the stack of
open elementsp1286 immediately below the position of furthestBlock in that stack.

When the user agent is to apply the rules for the "textp1342" insertion modep1285, the user agent must handle the token as follows:

↪ A character token
Insert the token's characterp1323.

↪ An end-of-file token
Parse errorp1273.

If the current nodep1286 is a scriptp652 element, then set its already startedp659 to true.

Pop the current nodep1286 off the stack of open elementsp1286.

Switch the insertion modep1285 to the original insertion modep1285 and reprocess the token.

↪ An end tag whose tag name is "script"
If the active speculative HTML parserp1360 is null and the JavaScript execution context stack is empty, then perform a microtask
checkpointp1131.

Let script be the current nodep1286 (which will be a scriptp652 element).

Pop the current nodep1286 off the stack of open elementsp1286.

Switch the insertion modep1285 to the original insertion modep1285.

Let the old insertion point have the same value as the current insertion pointp1285. Let the insertion pointp1285 be just before the
next input characterp1285.

Increment the parser's script nesting levelp1273 by one.

If the active speculative HTML parserp1360 is null, then prepare the script elementp661 script. This might cause some script to
execute, which might cause new characters to be inserted into the tokenizerp1153, and might cause the tokenizer to output more
tokens, resulting in a reentrant invocation of the parserp1272.

Decrement the parser's script nesting levelp1273 by one. If the parser's script nesting levelp1273 is zero, then set the parser pause

This algorithm's name, the "adoption agency algorithm", comes from the way it causes elements to change parents, and is in
contrast with other possible algorithms for dealing with misnested content.

Note

13.2.6.4.8 The "text" insertion mode §p13

42

This can never be a U+0000 NULL character; the tokenizer converts those to U+FFFD REPLACEMENT CHARACTER
characters.

Note

1342

https://infra.spec.whatwg.org/#html-namespace
https://ln.hixie.ch/?start=1037910467&count=1
https://tc39.es/ecma262/#execution-context-stack

flagp1273 to false.

Let the insertion pointp1285 have the value of the old insertion point. (In other words, restore the insertion pointp1285 to its
previous value. This value might be the "undefined" value.)

At this stage, if the pending parsing-blocking scriptp665 is not null, then:

↪ If the script nesting levelp1273 is not zero:
Set the parser pause flagp1273 to true, and abort the processing of any nested invocations of the tokenizer, yielding
control back to the caller. (Tokenization will resume when the caller returns to the "outer" tree construction stage.)

↪ Otherwise:
While the pending parsing-blocking scriptp665 is not null:

1. Let the script be the pending parsing-blocking scriptp665.

2. Set the pending parsing-blocking scriptp665 to null.

3. Start the speculative HTML parserp1360 for this instance of the HTML parser.

4. Block the tokenizerp1290 for this instance of the HTML parserp1271, such that the event loopp1123 will not run
tasksp1124 that invoke the tokenizerp1290.

5. If the parser's Documentp130 has a style sheet that is blocking scriptsp204 or the script's ready to be parser-
executedp659 is false: spin the event loopp1131 until the parser's Documentp130 has no style sheet that is blocking
scriptsp204 and the script's ready to be parser-executedp659 becomes true.

6. If this parser has been abortedp1359 in the meantime, return.

7. Stop the speculative HTML parserp1361 for this instance of the HTML parser.

8. Unblock the tokenizerp1290 for this instance of the HTML parserp1271, such that tasksp1124 that invoke the
tokenizerp1290 can again be run.

9. Let the insertion pointp1285 be just before the next input characterp1285.

10. Increment the parser's script nesting levelp1273 by one (it should be zero before this step, so this sets it to one).

11. Execute the script elementp665 the script.

12. Decrement the parser's script nesting levelp1273 by one. If the parser's script nesting levelp1273 is zero (which it
always should be at this point), then set the parser pause flagp1273 to false.

13. Let the insertion pointp1285 be undefined again.

↪ Any other end tag
Pop the current nodep1286 off the stack of open elementsp1286.

Switch the insertion modep1285 to the original insertion modep1285.

When the user agent is to apply the rules for the "in tablep1343" insertion modep1285, the user agent must handle the token as follows:

↪ A character token, if the current nodep1286 is tablep478, tbodyp489, templatep671, tfootp491, theadp490, or trp492 element
Let the pending table character tokens be an empty list of tokens.

The tree construction stage of this particular parser is being called reentrantlyp1272, say from a call to
document.write()p1153.

Note

This could happen if, e.g., while the spin the event loopp1131 algorithm is running, the Documentp130 gets
destroyedp1066, or the document.open()p1151 method gets invoked on the Documentp130.

Note

13.2.6.4.9 The "in table" insertion mode §p13

43

1343

Let the original insertion modep1285 be the current insertion modep1285.

Switch the insertion modep1285 to "in table textp1345" and reprocess the token.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "caption"
Clear the stack back to a table contextp1345. (See below.)

Insert a markerp1288 at the end of the list of active formatting elementsp1288.

Insert an HTML elementp1321 for the token, then switch the insertion modep1285 to "in captionp1346".

↪ A start tag whose tag name is "colgroup"
Clear the stack back to a table contextp1345. (See below.)

Insert an HTML elementp1321 for the token, then switch the insertion modep1285 to "in column groupp1346".

↪ A start tag whose tag name is "col"
Clear the stack back to a table contextp1345. (See below.)

Insert an HTML elementp1321 for a "colgroup" start tag token with no attributes, then switch the insertion modep1285 to "in column
groupp1346".

Reprocess the current token.

↪ A start tag whose tag name is one of: "tbody", "tfoot", "thead"
Clear the stack back to a table contextp1345. (See below.)

Insert an HTML elementp1321 for the token, then switch the insertion modep1285 to "in table bodyp1347".

↪ A start tag whose tag name is one of: "td", "th", "tr"
Clear the stack back to a table contextp1345. (See below.)

Insert an HTML elementp1321 for a "tbody" start tag token with no attributes, then switch the insertion modep1285 to "in table
bodyp1347".

Reprocess the current token.

↪ A start tag whose tag name is "table"
Parse errorp1273.

If the stack of open elementsp1286 does not have a table element in table scopep1288, ignore the token.

Otherwise:

Pop elements from this stack until a tablep478 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

Reprocess the token.

↪ An end tag whose tag name is "table"
If the stack of open elementsp1286 does not have a table element in table scopep1288, this is a parse errorp1273; ignore the token.

Otherwise:

Pop elements from this stack until a tablep478 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

1344

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "tbody", "td", "tfoot", "th",
"thead", "tr"

Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is one of: "style", "script", "template"
↪ An end tag whose tag name is "template"

Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ A start tag whose tag name is "input"
If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an ASCII case-
insensitive match for the string "hidden", then: act as described in the "anything else" entry below.

Otherwise:

Parse errorp1273.

Insert an HTML elementp1321 for the token.

Pop that inputp520 element off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

↪ A start tag whose tag name is "form"
Parse errorp1273.

If there is a templatep671 element on the stack of open elementsp1286, or if the form element pointerp1289 is not null, ignore the
token.

Otherwise:

Insert an HTML elementp1321 for the token, and set the form element pointerp1289 to point to the element created.

Pop that formp514 element off the stack of open elementsp1286.

↪ An end-of-file token
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ Anything else
Parse errorp1273. Enable foster parentingp1319, process the token using the rules forp1285 the "in bodyp1332" insertion modep1285, and
then disable foster parentingp1319.

When the steps above require the UA to clear the stack back to a table context, it means that the UA must, while the current
nodep1286 is not a tablep478, templatep671, or htmlp172 element, pop elements from the stack of open elementsp1286.

When the user agent is to apply the rules for the "in table textp1345" insertion modep1285, the user agent must handle the token as
follows:

↪ A character token that is U+0000 NULL
Parse errorp1273. Ignore the token.

↪ Any other character token
Append the character token to the pending table character tokensp1343 list.

This is the same list of elements as used in the has an element in table scopep1288 steps.
Note

The current nodep1286 being an htmlp172 element after this process is a fragment casep1373.
Note

13.2.6.4.10 The "in table text" insertion mode §p13

45

1345

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

↪ Anything else
If any of the tokens in the pending table character tokensp1343 list are character tokens that are not ASCII whitespace, then this
is a parse errorp1273: reprocess the character tokens in the pending table character tokensp1343 list using the rules given in the
"anything else" entry in the "in tablep1343" insertion mode.

Otherwise, insert the charactersp1323 given by the pending table character tokensp1343 list.

Switch the insertion modep1285 to the original insertion modep1285 and reprocess the token.

When the user agent is to apply the rules for the "in captionp1346" insertion modep1285, the user agent must handle the token as follows:

↪ An end tag whose tag name is "caption"
If the stack of open elementsp1286 does not have a caption element in table scopep1288, this is a parse errorp1273; ignore the
token. (fragment casep1373)

Otherwise:

Generate implied end tagsp1324.

Now, if the current nodep1286 is not a captionp486 element, then this is a parse errorp1273.

Pop elements from this stack until a captionp486 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp1289.

Switch the insertion modep1285 to "in tablep1343".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"
↪ An end tag whose tag name is "table"

If the stack of open elementsp1286 does not have a caption element in table scopep1288, this is a parse errorp1273; ignore the
token. (fragment casep1373)

Otherwise:

Generate implied end tagsp1324.

Now, if the current nodep1286 is not a captionp486 element, then this is a parse errorp1273.

Pop elements from this stack until a captionp486 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp1289.

Switch the insertion modep1285 to "in tablep1343".

Reprocess the token.

↪ An end tag whose tag name is one of: "body", "col", "colgroup", "html", "tbody", "td", "tfoot", "th", "thead", "tr"
Parse errorp1273. Ignore the token.

↪ Anything else
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

When the user agent is to apply the rules for the "in column groupp1346" insertion modep1285, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED

13.2.6.4.11 The "in caption" insertion mode §p13

46

13.2.6.4.12 The "in column group" insertion mode §p13

46

1346

https://infra.spec.whatwg.org/#ascii-whitespace

(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
Insert the characterp1323.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is "col"
Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

↪ An end tag whose tag name is "colgroup"
If the current nodep1286 is not a colgroupp487 element, then this is a parse errorp1273; ignore the token.

Otherwise, pop the current nodep1286 from the stack of open elementsp1286. Switch the insertion modep1285 to "in tablep1343".

↪ An end tag whose tag name is "col"
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "template"
↪ An end tag whose tag name is "template"

Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ An end-of-file token
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ Anything else
If the current nodep1286 is not a colgroupp487 element, then this is a parse errorp1273; ignore the token.

Otherwise, pop the current nodep1286 from the stack of open elementsp1286.

Switch the insertion modep1285 to "in tablep1343".

Reprocess the token.

When the user agent is to apply the rules for the "in table bodyp1347" insertion modep1285, the user agent must handle the token as
follows:

↪ A start tag whose tag name is "tr"
Clear the stack back to a table body contextp1348. (See below.)

Insert an HTML elementp1321 for the token, then switch the insertion modep1285 to "in rowp1348".

↪ A start tag whose tag name is one of: "th", "td"
Parse errorp1273.

Clear the stack back to a table body contextp1348. (See below.)

Insert an HTML elementp1321 for a "tr" start tag token with no attributes, then switch the insertion modep1285 to "in rowp1348".

Reprocess the current token.

13.2.6.4.13 The "in table body" insertion mode §p13

47

1347

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elementsp1286 does not have an element in table scopep1288 that is an HTML elementp45 with the same tag
name as the token, this is a parse errorp1273; ignore the token.

Otherwise:

Clear the stack back to a table body contextp1348. (See below.)

Pop the current nodep1286 from the stack of open elementsp1286. Switch the insertion modep1285 to "in tablep1343".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead"
↪ An end tag whose tag name is "table"

If the stack of open elementsp1286 does not have a tbody, thead, or tfoot element in table scopep1288, this is a parse errorp1273;
ignore the token.

Otherwise:

Clear the stack back to a table body contextp1348. (See below.)

Pop the current nodep1286 from the stack of open elementsp1286. Switch the insertion modep1285 to "in tablep1343".

Reprocess the token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th", "tr"
Parse errorp1273. Ignore the token.

↪ Anything else
Process the token using the rules forp1285 the "in tablep1343" insertion modep1285.

When the steps above require the UA to clear the stack back to a table body context, it means that the UA must, while the
current nodep1286 is not a tbodyp489, tfootp491, theadp490, templatep671, or htmlp172 element, pop elements from the stack of open
elementsp1286.

When the user agent is to apply the rules for the "in rowp1348" insertion modep1285, the user agent must handle the token as follows:

↪ A start tag whose tag name is one of: "th", "td"
Clear the stack back to a table row contextp1349. (See below.)

Insert an HTML elementp1321 for the token, then switch the insertion modep1285 to "in cellp1349".

Insert a markerp1288 at the end of the list of active formatting elementsp1288.

↪ An end tag whose tag name is "tr"
If the stack of open elementsp1286 does not have a tr element in table scopep1288, this is a parse errorp1273; ignore the token.

Otherwise:

Clear the stack back to a table row contextp1349. (See below.)

Pop the current nodep1286 (which will be a trp492 element) from the stack of open elementsp1286. Switch the insertion modep1285 to
"in table bodyp1347".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead", "tr"
↪ An end tag whose tag name is "table"

If the stack of open elementsp1286 does not have a tr element in table scopep1288, this is a parse errorp1273; ignore the token.

The current nodep1286 being an htmlp172 element after this process is a fragment casep1373.
Note

13.2.6.4.14 The "in row" insertion mode §p13

48

1348

Otherwise:

Clear the stack back to a table row contextp1349. (See below.)

Pop the current nodep1286 (which will be a trp492 element) from the stack of open elementsp1286. Switch the insertion modep1285 to
"in table bodyp1347".

Reprocess the token.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elementsp1286 does not have an element in table scopep1288 that is an HTML elementp45 with the same tag
name as the token, this is a parse errorp1273; ignore the token.

If the stack of open elementsp1286 does not have a tr element in table scopep1288, ignore the token.

Otherwise:

Clear the stack back to a table row contextp1349. (See below.)

Pop the current nodep1286 (which will be a trp492 element) from the stack of open elementsp1286. Switch the insertion modep1285 to
"in table bodyp1347".

Reprocess the token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th"
Parse errorp1273. Ignore the token.

↪ Anything else
Process the token using the rules forp1285 the "in tablep1343" insertion modep1285.

When the steps above require the UA to clear the stack back to a table row context, it means that the UA must, while the current
nodep1286 is not a trp492, templatep671, or htmlp172 element, pop elements from the stack of open elementsp1286.

When the user agent is to apply the rules for the "in cellp1349" insertion modep1285, the user agent must handle the token as follows:

↪ An end tag whose tag name is one of: "td", "th"
If the stack of open elementsp1286 does not have an element in table scopep1288 that is an HTML elementp45 with the same tag
name as that of the token, then this is a parse errorp1273; ignore the token.

Otherwise:

Generate implied end tagsp1324.

Now, if the current nodep1286 is not an HTML elementp45 with the same tag name as the token, then this is a parse errorp1273.

Pop elements from the stack of open elementsp1286 until an HTML elementp45 with the same tag name as the token has been
popped from the stack.

Clear the list of active formatting elements up to the last markerp1289.

Switch the insertion modep1285 to "in rowp1348".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"
Assert: The stack of open elementsp1286 has a td or th element in table scopep1288.

Close the cellp1350 (see below) and reprocess the token.

The current nodep1286 being an htmlp172 element after this process is a fragment casep1373.
Note

13.2.6.4.15 The "in cell" insertion mode §p13

49

1349

https://infra.spec.whatwg.org/#assert

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html"
Parse errorp1273. Ignore the token.

↪ An end tag whose tag name is one of: "table", "tbody", "tfoot", "thead", "tr"
If the stack of open elementsp1286 does not have an element in table scopep1288 that is an HTML elementp45 with the same tag
name as that of the token, then this is a parse errorp1273; ignore the token.

Otherwise, close the cellp1350 (see below) and reprocess the token.

↪ Anything else
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

Where the steps above say to close the cell, they mean to run the following algorithm:

1. Generate implied end tagsp1324.

2. If the current nodep1286 is not now a tdp493 element or a thp495 element, then this is a parse errorp1273.

3. Pop elements from the stack of open elementsp1286 until a tdp493 element or a thp495 element has been popped from the
stack.

4. Clear the list of active formatting elements up to the last markerp1289.

5. Switch the insertion modep1285 to "in rowp1348".

When the user agent is to apply the rules for the "in selectp1350" insertion modep1285, the user agent must handle the token as follows:

↪ A character token that is U+0000 NULL
Parse errorp1273. Ignore the token.

↪ Any other character token
Insert the token's characterp1323.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is "option"
If the current nodep1286 is an optionp577 element, pop that node from the stack of open elementsp1286.

Insert an HTML elementp1321 for the token.

↪ A start tag whose tag name is "optgroup"
If the current nodep1286 is an optionp577 element, pop that node from the stack of open elementsp1286.

If the current nodep1286 is an optgroupp576 element, pop that node from the stack of open elementsp1286.

Insert an HTML elementp1321 for the token.

The stack of open elementsp1286 cannot have both a tdp493 and a thp495 element in table scopep1288 at the same time, nor can it
have neither when the close the cellp1350 algorithm is invoked.

Note

13.2.6.4.16 The "in select" insertion mode §p13

50

1350

↪ A start tag whose tag name is "hr"
If the current nodep1286 is an optionp577 element, pop that node from the stack of open elementsp1286.

If the current nodep1286 is an optgroupp576 element, pop that node from the stack of open elementsp1286.

Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

↪ An end tag whose tag name is "optgroup"
First, if the current nodep1286 is an optionp577 element, and the node immediately before it in the stack of open elementsp1286 is
an optgroupp576 element, then pop the current nodep1286 from the stack of open elementsp1286.

If the current nodep1286 is an optgroupp576 element, then pop that node from the stack of open elementsp1286. Otherwise, this is a
parse errorp1273; ignore the token.

↪ An end tag whose tag name is "option"
If the current nodep1286 is an optionp577 element, then pop that node from the stack of open elementsp1286. Otherwise, this is a
parse errorp1273; ignore the token.

↪ An end tag whose tag name is "select"
If the stack of open elementsp1286 does not have a select element in select scopep1288, this is a parse errorp1273; ignore the
token. (fragment casep1373)

Otherwise:

Pop elements from the stack of open elementsp1286 until a selectp568 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

↪ A start tag whose tag name is "select"
Parse errorp1273.

If the stack of open elementsp1286 does not have a select element in select scopep1288, ignore the token. (fragment casep1373)

Otherwise:

Pop elements from the stack of open elementsp1286 until a selectp568 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

↪ A start tag whose tag name is one of: "input", "keygen", "textarea"
Parse errorp1273.

If the stack of open elementsp1286 does not have a select element in select scopep1288, ignore the token. (fragment casep1373)

Otherwise:

Pop elements from the stack of open elementsp1286 until a selectp568 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

Reprocess the token.

↪ A start tag whose tag name is one of: "script", "template"
↪ An end tag whose tag name is "template"

Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ An end-of-file token
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

It just gets treated like an end tag.
Note

1351

↪ Anything else
Parse errorp1273. Ignore the token.

When the user agent is to apply the rules for the "in select in tablep1352" insertion modep1285, the user agent must handle the token as
follows:

↪ A start tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"
Parse errorp1273.

Pop elements from the stack of open elementsp1286 until a selectp568 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

Reprocess the token.

↪ An end tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"
Parse errorp1273.

If the stack of open elementsp1286 does not have an element in table scopep1288 that is an HTML elementp45 with the same tag
name as that of the token, then ignore the token.

Otherwise:

Pop elements from the stack of open elementsp1286 until a selectp568 element has been popped from the stack.

Reset the insertion mode appropriatelyp1285.

Reprocess the token.

↪ Anything else
Process the token using the rules forp1285 the "in selectp1350" insertion modep1285.

When the user agent is to apply the rules for the "in templatep1352" insertion modep1285, the user agent must handle the token as
follows:

↪ A character token
↪ A comment token
↪ A DOCTYPE token

Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style",
"template", "title"

↪ An end tag whose tag name is "template"
Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ A start tag whose tag name is one of: "caption", "colgroup", "tbody", "tfoot", "thead"
Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

Push "in tablep1343" onto the stack of template insertion modesp1285 so that it is the new current template insertion modep1285.

Switch the insertion modep1285 to "in tablep1343", and reprocess the token.

↪ A start tag whose tag name is "col"
Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

13.2.6.4.17 The "in select in table" insertion mode §p13

52

13.2.6.4.18 The "in template" insertion mode §p13

52

1352

Push "in column groupp1346" onto the stack of template insertion modesp1285 so that it is the new current template insertion
modep1285.

Switch the insertion modep1285 to "in column groupp1346", and reprocess the token.

↪ A start tag whose tag name is "tr"
Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

Push "in table bodyp1347" onto the stack of template insertion modesp1285 so that it is the new current template insertion
modep1285.

Switch the insertion modep1285 to "in table bodyp1347", and reprocess the token.

↪ A start tag whose tag name is one of: "td", "th"
Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

Push "in rowp1348" onto the stack of template insertion modesp1285 so that it is the new current template insertion modep1285.

Switch the insertion modep1285 to "in rowp1348", and reprocess the token.

↪ Any other start tag
Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

Push "in bodyp1332" onto the stack of template insertion modesp1285 so that it is the new current template insertion modep1285.

Switch the insertion modep1285 to "in bodyp1332", and reprocess the token.

↪ Any other end tag
Parse errorp1273. Ignore the token.

↪ An end-of-file token
If there is no templatep671 element on the stack of open elementsp1286, then stop parsingp1358. (fragment casep1373)

Otherwise, this is a parse errorp1273.

Pop elements from the stack of open elementsp1286 until a templatep671 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp1289.

Pop the current template insertion modep1285 off the stack of template insertion modesp1285.

Reset the insertion mode appropriatelyp1285.

Reprocess the token.

When the user agent is to apply the rules for the "after bodyp1353" insertion modep1285, the user agent must handle the token as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A comment token
Insert a commentp1324 as the last child of the first element in the stack of open elementsp1286 (the htmlp172 element).

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

13.2.6.4.19 The "after body" insertion mode §p13

53

1353

↪ An end tag whose tag name is "html"
If the parser was created as part of the HTML fragment parsing algorithmp1373, this is a parse errorp1273; ignore the token.
(fragment casep1373)

Otherwise, switch the insertion modep1285 to "after after bodyp1355".

↪ An end-of-file token
Stop parsingp1358.

↪ Anything else
Parse errorp1273. Switch the insertion modep1285 to "in bodyp1332" and reprocess the token.

When the user agent is to apply the rules for the "in framesetp1354" insertion modep1285, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1323.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ A start tag whose tag name is "frameset"
Insert an HTML elementp1321 for the token.

↪ An end tag whose tag name is "frameset"
If the current nodep1286 is the root htmlp172 element, then this is a parse errorp1273; ignore the token. (fragment casep1373)

Otherwise, pop the current nodep1286 from the stack of open elementsp1286.

If the parser was not created as part of the HTML fragment parsing algorithmp1373 (fragment casep1373), and the current nodep1286

is no longer a framesetp1433 element, then switch the insertion modep1285 to "after framesetp1355".

↪ A start tag whose tag name is "frame"
Insert an HTML elementp1321 for the token. Immediately pop the current nodep1286 off the stack of open elementsp1286.

Acknowledge the token's self-closing flagp1290, if it is set.

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ An end-of-file token
If the current nodep1286 is not the root htmlp172 element, then this is a parse errorp1273.

Stop parsingp1358.

↪ Anything else
Parse errorp1273. Ignore the token.

13.2.6.4.20 The "in frameset" insertion mode §p13

54

The current nodep1286 can only be the root htmlp172 element in the fragment casep1373.
Note

1354

When the user agent is to apply the rules for the "after framesetp1355" insertion modep1285, the user agent must handle the token as
follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp1323.

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ An end tag whose tag name is "html"
Switch the insertion modep1285 to "after after framesetp1355".

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ An end-of-file token
Stop parsingp1358.

↪ Anything else
Parse errorp1273. Ignore the token.

When the user agent is to apply the rules for the "after after bodyp1355" insertion modep1285, the user agent must handle the token as
follows:

↪ A comment token
Insert a commentp1324 as the last child of the Documentp130 object.

↪ A DOCTYPE token
↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED

(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
↪ A start tag whose tag name is "html"

Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ An end-of-file token
Stop parsingp1358.

↪ Anything else
Parse errorp1273. Switch the insertion modep1285 to "in bodyp1332" and reprocess the token.

When the user agent is to apply the rules for the "after after framesetp1355" insertion modep1285, the user agent must handle the token
as follows:

↪ A comment token
Insert a commentp1324 as the last child of the Documentp130 object.

13.2.6.4.21 The "after frameset" insertion mode §p13

55

13.2.6.4.22 The "after after body" insertion mode §p13

55

13.2.6.4.23 The "after after frameset" insertion mode §p13

55

1355

↪ A DOCTYPE token
↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED

(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
↪ A start tag whose tag name is "html"

Process the token using the rules forp1285 the "in bodyp1332" insertion modep1285.

↪ An end-of-file token
Stop parsingp1358.

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp1285 the "in headp1328" insertion modep1285.

↪ Anything else
Parse errorp1273. Ignore the token.

When the user agent is to apply the rules for parsing tokens in foreign content, the user agent must handle the token as follows:

↪ A character token that is U+0000 NULL
Parse errorp1273. Insert a U+FFFD REPLACEMENT CHARACTER characterp1323.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the token's characterp1323.

↪ Any other character token
Insert the token's characterp1323.

Set the frameset-ok flagp1290 to "not ok".

↪ A comment token
Insert a commentp1324.

↪ A DOCTYPE token
Parse errorp1273. Ignore the token.

↪ A start tag whose tag name is one of: "b", "big", "blockquote", "body", "br", "center", "code", "dd", "div", "dl", "dt",
"em", "embed", "h1", "h2", "h3", "h4", "h5", "h6", "head", "hr", "i", "img", "li", "listing", "menu", "meta", "nobr", "ol",
"p", "pre", "ruby", "s", "small", "span", "strong", "strike", "sub", "sup", "table", "tt", "u", "ul", "var"

↪ A start tag whose tag name is "font", if the token has any attributes named "color", "face", or "size"
↪ An end tag whose tag name is "br", "p"

Parse errorp1273.

While the current nodep1286 is not a MathML text integration pointp1319, an HTML integration pointp1319, or an element in the HTML
namespace, pop elements from the stack of open elementsp1286.

Reprocess the token according to the rules given in the section corresponding to the current insertion modep1285 in HTML
content.

↪ Any other start tag
If the adjusted current nodep1287 is an element in the MathML namespace, adjust MathML attributesp1322 for the token. (This fixes
the case of MathML attributes that are not all lowercase.)

If the adjusted current nodep1287 is an element in the SVG namespace, and the token's tag name is one of the ones in the first
column of the following table, change the tag name to the name given in the corresponding cell in the second column. (This
fixes the case of SVG elements that are not all lowercase.)

Tag name Element name

altglyph altGlyph

13.2.6.5 The rules for parsing tokens in foreign content §p13

56

1356

https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace

Tag name Element name

altglyphdef altGlyphDef

altglyphitem altGlyphItem

animatecolor animateColor

animatemotion animateMotion

animatetransform animateTransform

clippath clipPath

feblend feBlend

fecolormatrix feColorMatrix

fecomponenttransfer feComponentTransfer

fecomposite feComposite

feconvolvematrix feConvolveMatrix

fediffuselighting feDiffuseLighting

fedisplacementmap feDisplacementMap

fedistantlight feDistantLight

fedropshadow feDropShadow

feflood feFlood

fefunca feFuncA

fefuncb feFuncB

fefuncg feFuncG

fefuncr feFuncR

fegaussianblur feGaussianBlur

feimage feImage

femerge feMerge

femergenode feMergeNode

femorphology feMorphology

feoffset feOffset

fepointlight fePointLight

fespecularlighting feSpecularLighting

fespotlight feSpotLight

fetile feTile

feturbulence feTurbulence

foreignobject foreignObject

glyphref glyphRef

lineargradient linearGradient

radialgradient radialGradient

textpath textPath

If the adjusted current nodep1287 is an element in the SVG namespace, adjust SVG attributesp1322 for the token. (This fixes the
case of SVG attributes that are not all lowercase.)

Adjust foreign attributesp1323 for the token. (This fixes the use of namespaced attributes, in particular XLink in SVG.)

Insert a foreign elementp1321 for the token, with adjusted current nodep1287 's namespace and false.

If the token has its self-closing flagp1290 set, then run the appropriate steps from the following list:

↪ If the token's tag name is "script", and the new current nodep1286 is in the SVG namespace
Acknowledge the token's self-closing flagp1290, and then act as described in the steps for a "script" end tag below.

↪ Otherwise
Pop the current nodep1286 off the stack of open elementsp1286 and acknowledge the token's self-closing flagp1290.

↪ An end tag whose tag name is "script", if the current nodep1286 is an SVG script element
Pop the current nodep1286 off the stack of open elementsp1286.

Let the old insertion point have the same value as the current insertion pointp1285. Let the insertion pointp1285 be just before the
next input characterp1285.

1357

https://infra.spec.whatwg.org/#svg-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://svgwg.org/svg2-draft/interact.html#ScriptElement

Increment the parser's script nesting levelp1273 by one. Set the parser pause flagp1273 to true.

If the active speculative HTML parserp1360 is null and the user agent supports SVG, then Process the SVG script element
according to the SVG rules. [SVG]p1482

Decrement the parser's script nesting levelp1273 by one. If the parser's script nesting levelp1273 is zero, then set the parser pause
flagp1273 to false.

Let the insertion pointp1285 have the value of the old insertion point. (In other words, restore the insertion pointp1285 to its
previous value. This value might be the "undefined" value.)

↪ Any other end tag
Run these steps:

1. Initialize node to be the current nodep1286 (the bottommost node of the stack).

2. If node's tag name, converted to ASCII lowercase, is not the same as the tag name of the token, then this is a parse
errorp1273.

3. Loop: If node is the topmost element in the stack of open elementsp1286, then return. (fragment casep1373)

4. If node's tag name, converted to ASCII lowercase, is the same as the tag name of the token, pop elements from the
stack of open elementsp1286 until node has been popped from the stack, and then return.

5. Set node to the previous entry in the stack of open elementsp1286.

6. If node is not an element in the HTML namespace, return to the step labeled loop.

7. Otherwise, process the token according to the rules given in the section corresponding to the current insertion
modep1285 in HTML content.

Once the user agent stops parsing the document, the user agent must run the following steps:

1. If the active speculative HTML parserp1360 is not null, then stop the speculative HTML parserp1361 and return.

2. Set the insertion pointp1285 to undefined.

3. Update the current document readinessp133 to "interactive".

4. Pop all the nodes off the stack of open elementsp1286.

5. While the list of scripts that will execute when the document has finished parsingp665 is not empty:

1. Spin the event loopp1131 until the first scriptp652 in the list of scripts that will execute when the document has
finished parsingp665 has its ready to be parser-executedp659 set to true and the parser's Documentp130 has no style
sheet that is blocking scriptsp204.

2. Execute the script elementp665 given by the first scriptp652 in the list of scripts that will execute when the
document has finished parsingp665.

3. Remove the first scriptp652 element from the list of scripts that will execute when the document has finished
parsingp665 (i.e. shift out the first entry in the list).

6. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given the Documentp130 's relevant global objectp1083 to run
the following substeps:

1. Set the Documentp130 's load timing infop134 's DOM content loaded event start timep134 to the current high resolution

Even if this causes new characters to be inserted into the tokenizerp1153, the parser will not be executed reentrantly, since
the parser pause flagp1273 is true.

Note

13.2.7 The end §p13

58

✔ MDN
✔ MDN

1358

https://www.w3.org/TR/SVGMobile12/script.html#ScriptContentProcessing
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#ascii-lowercase
https://infra.spec.whatwg.org/#html-namespace
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time

time given the Documentp130 's relevant global objectp1083.

2. Fire an event named DOMContentLoadedp1471 at the Documentp130 object, with its bubbles attribute initialized to
true.

3. Set the Documentp130 's load timing infop134 's DOM content loaded event end timep134 to the current high resolution
time given the Documentp130 's relevant global objectp1083.

4. Enable the client message queue of the ServiceWorkerContainer object whose associated service worker client is
the Documentp130 object's relevant settings objectp1083.

5. Invoke WebDriver BiDi DOM content loaded with the Documentp130 's browsing contextp999, and a new WebDriver BiDi
navigation status whose id is the Documentp130 object's during-loading navigation ID for WebDriver BiDip131, status is
"pending", and url is the Documentp130 object's URL.

7. Spin the event loopp1131 until the set of scripts that will execute as soon as possiblep665 and the list of scripts that will execute
in order as soon as possiblep665 are empty.

8. Spin the event loopp1131 until there is nothing that delays the load event in the Documentp130.

9. Queue a global taskp1125 on the DOM manipulation task sourcep1134 given the Documentp130 's relevant global objectp1083 to run
the following steps:

1. Update the current document readinessp133 to "complete".

2. If the Documentp130 object's browsing contextp999 is null, then abort these steps.

3. Let window be the Documentp130 's relevant global objectp1083.

4. Set the Documentp130 's load timing infop134 's load event start timep134 to the current high resolution time given
window.

5. Fire an event named loadp1471 at window, with legacy target override flag set.

6. Invoke WebDriver BiDi load complete with the Documentp130 's browsing contextp999, and a new WebDriver BiDi
navigation status whose id is the Documentp130 object's during-loading navigation ID for WebDriver BiDip131, status is
"complete", and url is the Documentp130 object's URL.

7. Set the Documentp130 object's during-loading navigation ID for WebDriver BiDip131 to null.

8. Set the Documentp130 's load timing infop134 's load event end timep134 to the current high resolution time given
window.

9. Assert: Documentp130 's page showingp1064 is false.

10. Set the Documentp130 's page showingp1064 flag to true.

11. Fire a page transition eventp983 named pageshowp1472 at window with false.

12. Completely finish loadingp1063 the Documentp130.

13. Queue the navigation timing entry for the Documentp130.

10. If the Documentp130 's print when loadedp1169 flag is set, then run the printing stepsp1169.

11. The Documentp130 is now ready for post-load tasks.

When the user agent is to abort a parser, it must run the following steps:

1. Throw away any pending content in the input streamp1284, and discard any future content that would have been added to it.

2. Stop the speculative HTML parserp1361 for this HTML parser.

3. Update the current document readinessp133 to "interactive".

4. Pop all the nodes off the stack of open elementsp1286.

5. Update the current document readinessp133 to "complete".

1359

https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://w3c.github.io/ServiceWorker/#dfn-client-message-queue
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkercontainer-service-worker-client
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-dom-content-loaded
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-pending
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://dom.spec.whatwg.org/#concept-document-url
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://dom.spec.whatwg.org/#concept-event-fire
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-load-complete
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#webdriver-bidi-navigation-status
https://w3c.github.io/webdriver-bidi/#navigation-status-id
https://w3c.github.io/webdriver-bidi/#navigation-status-status
https://w3c.github.io/webdriver-bidi/#navigation-status-complete
https://w3c.github.io/webdriver-bidi/#navigation-status-url
https://dom.spec.whatwg.org/#concept-document-url
https://w3c.github.io/hr-time/#dfn-current-high-resolution-time
https://infra.spec.whatwg.org/#assert
https://w3c.github.io/navigation-timing/#dfn-queue-the-navigation-timing-entry

User agents may implement an optimization, as described in this section, to speculatively fetch resources that are declared in the
HTML markup while the HTML parser is waiting for a pending parsing-blocking scriptp665 to be fetched and executed, or during normal
parsing, at the time an element is created for a tokenp1320. While this optimization is not defined in precise detail, there are some rules
to consider for interoperability.

Each HTML parserp1271 can have an active speculative HTML parser. It is initially null.

The speculative HTML parser must act like the normal HTML parser (e.g., the tree builder rules apply), with some exceptions:

• The state of the normal HTML parser and the document itself must not be affected.

• Bytes pushed into the HTML parser's input byte streamp1277 must also be pushed into the speculative HTML parser's input
byte streamp1277. Bytes read from the streams must be independent.

• The result of the speculative parsing is primarily a series of speculative fetchesp1360. Which kinds of resources to
speculatively fetch is implementation-defined, but user agents must not speculatively fetch resources that would not be
fetched with the normal HTML parser, under the assumption that the script that is blocking the HTML parser does nothing.

A speculative fetch for a speculative mock elementp1361 element must follow these rules:

Should some of these things be applied to the document "for real", even though they are found speculatively?

• If the speculative HTML parserp1360 encounters one of the following elements, then act as if that element is processed for the
purpose of its effect of subsequent speculative fetches.

◦ A basep175 element.
◦ A metap189 element whose http-equivp195 attribute is in the Content security policyp199 state.
◦ A metap189 element whose namep190 attribute is an ASCII case-insensitive match for "referrerp192".
◦ A metap189 element whose namep190 attribute is an ASCII case-insensitive match for "viewport". (This can affect

whether a media query list matches the environmentp95.) [CSSDEVICEADAPT]p1476

• Let url be the URL that element would fetch if it was processed normally. If there is no such URL or if it is the empty string,
then do nothing. Otherwise, if url is already in the list of speculative fetch URLsp1360, then do nothing. Otherwise, fetch url as
if the element was processed normally, and add url to the list of speculative fetch URLsp1360.

Each Documentp130 has a list of speculative fetch URLs, which is a list of URLs, initially empty.

To start the speculative HTML parser for an instance of an HTML parser parser:

1. Optionally, return.

2. If parser's active speculative HTML parserp1360 is not null, then stop the speculative HTML parserp1361 for parser.

3. Let speculativeParser be a new speculative HTML parserp1360, with the same state as parser.

4. Let speculativeDoc be a new isomorphic representation of parser's Documentp130, where all elements are instead speculative

For example, the next input characterp1285 or the stack of open elementsp1286 for the normal HTML parser is not affected
by the speculative HTML parserp1360.

Example

It is possible that the same markup is seen multiple times from the speculative HTML parserp1360 and then the normal
HTML parser. It is expected that duplicated fetches will be prevented by caching rules, which are not yet fully specified.

Note

This step allows user agents to opt out of speculative HTML parsing.
Note

This can happen when document.write()p1153 writes another parser-blocking script. For simplicity, this specification
always restarts speculative parsing, but user agents can implement a more efficient strategy, so long as the end result is
equivalent.

Note

13.2.8 Speculative HTML parsing §p13

60

1360

https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#list
https://url.spec.whatwg.org/#concept-url

mock elementsp1361. Let speculativeParser parse into speculativeDoc.

5. Set parser's active speculative HTML parserp1360 to speculativeParser.

6. In parallelp43, run speculativeParser until it is stopped or until it reaches the end of its input streamp1284.

To stop the speculative HTML parser for an instance of an HTML parser parser:

1. Let speculativeParser be parser's active speculative HTML parserp1360.

2. If speculativeParser is null, then return.

3. Throw away any pending content in speculativeParser's input streamp1284, and discard any future content that would have
been added to it.

4. Set parser's active speculative HTML parserp1360 to null.

The speculative HTML parserp1360 will create speculative mock elementsp1361 instead of normal elements. DOM operations that the tree
builder normally does on elements are expected to work appropriately on speculative mock elements.

A speculative mock element is a struct with the following items:

• A string namespace, corresponding to an element's namespace.

• A string local name, corresponding to an element's local name.

• A list attribute list, corresponding to an element's attribute list.

• A list children, corresponding to an element's children.

To create a speculative mock element given a namespace, tagName, and attributes:

1. Let element be a new speculative mock elementp1361.

2. Set element's namespacep1361 to namespace.

3. Set element's local namep1361 to tagName.

4. Set element's attribute listp1361 to attributes.

5. Set element's childrenp1361 to a new empty list.

6. Optionally, perform a speculative fetchp1360 for element.

7. Return element.

When the tree builder says to insert an element into a templatep671 element's template contentsp673, if that is a speculative mock
elementp1361, and the templatep671 element's template contentsp673 is not a ShadowRoot node, instead do nothing. URLs found
speculatively inside non-declarative-shadow-root templatep671 elements might themselves be templates, and must not be
speculatively fetched.

When an application uses an HTML parserp1271 in conjunction with an XML pipeline, it is possible that the constructed DOM is not
compatible with the XML tool chain in certain subtle ways. For example, an XML toolchain might not be able to represent attributes
with the name xmlns, since they conflict with the Namespaces in XML syntax. There is also some data that the HTML parserp1271

generates that isn't included in the DOM itself. This section specifies some rules for handling these issues.

If the XML API being used doesn't support DOCTYPEs, the tool may drop DOCTYPEs altogether.

If the XML API doesn't support attributes in no namespace that are named "xmlns", attributes whose names start with "xmlns:", or
attributes in the XMLNS namespace, then the tool may drop such attributes.

The tool may annotate the output with any namespace declarations required for proper operation.

If the XML API being used restricts the allowable characters in the local names of elements and attributes, then the tool may map all

13.2.9 Coercing an HTML DOM into an infoset §p13

61

1361

https://infra.spec.whatwg.org/#struct
https://infra.spec.whatwg.org/#struct-item
https://infra.spec.whatwg.org/#string
https://dom.spec.whatwg.org/#concept-element-namespace
https://infra.spec.whatwg.org/#string
https://dom.spec.whatwg.org/#concept-element-local-name
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-element-attribute
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#concept-tree-child
https://infra.spec.whatwg.org/#list
https://dom.spec.whatwg.org/#interface-shadowroot
https://infra.spec.whatwg.org/#xmlns-namespace

element and attribute local names that the API wouldn't support to a set of names that are allowed, by replacing any character that
isn't supported with the uppercase letter U and the six digits of the character's code point when expressed in hexadecimal, using digits
0-9 and capital letters A-F as the symbols, in increasing numeric order.

If the XML API restricts comments from having two consecutive U+002D HYPHEN-MINUS characters (--), the tool may insert a single
U+0020 SPACE character between any such offending characters.

If the XML API restricts comments from ending in a U+002D HYPHEN-MINUS character (-), the tool may insert a single U+0020 SPACE
character at the end of such comments.

If the XML API restricts allowed characters in character data, attribute values, or comments, the tool may replace any U+000C FORM
FEED (FF) character with a U+0020 SPACE character, and any other literal non-XML character with a U+FFFD REPLACEMENT
CHARACTER.

If the tool has no way to convey out-of-band information, then the tool may drop the following information:

• Whether the document is set to no-quirks mode, limited-quirks mode, or quirks mode

• The association between form controls and forms that aren't their nearest formp514 element ancestor (use of the form
element pointerp1289 in the parser)

• The template contentsp673 of any templatep671 elements.

This section is non-normative.

This section examines some erroneous markup and discusses how the HTML parserp1271 handles these cases.

This section is non-normative.

The most-often discussed example of erroneous markup is as follows:

<p>12<i>34</i>5</p>

For example, the element name foo<bar, which can be output by the HTML parserp1271, though it is neither a legal HTML element
name nor a well-formed XML element name, would be converted into fooU00003Cbar, which is a well-formed XML element name
(though it's still not legal in HTML by any means).

Example

As another example, consider the attribute xlink:href. Used on a MathML element, it becomes, after being adjustedp1323, an
attribute with a prefix "xlink" and a local name "href". However, used on an HTML element, it becomes an attribute with no prefix
and the local name "xlink:href", which is not a valid NCName, and thus might not be accepted by an XML API. It could thus get
converted, becoming "xlinkU00003Ahref".

Example

The resulting names from this conversion conveniently can't clash with any attribute generated by the HTML parserp1271, since
those are all either lowercase or those listed in the adjust foreign attributesp1323 algorithm's table.

Note

The mutations allowed by this section apply after the HTML parserp1271 's rules have been applied. For example, a <a::> start tag
will be closed by a </a::> end tag, and never by a </aU00003AU00003A> end tag, even if the user agent is using the rules above to
then generate an actual element in the DOM with the name aU00003AU00003A for that start tag.

Note

13.2.10.1 Misnested tags: <i></i> §p13

62

13.2.10 An introduction to error handling and strange cases in the parser §p13

62

1362

https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-quirks

The parsing of this markup is straightforward up to the "3". At this point, the DOM looks like this:

Here, the stack of open elementsp1286 has five elements on it: htmlp172, bodyp205, pp229, bp292, and ip291. The list of active formatting
elementsp1288 just has two: bp292 and ip291. The insertion modep1285 is "in bodyp1332".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithmp1340" is invoked. This is a simple case, in that
the formattingElement is the bp292 element, and there is no furthest block. Thus, the stack of open elementsp1286 ends up with just three
elements: htmlp172, bodyp205, and pp229, while the list of active formatting elementsp1288 has just one: ip291. The DOM tree is unmodified
at this point.

The next token is a character ("4"), triggers the reconstruction of the active formatting elementsp1289, in this case just the ip291

element. A new ip291 element is thus created for the "4" Text node. After the end tag token for the "i" is also received, and the "5"
Text node is inserted, the DOM looks as follows:

This section is non-normative.

A case similar to the previous one is the following:

1<p>23</p>

Up to the "2" the parsing here is straightforward:

The interesting part is when the end tag token with the tag name "b" is parsed.

Before that token is seen, the stack of open elementsp1286 has four elements on it: htmlp172, bodyp205, bp292, and pp229. The list of active
formatting elementsp1288 just has the one: bp292. The insertion modep1285 is "in bodyp1332".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithmp1340" is invoked, as in the previous example.

htmlp172

headp173

bodyp205

pp229

#text: 1
bp292

#text: 2
ip291

#text: 3

htmlp172

headp173

bodyp205

pp229

#text: 1
bp292

#text: 2
ip291

#text: 3
ip291

#text: 4
#text: 5

13.2.10.2 Misnested tags: <p></p> §p13

63

htmlp172

headp173

bodyp205

bp292

#text: 1
pp229

#text: 2

1363

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

However, in this case, there is a furthest block, namely the pp229 element. Thus, this time the adoption agency algorithm isn't skipped
over.

The common ancestor is the bodyp205 element. A conceptual "bookmark" marks the position of the bp292 in the list of active formatting
elementsp1288, but since that list has only one element in it, the bookmark won't have much effect.

As the algorithm progresses, node ends up set to the formatting element (bp292), and last node ends up set to the furthest block (pp229).

The last node gets appended (moved) to the common ancestor, so that the DOM looks like:

A new bp292 element is created, and the children of the pp229 element are moved to it:

Finally, the new bp292 element is appended to the pp229 element, so that the DOM looks like:

The bp292 element is removed from the list of active formatting elementsp1288 and the stack of open elementsp1286, so that when the "3"
is parsed, it is appended to the pp229 element:

This section is non-normative.

Error handling in tables is, for historical reasons, especially strange. For example, consider the following markup:

<table><tr><td>aaa</td></tr>bbb</table>ccc

htmlp172

headp173

bodyp205

bp292

#text: 1
pp229

#text: 2

htmlp172

headp173

bodyp205

bp292

#text: 1
pp229

bp292

#text: 2

htmlp172

headp173

bodyp205

bp292

#text: 1
pp229

bp292

#text: 2

htmlp172

headp173

bodyp205

bp292

#text: 1
pp229

bp292

#text: 2
#text: 3

13.2.10.3 Unexpected markup in tables §p13

64

1364

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

The highlighted bp292 element start tag is not allowed directly inside a table like that, and the parser handles this case by placing the
element before the table. (This is called foster parentingp1319.) This can be seen by examining the DOM tree as it stands just after the
tablep478 element's start tag has been seen:

...and then immediately after the bp292 element start tag has been seen:

At this point, the stack of open elementsp1286 has on it the elements htmlp172, bodyp205, tablep478, and bp292 (in that order, despite the
resulting DOM tree); the list of active formatting elementsp1288 just has the bp292 element in it; and the insertion modep1285 is "in
tablep1343".

The trp492 start tag causes the bp292 element to be popped off the stack and a tbodyp489 start tag to be implied; the tbodyp489 and trp492

elements are then handled in a rather straight-forward manner, taking the parser through the "in table bodyp1347" and "in rowp1348"
insertion modes, after which the DOM looks as follows:

Here, the stack of open elementsp1286 has on it the elements htmlp172, bodyp205, tablep478, tbodyp489, and trp492; the list of active
formatting elementsp1288 still has the bp292 element in it; and the insertion modep1285 is "in rowp1348".

The tdp493 element start tag token, after putting a tdp493 element on the tree, puts a markerp1288 on the list of active formatting
elementsp1288 (it also switches to the "in cellp1349" insertion modep1285).

The markerp1288 means that when the "aaa" character tokens are seen, no bp292 element is created to hold the resulting Text node:

The end tags are handled in a straight-forward manner; after handling them, the stack of open elementsp1286 has on it the elements
htmlp172, bodyp205, tablep478, and tbodyp489; the list of active formatting elementsp1288 still has the bp292 element in it (the markerp1288

having been removed by the "td" end tag token); and the insertion modep1285 is "in table bodyp1347".

htmlp172

headp173

bodyp205

tablep478

htmlp172

headp173

bodyp205

bp292

tablep478

htmlp172

headp173

bodyp205

bp292

tablep478

tbodyp489

trp492

htmlp172

headp173

bodyp205

bp292

tablep478

tbodyp489

trp492

tdp493

htmlp172

headp173

bodyp205

bp292

tablep478

tbodyp489

trp492

tdp493

#text: aaa

1365

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

Thus it is that the "bbb" character tokens are found. These trigger the "in table textp1345" insertion mode to be used (with the original
insertion modep1285 set to "in table bodyp1347"). The character tokens are collected, and when the next token (the tablep478 element end
tag) is seen, they are processed as a group. Since they are not all spaces, they are handled as per the "anything else" rules in the "in
tablep1343" insertion mode, which defer to the "in bodyp1332" insertion mode but with foster parentingp1319.

When the active formatting elements are reconstructedp1289, a bp292 element is created and foster parentedp1319, and then the "bbb"
Text node is appended to it:

The stack of open elementsp1286 has on it the elements htmlp172, bodyp205, tablep478, tbodyp489, and the new bp292 (again, note that this
doesn't match the resulting tree!); the list of active formatting elementsp1288 has the new bp292 element in it; and the insertion
modep1285 is still "in table bodyp1347".

Had the character tokens been only ASCII whitespace instead of "bbb", then that ASCII whitespace would just be appended to the
tbodyp489 element.

Finally, the tablep478 is closed by a "table" end tag. This pops all the nodes from the stack of open elementsp1286 up to and including
the tablep478 element, but it doesn't affect the list of active formatting elementsp1288, so the "ccc" character tokens after the table
result in yet another bp292 element being created, this time after the table:

This section is non-normative.

Consider the following markup, which for this example we will assume is the document with URL https://example.com/inner, being
rendered as the content of an iframep390 in another document with the URL https://example.com/outer:

<div id=a>
<script>
var div = document.getElementById('a');
parent.document.body.appendChild(div);

</script>
<script>
alert(document.URL);

</script>
</div>

htmlp172

headp173

bodyp205

bp292

bp292

#text: bbb
tablep478

tbodyp489

trp492

tdp493

#text: aaa

htmlp172

headp173

bodyp205

bp292

bp292

#text: bbb
tablep478

tbodyp489

trp492

tdp493

#text: aaa
bp292

#text: ccc

13.2.10.4 Scripts that modify the page as it is being parsed §p13

66

1366

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://infra.spec.whatwg.org/#ascii-whitespace
https://infra.spec.whatwg.org/#ascii-whitespace
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

<script>
alert(document.URL);

</script>

Up to the first "script" end tag, before the script is parsed, the result is relatively straightforward:

After the script is parsed, though, the divp256 element and its child scriptp652 element are gone:

They are, at this point, in the Documentp130 of the aforementioned outer browsing contextp998. However, the stack of open elementsp1286

still contains the divp256 element.

Thus, when the second scriptp652 element is parsed, it is inserted into the outer Documentp130 object.

Those parsed into different Documentp130s than the one the parser was created for do not execute, so the first alert does not show.

Once the divp256 element's end tag is parsed, the divp256 element is popped off the stack, and so the next scriptp652 element is in the
inner Documentp130:

This script does execute, resulting in an alert that says "https://example.com/inner".

This section is non-normative.

Elaborating on the example in the previous section, consider the case where the second scriptp652 element is an external script (i.e.
one with a srcp654 attribute). Since the element was not in the parser's Documentp130 when it was created, that external script is not
even downloaded.

In a case where a scriptp652 element with a srcp654 attribute is parsed normally into its parser's Documentp130, but while the external
script is being downloaded, the element is moved to another document, the script continues to download, but does not execute.

This section is non-normative.

The following markup shows how nested formatting elements (such as bp292) get collected and continue to be applied even as the
elements they are contained in are closed, but that excessive duplicates are thrown away.

htmlp172

headp173

bodyp205

divp256 idp154="a"
#text:
scriptp652

#text: var div = document.getElementById('a'); ⏎ parent.document.body.appendChild(div);

htmlp172

headp173

bodyp205

htmlp172

headp173

bodyp205

scriptp652

#text: alert(document.URL);

13.2.10.5 The execution of scripts that are moving across multiple documents §p13

67

In general, moving scriptp652 elements between Documentp130s is considered a bad practice.
Note

13.2.10.6 Unclosed formatting elements §p13

67

1367

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text

<!DOCTYPE html>
<p><b class=x><b class=x><b class=x><b class=x>X
<p>X
<p><b class=x>X
<p>X

The resulting DOM tree is as follows:

Note how the second pp229 element in the markup has no explicit bp292 elements, but in the resulting DOM, up to three of each kind of
formatting element (in this case three bp292 elements with the class attribute, and two unadorned bp292 elements) get reconstructed
before the element's "X".

Also note how this means that in the final paragraph only six bp292 end tags are needed to completely clear the list of active formatting
elementsp1288, even though nine bp292 start tags have been seen up to this point.

For the purposes of the following algorithm, an element serializes as void if its element type is one of the void elementsp1260, or is
basefontp1427, bgsoundp1426, framep1433, keygenp1426, or paramp1426.

The following steps form the HTML fragment serialization algorithm. The algorithm takes as input a DOM Element, Documentp130,
or DocumentFragment referred to as the node, a boolean serializableShadowRoots, and a sequence<ShadowRoot> shadowRoots, and
returns a string.

DOCTYPE: html
htmlp172

headp173

bodyp205

pp229

bp292 classp154="x"
bp292 classp154="x"
bp292

bp292 classp154="x"
bp292 classp154="x"
bp292

#text: X⏎
pp229

bp292 classp154="x"
bp292

bp292 classp154="x"
bp292 classp154="x"
bp292

#text: X⏎
pp229

bp292 classp154="x"
bp292

bp292 classp154="x"
bp292 classp154="x"
bp292

bp292

bp292 classp154="x"
bp292

#text: X⏎
pp229

#text: X⏎

13.3 Serializing HTML fragments §p13

68

This algorithm serializes the children of the node being serialized, not the node itself.
Note

1368

https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-documentfragment

1. If the node serializes as voidp1368, then return the empty string.

2. Let s be a string, and initialize it to the empty string.

3. If the node is a templatep671 element, then let the node instead be the templatep671 element's template contentsp673 (a
DocumentFragment node).

4. If current node is a shadow host, then:

1. Let shadow be current node's shadow root.

2. If one of the following is true:

▪ serializableShadowRoots is true and shadow's serializable is true; or

▪ shadowRoots contains shadow,

then:

1. Append "<template shadowrootmode="".

2. If shadow's mode is "open", then append "open". Otherwise, append "closed".

3. Append """.

4. If shadow's delegates focus is set, then append " shadowrootdelegatesfocus=""".

5. If shadow's serializablep117 is set, then append " shadowrootserializable=""".

6. If shadow's clonable is set, then append " shadowrootclonable=""".

7. Append ">".

8. Append the value of running the HTML fragment serialization algorithmp1368 with shadow,
serializableShadowRoots, and shadowRoots (thus recursing into this algorithm for that element).

9. Append "</template>".

5. For each child node of the node, in tree order, run the following steps:

1. Let current node be the child node being processed.

2. Append the appropriate string from the following list to s:

↪ If current node is an Element
If current node is an element in the HTML namespace, the MathML namespace, or the SVG namespace, then
let tagname be current node's local name. Otherwise, let tagname be current node's qualified name.

Append a U+003C LESS-THAN SIGN character (<), followed by tagname.

If current node's is value is not null, and the element does not have an isp759 attribute in its attribute list,
then append the string " is="", followed by current node's is value escaped as described belowp1373 in
attribute mode, followed by a U+0022 QUOTATION MARK character (").

For each attribute that the element has, append a U+0020 SPACE character, the attribute's serialized name
as described belowp1369, a U+003D EQUALS SIGN character (=), a U+0022 QUOTATION MARK character ("),
the attribute's value, escaped as described belowp1373 in attribute mode, and a second U+0022 QUOTATION
MARK character (").

An attribute's serialized name for the purposes of the previous paragraph must be determined as
follows:

↪ If the attribute has no namespace
The attribute's serialized name is the attribute's local name.

For HTML elementsp45 created by the HTML parserp1271 or createElement(), tagname will be lowercase.
Note

1369

https://dom.spec.whatwg.org/#interface-documentfragment
https://dom.spec.whatwg.org/#element-shadow-host
https://dom.spec.whatwg.org/#concept-element-shadow-root
https://dom.spec.whatwg.org/#shadowroot-serializable
https://dom.spec.whatwg.org/#shadowroot-mode
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://dom.spec.whatwg.org/#shadowroot-clonable
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-element
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#concept-element-is-value

↪ If the attribute is in the XML namespace
The attribute's serialized name is the string "xml:" followed by the attribute's local name.

↪ If the attribute is in the XMLNS namespace and the attribute's local name is xmlns
The attribute's serialized name is the string "xmlns".

↪ If the attribute is in the XMLNS namespace and the attribute's local name is not xmlns
The attribute's serialized name is the string "xmlns:" followed by the attribute's local name.

↪ If the attribute is in the XLink namespace
The attribute's serialized name is the string "xlink:" followed by the attribute's local name.

↪ If the attribute is in some other namespace
The attribute's serialized name is the attribute's qualified name.

While the exact order of attributes is implementation-defined, and may depend on factors such as the order
that the attributes were given in the original markup, the sort order must be stable, such that consecutive
invocations of this algorithm serialize an element's attributes in the same order.

Append a U+003E GREATER-THAN SIGN character (>).

If current node serializes as voidp1368, then continue on to the next child node at this point.

Append the value of running the HTML fragment serialization algorithmp1368 with current node,
serializableShadowRoots, and shadowRoots (thus recursing into this algorithm for that node), followed by a
U+003C LESS-THAN SIGN character (<), a U+002F SOLIDUS character (/), tagname again, and finally a
U+003E GREATER-THAN SIGN character (>).

↪ If current node is a Text node
If the parent of current node is a stylep200, scriptp652, xmpp1427, iframep390, noembedp1426, noframesp1426, or
plaintextp1426 element, or if the parent of current node is a noscriptp669 element and scripting is
enabledp1083 for the node, then append the value of current node's data literally.

Otherwise, append the value of current node's data, escaped as described belowp1373.

↪ If current node is a Comment
Append "<!--" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D
HYPHEN-MINUS), followed by the value of current node's data, followed by the literal string "-->" (U+002D
HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN).

↪ If current node is a ProcessingInstruction
Append "<?" (U+003C LESS-THAN SIGN, U+003F QUESTION MARK), followed by the value of current node's
target IDL attribute, followed by a single U+0020 SPACE character, followed by the value of current node's
data, followed by a single U+003E GREATER-THAN SIGN character (>).

↪ If current node is a DocumentType
Append "<!DOCTYPE" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+0044 LATIN CAPITAL
LETTER D, U+004F LATIN CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054 LATIN CAPITAL
LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050 LATIN CAPITAL LETTER P, U+0045 LATIN CAPITAL
LETTER E), followed by a space (U+0020 SPACE), followed by the value of current node's name, followed by
">" (U+003E GREATER-THAN SIGN).

6. Return s.

For attributes on HTML elementsp45 set by the HTML parserp1271 or by setAttribute(), the local
name will be lowercase.

Note

It is possible that the output of this algorithm, if parsed with an HTML parserp1271, will not return the original tree
structure. Tree structures that do not roundtrip a serialize and reparse step can also be produced by the HTML
parserp1271 itself, although such cases are typically non-conforming.

⚠Warning!

1370

https://dom.spec.whatwg.org/#dom-element-setattribute
https://infra.spec.whatwg.org/#xml-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xmlns-namespace
https://infra.spec.whatwg.org/#xlink-namespace
https://infra.spec.whatwg.org/#implementation-defined
https://infra.spec.whatwg.org/#iteration-continue
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#concept-cd-data
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#concept-doctype-name

For instance, if a textareap579 element to which a Comment node has been appended is serialized and the output is then reparsed,
the comment will end up being displayed in the text control. Similarly, if, as a result of DOM manipulation, an element contains a
comment that contains "-->", then when the result of serializing the element is parsed, the comment will be truncated at that
point and the rest of the comment will be interpreted as markup. More examples would be making a scriptp652 element contain a
Text node with the text string "</script>", or having a pp229 element that contains a ulp239 element (as the ulp239 element's start
tagp1261 would imply the end tag for the pp229).

This can enable cross-site scripting attacks. An example of this would be a page that lets the user enter some font family names
that are then inserted into a CSS stylep200 block via the DOM and which then uses the innerHTMLp1158 IDL attribute to get the HTML
serialization of that stylep200 element: if the user enters "</style><script>attack</script>" as a font family name,
innerHTMLp1158 will return markup that, if parsed in a different context, would contain a scriptp652 node, even though no scriptp652

node existed in the original DOM.

Example

For example, consider the following markup:

<form id="outer"><div></form><form id="inner"><input>

This will be parsed into:

The inputp520 element will be associated with the inner formp514 element. Now, if this tree structure is serialized and reparsed, the
<form id="inner"> start tag will be ignored, and so the inputp520 element will be associated with the outer formp514 element
instead.

<html><head></head><body><form id="outer"><div><form
id="inner"><input></form></div></form></body></html>

htmlp172

headp173

bodyp205

formp514 idp154="outer"
divp256

formp514 idp154="inner"
inputp520

htmlp172

headp173

bodyp205

formp514 idp154="outer"
divp256

inputp520

Example

As another example, consider the following markup:

<a><table><a>

This will be parsed into:

That is, the ap257 elements are nested, because the second ap257 element is foster parentedp1319. After a serialize-reparse roundtrip,
the ap257 elements and the tablep478 element would all be siblings, because the second <a> start tag implicitly closes the first ap257

htmlp172

headp173

bodyp205

ap257

ap257

tablep478

Example

1371

https://dom.spec.whatwg.org/#interface-text

For historical reasons, this algorithm does not round-trip an initial U+000A LINE FEED (LF) character in prep233, textareap579, or
listingp1426 elements, even though (in the first two cases) the markup being round-tripped can be conforming. The HTML parserp1271

will drop such a character during parsing, but this algorithm does not serialize an extra U+000A LINE FEED (LF) character.

Because of the special role of the isp759 attribute in signaling the creation of customized built-in elementsp759, in that it provides a
mechanism for parsed HTML to set the element's is value, we special-case its handling during serialization. This ensures that an
element's is value is preserved through serialize-parse roundtrips.

element.

<html><head></head><body><a><a><table></table></body></html>

htmlp172

headp173

bodyp205

ap257

ap257

tablep478

For example, consider the following markup:

<pre>

Hello.</pre>

When this document is first parsed, the prep233 element's child text content starts with a single newline character. After a serialize-
reparse roundtrip, the prep233 element's child text content is simply "Hello.".

Example

When creating a customized built-in elementp759 via the parser, a developer uses the isp759 attribute directly; in such cases
serialize-parse roundtrips work fine.

<script>
window.SuperP = class extends HTMLParagraphElement {};
customElements.define("super-p", SuperP, { extends: "p" });
</script>

<div id="container"><p is="super-p">Superb!</p></div>

<script>
console.log(container.innerHTML); // <p is="super-p">
container.innerHTML = container.innerHTML;
console.log(container.innerHTML); // <p is="super-p">
console.assert(container.firstChild instanceof SuperP);
</script>

But when creating a customized built-in element via its constructorp759 or via createElement(), the isp759 attribute is not added.
Instead, the is value (which is what the custom elements machinery uses) is set without intermediating through an attribute.

<script>
container.innerHTML = "";
const p = document.createElement("p", { is: "super-p" });
container.appendChild(p);

// The is attribute is not present in the DOM:
console.assert(!p.hasAttribute("is"));

Example

1372

https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-child-text-content
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#dom-document-createelement
https://dom.spec.whatwg.org/#concept-element-is-value

Escaping a string (for the purposes of the algorithm above) consists of running the following steps:

1. Replace any occurrence of the "&" character by the string "&".

2. Replace any occurrences of the U+00A0 NO-BREAK SPACE character by the string " ".

3. If the algorithm was invoked in the attribute mode, replace any occurrences of the """ character by the string """.

4. If the algorithm was not invoked in the attribute mode, replace any occurrences of the "<" character by the string "<", and
any occurrences of the ">" character by the string ">".

The following steps form the HTML fragment parsing algorithm. The algorithm takes as input an Element node, referred to as the
context element, which gives the context for the parser, input, a string to parse, and an optional boolean
allowDeclarativeShadowRoots (default false). It returns a list of zero or more nodes.

1. Create a new Documentp130 node, and mark it as being an HTML document.

2. If the node document of the contextp1373 element is in quirks mode, then let the Documentp130 be in quirks mode. Otherwise, if
the node document of the contextp1373 element is in limited-quirks mode, then let the Documentp130 be in limited-quirks mode.
Otherwise, leave the Documentp130 in no-quirks mode.

3. If allowDeclarativeShadowRoots is true, then set the Documentp130 's allow declarative shadow roots to true.

4. Create a new HTML parserp1271, and associate it with the just created Documentp130 node.

5. Set the state of the HTML parserp1271 's tokenizationp1290 stage as follows, switching on the contextp1373 element:

↪ titlep174

↪ textareap579

Switch the tokenizer to the RCDATA statep1291.

// But the element is still a super-p:
console.assert(p instanceof SuperP);
</script>

To ensure that serialize-parse roundtrips still work, the serialization process explicitly writes out the element's is value as an isp759

attribute:

<script>
console.log(container.innerHTML); // <p is="super-p">
container.innerHTML = container.innerHTML;
console.log(container.innerHTML); // <p is="super-p">
console.assert(container.firstChild instanceof SuperP);
</script>

13.4 Parsing HTML fragments §p13

73

Parts marked fragment case in algorithms in the parser section are parts that only occur if the parser was created for the
purposes of this algorithm. The algorithms have been annotated with such markings for informational purposes only; such
markings have no normative weight. If it is possible for a condition described as a fragment casep1373 to occur even when the
parser wasn't created for the purposes of handling this algorithm, then that is an error in the specification.

Note

1373

https://dom.spec.whatwg.org/#concept-element-is-value
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-limited-quirks
https://dom.spec.whatwg.org/#concept-document-no-quirks
https://dom.spec.whatwg.org/#concept-document-allow-declarative-shadow-roots

↪ stylep200

↪ xmpp1427

↪ iframep390

↪ noembedp1426

↪ noframesp1426

Switch the tokenizer to the RAWTEXT statep1291.

↪ scriptp652

Switch the tokenizer to the script data statep1291.

↪ noscriptp669

If the scripting flagp1289 is enabled, switch the tokenizer to the RAWTEXT statep1291. Otherwise, leave the tokenizer in
the data statep1291.

↪ plaintextp1426

Switch the tokenizer to the PLAINTEXT statep1292.

↪ Any other element
Leave the tokenizer in the data statep1291.

6. Let root be a new htmlp172 element with no attributes.

7. Append the element root to the Documentp130 node created above.

8. Set up the parser's stack of open elementsp1286 so that it contains just the single element root.

9. If the contextp1373 element is a templatep671 element, push "in templatep1352" onto the stack of template insertion modesp1285

so that it is the new current template insertion modep1285.

10. Create a start tag token whose name is the local name of contextp1373 and whose attributes are the attributes of contextp1373.

Let this start tag token be the start tag token of the contextp1373 node, e.g. for the purposes of determining if it is an HTML
integration pointp1319.

11. Reset the parser's insertion mode appropriatelyp1285.

12. Set the parser's form element pointerp1289 to the nearest node to the contextp1373 element that is a formp514 element (going
straight up the ancestor chain, and including the element itself, if it is a formp514 element), if any. (If there is no such formp514

element, the form element pointerp1289 keeps its initial value, null.)

13. Place the input into the input streamp1284 for the HTML parserp1271 just created. The encoding confidencep1278 is irrelevant.

14. Start the parser and let it run until it has consumed all the characters just inserted into the input stream.

15. Return the child nodes of root, in tree order.

This table lists the character referencep1269 names that are supported by HTML, and the code points to which they refer. It is referenced
by the previous sections.

For performance reasons, an implementation that does not report errors and that uses the actual state machine
described in this specification directly could use the PLAINTEXT state instead of the RAWTEXT and script data states
where those are mentioned in the list above. Except for rules regarding parse errors, they are equivalent, since there is
no appropriate end tag tokenp1290 in the fragment case, yet they involve far fewer state transitions.

Note

The parser will reference the contextp1373 element as part of that algorithm.
Note

13.5 Named character references §p13

74

It is intentional, for legacy compatibility, that many code points have multiple character reference names. For example, some
Note

1374

https://dom.spec.whatwg.org/#concept-tree-order

Name Character(s) Glyph

Aacute; U+000C1 Á
Aacute U+000C1 Á
aacute; U+000E1 á
aacute U+000E1 á
Abreve; U+00102 Ă
abreve; U+00103 ă
ac; U+0223E ∾
acd; U+0223F ∿
acE; U+0223E U+00333 ∾̳
Acirc; U+000C2 Â
Acirc U+000C2 Â
acirc; U+000E2 â
acirc U+000E2 â
acute; U+000B4 ´
acute U+000B4 ´
Acy; U+00410 А
acy; U+00430 а
AElig; U+000C6 Æ
AElig U+000C6 Æ
aelig; U+000E6 æ
aelig U+000E6 æ
af; U+02061
Afr; U+1D504 𝔄

afr; U+1D51E 𝔞

Agrave; U+000C0 À
Agrave U+000C0 À
agrave; U+000E0 à
agrave U+000E0 à
alefsym; U+02135 ℵ
aleph; U+02135 ℵ
Alpha; U+00391 Α
alpha; U+003B1 α
Amacr; U+00100 Ā
amacr; U+00101 ā
amalg; U+02A3F ⨿

AMP; U+00026 &
AMP U+00026 &
amp; U+00026 &
amp U+00026 &
And; U+02A53 ⩓

and; U+02227 ∧
andand; U+02A55 ⩕

andd; U+02A5C ⩜

andslope; U+02A58 ⩘

andv; U+02A5A ⩚

ang; U+02220 ∠
ange; U+029A4 ⦤

angle; U+02220 ∠
angmsd; U+02221 ∡
angmsdaa; U+029A8 ⦨

angmsdab; U+029A9 ⦩

angmsdac; U+029AA ⦪

angmsdad; U+029AB ⦫

angmsdae; U+029AC ⦬

angmsdaf; U+029AD ⦭

angmsdag; U+029AE ⦮

angmsdah; U+029AF ⦯

angrt; U+0221F ∟
angrtvb; U+022BE ⊾
angrtvbd; U+0299D ⦝

angsph; U+02222 ∢
angst; U+000C5 Å
angzarr; U+0237C ⍼

Aogon; U+00104 Ą
aogon; U+00105 ą
Aopf; U+1D538 𝔸
aopf; U+1D552 𝕒
ap; U+02248 ≈
apacir; U+02A6F ⩯

apE; U+02A70 ⩰

ape; U+0224A ≊
apid; U+0224B ≋
apos; U+00027 '
ApplyFunction; U+02061
approx; U+02248 ≈
approxeq; U+0224A ≊
Aring; U+000C5 Å
Aring U+000C5 Å
aring; U+000E5 å
aring U+000E5 å
Ascr; U+1D49C 𝒜

ascr; U+1D4B6 𝒶

Assign; U+02254 ≔
ast; U+0002A *
asymp; U+02248 ≈
asympeq; U+0224D ≍

Name Character(s) Glyph

Atilde; U+000C3 Ã
Atilde U+000C3 Ã
atilde; U+000E3 ã
atilde U+000E3 ã
Auml; U+000C4 Ä
Auml U+000C4 Ä
auml; U+000E4 ä
auml U+000E4 ä
awconint; U+02233 ∳
awint; U+02A11 ⨑
backcong; U+0224C ≌
backepsilon; U+003F6 ϶
backprime; U+02035 ‵
backsim; U+0223D ∽
backsimeq; U+022CD ⋍
Backslash; U+02216 ∖
Barv; U+02AE7 ⫧

barvee; U+022BD ⊽
Barwed; U+02306 ⌆
barwed; U+02305 ⌅
barwedge; U+02305 ⌅
bbrk; U+023B5 ⎵

bbrktbrk; U+023B6 ⎶

bcong; U+0224C ≌
Bcy; U+00411 Б
bcy; U+00431 б
bdquo; U+0201E „
becaus; U+02235 ∵
Because; U+02235 ∵
because; U+02235 ∵
bemptyv; U+029B0 ⦰

bepsi; U+003F6 ϶
bernou; U+0212C ℬ
Bernoullis; U+0212C ℬ
Beta; U+00392 Β
beta; U+003B2 β
beth; U+02136 ℶ
between; U+0226C ≬
Bfr; U+1D505 𝔅

bfr; U+1D51F 𝔟

bigcap; U+022C2 ⋂
bigcirc; U+025EF ◯
bigcup; U+022C3 ⋃
bigodot; U+02A00 ⨀
bigoplus; U+02A01 ⨁
bigotimes; U+02A02 ⨂
bigsqcup; U+02A06 ⨆

bigstar; U+02605 ★
bigtriangledown; U+025BD ▽
bigtriangleup; U+025B3 △
biguplus; U+02A04 ⨄

bigvee; U+022C1 ⋁
bigwedge; U+022C0 ⋀
bkarow; U+0290D ⤍

blacklozenge; U+029EB ⧫
blacksquare; U+025AA ▪
blacktriangle; U+025B4 ▴
blacktriangledown; U+025BE ▾
blacktriangleleft; U+025C2 ◂
blacktriangleright; U+025B8 ▸
blank; U+02423 ␣
blk12; U+02592 ▒
blk14; U+02591 ░
blk34; U+02593 ▓
block; U+02588 █
bne; U+0003D U+020E5 = ⃥

bnequiv; U+02261 U+020E5 ≡ ⃥

bNot; U+02AED ⫭

bnot; U+02310 ⌐
Bopf; U+1D539 𝔹
bopf; U+1D553 𝕓
bot; U+022A5 ⊥
bottom; U+022A5 ⊥
bowtie; U+022C8 ⋈
boxbox; U+029C9 ⧉

boxDL; U+02557 ╗
boxDl; U+02556 ╖
boxdL; U+02555 ╕
boxdl; U+02510 ┐
boxDR; U+02554 ╔
boxDr; U+02553 ╓
boxdR; U+02552 ╒
boxdr; U+0250C ┌
boxH; U+02550 ═
boxh; U+02500 ─
boxHD; U+02566 ╦

Name Character(s) Glyph

boxHd; U+02564 ╤
boxhD; U+02565 ╥
boxhd; U+0252C ┬
boxHU; U+02569 ╩
boxHu; U+02567 ╧
boxhU; U+02568 ╨
boxhu; U+02534 ┴
boxminus; U+0229F ⊟
boxplus; U+0229E ⊞
boxtimes; U+022A0 ⊠
boxUL; U+0255D ╝
boxUl; U+0255C ╜
boxuL; U+0255B ╛
boxul; U+02518 ┘
boxUR; U+0255A ╚
boxUr; U+02559 ╙
boxuR; U+02558 ╘
boxur; U+02514 └
boxV; U+02551 ║
boxv; U+02502 │
boxVH; U+0256C ╬
boxVh; U+0256B ╫
boxvH; U+0256A ╪
boxvh; U+0253C ┼
boxVL; U+02563 ╣
boxVl; U+02562 ╢
boxvL; U+02561 ╡
boxvl; U+02524 ┤
boxVR; U+02560 ╠
boxVr; U+0255F ╟
boxvR; U+0255E ╞
boxvr; U+0251C ├
bprime; U+02035 ‵
Breve; U+002D8 ˘
breve; U+002D8 ˘
brvbar; U+000A6 ¦
brvbar U+000A6 ¦
Bscr; U+0212C ℬ
bscr; U+1D4B7 𝒷

bsemi; U+0204F ⁏
bsim; U+0223D ∽
bsime; U+022CD ⋍
bsol; U+0005C \
bsolb; U+029C5 ⧅

bsolhsub; U+027C8 ⟈

bull; U+02022 •
bullet; U+02022 •
bump; U+0224E ≎
bumpE; U+02AAE ⪮
bumpe; U+0224F ≏
Bumpeq; U+0224E ≎
bumpeq; U+0224F ≏
Cacute; U+00106 Ć
cacute; U+00107 ć
Cap; U+022D2 ⋒
cap; U+02229 ∩
capand; U+02A44 ⩄

capbrcup; U+02A49 ⩉

capcap; U+02A4B ⩋

capcup; U+02A47 ⩇

capdot; U+02A40 ⩀

CapitalDifferentialD; U+02145 ⅅ
caps; U+02229 U+0FE00 ∩
caret; U+02041 ⁁
caron; U+002C7 ˇ
Cayleys; U+0212D ℭ
ccaps; U+02A4D ⩍

Ccaron; U+0010C Č
ccaron; U+0010D č
Ccedil; U+000C7 Ç
Ccedil U+000C7 Ç
ccedil; U+000E7 ç
ccedil U+000E7 ç
Ccirc; U+00108 Ĉ
ccirc; U+00109 ĉ
Cconint; U+02230 ∰
ccups; U+02A4C ⩌

ccupssm; U+02A50 ⩐

Cdot; U+0010A Ċ
cdot; U+0010B ċ
cedil; U+000B8 ¸
cedil U+000B8 ¸
Cedilla; U+000B8 ¸
cemptyv; U+029B2 ⦲

cent; U+000A2 ¢
cent U+000A2 ¢

appear both with and without the trailing semicolon, or with different capitalizations.

1375

Name Character(s) Glyph

CenterDot; U+000B7 ·
centerdot; U+000B7 ·
Cfr; U+0212D ℭ
cfr; U+1D520 𝔠

CHcy; U+00427 Ч
chcy; U+00447 ч
check; U+02713 ✓
checkmark; U+02713 ✓
Chi; U+003A7 Χ
chi; U+003C7 χ
cir; U+025CB ○
circ; U+002C6 ˆ
circeq; U+02257 ≗
circlearrowleft; U+021BA ↺
circlearrowright; U+021BB ↻
circledast; U+0229B ⊛
circledcirc; U+0229A ⊚
circleddash; U+0229D ⊝
CircleDot; U+02299 ⊙
circledR; U+000AE ®
circledS; U+024C8 Ⓢ

CircleMinus; U+02296 ⊖
CirclePlus; U+02295 ⊕
CircleTimes; U+02297 ⊗
cirE; U+029C3 ⧃

cire; U+02257 ≗
cirfnint; U+02A10 ⨐
cirmid; U+02AEF ⫯

cirscir; U+029C2 ⧂

ClockwiseContourIntegral; U+02232 ∲
CloseCurlyDoubleQuote; U+0201D ”
CloseCurlyQuote; U+02019 ’
clubs; U+02663 ♣
clubsuit; U+02663 ♣
Colon; U+02237 ∷
colon; U+0003A :
Colone; U+02A74 ⩴

colone; U+02254 ≔
coloneq; U+02254 ≔
comma; U+0002C ,
commat; U+00040 @
comp; U+02201 ∁
compfn; U+02218 ∘
complement; U+02201 ∁
complexes; U+02102 ℂ
cong; U+02245 ≅
congdot; U+02A6D ⩭

Congruent; U+02261 ≡
Conint; U+0222F ∯
conint; U+0222E ∮
ContourIntegral; U+0222E ∮
Copf; U+02102 ℂ
copf; U+1D554 𝕔
coprod; U+02210 ∐
Coproduct; U+02210 ∐
COPY; U+000A9 ©
COPY U+000A9 ©
copy; U+000A9 ©
copy U+000A9 ©
copysr; U+02117 ℗
CounterClockwiseContourIntegral; U+02233 ∳
crarr; U+021B5 ↵
Cross; U+02A2F ⨯
cross; U+02717 ✗
Cscr; U+1D49E 𝒞

cscr; U+1D4B8 𝒸

csub; U+02ACF ⫏

csube; U+02AD1 ⫑

csup; U+02AD0 ⫐

csupe; U+02AD2 ⫒

ctdot; U+022EF ⋯
cudarrl; U+02938 ⤸

cudarrr; U+02935 ⤵

cuepr; U+022DE ⋞
cuesc; U+022DF ⋟
cularr; U+021B6 ↶
cularrp; U+0293D ⤽

Cup; U+022D3 ⋓
cup; U+0222A ∪
cupbrcap; U+02A48 ⩈

CupCap; U+0224D ≍
cupcap; U+02A46 ⩆

cupcup; U+02A4A ⩊

cupdot; U+0228D ⊍
cupor; U+02A45 ⩅

cups; U+0222A U+0FE00 ∪
curarr; U+021B7 ↷
curarrm; U+0293C ⤼

curlyeqprec; U+022DE ⋞
curlyeqsucc; U+022DF ⋟
curlyvee; U+022CE ⋎

Name Character(s) Glyph

curlywedge; U+022CF ⋏
curren; U+000A4 ¤
curren U+000A4 ¤
curvearrowleft; U+021B6 ↶
curvearrowright; U+021B7 ↷
cuvee; U+022CE ⋎
cuwed; U+022CF ⋏
cwconint; U+02232 ∲
cwint; U+02231 ∱
cylcty; U+0232D ⌭

Dagger; U+02021 ‡
dagger; U+02020 †
daleth; U+02138 ℸ
Darr; U+021A1 ↡
dArr; U+021D3 ⇓
darr; U+02193 ↓
dash; U+02010 ‐
Dashv; U+02AE4 ⫤

dashv; U+022A3 ⊣
dbkarow; U+0290F ⤏

dblac; U+002DD ˝
Dcaron; U+0010E Ď
dcaron; U+0010F ď
Dcy; U+00414 Д
dcy; U+00434 д
DD; U+02145 ⅅ
dd; U+02146 ⅆ
ddagger; U+02021 ‡
ddarr; U+021CA ⇊
DDotrahd; U+02911 ⤑

ddotseq; U+02A77 ⩷

deg; U+000B0 °
deg U+000B0 °
Del; U+02207 ∇
Delta; U+00394 Δ
delta; U+003B4 δ
demptyv; U+029B1 ⦱

dfisht; U+0297F ⥿

Dfr; U+1D507 𝔇

dfr; U+1D521 𝔡

dHar; U+02965 ⥥

dharl; U+021C3 ⇃
dharr; U+021C2 ⇂
DiacriticalAcute; U+000B4 ´
DiacriticalDot; U+002D9 ˙
DiacriticalDoubleAcute; U+002DD ˝
DiacriticalGrave; U+00060 `
DiacriticalTilde; U+002DC ˜
diam; U+022C4 ⋄
Diamond; U+022C4 ⋄
diamond; U+022C4 ⋄
diamondsuit; U+02666 ♦
diams; U+02666 ♦
die; U+000A8 ¨
DifferentialD; U+02146 ⅆ
digamma; U+003DD ϝ
disin; U+022F2 ⋲
div; U+000F7 ÷
divide; U+000F7 ÷
divide U+000F7 ÷
divideontimes; U+022C7 ⋇
divonx; U+022C7 ⋇
DJcy; U+00402 Ђ
djcy; U+00452 ђ
dlcorn; U+0231E ⌞
dlcrop; U+0230D ⌍
dollar; U+00024 $
Dopf; U+1D53B 𝔻
dopf; U+1D555 𝕕
Dot; U+000A8 ¨
dot; U+002D9 ˙
DotDot; U+020DC ◌⃜
doteq; U+02250 ≐
doteqdot; U+02251 ≑
DotEqual; U+02250 ≐
dotminus; U+02238 ∸
dotplus; U+02214 ∔
dotsquare; U+022A1 ⊡
doublebarwedge; U+02306 ⌆
DoubleContourIntegral; U+0222F ∯
DoubleDot; U+000A8 ¨
DoubleDownArrow; U+021D3 ⇓
DoubleLeftArrow; U+021D0 ⇐
DoubleLeftRightArrow; U+021D4 ⇔
DoubleLeftTee; U+02AE4 ⫤

DoubleLongLeftArrow; U+027F8 ⟸
DoubleLongLeftRightArrow; U+027FA ⟺
DoubleLongRightArrow; U+027F9 ⟹
DoubleRightArrow; U+021D2 ⇒
DoubleRightTee; U+022A8 ⊨
DoubleUpArrow; U+021D1 ⇑

Name Character(s) Glyph

DoubleUpDownArrow; U+021D5 ⇕
DoubleVerticalBar; U+02225 ∥
DownArrow; U+02193 ↓
Downarrow; U+021D3 ⇓
downarrow; U+02193 ↓
DownArrowBar; U+02913 ⤓

DownArrowUpArrow; U+021F5 ⇵
DownBreve; U+00311 ◌̑
downdownarrows; U+021CA ⇊
downharpoonleft; U+021C3 ⇃
downharpoonright; U+021C2 ⇂
DownLeftRightVector; U+02950 ⥐

DownLeftTeeVector; U+0295E ⥞

DownLeftVector; U+021BD ↽
DownLeftVectorBar; U+02956 ⥖

DownRightTeeVector; U+0295F ⥟

DownRightVector; U+021C1 ⇁
DownRightVectorBar; U+02957 ⥗

DownTee; U+022A4 ⊤
DownTeeArrow; U+021A7 ↧
drbkarow; U+02910 ⤐

drcorn; U+0231F ⌟
drcrop; U+0230C ⌌
Dscr; U+1D49F 𝒟

dscr; U+1D4B9 𝒹

DScy; U+00405 Ѕ
dscy; U+00455 ѕ
dsol; U+029F6 ⧶

Dstrok; U+00110 Đ
dstrok; U+00111 đ
dtdot; U+022F1 ⋱
dtri; U+025BF ▿
dtrif; U+025BE ▾
duarr; U+021F5 ⇵
duhar; U+0296F ⥯

dwangle; U+029A6 ⦦

DZcy; U+0040F Џ
dzcy; U+0045F џ
dzigrarr; U+027FF ⟿
Eacute; U+000C9 É
Eacute U+000C9 É
eacute; U+000E9 é
eacute U+000E9 é
easter; U+02A6E ⩮

Ecaron; U+0011A Ě
ecaron; U+0011B ě
ecir; U+02256 ≖
Ecirc; U+000CA Ê
Ecirc U+000CA Ê
ecirc; U+000EA ê
ecirc U+000EA ê
ecolon; U+02255 ≕
Ecy; U+0042D Э
ecy; U+0044D э
eDDot; U+02A77 ⩷

Edot; U+00116 Ė
eDot; U+02251 ≑
edot; U+00117 ė
ee; U+02147 ⅇ
efDot; U+02252 ≒
Efr; U+1D508 𝔈

efr; U+1D522 𝔢

eg; U+02A9A ⪚
Egrave; U+000C8 È
Egrave U+000C8 È
egrave; U+000E8 è
egrave U+000E8 è
egs; U+02A96 ⪖
egsdot; U+02A98 ⪘
el; U+02A99 ⪙
Element; U+02208 ∈
elinters; U+023E7 ⏧

ell; U+02113 ℓ
els; U+02A95 ⪕
elsdot; U+02A97 ⪗
Emacr; U+00112 Ē
emacr; U+00113 ē
empty; U+02205 ∅
emptyset; U+02205 ∅
EmptySmallSquare; U+025FB ◻
emptyv; U+02205 ∅
EmptyVerySmallSquare; U+025AB ▫
emsp; U+02003
emsp13; U+02004
emsp14; U+02005
ENG; U+0014A Ŋ
eng; U+0014B ŋ
ensp; U+02002
Eogon; U+00118 Ę
eogon; U+00119 ę
Eopf; U+1D53C 𝔼

1376

Name Character(s) Glyph

eopf; U+1D556 𝕖
epar; U+022D5 ⋕
eparsl; U+029E3 ⧣

eplus; U+02A71 ⩱

epsi; U+003B5 ε
Epsilon; U+00395 Ε
epsilon; U+003B5 ε
epsiv; U+003F5 ϵ
eqcirc; U+02256 ≖
eqcolon; U+02255 ≕
eqsim; U+02242 ≂
eqslantgtr; U+02A96 ⪖
eqslantless; U+02A95 ⪕
Equal; U+02A75 ⩵

equals; U+0003D =
EqualTilde; U+02242 ≂
equest; U+0225F ≟
Equilibrium; U+021CC ⇌
equiv; U+02261 ≡
equivDD; U+02A78 ⩸

eqvparsl; U+029E5 ⧥

erarr; U+02971 ⥱

erDot; U+02253 ≓
Escr; U+02130 ℰ
escr; U+0212F ℯ
esdot; U+02250 ≐
Esim; U+02A73 ⩳

esim; U+02242 ≂
Eta; U+00397 Η
eta; U+003B7 η
ETH; U+000D0 Ð
ETH U+000D0 Ð
eth; U+000F0 ð
eth U+000F0 ð
Euml; U+000CB Ë
Euml U+000CB Ë
euml; U+000EB ë
euml U+000EB ë
euro; U+020AC €
excl; U+00021 !
exist; U+02203 ∃
Exists; U+02203 ∃
expectation; U+02130 ℰ
ExponentialE; U+02147 ⅇ
exponentiale; U+02147 ⅇ
fallingdotseq; U+02252 ≒
Fcy; U+00424 Ф
fcy; U+00444 ф
female; U+02640 ♀
ffilig; U+0FB03 ffi
fflig; U+0FB00 ff
ffllig; U+0FB04 ffl
Ffr; U+1D509 𝔉

ffr; U+1D523 𝔣

filig; U+0FB01 fi
FilledSmallSquare; U+025FC ◼
FilledVerySmallSquare; U+025AA ▪
fjlig; U+00066 U+0006A fj
flat; U+0266D ♭
fllig; U+0FB02 fl
fltns; U+025B1 ▱
fnof; U+00192 ƒ
Fopf; U+1D53D 𝔽
fopf; U+1D557 𝕗
ForAll; U+02200 ∀
forall; U+02200 ∀
fork; U+022D4 ⋔
forkv; U+02AD9 ⫙

Fouriertrf; U+02131 ℱ
fpartint; U+02A0D ⨍
frac12; U+000BD ½
frac12 U+000BD ½
frac13; U+02153 ⅓
frac14; U+000BC ¼
frac14 U+000BC ¼
frac15; U+02155 ⅕
frac16; U+02159 ⅙
frac18; U+0215B ⅛
frac23; U+02154 ⅔
frac25; U+02156 ⅖
frac34; U+000BE ¾
frac34 U+000BE ¾
frac35; U+02157 ⅗
frac38; U+0215C ⅜
frac45; U+02158 ⅘
frac56; U+0215A ⅚
frac58; U+0215D ⅝
frac78; U+0215E ⅞
frasl; U+02044 ⁄
frown; U+02322 ⌢

Fscr; U+02131 ℱ

Name Character(s) Glyph

fscr; U+1D4BB 𝒻

gacute; U+001F5 ǵ
Gamma; U+00393 Γ
gamma; U+003B3 γ
Gammad; U+003DC Ϝ
gammad; U+003DD ϝ
gap; U+02A86 ⪆
Gbreve; U+0011E Ğ
gbreve; U+0011F ğ
Gcedil; U+00122 Ģ
Gcirc; U+0011C Ĝ
gcirc; U+0011D ĝ
Gcy; U+00413 Г
gcy; U+00433 г
Gdot; U+00120 Ġ
gdot; U+00121 ġ
gE; U+02267 ≧
ge; U+02265 ≥
gEl; U+02A8C ⪌
gel; U+022DB ⋛
geq; U+02265 ≥
geqq; U+02267 ≧
geqslant; U+02A7E ⩾
ges; U+02A7E ⩾
gescc; U+02AA9 ⪩

gesdot; U+02A80 ⪀
gesdoto; U+02A82 ⪂
gesdotol; U+02A84 ⪄
gesl; U+022DB U+0FE00 ⋛
gesles; U+02A94 ⪔
Gfr; U+1D50A 𝔊

gfr; U+1D524 𝔤

Gg; U+022D9 ⋙
gg; U+0226B ≫
ggg; U+022D9 ⋙
gimel; U+02137 ℷ
GJcy; U+00403 Ѓ
gjcy; U+00453 ѓ
gl; U+02277 ≷
gla; U+02AA5 ⪥

glE; U+02A92 ⪒
glj; U+02AA4 ⪤

gnap; U+02A8A ⪊
gnapprox; U+02A8A ⪊
gnE; U+02269 ≩
gne; U+02A88 ⪈
gneq; U+02A88 ⪈
gneqq; U+02269 ≩
gnsim; U+022E7 ⋧
Gopf; U+1D53E 𝔾
gopf; U+1D558 𝕘
grave; U+00060 `
GreaterEqual; U+02265 ≥
GreaterEqualLess; U+022DB ⋛
GreaterFullEqual; U+02267 ≧
GreaterGreater; U+02AA2 ⪢

GreaterLess; U+02277 ≷
GreaterSlantEqual; U+02A7E ⩾
GreaterTilde; U+02273 ≳
Gscr; U+1D4A2 𝒢

gscr; U+0210A ℊ

gsim; U+02273 ≳
gsime; U+02A8E ⪎
gsiml; U+02A90 ⪐
GT; U+0003E >
GT U+0003E >
Gt; U+0226B ≫
gt; U+0003E >
gt U+0003E >
gtcc; U+02AA7 ⪧

gtcir; U+02A7A ⩺

gtdot; U+022D7 ⋗
gtlPar; U+02995 ⦕

gtquest; U+02A7C ⩼

gtrapprox; U+02A86 ⪆
gtrarr; U+02978 ⥸

gtrdot; U+022D7 ⋗
gtreqless; U+022DB ⋛
gtreqqless; U+02A8C ⪌
gtrless; U+02277 ≷
gtrsim; U+02273 ≳
gvertneqq; U+02269 U+0FE00 ≩
gvnE; U+02269 U+0FE00 ≩
Hacek; U+002C7 ˇ
hairsp; U+0200A
half; U+000BD ½
hamilt; U+0210B ℋ
HARDcy; U+0042A Ъ
hardcy; U+0044A ъ
hArr; U+021D4 ⇔
harr; U+02194 ↔

Name Character(s) Glyph

harrcir; U+02948 ⥈

harrw; U+021AD ↭
Hat; U+0005E ^
hbar; U+0210F ℏ
Hcirc; U+00124 Ĥ
hcirc; U+00125 ĥ
hearts; U+02665 ♥
heartsuit; U+02665 ♥
hellip; U+02026 …
hercon; U+022B9 ⊹
Hfr; U+0210C ℌ
hfr; U+1D525 𝔥

HilbertSpace; U+0210B ℋ
hksearow; U+02925 ⤥

hkswarow; U+02926 ⤦

hoarr; U+021FF ⇿
homtht; U+0223B ∻
hookleftarrow; U+021A9 ↩
hookrightarrow; U+021AA ↪
Hopf; U+0210D ℍ
hopf; U+1D559 𝕙
horbar; U+02015 ―
HorizontalLine; U+02500 ─
Hscr; U+0210B ℋ
hscr; U+1D4BD 𝒽

hslash; U+0210F ℏ
Hstrok; U+00126 Ħ
hstrok; U+00127 ħ
HumpDownHump; U+0224E ≎
HumpEqual; U+0224F ≏
hybull; U+02043 ⁃
hyphen; U+02010 ‐
Iacute; U+000CD Í
Iacute U+000CD Í
iacute; U+000ED í
iacute U+000ED í
ic; U+02063 ⁣
Icirc; U+000CE Î
Icirc U+000CE Î
icirc; U+000EE î
icirc U+000EE î
Icy; U+00418 И
icy; U+00438 и
Idot; U+00130 İ
IEcy; U+00415 Е
iecy; U+00435 е
iexcl; U+000A1 ¡
iexcl U+000A1 ¡
iff; U+021D4 ⇔
Ifr; U+02111 ℑ
ifr; U+1D526 𝔦

Igrave; U+000CC Ì
Igrave U+000CC Ì
igrave; U+000EC ì
igrave U+000EC ì
ii; U+02148 ⅈ
iiiint; U+02A0C ⨌
iiint; U+0222D ∭
iinfin; U+029DC ⧜

iiota; U+02129 ℩
IJlig; U+00132 Ĳ
ijlig; U+00133 ĳ
Im; U+02111 ℑ
Imacr; U+0012A Ī
imacr; U+0012B ī
image; U+02111 ℑ
ImaginaryI; U+02148 ⅈ
imagline; U+02110 ℐ
imagpart; U+02111 ℑ
imath; U+00131 ı
imof; U+022B7 ⊷
imped; U+001B5 Ƶ
Implies; U+021D2 ⇒
in; U+02208 ∈
incare; U+02105 ℅
infin; U+0221E ∞
infintie; U+029DD ⧝

inodot; U+00131 ı
Int; U+0222C ∬
int; U+0222B ∫
intcal; U+022BA ⊺
integers; U+02124 ℤ
Integral; U+0222B ∫
intercal; U+022BA ⊺
Intersection; U+022C2 ⋂
intlarhk; U+02A17 ⨗
intprod; U+02A3C ⨼

InvisibleComma; U+02063 ⁣
InvisibleTimes; U+02062
IOcy; U+00401 Ё
iocy; U+00451 ё

1377

Name Character(s) Glyph

Iogon; U+0012E Į
iogon; U+0012F į
Iopf; U+1D540 𝕀
iopf; U+1D55A 𝕚
Iota; U+00399 Ι
iota; U+003B9 ι
iprod; U+02A3C ⨼

iquest; U+000BF ¿
iquest U+000BF ¿
Iscr; U+02110 ℐ
iscr; U+1D4BE 𝒾

isin; U+02208 ∈
isindot; U+022F5 ⋵
isinE; U+022F9 ⋹
isins; U+022F4 ⋴
isinsv; U+022F3 ⋳
isinv; U+02208 ∈
it; U+02062
Itilde; U+00128 Ĩ
itilde; U+00129 ĩ
Iukcy; U+00406 І
iukcy; U+00456 і
Iuml; U+000CF Ï
Iuml U+000CF Ï
iuml; U+000EF ï
iuml U+000EF ï
Jcirc; U+00134 Ĵ
jcirc; U+00135 ĵ
Jcy; U+00419 Й
jcy; U+00439 й
Jfr; U+1D50D 𝔍

jfr; U+1D527 𝔧

jmath; U+00237 ȷ
Jopf; U+1D541 𝕁
jopf; U+1D55B 𝕛
Jscr; U+1D4A5 𝒥

jscr; U+1D4BF 𝒿

Jsercy; U+00408 Ј
jsercy; U+00458 ј
Jukcy; U+00404 Є
jukcy; U+00454 є
Kappa; U+0039A Κ
kappa; U+003BA κ
kappav; U+003F0 ϰ
Kcedil; U+00136 Ķ
kcedil; U+00137 ķ
Kcy; U+0041A К
kcy; U+0043A к
Kfr; U+1D50E 𝔎

kfr; U+1D528 𝔨

kgreen; U+00138 ĸ
KHcy; U+00425 Х
khcy; U+00445 х
KJcy; U+0040C Ќ
kjcy; U+0045C ќ
Kopf; U+1D542 𝕂
kopf; U+1D55C 𝕜
Kscr; U+1D4A6 𝒦

kscr; U+1D4C0 𝓀

lAarr; U+021DA ⇚
Lacute; U+00139 Ĺ
lacute; U+0013A ĺ
laemptyv; U+029B4 ⦴

lagran; U+02112 ℒ
Lambda; U+0039B Λ
lambda; U+003BB λ
Lang; U+027EA ⟪
lang; U+027E8 ⟨
langd; U+02991 ⦑

langle; U+027E8 ⟨
lap; U+02A85 ⪅
Laplacetrf; U+02112 ℒ
laquo; U+000AB «
laquo U+000AB «
Larr; U+0219E ↞
lArr; U+021D0 ⇐
larr; U+02190 ←
larrb; U+021E4 ⇤
larrbfs; U+0291F ⤟

larrfs; U+0291D ⤝

larrhk; U+021A9 ↩
larrlp; U+021AB ↫
larrpl; U+02939 ⤹

larrsim; U+02973 ⥳

larrtl; U+021A2 ↢
lat; U+02AAB ⪫

lAtail; U+0291B ⤛

latail; U+02919 ⤙

late; U+02AAD ⪭

lates; U+02AAD U+0FE00 ⯑

lBarr; U+0290E ⤎

Name Character(s) Glyph

lbarr; U+0290C ⤌

lbbrk; U+02772 ❲
lbrace; U+0007B {
lbrack; U+0005B [
lbrke; U+0298B ⦋

lbrksld; U+0298F ⦏

lbrkslu; U+0298D ⦍

Lcaron; U+0013D Ľ
lcaron; U+0013E ľ
Lcedil; U+0013B Ļ
lcedil; U+0013C ļ
lceil; U+02308 ⌈
lcub; U+0007B {
Lcy; U+0041B Л
lcy; U+0043B л
ldca; U+02936 ⤶

ldquo; U+0201C “
ldquor; U+0201E „
ldrdhar; U+02967 ⥧

ldrushar; U+0294B ⥋

ldsh; U+021B2 ↲
lE; U+02266 ≦
le; U+02264 ≤
LeftAngleBracket; U+027E8 ⟨
LeftArrow; U+02190 ←
Leftarrow; U+021D0 ⇐
leftarrow; U+02190 ←
LeftArrowBar; U+021E4 ⇤
LeftArrowRightArrow; U+021C6 ⇆
leftarrowtail; U+021A2 ↢
LeftCeiling; U+02308 ⌈
LeftDoubleBracket; U+027E6 ⟦
LeftDownTeeVector; U+02961 ⥡

LeftDownVector; U+021C3 ⇃
LeftDownVectorBar; U+02959 ⥙

LeftFloor; U+0230A ⌊
leftharpoondown; U+021BD ↽
leftharpoonup; U+021BC ↼
leftleftarrows; U+021C7 ⇇
LeftRightArrow; U+02194 ↔
Leftrightarrow; U+021D4 ⇔
leftrightarrow; U+02194 ↔
leftrightarrows; U+021C6 ⇆
leftrightharpoons; U+021CB ⇋
leftrightsquigarrow; U+021AD ↭
LeftRightVector; U+0294E ⥎

LeftTee; U+022A3 ⊣
LeftTeeArrow; U+021A4 ↤
LeftTeeVector; U+0295A ⥚

leftthreetimes; U+022CB ⋋
LeftTriangle; U+022B2 ⊲
LeftTriangleBar; U+029CF ⧏
LeftTriangleEqual; U+022B4 ⊴
LeftUpDownVector; U+02951 ⥑

LeftUpTeeVector; U+02960 ⥠

LeftUpVector; U+021BF ↿
LeftUpVectorBar; U+02958 ⥘

LeftVector; U+021BC ↼
LeftVectorBar; U+02952 ⥒

lEg; U+02A8B ⪋
leg; U+022DA ⋚
leq; U+02264 ≤
leqq; U+02266 ≦
leqslant; U+02A7D ⩽
les; U+02A7D ⩽
lescc; U+02AA8 ⪨

lesdot; U+02A7F ⩿
lesdoto; U+02A81 ⪁
lesdotor; U+02A83 ⪃
lesg; U+022DA U+0FE00 ⋚
lesges; U+02A93 ⪓
lessapprox; U+02A85 ⪅
lessdot; U+022D6 ⋖
lesseqgtr; U+022DA ⋚
lesseqqgtr; U+02A8B ⪋
LessEqualGreater; U+022DA ⋚
LessFullEqual; U+02266 ≦
LessGreater; U+02276 ≶
lessgtr; U+02276 ≶
LessLess; U+02AA1 ⪡

lesssim; U+02272 ≲
LessSlantEqual; U+02A7D ⩽
LessTilde; U+02272 ≲
lfisht; U+0297C ⥼

lfloor; U+0230A ⌊
Lfr; U+1D50F 𝔏

lfr; U+1D529 𝔩

lg; U+02276 ≶
lgE; U+02A91 ⪑
lHar; U+02962 ⥢

lhard; U+021BD ↽

Name Character(s) Glyph

lharu; U+021BC ↼
lharul; U+0296A ⥪

lhblk; U+02584 ▄
LJcy; U+00409 Љ
ljcy; U+00459 љ
Ll; U+022D8 ⋘
ll; U+0226A ≪
llarr; U+021C7 ⇇
llcorner; U+0231E ⌞
Lleftarrow; U+021DA ⇚
llhard; U+0296B ⥫

lltri; U+025FA ◺
Lmidot; U+0013F Ŀ
lmidot; U+00140 ŀ
lmoust; U+023B0 ⎰

lmoustache; U+023B0 ⎰

lnap; U+02A89 ⪉
lnapprox; U+02A89 ⪉
lnE; U+02268 ≨
lne; U+02A87 ⪇
lneq; U+02A87 ⪇
lneqq; U+02268 ≨
lnsim; U+022E6 ⋦
loang; U+027EC ⟬

loarr; U+021FD ⇽
lobrk; U+027E6 ⟦
LongLeftArrow; U+027F5 ⟵
Longleftarrow; U+027F8 ⟸
longleftarrow; U+027F5 ⟵
LongLeftRightArrow; U+027F7 ⟷
Longleftrightarrow; U+027FA ⟺
longleftrightarrow; U+027F7 ⟷
longmapsto; U+027FC ⟼
LongRightArrow; U+027F6 ⟶
Longrightarrow; U+027F9 ⟹
longrightarrow; U+027F6 ⟶
looparrowleft; U+021AB ↫
looparrowright; U+021AC ↬
lopar; U+02985 ⦅

Lopf; U+1D543 𝕃
lopf; U+1D55D 𝕝
loplus; U+02A2D ⨭

lotimes; U+02A34 ⨴

lowast; U+02217 ∗
lowbar; U+0005F _
LowerLeftArrow; U+02199 ↙
LowerRightArrow; U+02198 ↘
loz; U+025CA ◊
lozenge; U+025CA ◊
lozf; U+029EB ⧫
lpar; U+00028 (
lparlt; U+02993 ⦓

lrarr; U+021C6 ⇆
lrcorner; U+0231F ⌟
lrhar; U+021CB ⇋
lrhard; U+0296D ⥭

lrm; U+0200E
lrtri; U+022BF ⊿
lsaquo; U+02039 ‹
Lscr; U+02112 ℒ
lscr; U+1D4C1 𝓁

Lsh; U+021B0 ↰
lsh; U+021B0 ↰
lsim; U+02272 ≲
lsime; U+02A8D ⪍
lsimg; U+02A8F ⪏
lsqb; U+0005B [
lsquo; U+02018 ‘
lsquor; U+0201A ‚
Lstrok; U+00141 Ł
lstrok; U+00142 ł
LT; U+0003C <
LT U+0003C <
Lt; U+0226A ≪
lt; U+0003C <
lt U+0003C <
ltcc; U+02AA6 ⪦

ltcir; U+02A79 ⩹

ltdot; U+022D6 ⋖
lthree; U+022CB ⋋
ltimes; U+022C9 ⋉
ltlarr; U+02976 ⥶

ltquest; U+02A7B ⩻

ltri; U+025C3 ◃
ltrie; U+022B4 ⊴
ltrif; U+025C2 ◂
ltrPar; U+02996 ⦖

lurdshar; U+0294A ⥊

luruhar; U+02966 ⥦

lvertneqq; U+02268 U+0FE00 ≨
lvnE; U+02268 U+0FE00 ≨

1378

Name Character(s) Glyph

macr; U+000AF ¯
macr U+000AF ¯
male; U+02642 ♂
malt; U+02720 ✠
maltese; U+02720 ✠
Map; U+02905 ⤅

map; U+021A6 ↦
mapsto; U+021A6 ↦
mapstodown; U+021A7 ↧
mapstoleft; U+021A4 ↤
mapstoup; U+021A5 ↥
marker; U+025AE ▮
mcomma; U+02A29 ⨩

Mcy; U+0041C М
mcy; U+0043C м
mdash; U+02014 —
mDDot; U+0223A ∺
measuredangle; U+02221 ∡
MediumSpace; U+0205F
Mellintrf; U+02133 ℳ
Mfr; U+1D510 𝔐

mfr; U+1D52A 𝔪

mho; U+02127 ℧
micro; U+000B5 µ
micro U+000B5 µ
mid; U+02223 ∣
midast; U+0002A *
midcir; U+02AF0 ⫰

middot; U+000B7 ·
middot U+000B7 ·
minus; U+02212 −
minusb; U+0229F ⊟
minusd; U+02238 ∸
minusdu; U+02A2A ⨪

MinusPlus; U+02213 ∓
mlcp; U+02ADB ⫛

mldr; U+02026 …
mnplus; U+02213 ∓
models; U+022A7 ⊧
Mopf; U+1D544 𝕄
mopf; U+1D55E 𝕞
mp; U+02213 ∓
Mscr; U+02133 ℳ
mscr; U+1D4C2 𝓂

mstpos; U+0223E ∾
Mu; U+0039C Μ
mu; U+003BC μ
multimap; U+022B8 ⊸
mumap; U+022B8 ⊸
nabla; U+02207 ∇
Nacute; U+00143 Ń
nacute; U+00144 ń
nang; U+02220 U+020D2 ∠ ⃒

nap; U+02249 ≉
napE; U+02A70 U+00338 ⩰ ̸
napid; U+0224B U+00338 ≋̸
napos; U+00149 ŉ
napprox; U+02249 ≉
natur; U+0266E ♮
natural; U+0266E ♮
naturals; U+02115 ℕ
nbsp; U+000A0
nbsp U+000A0
nbump; U+0224E U+00338 ≎̸
nbumpe; U+0224F U+00338 ≏̸
ncap; U+02A43 ⩃

Ncaron; U+00147 Ň
ncaron; U+00148 ň
Ncedil; U+00145 Ņ
ncedil; U+00146 ņ
ncong; U+02247 ≇
ncongdot; U+02A6D U+00338 ⩭ ̸
ncup; U+02A42 ⩂

Ncy; U+0041D Н
ncy; U+0043D н
ndash; U+02013 –
ne; U+02260 ≠
nearhk; U+02924 ⤤

neArr; U+021D7 ⇗
nearr; U+02197 ↗
nearrow; U+02197 ↗
nedot; U+02250 U+00338 ≐̸
NegativeMediumSpace; U+0200B
NegativeThickSpace; U+0200B
NegativeThinSpace; U+0200B
NegativeVeryThinSpace; U+0200B
nequiv; U+02262 ≢
nesear; U+02928 ⤨

nesim; U+02242 U+00338 ≂̸
NestedGreaterGreater; U+0226B ≫
NestedLessLess; U+0226A ≪

Name Character(s) Glyph

NewLine; U+0000A ␊

nexist; U+02204 ∄
nexists; U+02204 ∄
Nfr; U+1D511 𝔑

nfr; U+1D52B 𝔫

ngE; U+02267 U+00338 ≧̸
nge; U+02271 ≱
ngeq; U+02271 ≱
ngeqq; U+02267 U+00338 ≧̸
ngeqslant; U+02A7E U+00338 ⩾̸
nges; U+02A7E U+00338 ⩾̸
nGg; U+022D9 U+00338 ⋙̸
ngsim; U+02275 ≵
nGt; U+0226B U+020D2 ≫ ⃒

ngt; U+0226F ≯
ngtr; U+0226F ≯
nGtv; U+0226B U+00338 ≫̸
nhArr; U+021CE ⇎
nharr; U+021AE ↮
nhpar; U+02AF2 ⫲

ni; U+0220B ∋
nis; U+022FC ⋼
nisd; U+022FA ⋺
niv; U+0220B ∋
NJcy; U+0040A Њ
njcy; U+0045A њ
nlArr; U+021CD ⇍
nlarr; U+0219A ↚
nldr; U+02025 ‥
nlE; U+02266 U+00338 ≦̸
nle; U+02270 ≰
nLeftarrow; U+021CD ⇍
nleftarrow; U+0219A ↚
nLeftrightarrow; U+021CE ⇎
nleftrightarrow; U+021AE ↮
nleq; U+02270 ≰
nleqq; U+02266 U+00338 ≦̸
nleqslant; U+02A7D U+00338 ⩽̸
nles; U+02A7D U+00338 ⩽̸
nless; U+0226E ≮
nLl; U+022D8 U+00338 ⋘̸
nlsim; U+02274 ≴
nLt; U+0226A U+020D2 ≪ ⃒

nlt; U+0226E ≮
nltri; U+022EA ⋪
nltrie; U+022EC ⋬
nLtv; U+0226A U+00338 ≪̸
nmid; U+02224 ∤
NoBreak; U+02060
NonBreakingSpace; U+000A0
Nopf; U+02115 ℕ
nopf; U+1D55F 𝕟
Not; U+02AEC ⫬

not; U+000AC ¬
not U+000AC ¬
NotCongruent; U+02262 ≢
NotCupCap; U+0226D ≭
NotDoubleVerticalBar; U+02226 ∦
NotElement; U+02209 ∉
NotEqual; U+02260 ≠
NotEqualTilde; U+02242 U+00338 ≂̸
NotExists; U+02204 ∄
NotGreater; U+0226F ≯
NotGreaterEqual; U+02271 ≱
NotGreaterFullEqual; U+02267 U+00338 ≧̸
NotGreaterGreater; U+0226B U+00338 ≫̸
NotGreaterLess; U+02279 ≹
NotGreaterSlantEqual; U+02A7E U+00338 ⩾̸
NotGreaterTilde; U+02275 ≵
NotHumpDownHump; U+0224E U+00338 ≎̸
NotHumpEqual; U+0224F U+00338 ≏̸
notin; U+02209 ∉
notindot; U+022F5 U+00338 ⋵̸
notinE; U+022F9 U+00338 ⋹̸
notinva; U+02209 ∉
notinvb; U+022F7 ⋷
notinvc; U+022F6 ⋶
NotLeftTriangle; U+022EA ⋪
NotLeftTriangleBar; U+029CF U+00338 ⧏̸
NotLeftTriangleEqual; U+022EC ⋬
NotLess; U+0226E ≮
NotLessEqual; U+02270 ≰
NotLessGreater; U+02278 ≸
NotLessLess; U+0226A U+00338 ≪̸
NotLessSlantEqual; U+02A7D U+00338 ⩽̸
NotLessTilde; U+02274 ≴
NotNestedGreaterGreater; U+02AA2 U+00338 ⪢ ̸
NotNestedLessLess; U+02AA1 U+00338 ⪡ ̸
notni; U+0220C ∌
notniva; U+0220C ∌
notnivb; U+022FE ⋾

Name Character(s) Glyph

notnivc; U+022FD ⋽
NotPrecedes; U+02280 ⊀
NotPrecedesEqual; U+02AAF U+00338 ⪯̸
NotPrecedesSlantEqual; U+022E0 ⋠
NotReverseElement; U+0220C ∌
NotRightTriangle; U+022EB ⋫
NotRightTriangleBar; U+029D0 U+00338 ⧐̸
NotRightTriangleEqual; U+022ED ⋭
NotSquareSubset; U+0228F U+00338 ⊏̸
NotSquareSubsetEqual; U+022E2 ⋢
NotSquareSuperset; U+02290 U+00338 ⊐̸
NotSquareSupersetEqual; U+022E3 ⋣
NotSubset; U+02282 U+020D2 ⊂ ⃒

NotSubsetEqual; U+02288 ⊈
NotSucceeds; U+02281 ⊁
NotSucceedsEqual; U+02AB0 U+00338 ⪰̸
NotSucceedsSlantEqual; U+022E1 ⋡
NotSucceedsTilde; U+0227F U+00338 ≿̸
NotSuperset; U+02283 U+020D2 ⊃ ⃒

NotSupersetEqual; U+02289 ⊉
NotTilde; U+02241 ≁
NotTildeEqual; U+02244 ≄
NotTildeFullEqual; U+02247 ≇
NotTildeTilde; U+02249 ≉
NotVerticalBar; U+02224 ∤
npar; U+02226 ∦
nparallel; U+02226 ∦
nparsl; U+02AFD U+020E5 ⫽⃥

npart; U+02202 U+00338 ∂̸
npolint; U+02A14 ⨔
npr; U+02280 ⊀
nprcue; U+022E0 ⋠
npre; U+02AAF U+00338 ⪯̸
nprec; U+02280 ⊀
npreceq; U+02AAF U+00338 ⪯̸
nrArr; U+021CF ⇏
nrarr; U+0219B ↛
nrarrc; U+02933 U+00338 ⤳̸
nrarrw; U+0219D U+00338 ↝̸
nRightarrow; U+021CF ⇏
nrightarrow; U+0219B ↛
nrtri; U+022EB ⋫
nrtrie; U+022ED ⋭
nsc; U+02281 ⊁
nsccue; U+022E1 ⋡
nsce; U+02AB0 U+00338 ⪰̸
Nscr; U+1D4A9 𝒩

nscr; U+1D4C3 𝓃

nshortmid; U+02224 ∤
nshortparallel; U+02226 ∦
nsim; U+02241 ≁
nsime; U+02244 ≄
nsimeq; U+02244 ≄
nsmid; U+02224 ∤
nspar; U+02226 ∦
nsqsube; U+022E2 ⋢
nsqsupe; U+022E3 ⋣
nsub; U+02284 ⊄
nsubE; U+02AC5 U+00338 ⫅ ̸
nsube; U+02288 ⊈
nsubset; U+02282 U+020D2 ⊂ ⃒

nsubseteq; U+02288 ⊈
nsubseteqq; U+02AC5 U+00338 ⫅ ̸
nsucc; U+02281 ⊁
nsucceq; U+02AB0 U+00338 ⪰̸
nsup; U+02285 ⊅
nsupE; U+02AC6 U+00338 ⫆ ̸
nsupe; U+02289 ⊉
nsupset; U+02283 U+020D2 ⊃ ⃒

nsupseteq; U+02289 ⊉
nsupseteqq; U+02AC6 U+00338 ⫆ ̸
ntgl; U+02279 ≹
Ntilde; U+000D1 Ñ
Ntilde U+000D1 Ñ
ntilde; U+000F1 ñ
ntilde U+000F1 ñ
ntlg; U+02278 ≸
ntriangleleft; U+022EA ⋪
ntrianglelefteq; U+022EC ⋬
ntriangleright; U+022EB ⋫
ntrianglerighteq; U+022ED ⋭
Nu; U+0039D Ν
nu; U+003BD ν
num; U+00023 #
numero; U+02116 №
numsp; U+02007  
nvap; U+0224D U+020D2 ≍ ⃒

nVDash; U+022AF ⊯
nVdash; U+022AE ⊮
nvDash; U+022AD ⊭
nvdash; U+022AC ⊬

1379

Name Character(s) Glyph

nvge; U+02265 U+020D2 ≥ ⃒

nvgt; U+0003E U+020D2 > ⃒

nvHarr; U+02904 ⤄

nvinfin; U+029DE ⧞

nvlArr; U+02902 ⤂

nvle; U+02264 U+020D2 ≤ ⃒

nvlt; U+0003C U+020D2 < ⃒

nvltrie; U+022B4 U+020D2 ⊴ ⃒

nvrArr; U+02903 ⤃

nvrtrie; U+022B5 U+020D2 ⊵ ⃒

nvsim; U+0223C U+020D2 ∼ ⃒

nwarhk; U+02923 ⤣

nwArr; U+021D6 ⇖
nwarr; U+02196 ↖
nwarrow; U+02196 ↖
nwnear; U+02927 ⤧

Oacute; U+000D3 Ó
Oacute U+000D3 Ó
oacute; U+000F3 ó
oacute U+000F3 ó
oast; U+0229B ⊛
ocir; U+0229A ⊚
Ocirc; U+000D4 Ô
Ocirc U+000D4 Ô
ocirc; U+000F4 ô
ocirc U+000F4 ô
Ocy; U+0041E О
ocy; U+0043E о
odash; U+0229D ⊝
Odblac; U+00150 Ő
odblac; U+00151 ő
odiv; U+02A38 ⨸

odot; U+02299 ⊙
odsold; U+029BC ⦼

OElig; U+00152 Œ
oelig; U+00153 œ
ofcir; U+029BF ⦿

Ofr; U+1D512 𝔒

ofr; U+1D52C 𝔬

ogon; U+002DB ˛
Ograve; U+000D2 Ò
Ograve U+000D2 Ò
ograve; U+000F2 ò
ograve U+000F2 ò
ogt; U+029C1 ⧁

ohbar; U+029B5 ⦵

ohm; U+003A9 Ω
oint; U+0222E ∮
olarr; U+021BA ↺
olcir; U+029BE ⦾

olcross; U+029BB ⦻

oline; U+0203E ‾
olt; U+029C0 ⧀

Omacr; U+0014C Ō
omacr; U+0014D ō
Omega; U+003A9 Ω
omega; U+003C9 ω
Omicron; U+0039F Ο
omicron; U+003BF ο
omid; U+029B6 ⦶

ominus; U+02296 ⊖
Oopf; U+1D546 𝕆
oopf; U+1D560 𝕠
opar; U+029B7 ⦷

OpenCurlyDoubleQuote; U+0201C “
OpenCurlyQuote; U+02018 ‘
operp; U+029B9 ⦹

oplus; U+02295 ⊕
Or; U+02A54 ⩔

or; U+02228 ∨
orarr; U+021BB ↻
ord; U+02A5D ⩝

order; U+02134 ℴ
orderof; U+02134 ℴ
ordf; U+000AA ª
ordf U+000AA ª
ordm; U+000BA º
ordm U+000BA º
origof; U+022B6 ⊶
oror; U+02A56 ⩖

orslope; U+02A57 ⩗

orv; U+02A5B ⩛

oS; U+024C8 Ⓢ

Oscr; U+1D4AA 𝒪

oscr; U+02134 ℴ
Oslash; U+000D8 Ø
Oslash U+000D8 Ø
oslash; U+000F8 ø
oslash U+000F8 ø
osol; U+02298 ⊘
Otilde; U+000D5 Õ

Name Character(s) Glyph

Otilde U+000D5 Õ
otilde; U+000F5 õ
otilde U+000F5 õ
Otimes; U+02A37 ⨷

otimes; U+02297 ⊗
otimesas; U+02A36 ⨶

Ouml; U+000D6 Ö
Ouml U+000D6 Ö
ouml; U+000F6 ö
ouml U+000F6 ö
ovbar; U+0233D ⌽

OverBar; U+0203E ‾
OverBrace; U+023DE ⏞

OverBracket; U+023B4 ⎴

OverParenthesis; U+023DC ⏜

par; U+02225 ∥
para; U+000B6 ¶
para U+000B6 ¶
parallel; U+02225 ∥
parsim; U+02AF3 ⫳

parsl; U+02AFD ⫽

part; U+02202 ∂
PartialD; U+02202 ∂
Pcy; U+0041F П
pcy; U+0043F п
percnt; U+00025 %
period; U+0002E .
permil; U+02030 ‰
perp; U+022A5 ⊥
pertenk; U+02031 ‱
Pfr; U+1D513 𝔓

pfr; U+1D52D 𝔭

Phi; U+003A6 Φ
phi; U+003C6 φ
phiv; U+003D5 ϕ
phmmat; U+02133 ℳ
phone; U+0260E ☎
Pi; U+003A0 Π
pi; U+003C0 π
pitchfork; U+022D4 ⋔
piv; U+003D6 ϖ
planck; U+0210F ℏ
planckh; U+0210E ℎ
plankv; U+0210F ℏ
plus; U+0002B +
plusacir; U+02A23 ⨣

plusb; U+0229E ⊞
pluscir; U+02A22 ⨢

plusdo; U+02214 ∔
plusdu; U+02A25 ⨥

pluse; U+02A72 ⩲

PlusMinus; U+000B1 ±
plusmn; U+000B1 ±
plusmn U+000B1 ±
plussim; U+02A26 ⨦

plustwo; U+02A27 ⨧

pm; U+000B1 ±
Poincareplane; U+0210C ℌ
pointint; U+02A15 ⨕
Popf; U+02119 ℙ
popf; U+1D561 𝕡
pound; U+000A3 £
pound U+000A3 £
Pr; U+02ABB ⪻

pr; U+0227A ≺
prap; U+02AB7 ⪷
prcue; U+0227C ≼
prE; U+02AB3 ⪳
pre; U+02AAF ⪯
prec; U+0227A ≺
precapprox; U+02AB7 ⪷
preccurlyeq; U+0227C ≼
Precedes; U+0227A ≺
PrecedesEqual; U+02AAF ⪯
PrecedesSlantEqual; U+0227C ≼
PrecedesTilde; U+0227E ≾
preceq; U+02AAF ⪯
precnapprox; U+02AB9 ⪹
precneqq; U+02AB5 ⪵
precnsim; U+022E8 ⋨
precsim; U+0227E ≾
Prime; U+02033 ″
prime; U+02032 ′
primes; U+02119 ℙ
prnap; U+02AB9 ⪹
prnE; U+02AB5 ⪵
prnsim; U+022E8 ⋨
prod; U+0220F ∏
Product; U+0220F ∏
profalar; U+0232E ⌮

profline; U+02312 ⌒

Name Character(s) Glyph

profsurf; U+02313 ⌓

prop; U+0221D ∝
Proportion; U+02237 ∷
Proportional; U+0221D ∝
propto; U+0221D ∝
prsim; U+0227E ≾
prurel; U+022B0 ⊰
Pscr; U+1D4AB 𝒫

pscr; U+1D4C5 𝓅

Psi; U+003A8 Ψ
psi; U+003C8 ψ
puncsp; U+02008
Qfr; U+1D514 𝔔

qfr; U+1D52E 𝔮

qint; U+02A0C ⨌
Qopf; U+0211A ℚ
qopf; U+1D562 𝕢
qprime; U+02057 ⁗
Qscr; U+1D4AC 𝒬

qscr; U+1D4C6 𝓆

quaternions; U+0210D ℍ
quatint; U+02A16 ⨖
quest; U+0003F ?
questeq; U+0225F ≟
QUOT; U+00022 "
QUOT U+00022 "
quot; U+00022 "
quot U+00022 "
rAarr; U+021DB ⇛
race; U+0223D U+00331 ∽̱
Racute; U+00154 Ŕ
racute; U+00155 ŕ
radic; U+0221A √
raemptyv; U+029B3 ⦳

Rang; U+027EB ⟫
rang; U+027E9 ⟩
rangd; U+02992 ⦒

range; U+029A5 ⦥

rangle; U+027E9 ⟩
raquo; U+000BB »
raquo U+000BB »
Rarr; U+021A0 ↠
rArr; U+021D2 ⇒
rarr; U+02192 →
rarrap; U+02975 ⥵

rarrb; U+021E5 ⇥
rarrbfs; U+02920 ⤠

rarrc; U+02933 ⤳

rarrfs; U+0291E ⤞

rarrhk; U+021AA ↪
rarrlp; U+021AC ↬
rarrpl; U+02945 ⥅

rarrsim; U+02974 ⥴

Rarrtl; U+02916 ⤖

rarrtl; U+021A3 ↣
rarrw; U+0219D ↝
rAtail; U+0291C ⤜

ratail; U+0291A ⤚

ratio; U+02236 ∶
rationals; U+0211A ℚ
RBarr; U+02910 ⤐

rBarr; U+0290F ⤏

rbarr; U+0290D ⤍

rbbrk; U+02773 ❳
rbrace; U+0007D }
rbrack; U+0005D]
rbrke; U+0298C ⦌

rbrksld; U+0298E ⦎

rbrkslu; U+02990 ⦐

Rcaron; U+00158 Ř
rcaron; U+00159 ř
Rcedil; U+00156 Ŗ
rcedil; U+00157 ŗ
rceil; U+02309 ⌉
rcub; U+0007D }
Rcy; U+00420 Р
rcy; U+00440 р
rdca; U+02937 ⤷

rdldhar; U+02969 ⥩

rdquo; U+0201D ”
rdquor; U+0201D ”
rdsh; U+021B3 ↳
Re; U+0211C ℜ
real; U+0211C ℜ
realine; U+0211B ℛ
realpart; U+0211C ℜ
reals; U+0211D ℝ
rect; U+025AD ▭
REG; U+000AE ®
REG U+000AE ®
reg; U+000AE ®

1380

Name Character(s) Glyph

reg U+000AE ®
ReverseElement; U+0220B ∋
ReverseEquilibrium; U+021CB ⇋
ReverseUpEquilibrium; U+0296F ⥯

rfisht; U+0297D ⥽

rfloor; U+0230B ⌋
Rfr; U+0211C ℜ
rfr; U+1D52F 𝔯

rHar; U+02964 ⥤

rhard; U+021C1 ⇁
rharu; U+021C0 ⇀
rharul; U+0296C ⥬

Rho; U+003A1 Ρ
rho; U+003C1 ρ
rhov; U+003F1 ϱ
RightAngleBracket; U+027E9 ⟩
RightArrow; U+02192 →
Rightarrow; U+021D2 ⇒
rightarrow; U+02192 →
RightArrowBar; U+021E5 ⇥
RightArrowLeftArrow; U+021C4 ⇄
rightarrowtail; U+021A3 ↣
RightCeiling; U+02309 ⌉
RightDoubleBracket; U+027E7 ⟧
RightDownTeeVector; U+0295D ⥝

RightDownVector; U+021C2 ⇂
RightDownVectorBar; U+02955 ⥕

RightFloor; U+0230B ⌋
rightharpoondown; U+021C1 ⇁
rightharpoonup; U+021C0 ⇀
rightleftarrows; U+021C4 ⇄
rightleftharpoons; U+021CC ⇌
rightrightarrows; U+021C9 ⇉
rightsquigarrow; U+0219D ↝
RightTee; U+022A2 ⊢
RightTeeArrow; U+021A6 ↦
RightTeeVector; U+0295B ⥛

rightthreetimes; U+022CC ⋌
RightTriangle; U+022B3 ⊳
RightTriangleBar; U+029D0 ⧐
RightTriangleEqual; U+022B5 ⊵
RightUpDownVector; U+0294F ⥏

RightUpTeeVector; U+0295C ⥜

RightUpVector; U+021BE ↾
RightUpVectorBar; U+02954 ⥔

RightVector; U+021C0 ⇀
RightVectorBar; U+02953 ⥓

ring; U+002DA ˚
risingdotseq; U+02253 ≓
rlarr; U+021C4 ⇄
rlhar; U+021CC ⇌
rlm; U+0200F
rmoust; U+023B1 ⎱

rmoustache; U+023B1 ⎱

rnmid; U+02AEE ⫮

roang; U+027ED ⟭

roarr; U+021FE ⇾
robrk; U+027E7 ⟧
ropar; U+02986 ⦆

Ropf; U+0211D ℝ
ropf; U+1D563 𝕣
roplus; U+02A2E ⨮

rotimes; U+02A35 ⨵

RoundImplies; U+02970 ⥰

rpar; U+00029)
rpargt; U+02994 ⦔

rppolint; U+02A12 ⨒
rrarr; U+021C9 ⇉
Rrightarrow; U+021DB ⇛
rsaquo; U+0203A ›
Rscr; U+0211B ℛ
rscr; U+1D4C7 𝓇

Rsh; U+021B1 ↱
rsh; U+021B1 ↱
rsqb; U+0005D]
rsquo; U+02019 ’
rsquor; U+02019 ’
rthree; U+022CC ⋌
rtimes; U+022CA ⋊
rtri; U+025B9 ▹
rtrie; U+022B5 ⊵
rtrif; U+025B8 ▸
rtriltri; U+029CE ⧎
RuleDelayed; U+029F4 ⧴

ruluhar; U+02968 ⥨

rx; U+0211E ℞
Sacute; U+0015A Ś
sacute; U+0015B ś
sbquo; U+0201A ‚
Sc; U+02ABC ⪼

sc; U+0227B ≻

Name Character(s) Glyph

scap; U+02AB8 ⪸
Scaron; U+00160 Š
scaron; U+00161 š
sccue; U+0227D ≽
scE; U+02AB4 ⪴
sce; U+02AB0 ⪰
Scedil; U+0015E Ş
scedil; U+0015F ş
Scirc; U+0015C Ŝ
scirc; U+0015D ŝ
scnap; U+02ABA ⪺
scnE; U+02AB6 ⪶
scnsim; U+022E9 ⋩
scpolint; U+02A13 ⨓
scsim; U+0227F ≿
Scy; U+00421 С
scy; U+00441 с
sdot; U+022C5 ⋅
sdotb; U+022A1 ⊡
sdote; U+02A66 ⩦

searhk; U+02925 ⤥

seArr; U+021D8 ⇘
searr; U+02198 ↘
searrow; U+02198 ↘
sect; U+000A7 §
sect U+000A7 §
semi; U+0003B ;
seswar; U+02929 ⤩

setminus; U+02216 ∖
setmn; U+02216 ∖
sext; U+02736 ✶
Sfr; U+1D516 𝔖

sfr; U+1D530 𝔰

sfrown; U+02322 ⌢

sharp; U+0266F ♯
SHCHcy; U+00429 Щ
shchcy; U+00449 щ
SHcy; U+00428 Ш
shcy; U+00448 ш
ShortDownArrow; U+02193 ↓
ShortLeftArrow; U+02190 ←
shortmid; U+02223 ∣
shortparallel; U+02225 ∥
ShortRightArrow; U+02192 →
ShortUpArrow; U+02191 ↑
shy; U+000AD
shy U+000AD
Sigma; U+003A3 Σ
sigma; U+003C3 σ
sigmaf; U+003C2 ς
sigmav; U+003C2 ς
sim; U+0223C ∼
simdot; U+02A6A ⩪
sime; U+02243 ≃
simeq; U+02243 ≃
simg; U+02A9E ⪞
simgE; U+02AA0 ⪠
siml; U+02A9D ⪝
simlE; U+02A9F ⪟
simne; U+02246 ≆
simplus; U+02A24 ⨤

simrarr; U+02972 ⥲

slarr; U+02190 ←
SmallCircle; U+02218 ∘
smallsetminus; U+02216 ∖
smashp; U+02A33 ⨳

smeparsl; U+029E4 ⧤

smid; U+02223 ∣
smile; U+02323 ⌣

smt; U+02AAA ⪪

smte; U+02AAC ⪬

smtes; U+02AAC U+0FE00 ⯑

SOFTcy; U+0042C Ь
softcy; U+0044C ь
sol; U+0002F /
solb; U+029C4 ⧄

solbar; U+0233F ⌿

Sopf; U+1D54A 𝕊
sopf; U+1D564 𝕤
spades; U+02660 ♠
spadesuit; U+02660 ♠
spar; U+02225 ∥
sqcap; U+02293 ⊓
sqcaps; U+02293 U+0FE00 ⊓
sqcup; U+02294 ⊔
sqcups; U+02294 U+0FE00 ⊔
Sqrt; U+0221A √
sqsub; U+0228F ⊏
sqsube; U+02291 ⊑
sqsubset; U+0228F ⊏
sqsubseteq; U+02291 ⊑

Name Character(s) Glyph

sqsup; U+02290 ⊐
sqsupe; U+02292 ⊒
sqsupset; U+02290 ⊐
sqsupseteq; U+02292 ⊒
squ; U+025A1 □
Square; U+025A1 □
square; U+025A1 □
SquareIntersection; U+02293 ⊓
SquareSubset; U+0228F ⊏
SquareSubsetEqual; U+02291 ⊑
SquareSuperset; U+02290 ⊐
SquareSupersetEqual; U+02292 ⊒
SquareUnion; U+02294 ⊔
squarf; U+025AA ▪
squf; U+025AA ▪
srarr; U+02192 →
Sscr; U+1D4AE 𝒮

sscr; U+1D4C8 𝓈

ssetmn; U+02216 ∖
ssmile; U+02323 ⌣

sstarf; U+022C6 ⋆
Star; U+022C6 ⋆
star; U+02606 ☆
starf; U+02605 ★
straightepsilon; U+003F5 ϵ
straightphi; U+003D5 ϕ
strns; U+000AF ¯
Sub; U+022D0 ⋐
sub; U+02282 ⊂
subdot; U+02ABD ⪽

subE; U+02AC5 ⫅

sube; U+02286 ⊆
subedot; U+02AC3 ⫃

submult; U+02AC1 ⫁

subnE; U+02ACB ⫋

subne; U+0228A ⊊
subplus; U+02ABF ⪿

subrarr; U+02979 ⥹

Subset; U+022D0 ⋐
subset; U+02282 ⊂
subseteq; U+02286 ⊆
subseteqq; U+02AC5 ⫅

SubsetEqual; U+02286 ⊆
subsetneq; U+0228A ⊊
subsetneqq; U+02ACB ⫋

subsim; U+02AC7 ⫇

subsub; U+02AD5 ⫕

subsup; U+02AD3 ⫓

succ; U+0227B ≻
succapprox; U+02AB8 ⪸
succcurlyeq; U+0227D ≽
Succeeds; U+0227B ≻
SucceedsEqual; U+02AB0 ⪰
SucceedsSlantEqual; U+0227D ≽
SucceedsTilde; U+0227F ≿
succeq; U+02AB0 ⪰
succnapprox; U+02ABA ⪺
succneqq; U+02AB6 ⪶
succnsim; U+022E9 ⋩
succsim; U+0227F ≿
SuchThat; U+0220B ∋
Sum; U+02211 ∑
sum; U+02211 ∑
sung; U+0266A ♪
Sup; U+022D1 ⋑
sup; U+02283 ⊃
sup1; U+000B9 ¹
sup1 U+000B9 ¹
sup2; U+000B2 ²
sup2 U+000B2 ²
sup3; U+000B3 ³
sup3 U+000B3 ³
supdot; U+02ABE ⪾

supdsub; U+02AD8 ⫘

supE; U+02AC6 ⫆

supe; U+02287 ⊇
supedot; U+02AC4 ⫄

Superset; U+02283 ⊃
SupersetEqual; U+02287 ⊇
suphsol; U+027C9 ⟉

suphsub; U+02AD7 ⫗

suplarr; U+0297B ⥻

supmult; U+02AC2 ⫂

supnE; U+02ACC ⫌

supne; U+0228B ⊋
supplus; U+02AC0 ⫀

Supset; U+022D1 ⋑
supset; U+02283 ⊃
supseteq; U+02287 ⊇
supseteqq; U+02AC6 ⫆

supsetneq; U+0228B ⊋

1381

Name Character(s) Glyph

supsetneqq; U+02ACC ⫌

supsim; U+02AC8 ⫈

supsub; U+02AD4 ⫔

supsup; U+02AD6 ⫖

swarhk; U+02926 ⤦

swArr; U+021D9 ⇙
swarr; U+02199 ↙
swarrow; U+02199 ↙
swnwar; U+0292A ⤪

szlig; U+000DF ß
szlig U+000DF ß
Tab; U+00009 ␉

target; U+02316 ⌖

Tau; U+003A4 Τ
tau; U+003C4 τ
tbrk; U+023B4 ⎴

Tcaron; U+00164 Ť
tcaron; U+00165 ť
Tcedil; U+00162 Ţ
tcedil; U+00163 ţ
Tcy; U+00422 Т
tcy; U+00442 т
tdot; U+020DB ◌⃛
telrec; U+02315 ⌕

Tfr; U+1D517 𝔗

tfr; U+1D531 𝔱

there4; U+02234 ∴
Therefore; U+02234 ∴
therefore; U+02234 ∴
Theta; U+00398 Θ
theta; U+003B8 θ
thetasym; U+003D1 ϑ
thetav; U+003D1 ϑ
thickapprox; U+02248 ≈
thicksim; U+0223C ∼
ThickSpace; U+0205F U+0200A
thinsp; U+02009
ThinSpace; U+02009
thkap; U+02248 ≈
thksim; U+0223C ∼
THORN; U+000DE Þ
THORN U+000DE Þ
thorn; U+000FE þ
thorn U+000FE þ
Tilde; U+0223C ∼
tilde; U+002DC ˜
TildeEqual; U+02243 ≃
TildeFullEqual; U+02245 ≅
TildeTilde; U+02248 ≈
times; U+000D7 ×
times U+000D7 ×
timesb; U+022A0 ⊠
timesbar; U+02A31 ⨱

timesd; U+02A30 ⨰

tint; U+0222D ∭
toea; U+02928 ⤨

top; U+022A4 ⊤
topbot; U+02336 ⌶

topcir; U+02AF1 ⫱

Topf; U+1D54B 𝕋
topf; U+1D565 𝕥
topfork; U+02ADA ⫚

tosa; U+02929 ⤩

tprime; U+02034 ‴
TRADE; U+02122 ™
trade; U+02122 ™
triangle; U+025B5 ▵
triangledown; U+025BF ▿
triangleleft; U+025C3 ◃
trianglelefteq; U+022B4 ⊴
triangleq; U+0225C ≜
triangleright; U+025B9 ▹
trianglerighteq; U+022B5 ⊵
tridot; U+025EC ◬
trie; U+0225C ≜
triminus; U+02A3A ⨺

TripleDot; U+020DB ◌⃛
triplus; U+02A39 ⨹

trisb; U+029CD ⧍

tritime; U+02A3B ⨻

trpezium; U+023E2 ⏢

Tscr; U+1D4AF 𝒯

tscr; U+1D4C9 𝓉

TScy; U+00426 Ц
tscy; U+00446 ц
TSHcy; U+0040B Ћ
tshcy; U+0045B ћ
Tstrok; U+00166 Ŧ
tstrok; U+00167 ŧ
twixt; U+0226C ≬
twoheadleftarrow; U+0219E ↞

Name Character(s) Glyph

twoheadrightarrow; U+021A0 ↠
Uacute; U+000DA Ú
Uacute U+000DA Ú
uacute; U+000FA ú
uacute U+000FA ú
Uarr; U+0219F ↟
uArr; U+021D1 ⇑
uarr; U+02191 ↑
Uarrocir; U+02949 ⥉

Ubrcy; U+0040E Ў
ubrcy; U+0045E ў
Ubreve; U+0016C Ŭ
ubreve; U+0016D ŭ
Ucirc; U+000DB Û
Ucirc U+000DB Û
ucirc; U+000FB û
ucirc U+000FB û
Ucy; U+00423 У
ucy; U+00443 у
udarr; U+021C5 ⇅
Udblac; U+00170 Ű
udblac; U+00171 ű
udhar; U+0296E ⥮

ufisht; U+0297E ⥾

Ufr; U+1D518 𝔘

ufr; U+1D532 𝔲

Ugrave; U+000D9 Ù
Ugrave U+000D9 Ù
ugrave; U+000F9 ù
ugrave U+000F9 ù
uHar; U+02963 ⥣

uharl; U+021BF ↿
uharr; U+021BE ↾
uhblk; U+02580 ▀
ulcorn; U+0231C ⌜
ulcorner; U+0231C ⌜
ulcrop; U+0230F ⌏
ultri; U+025F8 ◸
Umacr; U+0016A Ū
umacr; U+0016B ū
uml; U+000A8 ¨
uml U+000A8 ¨
UnderBar; U+0005F _
UnderBrace; U+023DF ⏟

UnderBracket; U+023B5 ⎵

UnderParenthesis; U+023DD ⏝

Union; U+022C3 ⋃
UnionPlus; U+0228E ⊎
Uogon; U+00172 Ų
uogon; U+00173 ų
Uopf; U+1D54C 𝕌
uopf; U+1D566 𝕦
UpArrow; U+02191 ↑
Uparrow; U+021D1 ⇑
uparrow; U+02191 ↑
UpArrowBar; U+02912 ⤒

UpArrowDownArrow; U+021C5 ⇅
UpDownArrow; U+02195 ↕
Updownarrow; U+021D5 ⇕
updownarrow; U+02195 ↕
UpEquilibrium; U+0296E ⥮

upharpoonleft; U+021BF ↿
upharpoonright; U+021BE ↾
uplus; U+0228E ⊎
UpperLeftArrow; U+02196 ↖
UpperRightArrow; U+02197 ↗
Upsi; U+003D2 ϒ
upsi; U+003C5 υ
upsih; U+003D2 ϒ
Upsilon; U+003A5 Υ
upsilon; U+003C5 υ
UpTee; U+022A5 ⊥
UpTeeArrow; U+021A5 ↥
upuparrows; U+021C8 ⇈
urcorn; U+0231D ⌝
urcorner; U+0231D ⌝
urcrop; U+0230E ⌎
Uring; U+0016E Ů
uring; U+0016F ů
urtri; U+025F9 ◹
Uscr; U+1D4B0 𝒰

uscr; U+1D4CA 𝓊

utdot; U+022F0 ⋰
Utilde; U+00168 Ũ
utilde; U+00169 ũ
utri; U+025B5 ▵
utrif; U+025B4 ▴
uuarr; U+021C8 ⇈
Uuml; U+000DC Ü
Uuml U+000DC Ü
uuml; U+000FC ü

Name Character(s) Glyph

uuml U+000FC ü
uwangle; U+029A7 ⦧

vangrt; U+0299C ⦜

varepsilon; U+003F5 ϵ
varkappa; U+003F0 ϰ
varnothing; U+02205 ∅
varphi; U+003D5 ϕ
varpi; U+003D6 ϖ
varpropto; U+0221D ∝
vArr; U+021D5 ⇕
varr; U+02195 ↕
varrho; U+003F1 ϱ
varsigma; U+003C2 ς
varsubsetneq; U+0228A U+0FE00 ⊊
varsubsetneqq; U+02ACB U+0FE00 ⯑

varsupsetneq; U+0228B U+0FE00 ⊋
varsupsetneqq; U+02ACC U+0FE00 ⯑

vartheta; U+003D1 ϑ
vartriangleleft; U+022B2 ⊲
vartriangleright; U+022B3 ⊳
Vbar; U+02AEB ⫫

vBar; U+02AE8 ⫨

vBarv; U+02AE9 ⫩

Vcy; U+00412 В
vcy; U+00432 в
VDash; U+022AB ⊫
Vdash; U+022A9 ⊩
vDash; U+022A8 ⊨
vdash; U+022A2 ⊢
Vdashl; U+02AE6 ⫦

Vee; U+022C1 ⋁
vee; U+02228 ∨
veebar; U+022BB ⊻
veeeq; U+0225A ≚
vellip; U+022EE ⋮
Verbar; U+02016 ‖
verbar; U+0007C |
Vert; U+02016 ‖
vert; U+0007C |
VerticalBar; U+02223 ∣
VerticalLine; U+0007C |
VerticalSeparator; U+02758 ❘
VerticalTilde; U+02240 ≀
VeryThinSpace; U+0200A
Vfr; U+1D519 𝔙

vfr; U+1D533 𝔳

vltri; U+022B2 ⊲
vnsub; U+02282 U+020D2 ⊂ ⃒

vnsup; U+02283 U+020D2 ⊃ ⃒

Vopf; U+1D54D 𝕍
vopf; U+1D567 𝕧
vprop; U+0221D ∝
vrtri; U+022B3 ⊳
Vscr; U+1D4B1 𝒱

vscr; U+1D4CB 𝓋

vsubnE; U+02ACB U+0FE00 ⯑

vsubne; U+0228A U+0FE00 ⊊
vsupnE; U+02ACC U+0FE00 ⯑

vsupne; U+0228B U+0FE00 ⊋
Vvdash; U+022AA ⊪
vzigzag; U+0299A ⦚

Wcirc; U+00174 Ŵ
wcirc; U+00175 ŵ
wedbar; U+02A5F ⩟

Wedge; U+022C0 ⋀
wedge; U+02227 ∧
wedgeq; U+02259 ≙
weierp; U+02118 ℘
Wfr; U+1D51A 𝔚

wfr; U+1D534 𝔴

Wopf; U+1D54E 𝕎
wopf; U+1D568 𝕨
wp; U+02118 ℘
wr; U+02240 ≀
wreath; U+02240 ≀
Wscr; U+1D4B2 𝒲

wscr; U+1D4CC 𝓌

xcap; U+022C2 ⋂
xcirc; U+025EF ◯
xcup; U+022C3 ⋃
xdtri; U+025BD ▽
Xfr; U+1D51B 𝔛

xfr; U+1D535 𝔵

xhArr; U+027FA ⟺
xharr; U+027F7 ⟷
Xi; U+0039E Ξ
xi; U+003BE ξ
xlArr; U+027F8 ⟸
xlarr; U+027F5 ⟵
xmap; U+027FC ⟼
xnis; U+022FB ⋻

1382

Name Character(s) Glyph

xodot; U+02A00 ⨀
Xopf; U+1D54F 𝕏
xopf; U+1D569 𝕩
xoplus; U+02A01 ⨁
xotime; U+02A02 ⨂
xrArr; U+027F9 ⟹
xrarr; U+027F6 ⟶
Xscr; U+1D4B3 𝒳

xscr; U+1D4CD 𝓍

xsqcup; U+02A06 ⨆

xuplus; U+02A04 ⨄

xutri; U+025B3 △
xvee; U+022C1 ⋁
xwedge; U+022C0 ⋀
Yacute; U+000DD Ý
Yacute U+000DD Ý
yacute; U+000FD ý
yacute U+000FD ý
YAcy; U+0042F Я
yacy; U+0044F я
Ycirc; U+00176 Ŷ

Name Character(s) Glyph

ycirc; U+00177 ŷ
Ycy; U+0042B Ы
ycy; U+0044B ы
yen; U+000A5 ¥
yen U+000A5 ¥
Yfr; U+1D51C 𝔜

yfr; U+1D536 𝔶

YIcy; U+00407 Ї
yicy; U+00457 ї
Yopf; U+1D550 𝕐
yopf; U+1D56A 𝕪
Yscr; U+1D4B4 𝒴

yscr; U+1D4CE 𝓎

YUcy; U+0042E Ю
yucy; U+0044E ю
Yuml; U+00178 Ÿ
yuml; U+000FF ÿ
yuml U+000FF ÿ
Zacute; U+00179 Ź
zacute; U+0017A ź
Zcaron; U+0017D Ž

Name Character(s) Glyph

zcaron; U+0017E ž
Zcy; U+00417 З
zcy; U+00437 з
Zdot; U+0017B Ż
zdot; U+0017C ż
zeetrf; U+02128 ℨ
ZeroWidthSpace; U+0200B
Zeta; U+00396 Ζ
zeta; U+003B6 ζ
Zfr; U+02128 ℨ
zfr; U+1D537 𝔷

ZHcy; U+00416 Ж
zhcy; U+00436 ж
zigrarr; U+021DD ⇝
Zopf; U+02124 ℤ
zopf; U+1D56B 𝕫
Zscr; U+1D4B5 𝒵

zscr; U+1D4CF 𝓏

zwj; U+0200D
zwnj; U+0200C

This data is also available as a JSON file.

The glyphs displayed above are non-normative. Refer to Unicode for formal definitions of the characters listed above.

The character reference names originate from XML Entity Definitions for Characters, though only the above is considered
normative. [XMLENTITY]p1484

Note

This list is static and will not be expanded or changed in the future.
Note

1383

https://html.spec.whatwg.org/entities.json
https://github.com/whatwg/html/blob/main/FAQ.md#html-should-add-more-named-character-references

The syntax for XML is defined in XML and Namespaces in XML. [XML]p1484 [XMLNS]p1484

This specification does not define any syntax-level requirements beyond those defined for XML proper.

XML documents may contain a DOCTYPE if desired, but this is not required to conform to this specification. This specification does not
define a public or system identifier, nor provide a formal DTD.

This section describes the relationship between XML and the DOM, with a particular emphasis on how this interacts with HTML.

An XML parser, for the purposes of this specification, is a construct that follows the rules given in XML to map a string of bytes or
characters into a Documentp130 object.

An XML parserp1384 is either associated with a Documentp130 object when it is created, or creates one implicitly.

This Documentp130 must then be populated with DOM nodes that represent the tree structure of the input passed to the parser, as
defined by XML, Namespaces in XML, and DOM. When creating DOM nodes representing elements, the create an element for a
tokenp1320 algorithm or some equivalent that operates on appropriate XML data structures must be used, to ensure the proper element
interfaces are created and that custom elementsp759 are set up correctly.

For the operations that the XML parserp1384 performs on the Documentp130 's tree, the user agent must act as if elements and attributes
were individually appended and set respectively so as to trigger rules in this specification regarding what happens when an element is
inserted into a document or has its attributes set, and DOM's requirements regarding mutation observers mean that mutation

14 The XML syntax §p13

84

This section only describes the rules for XML resources. Rules for text/htmlp1444 resources are discussed in the section above
entitled "The HTML syntaxp1259".

Note

Using the XML syntax is not recommended, for reasons which include the fact that there is no specification which
defines the rules for how an XML parser must map a string of bytes or characters into a Documentp130 object, as well
as the fact that the XML syntax is essentially unmaintained — in that, it’s not expected that any further features
will ever be added to the XML syntax (even when such features have been added to the HTML syntaxp1259).

⚠Warning!

14.1 Writing documents in the XML syntax §p13

84

The XML syntax for HTML was formerly referred to as "XHTML", but this specification does not use that term (among other reasons,
because no such term is used for the HTML syntaxes of MathML and SVG).

Note

According to XML, XML processors are not guaranteed to process the external DTD subset referenced in the DOCTYPE. This means,
for example, that using entity references for characters in XML documents is unsafe if they are defined in an external file (except
for <, >, &, ", and ').

Note

14.2 Parsing XML documents §p13

84

At the time of writing, no such rules actually exist.
Note

✔ MDN

1384

https://www.w3.org/TR/xml/#dt-entref
https://dom.spec.whatwg.org/#concept-element-interface
https://dom.spec.whatwg.org/#concept-element-interface
https://dom.spec.whatwg.org/#mutation-observers

observers are fired. [XML]p1484 [XMLNS]p1484 [DOM]p1478 [UIEVENTS]p1483

Between the time an element's start tag is parsed and the time either the element's end tag is parsed or the parser detects a well-
formedness error, the user agent must act as if the element was in a stack of open elementsp1286.

This specification provides the following additional information that user agents should use when retrieving an external entity: the
public identifiers given in the following list all correspond to the URL given by this link. (This URL is a DTD containing the entity
declarations for the names listed in the named character referencesp1374 section.) [XML]p1484

• -//W3C//DTD XHTML 1.0 Transitional//EN
• -//W3C//DTD XHTML 1.1//EN
• -//W3C//DTD XHTML 1.0 Strict//EN
• -//W3C//DTD XHTML 1.0 Frameset//EN
• -//W3C//DTD XHTML Basic 1.0//EN
• -//W3C//DTD XHTML 1.1 plus MathML 2.0//EN
• -//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN
• -//W3C//DTD MathML 2.0//EN
• -//WAPFORUM//DTD XHTML Mobile 1.0//EN

Furthermore, user agents should attempt to retrieve the above external entity's content when one of the above public identifiers is
used, and should not attempt to retrieve any other external entity's content.

XML parsers can be invoked with XML scripting support enabled or XML scripting support disabled. Except where otherwise
specified, XML parsers are invoked with XML scripting support enabledp1385.

When an XML parserp1384 with XML scripting support enabledp1385 creates a scriptp652 element, it must have its parser documentp659

set and its force asyncp659 set to false. If the parser was created as part of the XML fragment parsing algorithmp1387, then the element's
already startedp659 must be set to true. When the element's end tag is subsequently parsed, the user agent must perform a microtask
checkpointp1131, and then preparep661 the scriptp652 element. If this causes there to be a pending parsing-blocking scriptp665, then the
user agent must run the following steps:

1. Block this instance of the XML parserp1384, such that the event loopp1123 will not run tasksp1124 that invoke it.

2. Spin the event loopp1131 until the parser's Documentp130 has no style sheet that is blocking scriptsp204 and the pending parsing-
blocking scriptp665 's ready to be parser-executedp659 is true.

3. Unblock this instance of the XML parserp1384, such that tasksp1124 that invoke it can again be run.

4. Execute the script elementp665 given by the pending parsing-blocking scriptp665.

5. Set the pending parsing-blocking scriptp665 to null.

When an XML parserp1384 would append a node to a templatep671 element, it must instead append it to the templatep671 element's
template contentsp673 (a DocumentFragment node).

This is used by various elements to only start certain processes once they are popped off of the stack of open elementsp1286.
Note

This is not strictly a violationp28 of XML, but it does contradict the spirit of XML's requirements. This is motivated by a desire for
user agents to all handle entities in an interoperable fashion without requiring any network access for handling external subsets.
[XML]p1484

Note

Since the document.write()p1153 API is not available for XML documents, much of the complexity in the HTML parserp1271 is not
needed in the XML parserp1384.

Note

When the XML parserp1384 has XML scripting support disabledp1385, none of this happens.
Note

This is a willful violationp28 of XML; unfortunately, XML is not formally extensible in the manner that is needed for templatep671

processing. [XML]p1484

Note

1385

data:application/xml-dtd;base64,PCFFTlRJVFkgVGFiICImI3g5OyI%2BPCFFTlRJVFkgTmV3TGluZSAiJiN4QTsiPjwhRU5USVRZIGV4Y2wgIiYjeDIxOyI%2BPCFFTlRJVFkgcXVvdCAiJiN4MjI7Ij48IUVOVElUWSBRVU9UICImI3gyMjsiPjwhRU5USVRZIG51bSAiJiN4MjM7Ij48IUVOVElUWSBkb2xsYXIgIiYjeDI0OyI%2BPCFFTlRJVFkgcGVyY250ICImI3gyNTsiPjwhRU5USVRZIGFtcCAiJiN4MjY7I3gyNjsiPjwhRU5USVRZIEFNUCAiJiN4MjY7I3gyNjsiPjwhRU5USVRZIGFwb3MgIiYjeDI3OyI%2BPCFFTlRJVFkgbHBhciAiJiN4Mjg7Ij48IUVOVElUWSBycGFyICImI3gyOTsiPjwhRU5USVRZIGFzdCAiJiN4MkE7Ij48IUVOVElUWSBtaWRhc3QgIiYjeDJBOyI%2BPCFFTlRJVFkgcGx1cyAiJiN4MkI7Ij48IUVOVElUWSBjb21tYSAiJiN4MkM7Ij48IUVOVElUWSBwZXJpb2QgIiYjeDJFOyI%2BPCFFTlRJVFkgc29sICImI3gyRjsiPjwhRU5USVRZIGNvbG9uICImI3gzQTsiPjwhRU5USVRZIHNlbWkgIiYjeDNCOyI%2BPCFFTlRJVFkgbHQgIiYjeDI2OyN4M0M7Ij48IUVOVElUWSBMVCAiJiN4MjY7I3gzQzsiPjwhRU5USVRZIG52bHQgIiYjeDI2OyN4M0M7JiN4MjBEMjsiPjwhRU5USVRZIGVxdWFscyAiJiN4M0Q7Ij48IUVOVElUWSBibmUgIiYjeDNEOyYjeDIwRTU7Ij48IUVOVElUWSBndCAiJiN4M0U7Ij48IUVOVElUWSBHVCAiJiN4M0U7Ij48IUVOVElUWSBudmd0ICImI3gzRTsmI3gyMEQyOyI%2BPCFFTlRJVFkgcXVlc3QgIiYjeDNGOyI%2BPCFFTlRJVFkgY29tbWF0ICImI3g0MDsiPjwhRU5USVRZIGxzcWIgIiYjeDVCOyI%2BPCFFTlRJVFkgbGJyYWNrICImI3g1QjsiPjwhRU5USVRZIGJzb2wgIiYjeDVDOyI%2BPCFFTlRJVFkgcnNxYiAiJiN4NUQ7Ij48IUVOVElUWSByYnJhY2sgIiYjeDVEOyI%2BPCFFTlRJVFkgSGF0ICImI3g1RTsiPjwhRU5USVRZIGxvd2JhciAiJiN4NUY7Ij48IUVOVElUWSBVbmRlckJhciAiJiN4NUY7Ij48IUVOVElUWSBncmF2ZSAiJiN4NjA7Ij48IUVOVElUWSBEaWFjcml0aWNhbEdyYXZlICImI3g2MDsiPjwhRU5USVRZIGZqbGlnICImI3g2NjsmI3g2QTsiPjwhRU5USVRZIGxjdWIgIiYjeDdCOyI%2BPCFFTlRJVFkgbGJyYWNlICImI3g3QjsiPjwhRU5USVRZIHZlcmJhciAiJiN4N0M7Ij48IUVOVElUWSB2ZXJ0ICImI3g3QzsiPjwhRU5USVRZIFZlcnRpY2FsTGluZSAiJiN4N0M7Ij48IUVOVElUWSByY3ViICImI3g3RDsiPjwhRU5USVRZIHJicmFjZSAiJiN4N0Q7Ij48IUVOVElUWSBuYnNwICImI3hBMDsiPjwhRU5USVRZIE5vbkJyZWFraW5nU3BhY2UgIiYjeEEwOyI%2BPCFFTlRJVFkgaWV4Y2wgIiYjeEExOyI%2BPCFFTlRJVFkgY2VudCAiJiN4QTI7Ij48IUVOVElUWSBwb3VuZCAiJiN4QTM7Ij48IUVOVElUWSBjdXJyZW4gIiYjeEE0OyI%2BPCFFTlRJVFkgeWVuICImI3hBNTsiPjwhRU5USVRZIGJydmJhciAiJiN4QTY7Ij48IUVOVElUWSBzZWN0ICImI3hBNzsiPjwhRU5USVRZIERvdCAiJiN4QTg7Ij48IUVOVElUWSBkaWUgIiYjeEE4OyI%2BPCFFTlRJVFkgRG91YmxlRG90ICImI3hBODsiPjwhRU5USVRZIHVtbCAiJiN4QTg7Ij48IUVOVElUWSBjb3B5ICImI3hBOTsiPjwhRU5USVRZIENPUFkgIiYjeEE5OyI%2BPCFFTlRJVFkgb3JkZiAiJiN4QUE7Ij48IUVOVElUWSBsYXF1byAiJiN4QUI7Ij48IUVOVElUWSBub3QgIiYjeEFDOyI%2BPCFFTlRJVFkgc2h5ICImI3hBRDsiPjwhRU5USVRZIHJlZyAiJiN4QUU7Ij48IUVOVElUWSBjaXJjbGVkUiAiJiN4QUU7Ij48IUVOVElUWSBSRUcgIiYjeEFFOyI%2BPCFFTlRJVFkgbWFjciAiJiN4QUY7Ij48IUVOVElUWSBzdHJucyAiJiN4QUY7Ij48IUVOVElUWSBkZWcgIiYjeEIwOyI%2BPCFFTlRJVFkgcGx1c21uICImI3hCMTsiPjwhRU5USVRZIHBtICImI3hCMTsiPjwhRU5USVRZIFBsdXNNaW51cyAiJiN4QjE7Ij48IUVOVElUWSBzdXAyICImI3hCMjsiPjwhRU5USVRZIHN1cDMgIiYjeEIzOyI%2BPCFFTlRJVFkgYWN1dGUgIiYjeEI0OyI%2BPCFFTlRJVFkgRGlhY3JpdGljYWxBY3V0ZSAiJiN4QjQ7Ij48IUVOVElUWSBtaWNybyAiJiN4QjU7Ij48IUVOVElUWSBwYXJhICImI3hCNjsiPjwhRU5USVRZIG1pZGRvdCAiJiN4Qjc7Ij48IUVOVElUWSBjZW50ZXJkb3QgIiYjeEI3OyI%2BPCFFTlRJVFkgQ2VudGVyRG90ICImI3hCNzsiPjwhRU5USVRZIGNlZGlsICImI3hCODsiPjwhRU5USVRZIENlZGlsbGEgIiYjeEI4OyI%2BPCFFTlRJVFkgc3VwMSAiJiN4Qjk7Ij48IUVOVElUWSBvcmRtICImI3hCQTsiPjwhRU5USVRZIHJhcXVvICImI3hCQjsiPjwhRU5USVRZIGZyYWMxNCAiJiN4QkM7Ij48IUVOVElUWSBmcmFjMTIgIiYjeEJEOyI%2BPCFFTlRJVFkgaGFsZiAiJiN4QkQ7Ij48IUVOVElUWSBmcmFjMzQgIiYjeEJFOyI%2BPCFFTlRJVFkgaXF1ZXN0ICImI3hCRjsiPjwhRU5USVRZIEFncmF2ZSAiJiN4QzA7Ij48IUVOVElUWSBBYWN1dGUgIiYjeEMxOyI%2BPCFFTlRJVFkgQWNpcmMgIiYjeEMyOyI%2BPCFFTlRJVFkgQXRpbGRlICImI3hDMzsiPjwhRU5USVRZIEF1bWwgIiYjeEM0OyI%2BPCFFTlRJVFkgQXJpbmcgIiYjeEM1OyI%2BPCFFTlRJVFkgYW5nc3QgIiYjeEM1OyI%2BPCFFTlRJVFkgQUVsaWcgIiYjeEM2OyI%2BPCFFTlRJVFkgQ2NlZGlsICImI3hDNzsiPjwhRU5USVRZIEVncmF2ZSAiJiN4Qzg7Ij48IUVOVElUWSBFYWN1dGUgIiYjeEM5OyI%2BPCFFTlRJVFkgRWNpcmMgIiYjeENBOyI%2BPCFFTlRJVFkgRXVtbCAiJiN4Q0I7Ij48IUVOVElUWSBJZ3JhdmUgIiYjeENDOyI%2BPCFFTlRJVFkgSWFjdXRlICImI3hDRDsiPjwhRU5USVRZIEljaXJjICImI3hDRTsiPjwhRU5USVRZIEl1bWwgIiYjeENGOyI%2BPCFFTlRJVFkgRVRIICImI3hEMDsiPjwhRU5USVRZIE50aWxkZSAiJiN4RDE7Ij48IUVOVElUWSBPZ3JhdmUgIiYjeEQyOyI%2BPCFFTlRJVFkgT2FjdXRlICImI3hEMzsiPjwhRU5USVRZIE9jaXJjICImI3hENDsiPjwhRU5USVRZIE90aWxkZSAiJiN4RDU7Ij48IUVOVElUWSBPdW1sICImI3hENjsiPjwhRU5USVRZIHRpbWVzICImI3hENzsiPjwhRU5USVRZIE9zbGFzaCAiJiN4RDg7Ij48IUVOVElUWSBVZ3JhdmUgIiYjeEQ5OyI%2BPCFFTlRJVFkgVWFjdXRlICImI3hEQTsiPjwhRU5USVRZIFVjaXJjICImI3hEQjsiPjwhRU5USVRZIFV1bWwgIiYjeERDOyI%2BPCFFTlRJVFkgWWFjdXRlICImI3hERDsiPjwhRU5USVRZIFRIT1JOICImI3hERTsiPjwhRU5USVRZIHN6bGlnICImI3hERjsiPjwhRU5USVRZIGFncmF2ZSAiJiN4RTA7Ij48IUVOVElUWSBhYWN1dGUgIiYjeEUxOyI%2BPCFFTlRJVFkgYWNpcmMgIiYjeEUyOyI%2BPCFFTlRJVFkgYXRpbGRlICImI3hFMzsiPjwhRU5USVRZIGF1bWwgIiYjeEU0OyI%2BPCFFTlRJVFkgYXJpbmcgIiYjeEU1OyI%2BPCFFTlRJVFkgYWVsaWcgIiYjeEU2OyI%2BPCFFTlRJVFkgY2NlZGlsICImI3hFNzsiPjwhRU5USVRZIGVncmF2ZSAiJiN4RTg7Ij48IUVOVElUWSBlYWN1dGUgIiYjeEU5OyI%2BPCFFTlRJVFkgZWNpcmMgIiYjeEVBOyI%2BPCFFTlRJVFkgZXVtbCAiJiN4RUI7Ij48IUVOVElUWSBpZ3JhdmUgIiYjeEVDOyI%2BPCFFTlRJVFkgaWFjdXRlICImI3hFRDsiPjwhRU5USVRZIGljaXJjICImI3hFRTsiPjwhRU5USVRZIGl1bWwgIiYjeEVGOyI%2BPCFFTlRJVFkgZXRoICImI3hGMDsiPjwhRU5USVRZIG50aWxkZSAiJiN4RjE7Ij48IUVOVElUWSBvZ3JhdmUgIiYjeEYyOyI%2BPCFFTlRJVFkgb2FjdXRlICImI3hGMzsiPjwhRU5USVRZIG9jaXJjICImI3hGNDsiPjwhRU5USVRZIG90aWxkZSAiJiN4RjU7Ij48IUVOVElUWSBvdW1sICImI3hGNjsiPjwhRU5USVRZIGRpdmlkZSAiJiN4Rjc7Ij48IUVOVElUWSBkaXYgIiYjeEY3OyI%2BPCFFTlRJVFkgb3NsYXNoICImI3hGODsiPjwhRU5USVRZIHVncmF2ZSAiJiN4Rjk7Ij48IUVOVElUWSB1YWN1dGUgIiYjeEZBOyI%2BPCFFTlRJVFkgdWNpcmMgIiYjeEZCOyI%2BPCFFTlRJVFkgdXVtbCAiJiN4RkM7Ij48IUVOVElUWSB5YWN1dGUgIiYjeEZEOyI%2BPCFFTlRJVFkgdGhvcm4gIiYjeEZFOyI%2BPCFFTlRJVFkgeXVtbCAiJiN4RkY7Ij48IUVOVElUWSBBbWFjciAiJiN4MTAwOyI%2BPCFFTlRJVFkgYW1hY3IgIiYjeDEwMTsiPjwhRU5USVRZIEFicmV2ZSAiJiN4MTAyOyI%2BPCFFTlRJVFkgYWJyZXZlICImI3gxMDM7Ij48IUVOVElUWSBBb2dvbiAiJiN4MTA0OyI%2BPCFFTlRJVFkgYW9nb24gIiYjeDEwNTsiPjwhRU5USVRZIENhY3V0ZSAiJiN4MTA2OyI%2BPCFFTlRJVFkgY2FjdXRlICImI3gxMDc7Ij48IUVOVElUWSBDY2lyYyAiJiN4MTA4OyI%2BPCFFTlRJVFkgY2NpcmMgIiYjeDEwOTsiPjwhRU5USVRZIENkb3QgIiYjeDEwQTsiPjwhRU5USVRZIGNkb3QgIiYjeDEwQjsiPjwhRU5USVRZIENjYXJvbiAiJiN4MTBDOyI%2BPCFFTlRJVFkgY2Nhcm9uICImI3gxMEQ7Ij48IUVOVElUWSBEY2Fyb24gIiYjeDEwRTsiPjwhRU5USVRZIGRjYXJvbiAiJiN4MTBGOyI%2BPCFFTlRJVFkgRHN0cm9rICImI3gxMTA7Ij48IUVOVElUWSBkc3Ryb2sgIiYjeDExMTsiPjwhRU5USVRZIEVtYWNyICImI3gxMTI7Ij48IUVOVElUWSBlbWFjciAiJiN4MTEzOyI%2BPCFFTlRJVFkgRWRvdCAiJiN4MTE2OyI%2BPCFFTlRJVFkgZWRvdCAiJiN4MTE3OyI%2BPCFFTlRJVFkgRW9nb24gIiYjeDExODsiPjwhRU5USVRZIGVvZ29uICImI3gxMTk7Ij48IUVOVElUWSBFY2Fyb24gIiYjeDExQTsiPjwhRU5USVRZIGVjYXJvbiAiJiN4MTFCOyI%2BPCFFTlRJVFkgR2NpcmMgIiYjeDExQzsiPjwhRU5USVRZIGdjaXJjICImI3gxMUQ7Ij48IUVOVElUWSBHYnJldmUgIiYjeDExRTsiPjwhRU5USVRZIGdicmV2ZSAiJiN4MTFGOyI%2BPCFFTlRJVFkgR2RvdCAiJiN4MTIwOyI%2BPCFFTlRJVFkgZ2RvdCAiJiN4MTIxOyI%2BPCFFTlRJVFkgR2NlZGlsICImI3gxMjI7Ij48IUVOVElUWSBIY2lyYyAiJiN4MTI0OyI%2BPCFFTlRJVFkgaGNpcmMgIiYjeDEyNTsiPjwhRU5USVRZIEhzdHJvayAiJiN4MTI2OyI%2BPCFFTlRJVFkgaHN0cm9rICImI3gxMjc7Ij48IUVOVElUWSBJdGlsZGUgIiYjeDEyODsiPjwhRU5USVRZIGl0aWxkZSAiJiN4MTI5OyI%2BPCFFTlRJVFkgSW1hY3IgIiYjeDEyQTsiPjwhRU5USVRZIGltYWNyICImI3gxMkI7Ij48IUVOVElUWSBJb2dvbiAiJiN4MTJFOyI%2BPCFFTlRJVFkgaW9nb24gIiYjeDEyRjsiPjwhRU5USVRZIElkb3QgIiYjeDEzMDsiPjwhRU5USVRZIGltYXRoICImI3gxMzE7Ij48IUVOVElUWSBpbm9kb3QgIiYjeDEzMTsiPjwhRU5USVRZIElKbGlnICImI3gxMzI7Ij48IUVOVElUWSBpamxpZyAiJiN4MTMzOyI%2BPCFFTlRJVFkgSmNpcmMgIiYjeDEzNDsiPjwhRU5USVRZIGpjaXJjICImI3gxMzU7Ij48IUVOVElUWSBLY2VkaWwgIiYjeDEzNjsiPjwhRU5USVRZIGtjZWRpbCAiJiN4MTM3OyI%2BPCFFTlRJVFkga2dyZWVuICImI3gxMzg7Ij48IUVOVElUWSBMYWN1dGUgIiYjeDEzOTsiPjwhRU5USVRZIGxhY3V0ZSAiJiN4MTNBOyI%2BPCFFTlRJVFkgTGNlZGlsICImI3gxM0I7Ij48IUVOVElUWSBsY2VkaWwgIiYjeDEzQzsiPjwhRU5USVRZIExjYXJvbiAiJiN4MTNEOyI%2BPCFFTlRJVFkgbGNhcm9uICImI3gxM0U7Ij48IUVOVElUWSBMbWlkb3QgIiYjeDEzRjsiPjwhRU5USVRZIGxtaWRvdCAiJiN4MTQwOyI%2BPCFFTlRJVFkgTHN0cm9rICImI3gxNDE7Ij48IUVOVElUWSBsc3Ryb2sgIiYjeDE0MjsiPjwhRU5USVRZIE5hY3V0ZSAiJiN4MTQzOyI%2BPCFFTlRJVFkgbmFjdXRlICImI3gxNDQ7Ij48IUVOVElUWSBOY2VkaWwgIiYjeDE0NTsiPjwhRU5USVRZIG5jZWRpbCAiJiN4MTQ2OyI%2BPCFFTlRJVFkgTmNhcm9uICImI3gxNDc7Ij48IUVOVElUWSBuY2Fyb24gIiYjeDE0ODsiPjwhRU5USVRZIG5hcG9zICImI3gxNDk7Ij48IUVOVElUWSBFTkcgIiYjeDE0QTsiPjwhRU5USVRZIGVuZyAiJiN4MTRCOyI%2BPCFFTlRJVFkgT21hY3IgIiYjeDE0QzsiPjwhRU5USVRZIG9tYWNyICImI3gxNEQ7Ij48IUVOVElUWSBPZGJsYWMgIiYjeDE1MDsiPjwhRU5USVRZIG9kYmxhYyAiJiN4MTUxOyI%2BPCFFTlRJVFkgT0VsaWcgIiYjeDE1MjsiPjwhRU5USVRZIG9lbGlnICImI3gxNTM7Ij48IUVOVElUWSBSYWN1dGUgIiYjeDE1NDsiPjwhRU5USVRZIHJhY3V0ZSAiJiN4MTU1OyI%2BPCFFTlRJVFkgUmNlZGlsICImI3gxNTY7Ij48IUVOVElUWSByY2VkaWwgIiYjeDE1NzsiPjwhRU5USVRZIFJjYXJvbiAiJiN4MTU4OyI%2BPCFFTlRJVFkgcmNhcm9uICImI3gxNTk7Ij48IUVOVElUWSBTYWN1dGUgIiYjeDE1QTsiPjwhRU5USVRZIHNhY3V0ZSAiJiN4MTVCOyI%2BPCFFTlRJVFkgU2NpcmMgIiYjeDE1QzsiPjwhRU5USVRZIHNjaXJjICImI3gxNUQ7Ij48IUVOVElUWSBTY2VkaWwgIiYjeDE1RTsiPjwhRU5USVRZIHNjZWRpbCAiJiN4MTVGOyI%2BPCFFTlRJVFkgU2Nhcm9uICImI3gxNjA7Ij48IUVOVElUWSBzY2Fyb24gIiYjeDE2MTsiPjwhRU5USVRZIFRjZWRpbCAiJiN4MTYyOyI%2BPCFFTlRJVFkgdGNlZGlsICImI3gxNjM7Ij48IUVOVElUWSBUY2Fyb24gIiYjeDE2NDsiPjwhRU5USVRZIHRjYXJvbiAiJiN4MTY1OyI%2BPCFFTlRJVFkgVHN0cm9rICImI3gxNjY7Ij48IUVOVElUWSB0c3Ryb2sgIiYjeDE2NzsiPjwhRU5USVRZIFV0aWxkZSAiJiN4MTY4OyI%2BPCFFTlRJVFkgdXRpbGRlICImI3gxNjk7Ij48IUVOVElUWSBVbWFjciAiJiN4MTZBOyI%2BPCFFTlRJVFkgdW1hY3IgIiYjeDE2QjsiPjwhRU5USVRZIFVicmV2ZSAiJiN4MTZDOyI%2BPCFFTlRJVFkgdWJyZXZlICImI3gxNkQ7Ij48IUVOVElUWSBVcmluZyAiJiN4MTZFOyI%2BPCFFTlRJVFkgdXJpbmcgIiYjeDE2RjsiPjwhRU5USVRZIFVkYmxhYyAiJiN4MTcwOyI%2BPCFFTlRJVFkgdWRibGFjICImI3gxNzE7Ij48IUVOVElUWSBVb2dvbiAiJiN4MTcyOyI%2BPCFFTlRJVFkgdW9nb24gIiYjeDE3MzsiPjwhRU5USVRZIFdjaXJjICImI3gxNzQ7Ij48IUVOVElUWSB3Y2lyYyAiJiN4MTc1OyI%2BPCFFTlRJVFkgWWNpcmMgIiYjeDE3NjsiPjwhRU5USVRZIHljaXJjICImI3gxNzc7Ij48IUVOVElUWSBZdW1sICImI3gxNzg7Ij48IUVOVElUWSBaYWN1dGUgIiYjeDE3OTsiPjwhRU5USVRZIHphY3V0ZSAiJiN4MTdBOyI%2BPCFFTlRJVFkgWmRvdCAiJiN4MTdCOyI%2BPCFFTlRJVFkgemRvdCAiJiN4MTdDOyI%2BPCFFTlRJVFkgWmNhcm9uICImI3gxN0Q7Ij48IUVOVElUWSB6Y2Fyb24gIiYjeDE3RTsiPjwhRU5USVRZIGZub2YgIiYjeDE5MjsiPjwhRU5USVRZIGltcGVkICImI3gxQjU7Ij48IUVOVElUWSBnYWN1dGUgIiYjeDFGNTsiPjwhRU5USVRZIGptYXRoICImI3gyMzc7Ij48IUVOVElUWSBjaXJjICImI3gyQzY7Ij48IUVOVElUWSBjYXJvbiAiJiN4MkM3OyI%2BPCFFTlRJVFkgSGFjZWsgIiYjeDJDNzsiPjwhRU5USVRZIGJyZXZlICImI3gyRDg7Ij48IUVOVElUWSBCcmV2ZSAiJiN4MkQ4OyI%2BPCFFTlRJVFkgZG90ICImI3gyRDk7Ij48IUVOVElUWSBEaWFjcml0aWNhbERvdCAiJiN4MkQ5OyI%
2BPCFFTlRJVFkgcmluZyAiJiN4MkRBOyI%2BPCFFTlRJVFkgb2dvbiAiJiN4MkRCOyI%2BPCFFTlRJVFkgdGlsZGUgIiYjeDJEQzsiPjwhRU5USVRZIERpYWNyaXRpY2FsVGlsZGUgIiYjeDJEQzsiPjwhRU5USVRZIGRibGFjICImI3gyREQ7Ij48IUVOVElUWSBEaWFjcml0aWNhbERvdWJsZUFjdXRlICImI3gyREQ7Ij48IUVOVElUWSBEb3duQnJldmUgIiYjeDMxMTsiPjwhRU5USVRZIEFscGhhICImI3gzOTE7Ij48IUVOVElUWSBCZXRhICImI3gzOTI7Ij48IUVOVElUWSBHYW1tYSAiJiN4MzkzOyI%2BPCFFTlRJVFkgRGVsdGEgIiYjeDM5NDsiPjwhRU5USVRZIEVwc2lsb24gIiYjeDM5NTsiPjwhRU5USVRZIFpldGEgIiYjeDM5NjsiPjwhRU5USVRZIEV0YSAiJiN4Mzk3OyI%2BPCFFTlRJVFkgVGhldGEgIiYjeDM5ODsiPjwhRU5USVRZIElvdGEgIiYjeDM5OTsiPjwhRU5USVRZIEthcHBhICImI3gzOUE7Ij48IUVOVElUWSBMYW1iZGEgIiYjeDM5QjsiPjwhRU5USVRZIE11ICImI3gzOUM7Ij48IUVOVElUWSBOdSAiJiN4MzlEOyI%2BPCFFTlRJVFkgWGkgIiYjeDM5RTsiPjwhRU5USVRZIE9taWNyb24gIiYjeDM5RjsiPjwhRU5USVRZIFBpICImI3gzQTA7Ij48IUVOVElUWSBSaG8gIiYjeDNBMTsiPjwhRU5USVRZIFNpZ21hICImI3gzQTM7Ij48IUVOVElUWSBUYXUgIiYjeDNBNDsiPjwhRU5USVRZIFVwc2lsb24gIiYjeDNBNTsiPjwhRU5USVRZIFBoaSAiJiN4M0E2OyI%2BPCFFTlRJVFkgQ2hpICImI3gzQTc7Ij48IUVOVElUWSBQc2kgIiYjeDNBODsiPjwhRU5USVRZIE9tZWdhICImI3gzQTk7Ij48IUVOVElUWSBvaG0gIiYjeDNBOTsiPjwhRU5USVRZIGFscGhhICImI3gzQjE7Ij48IUVOVElUWSBiZXRhICImI3gzQjI7Ij48IUVOVElUWSBnYW1tYSAiJiN4M0IzOyI%2BPCFFTlRJVFkgZGVsdGEgIiYjeDNCNDsiPjwhRU5USVRZIGVwc2kgIiYjeDNCNTsiPjwhRU5USVRZIGVwc2lsb24gIiYjeDNCNTsiPjwhRU5USVRZIHpldGEgIiYjeDNCNjsiPjwhRU5USVRZIGV0YSAiJiN4M0I3OyI%2BPCFFTlRJVFkgdGhldGEgIiYjeDNCODsiPjwhRU5USVRZIGlvdGEgIiYjeDNCOTsiPjwhRU5USVRZIGthcHBhICImI3gzQkE7Ij48IUVOVElUWSBsYW1iZGEgIiYjeDNCQjsiPjwhRU5USVRZIG11ICImI3gzQkM7Ij48IUVOVElUWSBudSAiJiN4M0JEOyI%2BPCFFTlRJVFkgeGkgIiYjeDNCRTsiPjwhRU5USVRZIG9taWNyb24gIiYjeDNCRjsiPjwhRU5USVRZIHBpICImI3gzQzA7Ij48IUVOVElUWSByaG8gIiYjeDNDMTsiPjwhRU5USVRZIHNpZ21hdiAiJiN4M0MyOyI%2BPCFFTlRJVFkgdmFyc2lnbWEgIiYjeDNDMjsiPjwhRU5USVRZIHNpZ21hZiAiJiN4M0MyOyI%2BPCFFTlRJVFkgc2lnbWEgIiYjeDNDMzsiPjwhRU5USVRZIHRhdSAiJiN4M0M0OyI%2BPCFFTlRJVFkgdXBzaSAiJiN4M0M1OyI%2BPCFFTlRJVFkgdXBzaWxvbiAiJiN4M0M1OyI%2BPCFFTlRJVFkgcGhpICImI3gzQzY7Ij48IUVOVElUWSBjaGkgIiYjeDNDNzsiPjwhRU5USVRZIHBzaSAiJiN4M0M4OyI%2BPCFFTlRJVFkgb21lZ2EgIiYjeDNDOTsiPjwhRU5USVRZIHRoZXRhdiAiJiN4M0QxOyI%2BPCFFTlRJVFkgdmFydGhldGEgIiYjeDNEMTsiPjwhRU5USVRZIHRoZXRhc3ltICImI3gzRDE7Ij48IUVOVElUWSBVcHNpICImI3gzRDI7Ij48IUVOVElUWSB1cHNpaCAiJiN4M0QyOyI%2BPCFFTlRJVFkgc3RyYWlnaHRwaGkgIiYjeDNENTsiPjwhRU5USVRZIHBoaXYgIiYjeDNENTsiPjwhRU5USVRZIHZhcnBoaSAiJiN4M0Q1OyI%2BPCFFTlRJVFkgcGl2ICImI3gzRDY7Ij48IUVOVElUWSB2YXJwaSAiJiN4M0Q2OyI%2BPCFFTlRJVFkgR2FtbWFkICImI3gzREM7Ij48IUVOVElUWSBnYW1tYWQgIiYjeDNERDsiPjwhRU5USVRZIGRpZ2FtbWEgIiYjeDNERDsiPjwhRU5USVRZIGthcHBhdiAiJiN4M0YwOyI%2BPCFFTlRJVFkgdmFya2FwcGEgIiYjeDNGMDsiPjwhRU5USVRZIHJob3YgIiYjeDNGMTsiPjwhRU5USVRZIHZhcnJobyAiJiN4M0YxOyI%2BPCFFTlRJVFkgZXBzaXYgIiYjeDNGNTsiPjwhRU5USVRZIHN0cmFpZ2h0ZXBzaWxvbiAiJiN4M0Y1OyI%2BPCFFTlRJVFkgdmFyZXBzaWxvbiAiJiN4M0Y1OyI%2BPCFFTlRJVFkgYmVwc2kgIiYjeDNGNjsiPjwhRU5USVRZIGJhY2tlcHNpbG9uICImI3gzRjY7Ij48IUVOVElUWSBJT2N5ICImI3g0MDE7Ij48IUVOVElUWSBESmN5ICImI3g0MDI7Ij48IUVOVElUWSBHSmN5ICImI3g0MDM7Ij48IUVOVElUWSBKdWtjeSAiJiN4NDA0OyI%2BPCFFTlRJVFkgRFNjeSAiJiN4NDA1OyI%2BPCFFTlRJVFkgSXVrY3kgIiYjeDQwNjsiPjwhRU5USVRZIFlJY3kgIiYjeDQwNzsiPjwhRU5USVRZIEpzZXJjeSAiJiN4NDA4OyI%2BPCFFTlRJVFkgTEpjeSAiJiN4NDA5OyI%2BPCFFTlRJVFkgTkpjeSAiJiN4NDBBOyI%2BPCFFTlRJVFkgVFNIY3kgIiYjeDQwQjsiPjwhRU5USVRZIEtKY3kgIiYjeDQwQzsiPjwhRU5USVRZIFVicmN5ICImI3g0MEU7Ij48IUVOVElUWSBEWmN5ICImI3g0MEY7Ij48IUVOVElUWSBBY3kgIiYjeDQxMDsiPjwhRU5USVRZIEJjeSAiJiN4NDExOyI%2BPCFFTlRJVFkgVmN5ICImI3g0MTI7Ij48IUVOVElUWSBHY3kgIiYjeDQxMzsiPjwhRU5USVRZIERjeSAiJiN4NDE0OyI%2BPCFFTlRJVFkgSUVjeSAiJiN4NDE1OyI%2BPCFFTlRJVFkgWkhjeSAiJiN4NDE2OyI%2BPCFFTlRJVFkgWmN5ICImI3g0MTc7Ij48IUVOVElUWSBJY3kgIiYjeDQxODsiPjwhRU5USVRZIEpjeSAiJiN4NDE5OyI%2BPCFFTlRJVFkgS2N5ICImI3g0MUE7Ij48IUVOVElUWSBMY3kgIiYjeDQxQjsiPjwhRU5USVRZIE1jeSAiJiN4NDFDOyI%2BPCFFTlRJVFkgTmN5ICImI3g0MUQ7Ij48IUVOVElUWSBPY3kgIiYjeDQxRTsiPjwhRU5USVRZIFBjeSAiJiN4NDFGOyI%2BPCFFTlRJVFkgUmN5ICImI3g0MjA7Ij48IUVOVElUWSBTY3kgIiYjeDQyMTsiPjwhRU5USVRZIFRjeSAiJiN4NDIyOyI%2BPCFFTlRJVFkgVWN5ICImI3g0MjM7Ij48IUVOVElUWSBGY3kgIiYjeDQyNDsiPjwhRU5USVRZIEtIY3kgIiYjeDQyNTsiPjwhRU5USVRZIFRTY3kgIiYjeDQyNjsiPjwhRU5USVRZIENIY3kgIiYjeDQyNzsiPjwhRU5USVRZIFNIY3kgIiYjeDQyODsiPjwhRU5USVRZIFNIQ0hjeSAiJiN4NDI5OyI%2BPCFFTlRJVFkgSEFSRGN5ICImI3g0MkE7Ij48IUVOVElUWSBZY3kgIiYjeDQyQjsiPjwhRU5USVRZIFNPRlRjeSAiJiN4NDJDOyI%2BPCFFTlRJVFkgRWN5ICImI3g0MkQ7Ij48IUVOVElUWSBZVWN5ICImI3g0MkU7Ij48IUVOVElUWSBZQWN5ICImI3g0MkY7Ij48IUVOVElUWSBhY3kgIiYjeDQzMDsiPjwhRU5USVRZIGJjeSAiJiN4NDMxOyI%2BPCFFTlRJVFkgdmN5ICImI3g0MzI7Ij48IUVOVElUWSBnY3kgIiYjeDQzMzsiPjwhRU5USVRZIGRjeSAiJiN4NDM0OyI%2BPCFFTlRJVFkgaWVjeSAiJiN4NDM1OyI%2BPCFFTlRJVFkgemhjeSAiJiN4NDM2OyI%2BPCFFTlRJVFkgemN5ICImI3g0Mzc7Ij48IUVOVElUWSBpY3kgIiYjeDQzODsiPjwhRU5USVRZIGpjeSAiJiN4NDM5OyI%2BPCFFTlRJVFkga2N5ICImI3g0M0E7Ij48IUVOVElUWSBsY3kgIiYjeDQzQjsiPjwhRU5USVRZIG1jeSAiJiN4NDNDOyI%2BPCFFTlRJVFkgbmN5ICImI3g0M0Q7Ij48IUVOVElUWSBvY3kgIiYjeDQzRTsiPjwhRU5USVRZIHBjeSAiJiN4NDNGOyI%2BPCFFTlRJVFkgcmN5ICImI3g0NDA7Ij48IUVOVElUWSBzY3kgIiYjeDQ0MTsiPjwhRU5USVRZIHRjeSAiJiN4NDQyOyI%2BPCFFTlRJVFkgdWN5ICImI3g0NDM7Ij48IUVOVElUWSBmY3kgIiYjeDQ0NDsiPjwhRU5USVRZIGtoY3kgIiYjeDQ0NTsiPjwhRU5USVRZIHRzY3kgIiYjeDQ0NjsiPjwhRU5USVRZIGNoY3kgIiYjeDQ0NzsiPjwhRU5USVRZIHNoY3kgIiYjeDQ0ODsiPjwhRU5USVRZIHNoY2hjeSAiJiN4NDQ5OyI%2BPCFFTlRJVFkgaGFyZGN5ICImI3g0NEE7Ij48IUVOVElUWSB5Y3kgIiYjeDQ0QjsiPjwhRU5USVRZIHNvZnRjeSAiJiN4NDRDOyI%2BPCFFTlRJVFkgZWN5ICImI3g0NEQ7Ij48IUVOVElUWSB5dWN5ICImI3g0NEU7Ij48IUVOVElUWSB5YWN5ICImI3g0NEY7Ij48IUVOVElUWSBpb2N5ICImI3g0NTE7Ij48IUVOVElUWSBkamN5ICImI3g0NTI7Ij48IUVOVElUWSBnamN5ICImI3g0NTM7Ij48IUVOVElUWSBqdWtjeSAiJiN4NDU0OyI%2BPCFFTlRJVFkgZHNjeSAiJiN4NDU1OyI%2BPCFFTlRJVFkgaXVrY3kgIiYjeDQ1NjsiPjwhRU5USVRZIHlpY3kgIiYjeDQ1NzsiPjwhRU5USVRZIGpzZXJjeSAiJiN4NDU4OyI%2BPCFFTlRJVFkgbGpjeSAiJiN4NDU5OyI%2BPCFFTlRJVFkgbmpjeSAiJiN4NDVBOyI%2BPCFFTlRJVFkgdHNoY3kgIiYjeDQ1QjsiPjwhRU5USVRZIGtqY3kgIiYjeDQ1QzsiPjwhRU5USVRZIHVicmN5ICImI3g0NUU7Ij48IUVOVElUWSBkemN5ICImI3g0NUY7Ij48IUVOVElUWSBlbnNwICImI3gyMDAyOyI%2BPCFFTlRJVFkgZW1zcCAiJiN4MjAwMzsiPjwhRU5USVRZIGVtc3AxMyAiJiN4MjAwNDsiPjwhRU5USVRZIGVtc3AxNCAiJiN4MjAwNTsiPjwhRU5USVRZIG51bXNwICImI3gyMDA3OyI%2BPCFFTlRJVFkgcHVuY3NwICImI3gyMDA4OyI%2BPCFFTlRJVFkgdGhpbnNwICImI3gyMDA5OyI%2BPCFFTlRJVFkgVGhpblNwYWNlICImI3gyMDA5OyI%2BPCFFTlRJVFkgaGFpcnNwICImI3gyMDBBOyI%2BPCFFTlRJVFkgVmVyeVRoaW5TcGFjZSAiJiN4MjAwQTsiPjwhRU5USVRZIFplcm9XaWR0aFNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVWZXJ5VGhpblNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVUaGluU3BhY2UgIiYjeDIwMEI7Ij48IUVOVElUWSBOZWdhdGl2ZU1lZGl1bVNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVUaGlja1NwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgenduaiAiJiN4MjAwQzsiPjwhRU5USVRZIHp3aiAiJiN4MjAwRDsiPjwhRU5USVRZIGxybSAiJiN4MjAwRTsiPjwhRU5USVRZIHJsbSAiJiN4MjAwRjsiPjwhRU5USVRZIGh5cGhlbiAiJiN4MjAxMDsiPjwhRU5USVRZIGRhc2ggIiYjeDIwMTA7Ij48IUVOVElUWSBuZGFzaCAiJiN4MjAxMzsiPjwhRU5USVRZIG1kYXNoICImI3gyMDE0OyI%2BPCFFTlRJVFkgaG9yYmFyICImI3gyMDE1OyI%2BPCFFTlRJVFkgVmVyYmFyICImI3gyMDE2OyI%2BPCFFTlRJVFkgVmVydCAiJiN4MjAxNjsiPjwhRU5USVRZIGxzcXVvICImI3gyMDE4OyI%2BPCFFTlRJVFkgT3BlbkN1cmx5UXVvdGUgIiYjeDIwMTg7Ij48IUVOVElUWSByc3F1byAiJiN4MjAxOTsiPjwhRU5USVRZIHJzcXVvciAiJiN4MjAxOTsiPjwhRU5USVRZIENsb3NlQ3VybHlRdW90ZSAiJiN4MjAxOTsiPjwhRU5USVRZIGxzcXVvciAiJiN4MjAxQTsiPjwhRU5USVRZIHNicXVvICImI3gyMDFBOyI%2BPCFFTlRJVFkgbGRxdW8gIiYjeDIwMUM7Ij48IUVOVElUWSBPcGVuQ3VybHlEb3VibGVRdW90ZSAiJiN4MjAxQzsiPjwhRU5USVRZIHJkcXVvICImI3gyMDFEOyI%2BPCFFTlRJVFkgcmRxdW9yICImI3gyMDFEOyI%2BPCFFTlRJVFkgQ2xvc2VDdXJseURvdWJsZVF1b3RlICImI3gyMDFEOyI%2BPCFFTlRJVFkgbGRxdW9yICImI3gyMDFFOyI%2BPCFFTlRJVFkgYmRxdW8gIiYjeDIwMUU7Ij48IUVOVElUWSBkYWdnZXIgIiYjeDIwMjA7Ij48IUVOVElUWSBEYWdnZXIgIiYjeDIwMjE7Ij48IUVOVElUWSBkZGFnZ2VyICImI3gyMDIxOyI%2BPCFFTlRJVFkgYnVsbCAiJiN4MjAyMjsiPjwhRU5USVRZIGJ1bGxldCAiJiN4MjAyMjsiPjwhRU5USVRZIG5sZHIgIiYjeDIwMjU7Ij48IUVOVElUWSBoZWxsaXAgIiYjeDIwMjY7Ij48IUVOVElUWSBtbGRyICImI3gyMDI2OyI%2BPCFFTlRJVFkgcGVybWlsICImI3gyMDMwOyI%2BPCFFTlRJVFkgcGVydGVuayAiJiN4MjAzMTsiPjwhRU5USVRZIHByaW1lICImI3gyMDMyOyI%2BPCFFTlRJVFkgUHJpbWUgIiYjeDIwMzM7Ij48IUVOVElUWSB0cHJpbWUgIiYjeDIwMzQ7Ij48IUVOVElUWSBicHJpbWUgIiYjeDIwMzU7Ij48IUVOVElUWSBiYWNrcHJpbWUgIiYjeDIwMzU7Ij48IUVOVElUWSBsc2FxdW8gIiYjeDIwMzk7Ij48IUVOVElUWSByc2FxdW8gIiYjeDIwM0E7Ij48IUVOVElUWSBvbGluZSAiJiN4MjAzRTsiPjwhRU5USVRZIE92ZXJCYXIgIiYjeDIwM0U7Ij48IUVOVElUWSBjYXJldCAiJiN4MjA0MTsiPjwhRU5USVRZIGh5YnVsbCAiJiN4MjA0MzsiPjwhRU5USVRZIGZyYXNsICImI3gyMDQ0OyI%2BPCFFTlRJVFkgYnNlbWkgIiYjeDIwNEY7Ij48IUVOVElUWSBxcHJpbWUgIiYjeDIwNTc7Ij48IUVOVElUWSBNZWRpdW1TcGFjZSAiJiN4MjA1RjsiPjwhRU5USVRZIFRoaWNrU3BhY2UgIiYjeDIwNUY7JiN4MjAwQTsiPjwhRU5USVRZIE5vQnJlYWsgIiYjeDIwNjA7Ij48IUVOVElUWSBBcHBseUZ1bmN0aW9uICImI3gyMDYxOyI%2BPCFFTlRJVFkgYWYgIiYjeDIwNjE7Ij48IUVOVElUWSBJbnZpc2libGVUaW1lcyAiJiN4MjA2MjsiPjwhRU5USVRZIGl0ICImI3gyMDYyOyI%2BPCFFTlRJVFkgSW52aXNpYmxlQ29tbWEgIiYjeDIwNjM7Ij48IUVOVElUWSBpYyAiJiN4MjA2MzsiPjwhRU5USVRZIGV1cm8gIiYjeDIwQUM7Ij48IUVOVElUWSB0ZG90ICImI3gyMERCOyI%2BPCFFTlRJVFkgVHJpcGxlRG90ICImI3gyMERCOyI%2BPCFFTlRJVFkgRG90RG90ICImI3gyMERDOyI%2BPCFFTlRJVFkgQ29wZiAiJiN4MjEwMjsiPjwhRU5USVRZIGNvbXBsZXhlcyAiJiN4MjEwMjsiPjwhRU5USVRZIGluY2FyZSAiJiN4MjEwNTsiPjwhRU5USVRZIGdzY3IgIiYjeDIxMEE7Ij48IUVOVElUWSBoYW1pbHQgIiYjeDIxMEI7Ij48IUVOVElUWSBIaWxiZXJ0U3BhY2UgIiYjeDIxMEI7Ij48IUVOVElUWSBIc2NyICImI3gyMTBCOyI%2BPCFFTlRJVFkgSGZyICImI3gyMTBDOyI%2BPCFFTlRJVFkgUG9pbmNhcmVwbGFuZSAiJiN4MjEwQzsiPjwhRU5USVRZIHF1YXRlcm5pb25zICImI3gyMTBEOyI%2BPCFFTlRJVFkgSG9wZiAiJiN4MjEwRDsiPjwhRU5USVRZIHBsYW5ja2ggIiYjeDIxMEU7Ij48IUVOVElUWSBwbGFuY2sgIiYjeDIxMEY7Ij48IUVOVElUWSBoYmFyICImI3gyMTBGOyI%2BPCFFTlRJVFkgcGxhbmt2ICImI3gyMTBGOyI%2BPCFFTlRJVFkgaHNsYXNoICImI3gyMTBGOyI%2BPCFFTlRJVFkgSXNjciAiJiN4MjExMDsiPjwhRU5USVRZIGltYWdsaW5lICImI3gyMTEwOyI%2BPCFFTlRJVFkgaW1hZ2UgIiYjeDIxMTE7Ij48IUVOVElUWSBJbSAiJiN4MjExMTsiPjwhRU5USVRZIGltYWdwYXJ0ICImI3gyMTExOyI%2BPCFFTlRJVFkgSWZyICImI3gyMTExOyI%2BPCFFTlRJVFkgTHNjciAiJiN4MjExMjsiPjwhRU5USVRZIGxhZ3JhbiAiJiN4MjExMjsiPjwhRU5USVRZIExhcGxhY2V0cmYgIiYjeDIxMTI7Ij48IUVOVElUWSBlbGwgIiYjeDIxMTM7Ij48IUVOVElUWSBOb3BmICImI3gyMTE1OyI%2BPCFFTlRJVFkgbmF0dXJhbHMgIiYjeDIxMTU7Ij48IUVOVElUWSBudW1lcm8gIiYjeDIxMTY7Ij48IUVOVElUWSBjb3B5c3IgIiYjeDIxMTc7Ij48IUVOVElUWSB3ZWllcnAgIiYjeDIxMTg7Ij48IUVOVElUWSB3cCAiJiN4MjExODsiPjwhRU5USVRZIFBvcGYgIi
YjeDIxMTk7Ij48IUVOVElUWSBwcmltZXMgIiYjeDIxMTk7Ij48IUVOVElUWSByYXRpb25hbHMgIiYjeDIxMUE7Ij48IUVOVElUWSBRb3BmICImI3gyMTFBOyI%2BPCFFTlRJVFkgUnNjciAiJiN4MjExQjsiPjwhRU5USVRZIHJlYWxpbmUgIiYjeDIxMUI7Ij48IUVOVElUWSByZWFsICImI3gyMTFDOyI%2BPCFFTlRJVFkgUmUgIiYjeDIxMUM7Ij48IUVOVElUWSByZWFscGFydCAiJiN4MjExQzsiPjwhRU5USVRZIFJmciAiJiN4MjExQzsiPjwhRU5USVRZIHJlYWxzICImI3gyMTFEOyI%2BPCFFTlRJVFkgUm9wZiAiJiN4MjExRDsiPjwhRU5USVRZIHJ4ICImI3gyMTFFOyI%2BPCFFTlRJVFkgdHJhZGUgIiYjeDIxMjI7Ij48IUVOVElUWSBUUkFERSAiJiN4MjEyMjsiPjwhRU5USVRZIGludGVnZXJzICImI3gyMTI0OyI%2BPCFFTlRJVFkgWm9wZiAiJiN4MjEyNDsiPjwhRU5USVRZIG1obyAiJiN4MjEyNzsiPjwhRU5USVRZIFpmciAiJiN4MjEyODsiPjwhRU5USVRZIHplZXRyZiAiJiN4MjEyODsiPjwhRU5USVRZIGlpb3RhICImI3gyMTI5OyI%2BPCFFTlRJVFkgYmVybm91ICImI3gyMTJDOyI%2BPCFFTlRJVFkgQmVybm91bGxpcyAiJiN4MjEyQzsiPjwhRU5USVRZIEJzY3IgIiYjeDIxMkM7Ij48IUVOVElUWSBDZnIgIiYjeDIxMkQ7Ij48IUVOVElUWSBDYXlsZXlzICImI3gyMTJEOyI%2BPCFFTlRJVFkgZXNjciAiJiN4MjEyRjsiPjwhRU5USVRZIEVzY3IgIiYjeDIxMzA7Ij48IUVOVElUWSBleHBlY3RhdGlvbiAiJiN4MjEzMDsiPjwhRU5USVRZIEZzY3IgIiYjeDIxMzE7Ij48IUVOVElUWSBGb3VyaWVydHJmICImI3gyMTMxOyI%2BPCFFTlRJVFkgcGhtbWF0ICImI3gyMTMzOyI%2BPCFFTlRJVFkgTWVsbGludHJmICImI3gyMTMzOyI%2BPCFFTlRJVFkgTXNjciAiJiN4MjEzMzsiPjwhRU5USVRZIG9yZGVyICImI3gyMTM0OyI%2BPCFFTlRJVFkgb3JkZXJvZiAiJiN4MjEzNDsiPjwhRU5USVRZIG9zY3IgIiYjeDIxMzQ7Ij48IUVOVElUWSBhbGVmc3ltICImI3gyMTM1OyI%2BPCFFTlRJVFkgYWxlcGggIiYjeDIxMzU7Ij48IUVOVElUWSBiZXRoICImI3gyMTM2OyI%2BPCFFTlRJVFkgZ2ltZWwgIiYjeDIxMzc7Ij48IUVOVElUWSBkYWxldGggIiYjeDIxMzg7Ij48IUVOVElUWSBDYXBpdGFsRGlmZmVyZW50aWFsRCAiJiN4MjE0NTsiPjwhRU5USVRZIEREICImI3gyMTQ1OyI%2BPCFFTlRJVFkgRGlmZmVyZW50aWFsRCAiJiN4MjE0NjsiPjwhRU5USVRZIGRkICImI3gyMTQ2OyI%2BPCFFTlRJVFkgRXhwb25lbnRpYWxFICImI3gyMTQ3OyI%2BPCFFTlRJVFkgZXhwb25lbnRpYWxlICImI3gyMTQ3OyI%2BPCFFTlRJVFkgZWUgIiYjeDIxNDc7Ij48IUVOVElUWSBJbWFnaW5hcnlJICImI3gyMTQ4OyI%2BPCFFTlRJVFkgaWkgIiYjeDIxNDg7Ij48IUVOVElUWSBmcmFjMTMgIiYjeDIxNTM7Ij48IUVOVElUWSBmcmFjMjMgIiYjeDIxNTQ7Ij48IUVOVElUWSBmcmFjMTUgIiYjeDIxNTU7Ij48IUVOVElUWSBmcmFjMjUgIiYjeDIxNTY7Ij48IUVOVElUWSBmcmFjMzUgIiYjeDIxNTc7Ij48IUVOVElUWSBmcmFjNDUgIiYjeDIxNTg7Ij48IUVOVElUWSBmcmFjMTYgIiYjeDIxNTk7Ij48IUVOVElUWSBmcmFjNTYgIiYjeDIxNUE7Ij48IUVOVElUWSBmcmFjMTggIiYjeDIxNUI7Ij48IUVOVElUWSBmcmFjMzggIiYjeDIxNUM7Ij48IUVOVElUWSBmcmFjNTggIiYjeDIxNUQ7Ij48IUVOVElUWSBmcmFjNzggIiYjeDIxNUU7Ij48IUVOVElUWSBsYXJyICImI3gyMTkwOyI%2BPCFFTlRJVFkgbGVmdGFycm93ICImI3gyMTkwOyI%2BPCFFTlRJVFkgTGVmdEFycm93ICImI3gyMTkwOyI%2BPCFFTlRJVFkgc2xhcnIgIiYjeDIxOTA7Ij48IUVOVElUWSBTaG9ydExlZnRBcnJvdyAiJiN4MjE5MDsiPjwhRU5USVRZIHVhcnIgIiYjeDIxOTE7Ij48IUVOVElUWSB1cGFycm93ICImI3gyMTkxOyI%2BPCFFTlRJVFkgVXBBcnJvdyAiJiN4MjE5MTsiPjwhRU5USVRZIFNob3J0VXBBcnJvdyAiJiN4MjE5MTsiPjwhRU5USVRZIHJhcnIgIiYjeDIxOTI7Ij48IUVOVElUWSByaWdodGFycm93ICImI3gyMTkyOyI%2BPCFFTlRJVFkgUmlnaHRBcnJvdyAiJiN4MjE5MjsiPjwhRU5USVRZIHNyYXJyICImI3gyMTkyOyI%2BPCFFTlRJVFkgU2hvcnRSaWdodEFycm93ICImI3gyMTkyOyI%2BPCFFTlRJVFkgZGFyciAiJiN4MjE5MzsiPjwhRU5USVRZIGRvd25hcnJvdyAiJiN4MjE5MzsiPjwhRU5USVRZIERvd25BcnJvdyAiJiN4MjE5MzsiPjwhRU5USVRZIFNob3J0RG93bkFycm93ICImI3gyMTkzOyI%2BPCFFTlRJVFkgaGFyciAiJiN4MjE5NDsiPjwhRU5USVRZIGxlZnRyaWdodGFycm93ICImI3gyMTk0OyI%2BPCFFTlRJVFkgTGVmdFJpZ2h0QXJyb3cgIiYjeDIxOTQ7Ij48IUVOVElUWSB2YXJyICImI3gyMTk1OyI%2BPCFFTlRJVFkgdXBkb3duYXJyb3cgIiYjeDIxOTU7Ij48IUVOVElUWSBVcERvd25BcnJvdyAiJiN4MjE5NTsiPjwhRU5USVRZIG53YXJyICImI3gyMTk2OyI%2BPCFFTlRJVFkgVXBwZXJMZWZ0QXJyb3cgIiYjeDIxOTY7Ij48IUVOVElUWSBud2Fycm93ICImI3gyMTk2OyI%2BPCFFTlRJVFkgbmVhcnIgIiYjeDIxOTc7Ij48IUVOVElUWSBVcHBlclJpZ2h0QXJyb3cgIiYjeDIxOTc7Ij48IUVOVElUWSBuZWFycm93ICImI3gyMTk3OyI%2BPCFFTlRJVFkgc2VhcnIgIiYjeDIxOTg7Ij48IUVOVElUWSBzZWFycm93ICImI3gyMTk4OyI%2BPCFFTlRJVFkgTG93ZXJSaWdodEFycm93ICImI3gyMTk4OyI%2BPCFFTlRJVFkgc3dhcnIgIiYjeDIxOTk7Ij48IUVOVElUWSBzd2Fycm93ICImI3gyMTk5OyI%2BPCFFTlRJVFkgTG93ZXJMZWZ0QXJyb3cgIiYjeDIxOTk7Ij48IUVOVElUWSBubGFyciAiJiN4MjE5QTsiPjwhRU5USVRZIG5sZWZ0YXJyb3cgIiYjeDIxOUE7Ij48IUVOVElUWSBucmFyciAiJiN4MjE5QjsiPjwhRU5USVRZIG5yaWdodGFycm93ICImI3gyMTlCOyI%2BPCFFTlRJVFkgcmFycncgIiYjeDIxOUQ7Ij48IUVOVElUWSByaWdodHNxdWlnYXJyb3cgIiYjeDIxOUQ7Ij48IUVOVElUWSBucmFycncgIiYjeDIxOUQ7JiN4MzM4OyI%2BPCFFTlRJVFkgTGFyciAiJiN4MjE5RTsiPjwhRU5USVRZIHR3b2hlYWRsZWZ0YXJyb3cgIiYjeDIxOUU7Ij48IUVOVElUWSBVYXJyICImI3gyMTlGOyI%2BPCFFTlRJVFkgUmFyciAiJiN4MjFBMDsiPjwhRU5USVRZIHR3b2hlYWRyaWdodGFycm93ICImI3gyMUEwOyI%2BPCFFTlRJVFkgRGFyciAiJiN4MjFBMTsiPjwhRU5USVRZIGxhcnJ0bCAiJiN4MjFBMjsiPjwhRU5USVRZIGxlZnRhcnJvd3RhaWwgIiYjeDIxQTI7Ij48IUVOVElUWSByYXJydGwgIiYjeDIxQTM7Ij48IUVOVElUWSByaWdodGFycm93dGFpbCAiJiN4MjFBMzsiPjwhRU5USVRZIExlZnRUZWVBcnJvdyAiJiN4MjFBNDsiPjwhRU5USVRZIG1hcHN0b2xlZnQgIiYjeDIxQTQ7Ij48IUVOVElUWSBVcFRlZUFycm93ICImI3gyMUE1OyI%2BPCFFTlRJVFkgbWFwc3RvdXAgIiYjeDIxQTU7Ij48IUVOVElUWSBtYXAgIiYjeDIxQTY7Ij48IUVOVElUWSBSaWdodFRlZUFycm93ICImI3gyMUE2OyI%2BPCFFTlRJVFkgbWFwc3RvICImI3gyMUE2OyI%2BPCFFTlRJVFkgRG93blRlZUFycm93ICImI3gyMUE3OyI%2BPCFFTlRJVFkgbWFwc3RvZG93biAiJiN4MjFBNzsiPjwhRU5USVRZIGxhcnJoayAiJiN4MjFBOTsiPjwhRU5USVRZIGhvb2tsZWZ0YXJyb3cgIiYjeDIxQTk7Ij48IUVOVElUWSByYXJyaGsgIiYjeDIxQUE7Ij48IUVOVElUWSBob29rcmlnaHRhcnJvdyAiJiN4MjFBQTsiPjwhRU5USVRZIGxhcnJscCAiJiN4MjFBQjsiPjwhRU5USVRZIGxvb3BhcnJvd2xlZnQgIiYjeDIxQUI7Ij48IUVOVElUWSByYXJybHAgIiYjeDIxQUM7Ij48IUVOVElUWSBsb29wYXJyb3dyaWdodCAiJiN4MjFBQzsiPjwhRU5USVRZIGhhcnJ3ICImI3gyMUFEOyI%2BPCFFTlRJVFkgbGVmdHJpZ2h0c3F1aWdhcnJvdyAiJiN4MjFBRDsiPjwhRU5USVRZIG5oYXJyICImI3gyMUFFOyI%2BPCFFTlRJVFkgbmxlZnRyaWdodGFycm93ICImI3gyMUFFOyI%2BPCFFTlRJVFkgbHNoICImI3gyMUIwOyI%2BPCFFTlRJVFkgTHNoICImI3gyMUIwOyI%2BPCFFTlRJVFkgcnNoICImI3gyMUIxOyI%2BPCFFTlRJVFkgUnNoICImI3gyMUIxOyI%2BPCFFTlRJVFkgbGRzaCAiJiN4MjFCMjsiPjwhRU5USVRZIHJkc2ggIiYjeDIxQjM7Ij48IUVOVElUWSBjcmFyciAiJiN4MjFCNTsiPjwhRU5USVRZIGN1bGFyciAiJiN4MjFCNjsiPjwhRU5USVRZIGN1cnZlYXJyb3dsZWZ0ICImI3gyMUI2OyI%2BPCFFTlRJVFkgY3VyYXJyICImI3gyMUI3OyI%2BPCFFTlRJVFkgY3VydmVhcnJvd3JpZ2h0ICImI3gyMUI3OyI%2BPCFFTlRJVFkgb2xhcnIgIiYjeDIxQkE7Ij48IUVOVElUWSBjaXJjbGVhcnJvd2xlZnQgIiYjeDIxQkE7Ij48IUVOVElUWSBvcmFyciAiJiN4MjFCQjsiPjwhRU5USVRZIGNpcmNsZWFycm93cmlnaHQgIiYjeDIxQkI7Ij48IUVOVElUWSBsaGFydSAiJiN4MjFCQzsiPjwhRU5USVRZIExlZnRWZWN0b3IgIiYjeDIxQkM7Ij48IUVOVElUWSBsZWZ0aGFycG9vbnVwICImI3gyMUJDOyI%2BPCFFTlRJVFkgbGhhcmQgIiYjeDIxQkQ7Ij48IUVOVElUWSBsZWZ0aGFycG9vbmRvd24gIiYjeDIxQkQ7Ij48IUVOVElUWSBEb3duTGVmdFZlY3RvciAiJiN4MjFCRDsiPjwhRU5USVRZIHVoYXJyICImI3gyMUJFOyI%2BPCFFTlRJVFkgdXBoYXJwb29ucmlnaHQgIiYjeDIxQkU7Ij48IUVOVElUWSBSaWdodFVwVmVjdG9yICImI3gyMUJFOyI%2BPCFFTlRJVFkgdWhhcmwgIiYjeDIxQkY7Ij48IUVOVElUWSB1cGhhcnBvb25sZWZ0ICImI3gyMUJGOyI%2BPCFFTlRJVFkgTGVmdFVwVmVjdG9yICImI3gyMUJGOyI%2BPCFFTlRJVFkgcmhhcnUgIiYjeDIxQzA7Ij48IUVOVElUWSBSaWdodFZlY3RvciAiJiN4MjFDMDsiPjwhRU5USVRZIHJpZ2h0aGFycG9vbnVwICImI3gyMUMwOyI%2BPCFFTlRJVFkgcmhhcmQgIiYjeDIxQzE7Ij48IUVOVElUWSByaWdodGhhcnBvb25kb3duICImI3gyMUMxOyI%2BPCFFTlRJVFkgRG93blJpZ2h0VmVjdG9yICImI3gyMUMxOyI%2BPCFFTlRJVFkgZGhhcnIgIiYjeDIxQzI7Ij48IUVOVElUWSBSaWdodERvd25WZWN0b3IgIiYjeDIxQzI7Ij48IUVOVElUWSBkb3duaGFycG9vbnJpZ2h0ICImI3gyMUMyOyI%2BPCFFTlRJVFkgZGhhcmwgIiYjeDIxQzM7Ij48IUVOVElUWSBMZWZ0RG93blZlY3RvciAiJiN4MjFDMzsiPjwhRU5USVRZIGRvd25oYXJwb29ubGVmdCAiJiN4MjFDMzsiPjwhRU5USVRZIHJsYXJyICImI3gyMUM0OyI%2BPCFFTlRJVFkgcmlnaHRsZWZ0YXJyb3dzICImI3gyMUM0OyI%2BPCFFTlRJVFkgUmlnaHRBcnJvd0xlZnRBcnJvdyAiJiN4MjFDNDsiPjwhRU5USVRZIHVkYXJyICImI3gyMUM1OyI%2BPCFFTlRJVFkgVXBBcnJvd0Rvd25BcnJvdyAiJiN4MjFDNTsiPjwhRU5USVRZIGxyYXJyICImI3gyMUM2OyI%2BPCFFTlRJVFkgbGVmdHJpZ2h0YXJyb3dzICImI3gyMUM2OyI%2BPCFFTlRJVFkgTGVmdEFycm93UmlnaHRBcnJvdyAiJiN4MjFDNjsiPjwhRU5USVRZIGxsYXJyICImI3gyMUM3OyI%2BPCFFTlRJVFkgbGVmdGxlZnRhcnJvd3MgIiYjeDIxQzc7Ij48IUVOVElUWSB1dWFyciAiJiN4MjFDODsiPjwhRU5USVRZIHVwdXBhcnJvd3MgIiYjeDIxQzg7Ij48IUVOVElUWSBycmFyciAiJiN4MjFDOTsiPjwhRU5USVRZIHJpZ2h0cmlnaHRhcnJvd3MgIiYjeDIxQzk7Ij48IUVOVElUWSBkZGFyciAiJiN4MjFDQTsiPjwhRU5USVRZIGRvd25kb3duYXJyb3dzICImI3gyMUNBOyI%2BPCFFTlRJVFkgbHJoYXIgIiYjeDIxQ0I7Ij48IUVOVElUWSBSZXZlcnNlRXF1aWxpYnJpdW0gIiYjeDIxQ0I7Ij48IUVOVElUWSBsZWZ0cmlnaHRoYXJwb29ucyAiJiN4MjFDQjsiPjwhRU5USVRZIHJsaGFyICImI3gyMUNDOyI%2BPCFFTlRJVFkgcmlnaHRsZWZ0aGFycG9vbnMgIiYjeDIxQ0M7Ij48IUVOVElUWSBFcXVpbGlicml1bSAiJiN4MjFDQzsiPjwhRU5USVRZIG5sQXJyICImI3gyMUNEOyI%2BPCFFTlRJVFkgbkxlZnRhcnJvdyAiJiN4MjFDRDsiPjwhRU5USVRZIG5oQXJyICImI3gyMUNFOyI%2BPCFFTlRJVFkgbkxlZnRyaWdodGFycm93ICImI3gyMUNFOyI%2BPCFFTlRJVFkgbnJBcnIgIiYjeDIxQ0Y7Ij48IUVOVElUWSBuUmlnaHRhcnJvdyAiJiN4MjFDRjsiPjwhRU5USVRZIGxBcnIgIiYjeDIxRDA7Ij48IUVOVElUWSBMZWZ0YXJyb3cgIiYjeDIxRDA7Ij48IUVOVElUWSBEb3VibGVMZWZ0QXJyb3cgIiYjeDIxRDA7Ij48IUVOVElUWSB1QXJyICImI3gyMUQxOyI%2BPCFFTlRJVFkgVXBhcnJvdyAiJiN4MjFEMTsiPjwhRU5USVRZIERvdWJsZVVwQXJyb3cgIiYjeDIxRDE7Ij48IUVOVElUWSByQXJyICImI3gyMUQyOyI%2BPCFFTlRJVFkgUmlnaHRhcnJvdyAiJiN4MjFEMjsiPjwhRU5USVRZIEltcGxpZXMgIiYjeDIxRDI7Ij48IUVOVElUWSBEb3VibGVSaWdodEFycm93ICImI3gyMUQyOyI%2BPCFFTlRJVFkgZEFyciAiJiN4MjFEMzsiPjwhRU5USVRZIERvd25hcnJvdyAiJiN4MjFEMzsiPjwhRU5USVRZIERvdWJsZURvd25BcnJvdyAiJiN4MjFEMzsiPjwhRU5USVRZIGhBcnIgIiYjeDIxRDQ7Ij48IUVOVElUWSBMZWZ0cmlnaHRhcnJvdyAiJiN4MjFENDsiPjwhRU5USVRZIERvdWJsZUxlZnRSaWdodEFycm93ICImI3gyMUQ0OyI%2BPCFFTlRJVFkgaWZmICImI3gyMUQ0OyI%2BPCFFTlRJVFkgdkFyciAiJiN4MjFENTsiPjwhRU5USVRZIFVwZG93bmFycm93ICImI3gyMUQ1OyI%2BPCFFTlRJVFkgRG91YmxlVXBEb3duQXJyb3cgIiYjeDIxRDU7Ij48IUVOVElUWSBud0FyciAiJiN4MjFENjsiPjwhRU5USVRZIG5lQXJyICImI3gyMUQ3OyI%2BPCFFTlRJVFkgc2VBcnIgIiYjeDIxRDg7Ij48IUVOVElUWSBzd0FyciAiJiN4MjFEOTsiPjwhRU5USVRZIGxBYXJyICImI3gyMURBOyI%2BPCFFTlRJVFkgTGxlZnRhcnJvdyAiJiN4MjFEQTsiPjwhRU5USVRZIHJBYXJyICImI3gyMURCOyI%2BPCFFTlRJVFkgUnJpZ2h0YXJyb3cgIiYjeDIxREI7Ij48IUVOVElUWSB6aWdyYXJyICImI3gyMUREOyI%2BPCFFTlRJVFkgbGFycmIgIiYjeDIxRTQ7Ij48IUVOVElUWSBMZWZ0QXJyb3dCYXIgIiYjeDIxRTQ7Ij48IUVOVElUWSByYXJyYiAiJiN4MjFFNTsiPjwhRU5USVRZIFJpZ2h0QXJyb3dCYXIgIiYjeDIxRTU7Ij48IUVOVElUWSBkdWFyciAiJiN4MjFGNTsiPjwhRU5USVRZIERvd25BcnJvd1VwQXJyb3cgIiYjeDIxRjU7Ij48IUVOVElUWSBsb2FyciAiJiN4MjFGRDsiPjwhRU5USVRZIHJvYXJyICImI3gyMUZFOyI%2BPCFFTlRJVFkgaG9hcnIgIiYjeDIxRkY7Ij48IUVOVElUWSBmb3JhbGwgIiYjeDIyMDA7Ij48IUVOVElUWSBGb3JBbGwgIiYjeDIyMDA7Ij48IUVOVElUWSBjb21wICImI3gyMjAxOyI%2BPCFFTlRJVFkgY29tcGxlbWVudCAiJiN4MjIwMTsiPjwhRU5USVRZIHBhcnQgIiYjeDIyMDI7Ij48IUVOVElUWSBQYXJ0aWFsRCAiJiN4MjIwMjsiPjwhRU5USVRZIG5wYXJ0ICImI3gyMjAyOyYjeDMzODsiPjwhRU5USVRZIGV4aXN0ICImI3gyMjAzOyI%2BPCFFTlRJVFkgRXhpc3RzICImI3gyMjAzOyI%2BPCFFTlRJVFkgbmV4aXN0ICImI3gyMjA0
OyI%2BPCFFTlRJVFkgTm90RXhpc3RzICImI3gyMjA0OyI%2BPCFFTlRJVFkgbmV4aXN0cyAiJiN4MjIwNDsiPjwhRU5USVRZIGVtcHR5ICImI3gyMjA1OyI%2BPCFFTlRJVFkgZW1wdHlzZXQgIiYjeDIyMDU7Ij48IUVOVElUWSBlbXB0eXYgIiYjeDIyMDU7Ij48IUVOVElUWSB2YXJub3RoaW5nICImI3gyMjA1OyI%2BPCFFTlRJVFkgbmFibGEgIiYjeDIyMDc7Ij48IUVOVElUWSBEZWwgIiYjeDIyMDc7Ij48IUVOVElUWSBpc2luICImI3gyMjA4OyI%2BPCFFTlRJVFkgaXNpbnYgIiYjeDIyMDg7Ij48IUVOVElUWSBFbGVtZW50ICImI3gyMjA4OyI%2BPCFFTlRJVFkgaW4gIiYjeDIyMDg7Ij48IUVOVElUWSBub3RpbiAiJiN4MjIwOTsiPjwhRU5USVRZIE5vdEVsZW1lbnQgIiYjeDIyMDk7Ij48IUVOVElUWSBub3RpbnZhICImI3gyMjA5OyI%2BPCFFTlRJVFkgbml2ICImI3gyMjBCOyI%2BPCFFTlRJVFkgUmV2ZXJzZUVsZW1lbnQgIiYjeDIyMEI7Ij48IUVOVElUWSBuaSAiJiN4MjIwQjsiPjwhRU5USVRZIFN1Y2hUaGF0ICImI3gyMjBCOyI%2BPCFFTlRJVFkgbm90bmkgIiYjeDIyMEM7Ij48IUVOVElUWSBub3RuaXZhICImI3gyMjBDOyI%2BPCFFTlRJVFkgTm90UmV2ZXJzZUVsZW1lbnQgIiYjeDIyMEM7Ij48IUVOVElUWSBwcm9kICImI3gyMjBGOyI%2BPCFFTlRJVFkgUHJvZHVjdCAiJiN4MjIwRjsiPjwhRU5USVRZIGNvcHJvZCAiJiN4MjIxMDsiPjwhRU5USVRZIENvcHJvZHVjdCAiJiN4MjIxMDsiPjwhRU5USVRZIHN1bSAiJiN4MjIxMTsiPjwhRU5USVRZIFN1bSAiJiN4MjIxMTsiPjwhRU5USVRZIG1pbnVzICImI3gyMjEyOyI%2BPCFFTlRJVFkgbW5wbHVzICImI3gyMjEzOyI%2BPCFFTlRJVFkgbXAgIiYjeDIyMTM7Ij48IUVOVElUWSBNaW51c1BsdXMgIiYjeDIyMTM7Ij48IUVOVElUWSBwbHVzZG8gIiYjeDIyMTQ7Ij48IUVOVElUWSBkb3RwbHVzICImI3gyMjE0OyI%2BPCFFTlRJVFkgc2V0bW4gIiYjeDIyMTY7Ij48IUVOVElUWSBzZXRtaW51cyAiJiN4MjIxNjsiPjwhRU5USVRZIEJhY2tzbGFzaCAiJiN4MjIxNjsiPjwhRU5USVRZIHNzZXRtbiAiJiN4MjIxNjsiPjwhRU5USVRZIHNtYWxsc2V0bWludXMgIiYjeDIyMTY7Ij48IUVOVElUWSBsb3dhc3QgIiYjeDIyMTc7Ij48IUVOVElUWSBjb21wZm4gIiYjeDIyMTg7Ij48IUVOVElUWSBTbWFsbENpcmNsZSAiJiN4MjIxODsiPjwhRU5USVRZIHJhZGljICImI3gyMjFBOyI%2BPCFFTlRJVFkgU3FydCAiJiN4MjIxQTsiPjwhRU5USVRZIHByb3AgIiYjeDIyMUQ7Ij48IUVOVElUWSBwcm9wdG8gIiYjeDIyMUQ7Ij48IUVOVElUWSBQcm9wb3J0aW9uYWwgIiYjeDIyMUQ7Ij48IUVOVElUWSB2cHJvcCAiJiN4MjIxRDsiPjwhRU5USVRZIHZhcnByb3B0byAiJiN4MjIxRDsiPjwhRU5USVRZIGluZmluICImI3gyMjFFOyI%2BPCFFTlRJVFkgYW5ncnQgIiYjeDIyMUY7Ij48IUVOVElUWSBhbmcgIiYjeDIyMjA7Ij48IUVOVElUWSBhbmdsZSAiJiN4MjIyMDsiPjwhRU5USVRZIG5hbmcgIiYjeDIyMjA7JiN4MjBEMjsiPjwhRU5USVRZIGFuZ21zZCAiJiN4MjIyMTsiPjwhRU5USVRZIG1lYXN1cmVkYW5nbGUgIiYjeDIyMjE7Ij48IUVOVElUWSBhbmdzcGggIiYjeDIyMjI7Ij48IUVOVElUWSBtaWQgIiYjeDIyMjM7Ij48IUVOVElUWSBWZXJ0aWNhbEJhciAiJiN4MjIyMzsiPjwhRU5USVRZIHNtaWQgIiYjeDIyMjM7Ij48IUVOVElUWSBzaG9ydG1pZCAiJiN4MjIyMzsiPjwhRU5USVRZIG5taWQgIiYjeDIyMjQ7Ij48IUVOVElUWSBOb3RWZXJ0aWNhbEJhciAiJiN4MjIyNDsiPjwhRU5USVRZIG5zbWlkICImI3gyMjI0OyI%2BPCFFTlRJVFkgbnNob3J0bWlkICImI3gyMjI0OyI%2BPCFFTlRJVFkgcGFyICImI3gyMjI1OyI%2BPCFFTlRJVFkgcGFyYWxsZWwgIiYjeDIyMjU7Ij48IUVOVElUWSBEb3VibGVWZXJ0aWNhbEJhciAiJiN4MjIyNTsiPjwhRU5USVRZIHNwYXIgIiYjeDIyMjU7Ij48IUVOVElUWSBzaG9ydHBhcmFsbGVsICImI3gyMjI1OyI%2BPCFFTlRJVFkgbnBhciAiJiN4MjIyNjsiPjwhRU5USVRZIG5wYXJhbGxlbCAiJiN4MjIyNjsiPjwhRU5USVRZIE5vdERvdWJsZVZlcnRpY2FsQmFyICImI3gyMjI2OyI%2BPCFFTlRJVFkgbnNwYXIgIiYjeDIyMjY7Ij48IUVOVElUWSBuc2hvcnRwYXJhbGxlbCAiJiN4MjIyNjsiPjwhRU5USVRZIGFuZCAiJiN4MjIyNzsiPjwhRU5USVRZIHdlZGdlICImI3gyMjI3OyI%2BPCFFTlRJVFkgb3IgIiYjeDIyMjg7Ij48IUVOVElUWSB2ZWUgIiYjeDIyMjg7Ij48IUVOVElUWSBjYXAgIiYjeDIyMjk7Ij48IUVOVElUWSBjYXBzICImI3gyMjI5OyYjeEZFMDA7Ij48IUVOVElUWSBjdXAgIiYjeDIyMkE7Ij48IUVOVElUWSBjdXBzICImI3gyMjJBOyYjeEZFMDA7Ij48IUVOVElUWSBpbnQgIiYjeDIyMkI7Ij48IUVOVElUWSBJbnRlZ3JhbCAiJiN4MjIyQjsiPjwhRU5USVRZIEludCAiJiN4MjIyQzsiPjwhRU5USVRZIHRpbnQgIiYjeDIyMkQ7Ij48IUVOVElUWSBpaWludCAiJiN4MjIyRDsiPjwhRU5USVRZIGNvbmludCAiJiN4MjIyRTsiPjwhRU5USVRZIG9pbnQgIiYjeDIyMkU7Ij48IUVOVElUWSBDb250b3VySW50ZWdyYWwgIiYjeDIyMkU7Ij48IUVOVElUWSBDb25pbnQgIiYjeDIyMkY7Ij48IUVOVElUWSBEb3VibGVDb250b3VySW50ZWdyYWwgIiYjeDIyMkY7Ij48IUVOVElUWSBDY29uaW50ICImI3gyMjMwOyI%2BPCFFTlRJVFkgY3dpbnQgIiYjeDIyMzE7Ij48IUVOVElUWSBjd2NvbmludCAiJiN4MjIzMjsiPjwhRU5USVRZIENsb2Nrd2lzZUNvbnRvdXJJbnRlZ3JhbCAiJiN4MjIzMjsiPjwhRU5USVRZIGF3Y29uaW50ICImI3gyMjMzOyI%2BPCFFTlRJVFkgQ291bnRlckNsb2Nrd2lzZUNvbnRvdXJJbnRlZ3JhbCAiJiN4MjIzMzsiPjwhRU5USVRZIHRoZXJlNCAiJiN4MjIzNDsiPjwhRU5USVRZIHRoZXJlZm9yZSAiJiN4MjIzNDsiPjwhRU5USVRZIFRoZXJlZm9yZSAiJiN4MjIzNDsiPjwhRU5USVRZIGJlY2F1cyAiJiN4MjIzNTsiPjwhRU5USVRZIGJlY2F1c2UgIiYjeDIyMzU7Ij48IUVOVElUWSBCZWNhdXNlICImI3gyMjM1OyI%2BPCFFTlRJVFkgcmF0aW8gIiYjeDIyMzY7Ij48IUVOVElUWSBDb2xvbiAiJiN4MjIzNzsiPjwhRU5USVRZIFByb3BvcnRpb24gIiYjeDIyMzc7Ij48IUVOVElUWSBtaW51c2QgIiYjeDIyMzg7Ij48IUVOVElUWSBkb3RtaW51cyAiJiN4MjIzODsiPjwhRU5USVRZIG1ERG90ICImI3gyMjNBOyI%2BPCFFTlRJVFkgaG9tdGh0ICImI3gyMjNCOyI%2BPCFFTlRJVFkgc2ltICImI3gyMjNDOyI%2BPCFFTlRJVFkgVGlsZGUgIiYjeDIyM0M7Ij48IUVOVElUWSB0aGtzaW0gIiYjeDIyM0M7Ij48IUVOVElUWSB0aGlja3NpbSAiJiN4MjIzQzsiPjwhRU5USVRZIG52c2ltICImI3gyMjNDOyYjeDIwRDI7Ij48IUVOVElUWSBic2ltICImI3gyMjNEOyI%2BPCFFTlRJVFkgYmFja3NpbSAiJiN4MjIzRDsiPjwhRU5USVRZIHJhY2UgIiYjeDIyM0Q7JiN4MzMxOyI%2BPCFFTlRJVFkgYWMgIiYjeDIyM0U7Ij48IUVOVElUWSBtc3Rwb3MgIiYjeDIyM0U7Ij48IUVOVElUWSBhY0UgIiYjeDIyM0U7JiN4MzMzOyI%2BPCFFTlRJVFkgYWNkICImI3gyMjNGOyI%2BPCFFTlRJVFkgd3JlYXRoICImI3gyMjQwOyI%2BPCFFTlRJVFkgVmVydGljYWxUaWxkZSAiJiN4MjI0MDsiPjwhRU5USVRZIHdyICImI3gyMjQwOyI%2BPCFFTlRJVFkgbnNpbSAiJiN4MjI0MTsiPjwhRU5USVRZIE5vdFRpbGRlICImI3gyMjQxOyI%2BPCFFTlRJVFkgZXNpbSAiJiN4MjI0MjsiPjwhRU5USVRZIEVxdWFsVGlsZGUgIiYjeDIyNDI7Ij48IUVOVElUWSBlcXNpbSAiJiN4MjI0MjsiPjwhRU5USVRZIE5vdEVxdWFsVGlsZGUgIiYjeDIyNDI7JiN4MzM4OyI%2BPCFFTlRJVFkgbmVzaW0gIiYjeDIyNDI7JiN4MzM4OyI%2BPCFFTlRJVFkgc2ltZSAiJiN4MjI0MzsiPjwhRU5USVRZIFRpbGRlRXF1YWwgIiYjeDIyNDM7Ij48IUVOVElUWSBzaW1lcSAiJiN4MjI0MzsiPjwhRU5USVRZIG5zaW1lICImI3gyMjQ0OyI%2BPCFFTlRJVFkgbnNpbWVxICImI3gyMjQ0OyI%2BPCFFTlRJVFkgTm90VGlsZGVFcXVhbCAiJiN4MjI0NDsiPjwhRU5USVRZIGNvbmcgIiYjeDIyNDU7Ij48IUVOVElUWSBUaWxkZUZ1bGxFcXVhbCAiJiN4MjI0NTsiPjwhRU5USVRZIHNpbW5lICImI3gyMjQ2OyI%2BPCFFTlRJVFkgbmNvbmcgIiYjeDIyNDc7Ij48IUVOVElUWSBOb3RUaWxkZUZ1bGxFcXVhbCAiJiN4MjI0NzsiPjwhRU5USVRZIGFzeW1wICImI3gyMjQ4OyI%2BPCFFTlRJVFkgYXAgIiYjeDIyNDg7Ij48IUVOVElUWSBUaWxkZVRpbGRlICImI3gyMjQ4OyI%2BPCFFTlRJVFkgYXBwcm94ICImI3gyMjQ4OyI%2BPCFFTlRJVFkgdGhrYXAgIiYjeDIyNDg7Ij48IUVOVElUWSB0aGlja2FwcHJveCAiJiN4MjI0ODsiPjwhRU5USVRZIG5hcCAiJiN4MjI0OTsiPjwhRU5USVRZIE5vdFRpbGRlVGlsZGUgIiYjeDIyNDk7Ij48IUVOVElUWSBuYXBwcm94ICImI3gyMjQ5OyI%2BPCFFTlRJVFkgYXBlICImI3gyMjRBOyI%2BPCFFTlRJVFkgYXBwcm94ZXEgIiYjeDIyNEE7Ij48IUVOVElUWSBhcGlkICImI3gyMjRCOyI%2BPCFFTlRJVFkgbmFwaWQgIiYjeDIyNEI7JiN4MzM4OyI%2BPCFFTlRJVFkgYmNvbmcgIiYjeDIyNEM7Ij48IUVOVElUWSBiYWNrY29uZyAiJiN4MjI0QzsiPjwhRU5USVRZIGFzeW1wZXEgIiYjeDIyNEQ7Ij48IUVOVElUWSBDdXBDYXAgIiYjeDIyNEQ7Ij48IUVOVElUWSBudmFwICImI3gyMjREOyYjeDIwRDI7Ij48IUVOVElUWSBidW1wICImI3gyMjRFOyI%2BPCFFTlRJVFkgSHVtcERvd25IdW1wICImI3gyMjRFOyI%2BPCFFTlRJVFkgQnVtcGVxICImI3gyMjRFOyI%2BPCFFTlRJVFkgTm90SHVtcERvd25IdW1wICImI3gyMjRFOyYjeDMzODsiPjwhRU5USVRZIG5idW1wICImI3gyMjRFOyYjeDMzODsiPjwhRU5USVRZIGJ1bXBlICImI3gyMjRGOyI%2BPCFFTlRJVFkgSHVtcEVxdWFsICImI3gyMjRGOyI%2BPCFFTlRJVFkgYnVtcGVxICImI3gyMjRGOyI%2BPCFFTlRJVFkgbmJ1bXBlICImI3gyMjRGOyYjeDMzODsiPjwhRU5USVRZIE5vdEh1bXBFcXVhbCAiJiN4MjI0RjsmI3gzMzg7Ij48IUVOVElUWSBlc2RvdCAiJiN4MjI1MDsiPjwhRU5USVRZIERvdEVxdWFsICImI3gyMjUwOyI%2BPCFFTlRJVFkgZG90ZXEgIiYjeDIyNTA7Ij48IUVOVElUWSBuZWRvdCAiJiN4MjI1MDsmI3gzMzg7Ij48IUVOVElUWSBlRG90ICImI3gyMjUxOyI%2BPCFFTlRJVFkgZG90ZXFkb3QgIiYjeDIyNTE7Ij48IUVOVElUWSBlZkRvdCAiJiN4MjI1MjsiPjwhRU5USVRZIGZhbGxpbmdkb3RzZXEgIiYjeDIyNTI7Ij48IUVOVElUWSBlckRvdCAiJiN4MjI1MzsiPjwhRU5USVRZIHJpc2luZ2RvdHNlcSAiJiN4MjI1MzsiPjwhRU5USVRZIGNvbG9uZSAiJiN4MjI1NDsiPjwhRU5USVRZIGNvbG9uZXEgIiYjeDIyNTQ7Ij48IUVOVElUWSBBc3NpZ24gIiYjeDIyNTQ7Ij48IUVOVElUWSBlY29sb24gIiYjeDIyNTU7Ij48IUVOVElUWSBlcWNvbG9uICImI3gyMjU1OyI%2BPCFFTlRJVFkgZWNpciAiJiN4MjI1NjsiPjwhRU5USVRZIGVxY2lyYyAiJiN4MjI1NjsiPjwhRU5USVRZIGNpcmUgIiYjeDIyNTc7Ij48IUVOVElUWSBjaXJjZXEgIiYjeDIyNTc7Ij48IUVOVElUWSB3ZWRnZXEgIiYjeDIyNTk7Ij48IUVOVElUWSB2ZWVlcSAiJiN4MjI1QTsiPjwhRU5USVRZIHRyaWUgIiYjeDIyNUM7Ij48IUVOVElUWSB0cmlhbmdsZXEgIiYjeDIyNUM7Ij48IUVOVElUWSBlcXVlc3QgIiYjeDIyNUY7Ij48IUVOVElUWSBxdWVzdGVxICImI3gyMjVGOyI%2BPCFFTlRJVFkgbmUgIiYjeDIyNjA7Ij48IUVOVElUWSBOb3RFcXVhbCAiJiN4MjI2MDsiPjwhRU5USVRZIGVxdWl2ICImI3gyMjYxOyI%2BPCFFTlRJVFkgQ29uZ3J1ZW50ICImI3gyMjYxOyI%2BPCFFTlRJVFkgYm5lcXVpdiAiJiN4MjI2MTsmI3gyMEU1OyI%2BPCFFTlRJVFkgbmVxdWl2ICImI3gyMjYyOyI%2BPCFFTlRJVFkgTm90Q29uZ3J1ZW50ICImI3gyMjYyOyI%2BPCFFTlRJVFkgbGUgIiYjeDIyNjQ7Ij48IUVOVElUWSBsZXEgIiYjeDIyNjQ7Ij48IUVOVElUWSBudmxlICImI3gyMjY0OyYjeDIwRDI7Ij48IUVOVElUWSBnZSAiJiN4MjI2NTsiPjwhRU5USVRZIEdyZWF0ZXJFcXVhbCAiJiN4MjI2NTsiPjwhRU5USVRZIGdlcSAiJiN4MjI2NTsiPjwhRU5USVRZIG52Z2UgIiYjeDIyNjU7JiN4MjBEMjsiPjwhRU5USVRZIGxFICImI3gyMjY2OyI%2BPCFFTlRJVFkgTGVzc0Z1bGxFcXVhbCAiJiN4MjI2NjsiPjwhRU5USVRZIGxlcXEgIiYjeDIyNjY7Ij48IUVOVElUWSBubEUgIiYjeDIyNjY7JiN4MzM4OyI%2BPCFFTlRJVFkgbmxlcXEgIiYjeDIyNjY7JiN4MzM4OyI%2BPCFFTlRJVFkgZ0UgIiYjeDIyNjc7Ij48IUVOVElUWSBHcmVhdGVyRnVsbEVxdWFsICImI3gyMjY3OyI%2BPCFFTlRJVFkgZ2VxcSAiJiN4MjI2NzsiPjwhRU5USVRZIG5nRSAiJiN4MjI2NzsmI3gzMzg7Ij48IUVOVElUWSBuZ2VxcSAiJiN4MjI2NzsmI3gzMzg7Ij48IUVOVElUWSBOb3RHcmVhdGVyRnVsbEVxdWFsICImI3gyMjY3OyYjeDMzODsiPjwhRU5USVRZIGxuRSAiJiN4MjI2ODsiPjwhRU5USVRZIGxuZXFxICImI3gyMjY4OyI%2BPCFFTlRJVFkgbHZuRSAiJiN4MjI2ODsmI3hGRTAwOyI%2BPCFFTlRJVFkgbHZlcnRuZXFxICImI3gyMjY4OyYjeEZFMDA7Ij48IUVOVElUWSBnbkUgIiYjeDIyNjk7Ij48IUVOVElUWSBnbmVxcSAiJiN4MjI2OTsiPjwhRU5USVRZIGd2bkUgIiYjeDIyNjk7JiN4RkUwMDsiPjwhRU5USVRZIGd2ZXJ0bmVxcSAiJiN4MjI2OTsmI3hGRTAwOyI%2BPCFFTlRJVFkgTHQgIiYjeDIyNkE7Ij48IUVOVElUWSBOZXN0ZWRMZXNzTGVzcyAiJiN4MjI2QTsiPjwhRU5USVRZIGxsICImI3gyMjZBOyI%2BPCFFTlRJVFkgbkx0diAiJiN4MjI2QTsmI3gzMzg7Ij48IUVOVElUWSBOb3RMZXNzTGVzcyAiJiN4MjI2QTsmI3gzMzg7Ij48IUVOVElUWSBuTHQgIiYjeDIyNkE7JiN4MjBEMjsiPjwhRU5USVRZIEd0ICImI3gyMjZCOyI%2BPCFFTlRJVFkgTmVzdGVkR3JlYXRlckdyZWF0ZXIgIiYjeDIyNkI7Ij48IUVOVElUWSBnZyAiJiN4MjI2QjsiPjwhRU5USVRZIG5HdHYgIiYjeDIyNkI7JiN4MzM4OyI%2BPCFFTlRJVFkgTm90R3JlYXRlckdyZWF0ZXIgIiYjeDIyNkI7JiN4MzM4OyI%2BPCFFTlRJVFkgbkd0ICImI3gyMjZCOyYjeDIwRDI7Ij48IUVOVElUWSB0d2l4dCAiJiN4MjI2QzsiPjwhRU5USVRZIGJldHdlZW4gIiYjeDIyNkM7Ij48IUVOVElUWSBOb3RDdXBDYXAgIiYjeDIyNkQ7Ij48IUVOVElUWSBubHQgIiYjeDIyNkU7Ij48IUVOVElUWSBOb3RMZXNzICImI3gyMjZFOyI%2BPCFFTlRJVFkgbmxlc3MgIiYjeDIyNkU7Ij48IUVOVElUWSBuZ3QgIiYjeDIyNkY7Ij48IUVOVElUWSBOb3RHcmVhdGVyICImI3gyMjZGOyI%2BPCFFTlRJVFkgbmd0ciAiJiN4MjI2RjsiPjwhRU5USVRZIG5sZSAiJiN4MjI3MDsiPjwhRU5USVRZIE5vdExlc3NFcXVhbCAiJiN4MjI3MDsiPjwhRU5USVRZIG5sZXEgIiYjeDIyNzA7Ij48IUVOVElUWSBuZ2UgIiYjeDIyNzE7Ij48IUVOVElUWSBOb3RHcmVhdGVyRXF1YWwgIiYjeDIyNzE7Ij48IUVOVE
lUWSBuZ2VxICImI3gyMjcxOyI%2BPCFFTlRJVFkgbHNpbSAiJiN4MjI3MjsiPjwhRU5USVRZIExlc3NUaWxkZSAiJiN4MjI3MjsiPjwhRU5USVRZIGxlc3NzaW0gIiYjeDIyNzI7Ij48IUVOVElUWSBnc2ltICImI3gyMjczOyI%2BPCFFTlRJVFkgZ3Ryc2ltICImI3gyMjczOyI%2BPCFFTlRJVFkgR3JlYXRlclRpbGRlICImI3gyMjczOyI%2BPCFFTlRJVFkgbmxzaW0gIiYjeDIyNzQ7Ij48IUVOVElUWSBOb3RMZXNzVGlsZGUgIiYjeDIyNzQ7Ij48IUVOVElUWSBuZ3NpbSAiJiN4MjI3NTsiPjwhRU5USVRZIE5vdEdyZWF0ZXJUaWxkZSAiJiN4MjI3NTsiPjwhRU5USVRZIGxnICImI3gyMjc2OyI%2BPCFFTlRJVFkgbGVzc2d0ciAiJiN4MjI3NjsiPjwhRU5USVRZIExlc3NHcmVhdGVyICImI3gyMjc2OyI%2BPCFFTlRJVFkgZ2wgIiYjeDIyNzc7Ij48IUVOVElUWSBndHJsZXNzICImI3gyMjc3OyI%2BPCFFTlRJVFkgR3JlYXRlckxlc3MgIiYjeDIyNzc7Ij48IUVOVElUWSBudGxnICImI3gyMjc4OyI%2BPCFFTlRJVFkgTm90TGVzc0dyZWF0ZXIgIiYjeDIyNzg7Ij48IUVOVElUWSBudGdsICImI3gyMjc5OyI%2BPCFFTlRJVFkgTm90R3JlYXRlckxlc3MgIiYjeDIyNzk7Ij48IUVOVElUWSBwciAiJiN4MjI3QTsiPjwhRU5USVRZIFByZWNlZGVzICImI3gyMjdBOyI%2BPCFFTlRJVFkgcHJlYyAiJiN4MjI3QTsiPjwhRU5USVRZIHNjICImI3gyMjdCOyI%2BPCFFTlRJVFkgU3VjY2VlZHMgIiYjeDIyN0I7Ij48IUVOVElUWSBzdWNjICImI3gyMjdCOyI%2BPCFFTlRJVFkgcHJjdWUgIiYjeDIyN0M7Ij48IUVOVElUWSBQcmVjZWRlc1NsYW50RXF1YWwgIiYjeDIyN0M7Ij48IUVOVElUWSBwcmVjY3VybHllcSAiJiN4MjI3QzsiPjwhRU5USVRZIHNjY3VlICImI3gyMjdEOyI%2BPCFFTlRJVFkgU3VjY2VlZHNTbGFudEVxdWFsICImI3gyMjdEOyI%2BPCFFTlRJVFkgc3VjY2N1cmx5ZXEgIiYjeDIyN0Q7Ij48IUVOVElUWSBwcnNpbSAiJiN4MjI3RTsiPjwhRU5USVRZIHByZWNzaW0gIiYjeDIyN0U7Ij48IUVOVElUWSBQcmVjZWRlc1RpbGRlICImI3gyMjdFOyI%2BPCFFTlRJVFkgc2NzaW0gIiYjeDIyN0Y7Ij48IUVOVElUWSBzdWNjc2ltICImI3gyMjdGOyI%2BPCFFTlRJVFkgU3VjY2VlZHNUaWxkZSAiJiN4MjI3RjsiPjwhRU5USVRZIE5vdFN1Y2NlZWRzVGlsZGUgIiYjeDIyN0Y7JiN4MzM4OyI%2BPCFFTlRJVFkgbnByICImI3gyMjgwOyI%2BPCFFTlRJVFkgbnByZWMgIiYjeDIyODA7Ij48IUVOVElUWSBOb3RQcmVjZWRlcyAiJiN4MjI4MDsiPjwhRU5USVRZIG5zYyAiJiN4MjI4MTsiPjwhRU5USVRZIG5zdWNjICImI3gyMjgxOyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHMgIiYjeDIyODE7Ij48IUVOVElUWSBzdWIgIiYjeDIyODI7Ij48IUVOVElUWSBzdWJzZXQgIiYjeDIyODI7Ij48IUVOVElUWSB2bnN1YiAiJiN4MjI4MjsmI3gyMEQyOyI%2BPCFFTlRJVFkgbnN1YnNldCAiJiN4MjI4MjsmI3gyMEQyOyI%2BPCFFTlRJVFkgTm90U3Vic2V0ICImI3gyMjgyOyYjeDIwRDI7Ij48IUVOVElUWSBzdXAgIiYjeDIyODM7Ij48IUVOVElUWSBzdXBzZXQgIiYjeDIyODM7Ij48IUVOVElUWSBTdXBlcnNldCAiJiN4MjI4MzsiPjwhRU5USVRZIHZuc3VwICImI3gyMjgzOyYjeDIwRDI7Ij48IUVOVElUWSBuc3Vwc2V0ICImI3gyMjgzOyYjeDIwRDI7Ij48IUVOVElUWSBOb3RTdXBlcnNldCAiJiN4MjI4MzsmI3gyMEQyOyI%2BPCFFTlRJVFkgbnN1YiAiJiN4MjI4NDsiPjwhRU5USVRZIG5zdXAgIiYjeDIyODU7Ij48IUVOVElUWSBzdWJlICImI3gyMjg2OyI%2BPCFFTlRJVFkgU3Vic2V0RXF1YWwgIiYjeDIyODY7Ij48IUVOVElUWSBzdWJzZXRlcSAiJiN4MjI4NjsiPjwhRU5USVRZIHN1cGUgIiYjeDIyODc7Ij48IUVOVElUWSBzdXBzZXRlcSAiJiN4MjI4NzsiPjwhRU5USVRZIFN1cGVyc2V0RXF1YWwgIiYjeDIyODc7Ij48IUVOVElUWSBuc3ViZSAiJiN4MjI4ODsiPjwhRU5USVRZIG5zdWJzZXRlcSAiJiN4MjI4ODsiPjwhRU5USVRZIE5vdFN1YnNldEVxdWFsICImI3gyMjg4OyI%2BPCFFTlRJVFkgbnN1cGUgIiYjeDIyODk7Ij48IUVOVElUWSBuc3Vwc2V0ZXEgIiYjeDIyODk7Ij48IUVOVElUWSBOb3RTdXBlcnNldEVxdWFsICImI3gyMjg5OyI%2BPCFFTlRJVFkgc3VibmUgIiYjeDIyOEE7Ij48IUVOVElUWSBzdWJzZXRuZXEgIiYjeDIyOEE7Ij48IUVOVElUWSB2c3VibmUgIiYjeDIyOEE7JiN4RkUwMDsiPjwhRU5USVRZIHZhcnN1YnNldG5lcSAiJiN4MjI4QTsmI3hGRTAwOyI%2BPCFFTlRJVFkgc3VwbmUgIiYjeDIyOEI7Ij48IUVOVElUWSBzdXBzZXRuZXEgIiYjeDIyOEI7Ij48IUVOVElUWSB2c3VwbmUgIiYjeDIyOEI7JiN4RkUwMDsiPjwhRU5USVRZIHZhcnN1cHNldG5lcSAiJiN4MjI4QjsmI3hGRTAwOyI%2BPCFFTlRJVFkgY3VwZG90ICImI3gyMjhEOyI%2BPCFFTlRJVFkgdXBsdXMgIiYjeDIyOEU7Ij48IUVOVElUWSBVbmlvblBsdXMgIiYjeDIyOEU7Ij48IUVOVElUWSBzcXN1YiAiJiN4MjI4RjsiPjwhRU5USVRZIFNxdWFyZVN1YnNldCAiJiN4MjI4RjsiPjwhRU5USVRZIHNxc3Vic2V0ICImI3gyMjhGOyI%2BPCFFTlRJVFkgTm90U3F1YXJlU3Vic2V0ICImI3gyMjhGOyYjeDMzODsiPjwhRU5USVRZIHNxc3VwICImI3gyMjkwOyI%2BPCFFTlRJVFkgU3F1YXJlU3VwZXJzZXQgIiYjeDIyOTA7Ij48IUVOVElUWSBzcXN1cHNldCAiJiN4MjI5MDsiPjwhRU5USVRZIE5vdFNxdWFyZVN1cGVyc2V0ICImI3gyMjkwOyYjeDMzODsiPjwhRU5USVRZIHNxc3ViZSAiJiN4MjI5MTsiPjwhRU5USVRZIFNxdWFyZVN1YnNldEVxdWFsICImI3gyMjkxOyI%2BPCFFTlRJVFkgc3FzdWJzZXRlcSAiJiN4MjI5MTsiPjwhRU5USVRZIHNxc3VwZSAiJiN4MjI5MjsiPjwhRU5USVRZIFNxdWFyZVN1cGVyc2V0RXF1YWwgIiYjeDIyOTI7Ij48IUVOVElUWSBzcXN1cHNldGVxICImI3gyMjkyOyI%2BPCFFTlRJVFkgc3FjYXAgIiYjeDIyOTM7Ij48IUVOVElUWSBTcXVhcmVJbnRlcnNlY3Rpb24gIiYjeDIyOTM7Ij48IUVOVElUWSBzcWNhcHMgIiYjeDIyOTM7JiN4RkUwMDsiPjwhRU5USVRZIHNxY3VwICImI3gyMjk0OyI%2BPCFFTlRJVFkgU3F1YXJlVW5pb24gIiYjeDIyOTQ7Ij48IUVOVElUWSBzcWN1cHMgIiYjeDIyOTQ7JiN4RkUwMDsiPjwhRU5USVRZIG9wbHVzICImI3gyMjk1OyI%2BPCFFTlRJVFkgQ2lyY2xlUGx1cyAiJiN4MjI5NTsiPjwhRU5USVRZIG9taW51cyAiJiN4MjI5NjsiPjwhRU5USVRZIENpcmNsZU1pbnVzICImI3gyMjk2OyI%2BPCFFTlRJVFkgb3RpbWVzICImI3gyMjk3OyI%2BPCFFTlRJVFkgQ2lyY2xlVGltZXMgIiYjeDIyOTc7Ij48IUVOVElUWSBvc29sICImI3gyMjk4OyI%2BPCFFTlRJVFkgb2RvdCAiJiN4MjI5OTsiPjwhRU5USVRZIENpcmNsZURvdCAiJiN4MjI5OTsiPjwhRU5USVRZIG9jaXIgIiYjeDIyOUE7Ij48IUVOVElUWSBjaXJjbGVkY2lyYyAiJiN4MjI5QTsiPjwhRU5USVRZIG9hc3QgIiYjeDIyOUI7Ij48IUVOVElUWSBjaXJjbGVkYXN0ICImI3gyMjlCOyI%2BPCFFTlRJVFkgb2Rhc2ggIiYjeDIyOUQ7Ij48IUVOVElUWSBjaXJjbGVkZGFzaCAiJiN4MjI5RDsiPjwhRU5USVRZIHBsdXNiICImI3gyMjlFOyI%2BPCFFTlRJVFkgYm94cGx1cyAiJiN4MjI5RTsiPjwhRU5USVRZIG1pbnVzYiAiJiN4MjI5RjsiPjwhRU5USVRZIGJveG1pbnVzICImI3gyMjlGOyI%2BPCFFTlRJVFkgdGltZXNiICImI3gyMkEwOyI%2BPCFFTlRJVFkgYm94dGltZXMgIiYjeDIyQTA7Ij48IUVOVElUWSBzZG90YiAiJiN4MjJBMTsiPjwhRU5USVRZIGRvdHNxdWFyZSAiJiN4MjJBMTsiPjwhRU5USVRZIHZkYXNoICImI3gyMkEyOyI%2BPCFFTlRJVFkgUmlnaHRUZWUgIiYjeDIyQTI7Ij48IUVOVElUWSBkYXNodiAiJiN4MjJBMzsiPjwhRU5USVRZIExlZnRUZWUgIiYjeDIyQTM7Ij48IUVOVElUWSB0b3AgIiYjeDIyQTQ7Ij48IUVOVElUWSBEb3duVGVlICImI3gyMkE0OyI%2BPCFFTlRJVFkgYm90dG9tICImI3gyMkE1OyI%2BPCFFTlRJVFkgYm90ICImI3gyMkE1OyI%2BPCFFTlRJVFkgcGVycCAiJiN4MjJBNTsiPjwhRU5USVRZIFVwVGVlICImI3gyMkE1OyI%2BPCFFTlRJVFkgbW9kZWxzICImI3gyMkE3OyI%2BPCFFTlRJVFkgdkRhc2ggIiYjeDIyQTg7Ij48IUVOVElUWSBEb3VibGVSaWdodFRlZSAiJiN4MjJBODsiPjwhRU5USVRZIFZkYXNoICImI3gyMkE5OyI%2BPCFFTlRJVFkgVnZkYXNoICImI3gyMkFBOyI%2BPCFFTlRJVFkgVkRhc2ggIiYjeDIyQUI7Ij48IUVOVElUWSBudmRhc2ggIiYjeDIyQUM7Ij48IUVOVElUWSBudkRhc2ggIiYjeDIyQUQ7Ij48IUVOVElUWSBuVmRhc2ggIiYjeDIyQUU7Ij48IUVOVElUWSBuVkRhc2ggIiYjeDIyQUY7Ij48IUVOVElUWSBwcnVyZWwgIiYjeDIyQjA7Ij48IUVOVElUWSB2bHRyaSAiJiN4MjJCMjsiPjwhRU5USVRZIHZhcnRyaWFuZ2xlbGVmdCAiJiN4MjJCMjsiPjwhRU5USVRZIExlZnRUcmlhbmdsZSAiJiN4MjJCMjsiPjwhRU5USVRZIHZydHJpICImI3gyMkIzOyI%2BPCFFTlRJVFkgdmFydHJpYW5nbGVyaWdodCAiJiN4MjJCMzsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGUgIiYjeDIyQjM7Ij48IUVOVElUWSBsdHJpZSAiJiN4MjJCNDsiPjwhRU5USVRZIHRyaWFuZ2xlbGVmdGVxICImI3gyMkI0OyI%2BPCFFTlRJVFkgTGVmdFRyaWFuZ2xlRXF1YWwgIiYjeDIyQjQ7Ij48IUVOVElUWSBudmx0cmllICImI3gyMkI0OyYjeDIwRDI7Ij48IUVOVElUWSBydHJpZSAiJiN4MjJCNTsiPjwhRU5USVRZIHRyaWFuZ2xlcmlnaHRlcSAiJiN4MjJCNTsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGVFcXVhbCAiJiN4MjJCNTsiPjwhRU5USVRZIG52cnRyaWUgIiYjeDIyQjU7JiN4MjBEMjsiPjwhRU5USVRZIG9yaWdvZiAiJiN4MjJCNjsiPjwhRU5USVRZIGltb2YgIiYjeDIyQjc7Ij48IUVOVElUWSBtdW1hcCAiJiN4MjJCODsiPjwhRU5USVRZIG11bHRpbWFwICImI3gyMkI4OyI%2BPCFFTlRJVFkgaGVyY29uICImI3gyMkI5OyI%2BPCFFTlRJVFkgaW50Y2FsICImI3gyMkJBOyI%2BPCFFTlRJVFkgaW50ZXJjYWwgIiYjeDIyQkE7Ij48IUVOVElUWSB2ZWViYXIgIiYjeDIyQkI7Ij48IUVOVElUWSBiYXJ2ZWUgIiYjeDIyQkQ7Ij48IUVOVElUWSBhbmdydHZiICImI3gyMkJFOyI%2BPCFFTlRJVFkgbHJ0cmkgIiYjeDIyQkY7Ij48IUVOVElUWSB4d2VkZ2UgIiYjeDIyQzA7Ij48IUVOVElUWSBXZWRnZSAiJiN4MjJDMDsiPjwhRU5USVRZIGJpZ3dlZGdlICImI3gyMkMwOyI%2BPCFFTlRJVFkgeHZlZSAiJiN4MjJDMTsiPjwhRU5USVRZIFZlZSAiJiN4MjJDMTsiPjwhRU5USVRZIGJpZ3ZlZSAiJiN4MjJDMTsiPjwhRU5USVRZIHhjYXAgIiYjeDIyQzI7Ij48IUVOVElUWSBJbnRlcnNlY3Rpb24gIiYjeDIyQzI7Ij48IUVOVElUWSBiaWdjYXAgIiYjeDIyQzI7Ij48IUVOVElUWSB4Y3VwICImI3gyMkMzOyI%2BPCFFTlRJVFkgVW5pb24gIiYjeDIyQzM7Ij48IUVOVElUWSBiaWdjdXAgIiYjeDIyQzM7Ij48IUVOVElUWSBkaWFtICImI3gyMkM0OyI%2BPCFFTlRJVFkgZGlhbW9uZCAiJiN4MjJDNDsiPjwhRU5USVRZIERpYW1vbmQgIiYjeDIyQzQ7Ij48IUVOVElUWSBzZG90ICImI3gyMkM1OyI%2BPCFFTlRJVFkgc3N0YXJmICImI3gyMkM2OyI%2BPCFFTlRJVFkgU3RhciAiJiN4MjJDNjsiPjwhRU5USVRZIGRpdm9ueCAiJiN4MjJDNzsiPjwhRU5USVRZIGRpdmlkZW9udGltZXMgIiYjeDIyQzc7Ij48IUVOVElUWSBib3d0aWUgIiYjeDIyQzg7Ij48IUVOVElUWSBsdGltZXMgIiYjeDIyQzk7Ij48IUVOVElUWSBydGltZXMgIiYjeDIyQ0E7Ij48IUVOVElUWSBsdGhyZWUgIiYjeDIyQ0I7Ij48IUVOVElUWSBsZWZ0dGhyZWV0aW1lcyAiJiN4MjJDQjsiPjwhRU5USVRZIHJ0aHJlZSAiJiN4MjJDQzsiPjwhRU5USVRZIHJpZ2h0dGhyZWV0aW1lcyAiJiN4MjJDQzsiPjwhRU5USVRZIGJzaW1lICImI3gyMkNEOyI%2BPCFFTlRJVFkgYmFja3NpbWVxICImI3gyMkNEOyI%2BPCFFTlRJVFkgY3V2ZWUgIiYjeDIyQ0U7Ij48IUVOVElUWSBjdXJseXZlZSAiJiN4MjJDRTsiPjwhRU5USVRZIGN1d2VkICImI3gyMkNGOyI%2BPCFFTlRJVFkgY3VybHl3ZWRnZSAiJiN4MjJDRjsiPjwhRU5USVRZIFN1YiAiJiN4MjJEMDsiPjwhRU5USVRZIFN1YnNldCAiJiN4MjJEMDsiPjwhRU5USVRZIFN1cCAiJiN4MjJEMTsiPjwhRU5USVRZIFN1cHNldCAiJiN4MjJEMTsiPjwhRU5USVRZIENhcCAiJiN4MjJEMjsiPjwhRU5USVRZIEN1cCAiJiN4MjJEMzsiPjwhRU5USVRZIGZvcmsgIiYjeDIyRDQ7Ij48IUVOVElUWSBwaXRjaGZvcmsgIiYjeDIyRDQ7Ij48IUVOVElUWSBlcGFyICImI3gyMkQ1OyI%2BPCFFTlRJVFkgbHRkb3QgIiYjeDIyRDY7Ij48IUVOVElUWSBsZXNzZG90ICImI3gyMkQ2OyI%2BPCFFTlRJVFkgZ3Rkb3QgIiYjeDIyRDc7Ij48IUVOVElUWSBndHJkb3QgIiYjeDIyRDc7Ij48IUVOVElUWSBMbCAiJiN4MjJEODsiPjwhRU5USVRZIG5MbCAiJiN4MjJEODsmI3gzMzg7Ij48IUVOVElUWSBHZyAiJiN4MjJEOTsiPjwhRU5USVRZIGdnZyAiJiN4MjJEOTsiPjwhRU5USVRZIG5HZyAiJiN4MjJEOTsmI3gzMzg7Ij48IUVOVElUWSBsZWcgIiYjeDIyREE7Ij48IUVOVElUWSBMZXNzRXF1YWxHcmVhdGVyICImI3gyMkRBOyI%2BPCFFTlRJVFkgbGVzc2VxZ3RyICImI3gyMkRBOyI%2BPCFFTlRJVFkgbGVzZyAiJiN4MjJEQTsmI3hGRTAwOyI%2BPCFFTlRJVFkgZ2VsICImI3gyMkRCOyI%2BPCFFTlRJVFkgZ3RyZXFsZXNzICImI3gyMkRCOyI%2BPCFFTlRJVFkgR3JlYXRlckVxdWFsTGVzcyAiJiN4MjJEQjsiPjwhRU5USVRZIGdlc2wgIiYjeDIyREI7JiN4RkUwMDsiPjwhRU5USVRZIGN1ZXByICImI3gyMkRFOyI%2BPCFFTlRJVFkgY3VybHllcXByZWMgIiYjeDIyREU7Ij48IUVOVElUWSBjdWVzYyAiJiN4MjJERjsiPjwhRU5USVRZIGN1cmx5ZXFzdWNjICImI3gyMkRGOyI%2BPCFFTlRJVFkgbnByY3VlICImI3gyMkUwOyI%2BPCFFTlRJVFkgTm90UHJlY2VkZXNTbGFudEVxdWFsICImI3gyMkUwOyI%2BPCFFTlRJVFkgbnNjY3VlICImI3gyMkUxOyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHNTbGFudEVxdWFsICImI3gyMkUxOyI%2BPCFFTlRJVFkgbnNxc3ViZSAiJiN4MjJFMjsiPjwhRU5USVRZIE5vdFNxdWFyZVN1YnNldEVxdWFsICImI3gyMkUyOyI%2BPCFFTlRJVFkgbnNxc3VwZSAiJiN4MjJFMzsiPjwhRU5USVRZIE5vdFNxdWFyZVN1cGVyc2V0RXF1YWwgIiYjeDIyRTM7Ij48IUVOVElUWSBsbnNpbSAiJiN4MjJFNjsiPjwhRU5USVRZIGduc2ltICImI3gyMkU3OyI%2BPCFFTlRJVFkgcHJuc2ltICImI3gyMkU4OyI%2BPCFFTlRJVFkgcHJlY25zaW0gIiYjeDIyRTg7Ij48IUVOVElUWSBzY25zaW0gIiYjeDIyRTk7Ij48IUVOVElUWSBzdWNjbnNpbSAiJiN4MjJFOTsiPjwhRU5USVRZIG5sdHJpICImI3gyMkVBOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlbGVmdCAiJiN4MjJFQTsiPjwhRU5USVRZIE5vdExlZnRUcmlhbmdsZSAiJiN4MjJFQTsiPjwhRU5USVRZIG5ydHJpICImI3gyMkVCOyI%2BPCFFTlRJVFkg
bnRyaWFuZ2xlcmlnaHQgIiYjeDIyRUI7Ij48IUVOVElUWSBOb3RSaWdodFRyaWFuZ2xlICImI3gyMkVCOyI%2BPCFFTlRJVFkgbmx0cmllICImI3gyMkVDOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlbGVmdGVxICImI3gyMkVDOyI%2BPCFFTlRJVFkgTm90TGVmdFRyaWFuZ2xlRXF1YWwgIiYjeDIyRUM7Ij48IUVOVElUWSBucnRyaWUgIiYjeDIyRUQ7Ij48IUVOVElUWSBudHJpYW5nbGVyaWdodGVxICImI3gyMkVEOyI%2BPCFFTlRJVFkgTm90UmlnaHRUcmlhbmdsZUVxdWFsICImI3gyMkVEOyI%2BPCFFTlRJVFkgdmVsbGlwICImI3gyMkVFOyI%2BPCFFTlRJVFkgY3Rkb3QgIiYjeDIyRUY7Ij48IUVOVElUWSB1dGRvdCAiJiN4MjJGMDsiPjwhRU5USVRZIGR0ZG90ICImI3gyMkYxOyI%2BPCFFTlRJVFkgZGlzaW4gIiYjeDIyRjI7Ij48IUVOVElUWSBpc2luc3YgIiYjeDIyRjM7Ij48IUVOVElUWSBpc2lucyAiJiN4MjJGNDsiPjwhRU5USVRZIGlzaW5kb3QgIiYjeDIyRjU7Ij48IUVOVElUWSBub3RpbmRvdCAiJiN4MjJGNTsmI3gzMzg7Ij48IUVOVElUWSBub3RpbnZjICImI3gyMkY2OyI%2BPCFFTlRJVFkgbm90aW52YiAiJiN4MjJGNzsiPjwhRU5USVRZIGlzaW5FICImI3gyMkY5OyI%2BPCFFTlRJVFkgbm90aW5FICImI3gyMkY5OyYjeDMzODsiPjwhRU5USVRZIG5pc2QgIiYjeDIyRkE7Ij48IUVOVElUWSB4bmlzICImI3gyMkZCOyI%2BPCFFTlRJVFkgbmlzICImI3gyMkZDOyI%2BPCFFTlRJVFkgbm90bml2YyAiJiN4MjJGRDsiPjwhRU5USVRZIG5vdG5pdmIgIiYjeDIyRkU7Ij48IUVOVElUWSBiYXJ3ZWQgIiYjeDIzMDU7Ij48IUVOVElUWSBiYXJ3ZWRnZSAiJiN4MjMwNTsiPjwhRU5USVRZIEJhcndlZCAiJiN4MjMwNjsiPjwhRU5USVRZIGRvdWJsZWJhcndlZGdlICImI3gyMzA2OyI%2BPCFFTlRJVFkgbGNlaWwgIiYjeDIzMDg7Ij48IUVOVElUWSBMZWZ0Q2VpbGluZyAiJiN4MjMwODsiPjwhRU5USVRZIHJjZWlsICImI3gyMzA5OyI%2BPCFFTlRJVFkgUmlnaHRDZWlsaW5nICImI3gyMzA5OyI%2BPCFFTlRJVFkgbGZsb29yICImI3gyMzBBOyI%2BPCFFTlRJVFkgTGVmdEZsb29yICImI3gyMzBBOyI%2BPCFFTlRJVFkgcmZsb29yICImI3gyMzBCOyI%2BPCFFTlRJVFkgUmlnaHRGbG9vciAiJiN4MjMwQjsiPjwhRU5USVRZIGRyY3JvcCAiJiN4MjMwQzsiPjwhRU5USVRZIGRsY3JvcCAiJiN4MjMwRDsiPjwhRU5USVRZIHVyY3JvcCAiJiN4MjMwRTsiPjwhRU5USVRZIHVsY3JvcCAiJiN4MjMwRjsiPjwhRU5USVRZIGJub3QgIiYjeDIzMTA7Ij48IUVOVElUWSBwcm9mbGluZSAiJiN4MjMxMjsiPjwhRU5USVRZIHByb2ZzdXJmICImI3gyMzEzOyI%2BPCFFTlRJVFkgdGVscmVjICImI3gyMzE1OyI%2BPCFFTlRJVFkgdGFyZ2V0ICImI3gyMzE2OyI%2BPCFFTlRJVFkgdWxjb3JuICImI3gyMzFDOyI%2BPCFFTlRJVFkgdWxjb3JuZXIgIiYjeDIzMUM7Ij48IUVOVElUWSB1cmNvcm4gIiYjeDIzMUQ7Ij48IUVOVElUWSB1cmNvcm5lciAiJiN4MjMxRDsiPjwhRU5USVRZIGRsY29ybiAiJiN4MjMxRTsiPjwhRU5USVRZIGxsY29ybmVyICImI3gyMzFFOyI%2BPCFFTlRJVFkgZHJjb3JuICImI3gyMzFGOyI%2BPCFFTlRJVFkgbHJjb3JuZXIgIiYjeDIzMUY7Ij48IUVOVElUWSBmcm93biAiJiN4MjMyMjsiPjwhRU5USVRZIHNmcm93biAiJiN4MjMyMjsiPjwhRU5USVRZIHNtaWxlICImI3gyMzIzOyI%2BPCFFTlRJVFkgc3NtaWxlICImI3gyMzIzOyI%2BPCFFTlRJVFkgY3lsY3R5ICImI3gyMzJEOyI%2BPCFFTlRJVFkgcHJvZmFsYXIgIiYjeDIzMkU7Ij48IUVOVElUWSB0b3Bib3QgIiYjeDIzMzY7Ij48IUVOVElUWSBvdmJhciAiJiN4MjMzRDsiPjwhRU5USVRZIHNvbGJhciAiJiN4MjMzRjsiPjwhRU5USVRZIGFuZ3phcnIgIiYjeDIzN0M7Ij48IUVOVElUWSBsbW91c3QgIiYjeDIzQjA7Ij48IUVOVElUWSBsbW91c3RhY2hlICImI3gyM0IwOyI%2BPCFFTlRJVFkgcm1vdXN0ICImI3gyM0IxOyI%2BPCFFTlRJVFkgcm1vdXN0YWNoZSAiJiN4MjNCMTsiPjwhRU5USVRZIHRicmsgIiYjeDIzQjQ7Ij48IUVOVElUWSBPdmVyQnJhY2tldCAiJiN4MjNCNDsiPjwhRU5USVRZIGJicmsgIiYjeDIzQjU7Ij48IUVOVElUWSBVbmRlckJyYWNrZXQgIiYjeDIzQjU7Ij48IUVOVElUWSBiYnJrdGJyayAiJiN4MjNCNjsiPjwhRU5USVRZIE92ZXJQYXJlbnRoZXNpcyAiJiN4MjNEQzsiPjwhRU5USVRZIFVuZGVyUGFyZW50aGVzaXMgIiYjeDIzREQ7Ij48IUVOVElUWSBPdmVyQnJhY2UgIiYjeDIzREU7Ij48IUVOVElUWSBVbmRlckJyYWNlICImI3gyM0RGOyI%2BPCFFTlRJVFkgdHJwZXppdW0gIiYjeDIzRTI7Ij48IUVOVElUWSBlbGludGVycyAiJiN4MjNFNzsiPjwhRU5USVRZIGJsYW5rICImI3gyNDIzOyI%2BPCFFTlRJVFkgb1MgIiYjeDI0Qzg7Ij48IUVOVElUWSBjaXJjbGVkUyAiJiN4MjRDODsiPjwhRU5USVRZIGJveGggIiYjeDI1MDA7Ij48IUVOVElUWSBIb3Jpem9udGFsTGluZSAiJiN4MjUwMDsiPjwhRU5USVRZIGJveHYgIiYjeDI1MDI7Ij48IUVOVElUWSBib3hkciAiJiN4MjUwQzsiPjwhRU5USVRZIGJveGRsICImI3gyNTEwOyI%2BPCFFTlRJVFkgYm94dXIgIiYjeDI1MTQ7Ij48IUVOVElUWSBib3h1bCAiJiN4MjUxODsiPjwhRU5USVRZIGJveHZyICImI3gyNTFDOyI%2BPCFFTlRJVFkgYm94dmwgIiYjeDI1MjQ7Ij48IUVOVElUWSBib3hoZCAiJiN4MjUyQzsiPjwhRU5USVRZIGJveGh1ICImI3gyNTM0OyI%2BPCFFTlRJVFkgYm94dmggIiYjeDI1M0M7Ij48IUVOVElUWSBib3hIICImI3gyNTUwOyI%2BPCFFTlRJVFkgYm94ViAiJiN4MjU1MTsiPjwhRU5USVRZIGJveGRSICImI3gyNTUyOyI%2BPCFFTlRJVFkgYm94RHIgIiYjeDI1NTM7Ij48IUVOVElUWSBib3hEUiAiJiN4MjU1NDsiPjwhRU5USVRZIGJveGRMICImI3gyNTU1OyI%2BPCFFTlRJVFkgYm94RGwgIiYjeDI1NTY7Ij48IUVOVElUWSBib3hETCAiJiN4MjU1NzsiPjwhRU5USVRZIGJveHVSICImI3gyNTU4OyI%2BPCFFTlRJVFkgYm94VXIgIiYjeDI1NTk7Ij48IUVOVElUWSBib3hVUiAiJiN4MjU1QTsiPjwhRU5USVRZIGJveHVMICImI3gyNTVCOyI%2BPCFFTlRJVFkgYm94VWwgIiYjeDI1NUM7Ij48IUVOVElUWSBib3hVTCAiJiN4MjU1RDsiPjwhRU5USVRZIGJveHZSICImI3gyNTVFOyI%2BPCFFTlRJVFkgYm94VnIgIiYjeDI1NUY7Ij48IUVOVElUWSBib3hWUiAiJiN4MjU2MDsiPjwhRU5USVRZIGJveHZMICImI3gyNTYxOyI%2BPCFFTlRJVFkgYm94VmwgIiYjeDI1NjI7Ij48IUVOVElUWSBib3hWTCAiJiN4MjU2MzsiPjwhRU5USVRZIGJveEhkICImI3gyNTY0OyI%2BPCFFTlRJVFkgYm94aEQgIiYjeDI1NjU7Ij48IUVOVElUWSBib3hIRCAiJiN4MjU2NjsiPjwhRU5USVRZIGJveEh1ICImI3gyNTY3OyI%2BPCFFTlRJVFkgYm94aFUgIiYjeDI1Njg7Ij48IUVOVElUWSBib3hIVSAiJiN4MjU2OTsiPjwhRU5USVRZIGJveHZIICImI3gyNTZBOyI%2BPCFFTlRJVFkgYm94VmggIiYjeDI1NkI7Ij48IUVOVElUWSBib3hWSCAiJiN4MjU2QzsiPjwhRU5USVRZIHVoYmxrICImI3gyNTgwOyI%2BPCFFTlRJVFkgbGhibGsgIiYjeDI1ODQ7Ij48IUVOVElUWSBibG9jayAiJiN4MjU4ODsiPjwhRU5USVRZIGJsazE0ICImI3gyNTkxOyI%2BPCFFTlRJVFkgYmxrMTIgIiYjeDI1OTI7Ij48IUVOVElUWSBibGszNCAiJiN4MjU5MzsiPjwhRU5USVRZIHNxdSAiJiN4MjVBMTsiPjwhRU5USVRZIHNxdWFyZSAiJiN4MjVBMTsiPjwhRU5USVRZIFNxdWFyZSAiJiN4MjVBMTsiPjwhRU5USVRZIHNxdWYgIiYjeDI1QUE7Ij48IUVOVElUWSBzcXVhcmYgIiYjeDI1QUE7Ij48IUVOVElUWSBibGFja3NxdWFyZSAiJiN4MjVBQTsiPjwhRU5USVRZIEZpbGxlZFZlcnlTbWFsbFNxdWFyZSAiJiN4MjVBQTsiPjwhRU5USVRZIEVtcHR5VmVyeVNtYWxsU3F1YXJlICImI3gyNUFCOyI%2BPCFFTlRJVFkgcmVjdCAiJiN4MjVBRDsiPjwhRU5USVRZIG1hcmtlciAiJiN4MjVBRTsiPjwhRU5USVRZIGZsdG5zICImI3gyNUIxOyI%2BPCFFTlRJVFkgeHV0cmkgIiYjeDI1QjM7Ij48IUVOVElUWSBiaWd0cmlhbmdsZXVwICImI3gyNUIzOyI%2BPCFFTlRJVFkgdXRyaWYgIiYjeDI1QjQ7Ij48IUVOVElUWSBibGFja3RyaWFuZ2xlICImI3gyNUI0OyI%2BPCFFTlRJVFkgdXRyaSAiJiN4MjVCNTsiPjwhRU5USVRZIHRyaWFuZ2xlICImI3gyNUI1OyI%2BPCFFTlRJVFkgcnRyaWYgIiYjeDI1Qjg7Ij48IUVOVElUWSBibGFja3RyaWFuZ2xlcmlnaHQgIiYjeDI1Qjg7Ij48IUVOVElUWSBydHJpICImI3gyNUI5OyI%2BPCFFTlRJVFkgdHJpYW5nbGVyaWdodCAiJiN4MjVCOTsiPjwhRU5USVRZIHhkdHJpICImI3gyNUJEOyI%2BPCFFTlRJVFkgYmlndHJpYW5nbGVkb3duICImI3gyNUJEOyI%2BPCFFTlRJVFkgZHRyaWYgIiYjeDI1QkU7Ij48IUVOVElUWSBibGFja3RyaWFuZ2xlZG93biAiJiN4MjVCRTsiPjwhRU5USVRZIGR0cmkgIiYjeDI1QkY7Ij48IUVOVElUWSB0cmlhbmdsZWRvd24gIiYjeDI1QkY7Ij48IUVOVElUWSBsdHJpZiAiJiN4MjVDMjsiPjwhRU5USVRZIGJsYWNrdHJpYW5nbGVsZWZ0ICImI3gyNUMyOyI%2BPCFFTlRJVFkgbHRyaSAiJiN4MjVDMzsiPjwhRU5USVRZIHRyaWFuZ2xlbGVmdCAiJiN4MjVDMzsiPjwhRU5USVRZIGxveiAiJiN4MjVDQTsiPjwhRU5USVRZIGxvemVuZ2UgIiYjeDI1Q0E7Ij48IUVOVElUWSBjaXIgIiYjeDI1Q0I7Ij48IUVOVElUWSB0cmlkb3QgIiYjeDI1RUM7Ij48IUVOVElUWSB4Y2lyYyAiJiN4MjVFRjsiPjwhRU5USVRZIGJpZ2NpcmMgIiYjeDI1RUY7Ij48IUVOVElUWSB1bHRyaSAiJiN4MjVGODsiPjwhRU5USVRZIHVydHJpICImI3gyNUY5OyI%2BPCFFTlRJVFkgbGx0cmkgIiYjeDI1RkE7Ij48IUVOVElUWSBFbXB0eVNtYWxsU3F1YXJlICImI3gyNUZCOyI%2BPCFFTlRJVFkgRmlsbGVkU21hbGxTcXVhcmUgIiYjeDI1RkM7Ij48IUVOVElUWSBzdGFyZiAiJiN4MjYwNTsiPjwhRU5USVRZIGJpZ3N0YXIgIiYjeDI2MDU7Ij48IUVOVElUWSBzdGFyICImI3gyNjA2OyI%2BPCFFTlRJVFkgcGhvbmUgIiYjeDI2MEU7Ij48IUVOVElUWSBmZW1hbGUgIiYjeDI2NDA7Ij48IUVOVElUWSBtYWxlICImI3gyNjQyOyI%2BPCFFTlRJVFkgc3BhZGVzICImI3gyNjYwOyI%2BPCFFTlRJVFkgc3BhZGVzdWl0ICImI3gyNjYwOyI%2BPCFFTlRJVFkgY2x1YnMgIiYjeDI2NjM7Ij48IUVOVElUWSBjbHVic3VpdCAiJiN4MjY2MzsiPjwhRU5USVRZIGhlYXJ0cyAiJiN4MjY2NTsiPjwhRU5USVRZIGhlYXJ0c3VpdCAiJiN4MjY2NTsiPjwhRU5USVRZIGRpYW1zICImI3gyNjY2OyI%2BPCFFTlRJVFkgZGlhbW9uZHN1aXQgIiYjeDI2NjY7Ij48IUVOVElUWSBzdW5nICImI3gyNjZBOyI%2BPCFFTlRJVFkgZmxhdCAiJiN4MjY2RDsiPjwhRU5USVRZIG5hdHVyICImI3gyNjZFOyI%2BPCFFTlRJVFkgbmF0dXJhbCAiJiN4MjY2RTsiPjwhRU5USVRZIHNoYXJwICImI3gyNjZGOyI%2BPCFFTlRJVFkgY2hlY2sgIiYjeDI3MTM7Ij48IUVOVElUWSBjaGVja21hcmsgIiYjeDI3MTM7Ij48IUVOVElUWSBjcm9zcyAiJiN4MjcxNzsiPjwhRU5USVRZIG1hbHQgIiYjeDI3MjA7Ij48IUVOVElUWSBtYWx0ZXNlICImI3gyNzIwOyI%2BPCFFTlRJVFkgc2V4dCAiJiN4MjczNjsiPjwhRU5USVRZIFZlcnRpY2FsU2VwYXJhdG9yICImI3gyNzU4OyI%2BPCFFTlRJVFkgbGJicmsgIiYjeDI3NzI7Ij48IUVOVElUWSByYmJyayAiJiN4Mjc3MzsiPjwhRU5USVRZIGJzb2xoc3ViICImI3gyN0M4OyI%2BPCFFTlRJVFkgc3VwaHNvbCAiJiN4MjdDOTsiPjwhRU5USVRZIGxvYnJrICImI3gyN0U2OyI%2BPCFFTlRJVFkgTGVmdERvdWJsZUJyYWNrZXQgIiYjeDI3RTY7Ij48IUVOVElUWSByb2JyayAiJiN4MjdFNzsiPjwhRU5USVRZIFJpZ2h0RG91YmxlQnJhY2tldCAiJiN4MjdFNzsiPjwhRU5USVRZIGxhbmcgIiYjeDI3RTg7Ij48IUVOVElUWSBMZWZ0QW5nbGVCcmFja2V0ICImI3gyN0U4OyI%2BPCFFTlRJVFkgbGFuZ2xlICImI3gyN0U4OyI%2BPCFFTlRJVFkgcmFuZyAiJiN4MjdFOTsiPjwhRU5USVRZIFJpZ2h0QW5nbGVCcmFja2V0ICImI3gyN0U5OyI%2BPCFFTlRJVFkgcmFuZ2xlICImI3gyN0U5OyI%2BPCFFTlRJVFkgTGFuZyAiJiN4MjdFQTsiPjwhRU5USVRZIFJhbmcgIiYjeDI3RUI7Ij48IUVOVElUWSBsb2FuZyAiJiN4MjdFQzsiPjwhRU5USVRZIHJvYW5nICImI3gyN0VEOyI%2BPCFFTlRJVFkgeGxhcnIgIiYjeDI3RjU7Ij48IUVOVElUWSBsb25nbGVmdGFycm93ICImI3gyN0Y1OyI%2BPCFFTlRJVFkgTG9uZ0xlZnRBcnJvdyAiJiN4MjdGNTsiPjwhRU5USVRZIHhyYXJyICImI3gyN0Y2OyI%2BPCFFTlRJVFkgbG9uZ3JpZ2h0YXJyb3cgIiYjeDI3RjY7Ij48IUVOVElUWSBMb25nUmlnaHRBcnJvdyAiJiN4MjdGNjsiPjwhRU5USVRZIHhoYXJyICImI3gyN0Y3OyI%2BPCFFTlRJVFkgbG9uZ2xlZnRyaWdodGFycm93ICImI3gyN0Y3OyI%2BPCFFTlRJVFkgTG9uZ0xlZnRSaWdodEFycm93ICImI3gyN0Y3OyI%2BPCFFTlRJVFkgeGxBcnIgIiYjeDI3Rjg7Ij48IUVOVElUWSBMb25nbGVmdGFycm93ICImI3gyN0Y4OyI%2BPCFFTlRJVFkgRG91YmxlTG9uZ0xlZnRBcnJvdyAiJiN4MjdGODsiPjwhRU5USVRZIHhyQXJyICImI3gyN0Y5OyI%2BPCFFTlRJVFkgTG9uZ3JpZ2h0YXJyb3cgIiYjeDI3Rjk7Ij48IUVOVElUWSBEb3VibGVMb25nUmlnaHRBcnJvdyAiJiN4MjdGOTsiPjwhRU5USVRZIHhoQXJyICImI3gyN0ZBOyI%2BPCFFTlRJVFkgTG9uZ2xlZnRyaWdodGFycm93ICImI3gyN0ZBOyI%2BPCFFTlRJVFkgRG91YmxlTG9uZ0xlZnRSaWdodEFycm93ICImI3gyN0ZBOyI%2BPCFFTlRJVFkgeG1hcCAiJiN4MjdGQzsiPjwhRU5USVRZIGxvbmdtYXBzdG8gIiYjeDI3RkM7Ij48IUVOVElUWSBkemlncmFyciAiJiN4MjdGRjsiPjwhRU5USVRZIG52bEFyciAiJiN4MjkwMjsiPjwhRU5USVRZIG52ckFyciAiJiN4MjkwMzsiPjwhRU5USVRZIG52SGFyciAiJiN4MjkwNDsiPjwhRU5USVRZIE1hcCAiJiN4MjkwNTsiPjwhRU5USVRZIGxiYXJyICImI3gyOTBDOyI%2BPCFFTlRJVFkgcmJhcnIgIiYjeDI5MEQ7Ij48IUVOVElUWSBia2Fyb3cgIiYjeDI5MEQ7Ij48IUVOVElUWSBsQmFyciAiJiN4MjkwRTsiPjwhRU5USVRZIHJCYXJyICImI3gyOTBGOyI%2BPCFFTlRJVFkgZGJrYXJvdyAiJiN4MjkwRjsiPjwhRU5USVRZIFJCYXJyICImI3gyOTEwOyI%2BPCFFTlRJVFkgZHJia2Fyb3cgIiYjeDI5MTA7Ij48IUVOVElUWSBERG90cmFoZCAiJiN4MjkxMTsiPjwhRU5USVRZIFVwQXJyb3dCYXIgIiYjeDI5MTI7Ij48IUVOVElUWSBEb3duQXJyb3dCYXIgIiYjeDI5MTM7Ij48IUVOVElUWSBSYXJydGwgIiYjeDI5MTY7Ij48IUVOVElUWSBsYXRhaWwgIiYjeDI5MTk7Ij48IUVOVElUWSByYXRhaWwgIiYjeDI5MUE7Ij48IUVOVElUWSBsQXRhaWwgIiYjeDI5MUI7Ij48IUVOVElUWSByQXRhaWwgIiYjeDI5MUM7Ij48IUVOVElUWSBsYXJyZnMgIiYjeDI5MUQ7Ij48IUVOVElUWSByYXJyZnMgIiYjeDI5MUU7
Ij48IUVOVElUWSBsYXJyYmZzICImI3gyOTFGOyI%2BPCFFTlRJVFkgcmFycmJmcyAiJiN4MjkyMDsiPjwhRU5USVRZIG53YXJoayAiJiN4MjkyMzsiPjwhRU5USVRZIG5lYXJoayAiJiN4MjkyNDsiPjwhRU5USVRZIHNlYXJoayAiJiN4MjkyNTsiPjwhRU5USVRZIGhrc2Vhcm93ICImI3gyOTI1OyI%2BPCFFTlRJVFkgc3dhcmhrICImI3gyOTI2OyI%2BPCFFTlRJVFkgaGtzd2Fyb3cgIiYjeDI5MjY7Ij48IUVOVElUWSBud25lYXIgIiYjeDI5Mjc7Ij48IUVOVElUWSBuZXNlYXIgIiYjeDI5Mjg7Ij48IUVOVElUWSB0b2VhICImI3gyOTI4OyI%2BPCFFTlRJVFkgc2Vzd2FyICImI3gyOTI5OyI%2BPCFFTlRJVFkgdG9zYSAiJiN4MjkyOTsiPjwhRU5USVRZIHN3bndhciAiJiN4MjkyQTsiPjwhRU5USVRZIHJhcnJjICImI3gyOTMzOyI%2BPCFFTlRJVFkgbnJhcnJjICImI3gyOTMzOyYjeDMzODsiPjwhRU5USVRZIGN1ZGFycnIgIiYjeDI5MzU7Ij48IUVOVElUWSBsZGNhICImI3gyOTM2OyI%2BPCFFTlRJVFkgcmRjYSAiJiN4MjkzNzsiPjwhRU5USVRZIGN1ZGFycmwgIiYjeDI5Mzg7Ij48IUVOVElUWSBsYXJycGwgIiYjeDI5Mzk7Ij48IUVOVElUWSBjdXJhcnJtICImI3gyOTNDOyI%2BPCFFTlRJVFkgY3VsYXJycCAiJiN4MjkzRDsiPjwhRU5USVRZIHJhcnJwbCAiJiN4Mjk0NTsiPjwhRU5USVRZIGhhcnJjaXIgIiYjeDI5NDg7Ij48IUVOVElUWSBVYXJyb2NpciAiJiN4Mjk0OTsiPjwhRU5USVRZIGx1cmRzaGFyICImI3gyOTRBOyI%2BPCFFTlRJVFkgbGRydXNoYXIgIiYjeDI5NEI7Ij48IUVOVElUWSBMZWZ0UmlnaHRWZWN0b3IgIiYjeDI5NEU7Ij48IUVOVElUWSBSaWdodFVwRG93blZlY3RvciAiJiN4Mjk0RjsiPjwhRU5USVRZIERvd25MZWZ0UmlnaHRWZWN0b3IgIiYjeDI5NTA7Ij48IUVOVElUWSBMZWZ0VXBEb3duVmVjdG9yICImI3gyOTUxOyI%2BPCFFTlRJVFkgTGVmdFZlY3RvckJhciAiJiN4Mjk1MjsiPjwhRU5USVRZIFJpZ2h0VmVjdG9yQmFyICImI3gyOTUzOyI%2BPCFFTlRJVFkgUmlnaHRVcFZlY3RvckJhciAiJiN4Mjk1NDsiPjwhRU5USVRZIFJpZ2h0RG93blZlY3RvckJhciAiJiN4Mjk1NTsiPjwhRU5USVRZIERvd25MZWZ0VmVjdG9yQmFyICImI3gyOTU2OyI%2BPCFFTlRJVFkgRG93blJpZ2h0VmVjdG9yQmFyICImI3gyOTU3OyI%2BPCFFTlRJVFkgTGVmdFVwVmVjdG9yQmFyICImI3gyOTU4OyI%2BPCFFTlRJVFkgTGVmdERvd25WZWN0b3JCYXIgIiYjeDI5NTk7Ij48IUVOVElUWSBMZWZ0VGVlVmVjdG9yICImI3gyOTVBOyI%2BPCFFTlRJVFkgUmlnaHRUZWVWZWN0b3IgIiYjeDI5NUI7Ij48IUVOVElUWSBSaWdodFVwVGVlVmVjdG9yICImI3gyOTVDOyI%2BPCFFTlRJVFkgUmlnaHREb3duVGVlVmVjdG9yICImI3gyOTVEOyI%2BPCFFTlRJVFkgRG93bkxlZnRUZWVWZWN0b3IgIiYjeDI5NUU7Ij48IUVOVElUWSBEb3duUmlnaHRUZWVWZWN0b3IgIiYjeDI5NUY7Ij48IUVOVElUWSBMZWZ0VXBUZWVWZWN0b3IgIiYjeDI5NjA7Ij48IUVOVElUWSBMZWZ0RG93blRlZVZlY3RvciAiJiN4Mjk2MTsiPjwhRU5USVRZIGxIYXIgIiYjeDI5NjI7Ij48IUVOVElUWSB1SGFyICImI3gyOTYzOyI%2BPCFFTlRJVFkgckhhciAiJiN4Mjk2NDsiPjwhRU5USVRZIGRIYXIgIiYjeDI5NjU7Ij48IUVOVElUWSBsdXJ1aGFyICImI3gyOTY2OyI%2BPCFFTlRJVFkgbGRyZGhhciAiJiN4Mjk2NzsiPjwhRU5USVRZIHJ1bHVoYXIgIiYjeDI5Njg7Ij48IUVOVElUWSByZGxkaGFyICImI3gyOTY5OyI%2BPCFFTlRJVFkgbGhhcnVsICImI3gyOTZBOyI%2BPCFFTlRJVFkgbGxoYXJkICImI3gyOTZCOyI%2BPCFFTlRJVFkgcmhhcnVsICImI3gyOTZDOyI%2BPCFFTlRJVFkgbHJoYXJkICImI3gyOTZEOyI%2BPCFFTlRJVFkgdWRoYXIgIiYjeDI5NkU7Ij48IUVOVElUWSBVcEVxdWlsaWJyaXVtICImI3gyOTZFOyI%2BPCFFTlRJVFkgZHVoYXIgIiYjeDI5NkY7Ij48IUVOVElUWSBSZXZlcnNlVXBFcXVpbGlicml1bSAiJiN4Mjk2RjsiPjwhRU5USVRZIFJvdW5kSW1wbGllcyAiJiN4Mjk3MDsiPjwhRU5USVRZIGVyYXJyICImI3gyOTcxOyI%2BPCFFTlRJVFkgc2ltcmFyciAiJiN4Mjk3MjsiPjwhRU5USVRZIGxhcnJzaW0gIiYjeDI5NzM7Ij48IUVOVElUWSByYXJyc2ltICImI3gyOTc0OyI%2BPCFFTlRJVFkgcmFycmFwICImI3gyOTc1OyI%2BPCFFTlRJVFkgbHRsYXJyICImI3gyOTc2OyI%2BPCFFTlRJVFkgZ3RyYXJyICImI3gyOTc4OyI%2BPCFFTlRJVFkgc3VicmFyciAiJiN4Mjk3OTsiPjwhRU5USVRZIHN1cGxhcnIgIiYjeDI5N0I7Ij48IUVOVElUWSBsZmlzaHQgIiYjeDI5N0M7Ij48IUVOVElUWSByZmlzaHQgIiYjeDI5N0Q7Ij48IUVOVElUWSB1ZmlzaHQgIiYjeDI5N0U7Ij48IUVOVElUWSBkZmlzaHQgIiYjeDI5N0Y7Ij48IUVOVElUWSBsb3BhciAiJiN4Mjk4NTsiPjwhRU5USVRZIHJvcGFyICImI3gyOTg2OyI%2BPCFFTlRJVFkgbGJya2UgIiYjeDI5OEI7Ij48IUVOVElUWSByYnJrZSAiJiN4Mjk4QzsiPjwhRU5USVRZIGxicmtzbHUgIiYjeDI5OEQ7Ij48IUVOVElUWSByYnJrc2xkICImI3gyOThFOyI%2BPCFFTlRJVFkgbGJya3NsZCAiJiN4Mjk4RjsiPjwhRU5USVRZIHJicmtzbHUgIiYjeDI5OTA7Ij48IUVOVElUWSBsYW5nZCAiJiN4Mjk5MTsiPjwhRU5USVRZIHJhbmdkICImI3gyOTkyOyI%2BPCFFTlRJVFkgbHBhcmx0ICImI3gyOTkzOyI%2BPCFFTlRJVFkgcnBhcmd0ICImI3gyOTk0OyI%2BPCFFTlRJVFkgZ3RsUGFyICImI3gyOTk1OyI%2BPCFFTlRJVFkgbHRyUGFyICImI3gyOTk2OyI%2BPCFFTlRJVFkgdnppZ3phZyAiJiN4Mjk5QTsiPjwhRU5USVRZIHZhbmdydCAiJiN4Mjk5QzsiPjwhRU5USVRZIGFuZ3J0dmJkICImI3gyOTlEOyI%2BPCFFTlRJVFkgYW5nZSAiJiN4MjlBNDsiPjwhRU5USVRZIHJhbmdlICImI3gyOUE1OyI%2BPCFFTlRJVFkgZHdhbmdsZSAiJiN4MjlBNjsiPjwhRU5USVRZIHV3YW5nbGUgIiYjeDI5QTc7Ij48IUVOVElUWSBhbmdtc2RhYSAiJiN4MjlBODsiPjwhRU5USVRZIGFuZ21zZGFiICImI3gyOUE5OyI%2BPCFFTlRJVFkgYW5nbXNkYWMgIiYjeDI5QUE7Ij48IUVOVElUWSBhbmdtc2RhZCAiJiN4MjlBQjsiPjwhRU5USVRZIGFuZ21zZGFlICImI3gyOUFDOyI%2BPCFFTlRJVFkgYW5nbXNkYWYgIiYjeDI5QUQ7Ij48IUVOVElUWSBhbmdtc2RhZyAiJiN4MjlBRTsiPjwhRU5USVRZIGFuZ21zZGFoICImI3gyOUFGOyI%2BPCFFTlRJVFkgYmVtcHR5diAiJiN4MjlCMDsiPjwhRU5USVRZIGRlbXB0eXYgIiYjeDI5QjE7Ij48IUVOVElUWSBjZW1wdHl2ICImI3gyOUIyOyI%2BPCFFTlRJVFkgcmFlbXB0eXYgIiYjeDI5QjM7Ij48IUVOVElUWSBsYWVtcHR5diAiJiN4MjlCNDsiPjwhRU5USVRZIG9oYmFyICImI3gyOUI1OyI%2BPCFFTlRJVFkgb21pZCAiJiN4MjlCNjsiPjwhRU5USVRZIG9wYXIgIiYjeDI5Qjc7Ij48IUVOVElUWSBvcGVycCAiJiN4MjlCOTsiPjwhRU5USVRZIG9sY3Jvc3MgIiYjeDI5QkI7Ij48IUVOVElUWSBvZHNvbGQgIiYjeDI5QkM7Ij48IUVOVElUWSBvbGNpciAiJiN4MjlCRTsiPjwhRU5USVRZIG9mY2lyICImI3gyOUJGOyI%2BPCFFTlRJVFkgb2x0ICImI3gyOUMwOyI%2BPCFFTlRJVFkgb2d0ICImI3gyOUMxOyI%2BPCFFTlRJVFkgY2lyc2NpciAiJiN4MjlDMjsiPjwhRU5USVRZIGNpckUgIiYjeDI5QzM7Ij48IUVOVElUWSBzb2xiICImI3gyOUM0OyI%2BPCFFTlRJVFkgYnNvbGIgIiYjeDI5QzU7Ij48IUVOVElUWSBib3hib3ggIiYjeDI5Qzk7Ij48IUVOVElUWSB0cmlzYiAiJiN4MjlDRDsiPjwhRU5USVRZIHJ0cmlsdHJpICImI3gyOUNFOyI%2BPCFFTlRJVFkgTGVmdFRyaWFuZ2xlQmFyICImI3gyOUNGOyI%2BPCFFTlRJVFkgTm90TGVmdFRyaWFuZ2xlQmFyICImI3gyOUNGOyYjeDMzODsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGVCYXIgIiYjeDI5RDA7Ij48IUVOVElUWSBOb3RSaWdodFRyaWFuZ2xlQmFyICImI3gyOUQwOyYjeDMzODsiPjwhRU5USVRZIGlpbmZpbiAiJiN4MjlEQzsiPjwhRU5USVRZIGluZmludGllICImI3gyOUREOyI%2BPCFFTlRJVFkgbnZpbmZpbiAiJiN4MjlERTsiPjwhRU5USVRZIGVwYXJzbCAiJiN4MjlFMzsiPjwhRU5USVRZIHNtZXBhcnNsICImI3gyOUU0OyI%2BPCFFTlRJVFkgZXF2cGFyc2wgIiYjeDI5RTU7Ij48IUVOVElUWSBsb3pmICImI3gyOUVCOyI%2BPCFFTlRJVFkgYmxhY2tsb3plbmdlICImI3gyOUVCOyI%2BPCFFTlRJVFkgUnVsZURlbGF5ZWQgIiYjeDI5RjQ7Ij48IUVOVElUWSBkc29sICImI3gyOUY2OyI%2BPCFFTlRJVFkgeG9kb3QgIiYjeDJBMDA7Ij48IUVOVElUWSBiaWdvZG90ICImI3gyQTAwOyI%2BPCFFTlRJVFkgeG9wbHVzICImI3gyQTAxOyI%2BPCFFTlRJVFkgYmlnb3BsdXMgIiYjeDJBMDE7Ij48IUVOVElUWSB4b3RpbWUgIiYjeDJBMDI7Ij48IUVOVElUWSBiaWdvdGltZXMgIiYjeDJBMDI7Ij48IUVOVElUWSB4dXBsdXMgIiYjeDJBMDQ7Ij48IUVOVElUWSBiaWd1cGx1cyAiJiN4MkEwNDsiPjwhRU5USVRZIHhzcWN1cCAiJiN4MkEwNjsiPjwhRU5USVRZIGJpZ3NxY3VwICImI3gyQTA2OyI%2BPCFFTlRJVFkgcWludCAiJiN4MkEwQzsiPjwhRU5USVRZIGlpaWludCAiJiN4MkEwQzsiPjwhRU5USVRZIGZwYXJ0aW50ICImI3gyQTBEOyI%2BPCFFTlRJVFkgY2lyZm5pbnQgIiYjeDJBMTA7Ij48IUVOVElUWSBhd2ludCAiJiN4MkExMTsiPjwhRU5USVRZIHJwcG9saW50ICImI3gyQTEyOyI%2BPCFFTlRJVFkgc2Nwb2xpbnQgIiYjeDJBMTM7Ij48IUVOVElUWSBucG9saW50ICImI3gyQTE0OyI%2BPCFFTlRJVFkgcG9pbnRpbnQgIiYjeDJBMTU7Ij48IUVOVElUWSBxdWF0aW50ICImI3gyQTE2OyI%2BPCFFTlRJVFkgaW50bGFyaGsgIiYjeDJBMTc7Ij48IUVOVElUWSBwbHVzY2lyICImI3gyQTIyOyI%2BPCFFTlRJVFkgcGx1c2FjaXIgIiYjeDJBMjM7Ij48IUVOVElUWSBzaW1wbHVzICImI3gyQTI0OyI%2BPCFFTlRJVFkgcGx1c2R1ICImI3gyQTI1OyI%2BPCFFTlRJVFkgcGx1c3NpbSAiJiN4MkEyNjsiPjwhRU5USVRZIHBsdXN0d28gIiYjeDJBMjc7Ij48IUVOVElUWSBtY29tbWEgIiYjeDJBMjk7Ij48IUVOVElUWSBtaW51c2R1ICImI3gyQTJBOyI%2BPCFFTlRJVFkgbG9wbHVzICImI3gyQTJEOyI%2BPCFFTlRJVFkgcm9wbHVzICImI3gyQTJFOyI%2BPCFFTlRJVFkgQ3Jvc3MgIiYjeDJBMkY7Ij48IUVOVElUWSB0aW1lc2QgIiYjeDJBMzA7Ij48IUVOVElUWSB0aW1lc2JhciAiJiN4MkEzMTsiPjwhRU5USVRZIHNtYXNocCAiJiN4MkEzMzsiPjwhRU5USVRZIGxvdGltZXMgIiYjeDJBMzQ7Ij48IUVOVElUWSByb3RpbWVzICImI3gyQTM1OyI%2BPCFFTlRJVFkgb3RpbWVzYXMgIiYjeDJBMzY7Ij48IUVOVElUWSBPdGltZXMgIiYjeDJBMzc7Ij48IUVOVElUWSBvZGl2ICImI3gyQTM4OyI%2BPCFFTlRJVFkgdHJpcGx1cyAiJiN4MkEzOTsiPjwhRU5USVRZIHRyaW1pbnVzICImI3gyQTNBOyI%2BPCFFTlRJVFkgdHJpdGltZSAiJiN4MkEzQjsiPjwhRU5USVRZIGlwcm9kICImI3gyQTNDOyI%2BPCFFTlRJVFkgaW50cHJvZCAiJiN4MkEzQzsiPjwhRU5USVRZIGFtYWxnICImI3gyQTNGOyI%2BPCFFTlRJVFkgY2FwZG90ICImI3gyQTQwOyI%2BPCFFTlRJVFkgbmN1cCAiJiN4MkE0MjsiPjwhRU5USVRZIG5jYXAgIiYjeDJBNDM7Ij48IUVOVElUWSBjYXBhbmQgIiYjeDJBNDQ7Ij48IUVOVElUWSBjdXBvciAiJiN4MkE0NTsiPjwhRU5USVRZIGN1cGNhcCAiJiN4MkE0NjsiPjwhRU5USVRZIGNhcGN1cCAiJiN4MkE0NzsiPjwhRU5USVRZIGN1cGJyY2FwICImI3gyQTQ4OyI%2BPCFFTlRJVFkgY2FwYnJjdXAgIiYjeDJBNDk7Ij48IUVOVElUWSBjdXBjdXAgIiYjeDJBNEE7Ij48IUVOVElUWSBjYXBjYXAgIiYjeDJBNEI7Ij48IUVOVElUWSBjY3VwcyAiJiN4MkE0QzsiPjwhRU5USVRZIGNjYXBzICImI3gyQTREOyI%2BPCFFTlRJVFkgY2N1cHNzbSAiJiN4MkE1MDsiPjwhRU5USVRZIEFuZCAiJiN4MkE1MzsiPjwhRU5USVRZIE9yICImI3gyQTU0OyI%2BPCFFTlRJVFkgYW5kYW5kICImI3gyQTU1OyI%2BPCFFTlRJVFkgb3JvciAiJiN4MkE1NjsiPjwhRU5USVRZIG9yc2xvcGUgIiYjeDJBNTc7Ij48IUVOVElUWSBhbmRzbG9wZSAiJiN4MkE1ODsiPjwhRU5USVRZIGFuZHYgIiYjeDJBNUE7Ij48IUVOVElUWSBvcnYgIiYjeDJBNUI7Ij48IUVOVElUWSBhbmRkICImI3gyQTVDOyI%2BPCFFTlRJVFkgb3JkICImI3gyQTVEOyI%2BPCFFTlRJVFkgd2VkYmFyICImI3gyQTVGOyI%2BPCFFTlRJVFkgc2RvdGUgIiYjeDJBNjY7Ij48IUVOVElUWSBzaW1kb3QgIiYjeDJBNkE7Ij48IUVOVElUWSBjb25nZG90ICImI3gyQTZEOyI%2BPCFFTlRJVFkgbmNvbmdkb3QgIiYjeDJBNkQ7JiN4MzM4OyI%2BPCFFTlRJVFkgZWFzdGVyICImI3gyQTZFOyI%2BPCFFTlRJVFkgYXBhY2lyICImI3gyQTZGOyI%2BPCFFTlRJVFkgYXBFICImI3gyQTcwOyI%2BPCFFTlRJVFkgbmFwRSAiJiN4MkE3MDsmI3gzMzg7Ij48IUVOVElUWSBlcGx1cyAiJiN4MkE3MTsiPjwhRU5USVRZIHBsdXNlICImI3gyQTcyOyI%2BPCFFTlRJVFkgRXNpbSAiJiN4MkE3MzsiPjwhRU5USVRZIENvbG9uZSAiJiN4MkE3NDsiPjwhRU5USVRZIEVxdWFsICImI3gyQTc1OyI%2BPCFFTlRJVFkgZUREb3QgIiYjeDJBNzc7Ij48IUVOVElUWSBkZG90c2VxICImI3gyQTc3OyI%2BPCFFTlRJVFkgZXF1aXZERCAiJiN4MkE3ODsiPjwhRU5USVRZIGx0Y2lyICImI3gyQTc5OyI%2BPCFFTlRJVFkgZ3RjaXIgIiYjeDJBN0E7Ij48IUVOVElUWSBsdHF1ZXN0ICImI3gyQTdCOyI%2BPCFFTlRJVFkgZ3RxdWVzdCAiJiN4MkE3QzsiPjwhRU5USVRZIGxlcyAiJiN4MkE3RDsiPjwhRU5USVRZIExlc3NTbGFudEVxdWFsICImI3gyQTdEOyI%2BPCFFTlRJVFkgbGVxc2xhbnQgIiYjeDJBN0Q7Ij48IUVOVElUWSBubGVzICImI3gyQTdEOyYjeDMzODsiPjwhRU5USVRZIE5vdExlc3NTbGFudEVxdWFsICImI3gyQTdEOyYjeDMzODsiPjwhRU5USVRZIG5sZXFzbGFudCAiJiN4MkE3RDsmI3gzMzg7Ij48IUVOVElUWSBnZXMgIiYjeDJBN0U7Ij48IUVOVElUWSBHcmVhdGVyU2xhbnRFcXVhbCAiJiN4MkE3RTsiPjwhRU5USVRZIGdlcXNsYW50ICImI3gyQTdFOyI%2BPCFFTlRJVFkgbmdlcyAiJiN4MkE3RTsmI3gzMzg7Ij48IUVOVElUWSBOb3RHcmVhdGVyU2xhbnRFcXVhbCAiJiN4MkE3RTsmI3gzMzg7Ij48IUVOVElUWSBuZ2Vxc2xhbnQgIiYjeDJBN0U7JiN4MzM4OyI%2BPCFFTlRJVFkgbGVzZG90ICImI3gyQTdGOyI%2BPCFFTlRJVFkgZ2VzZG90ICImI3gyQTgwOyI%2BPCFFTlRJVFkgbGVzZG90byAiJiN4MkE4MTsiPjwhRU5USVRZIGdlc2RvdG8gIiYjeDJBODI7Ij48IUVOVElUWSBsZXNkb3RvciAiJiN4MkE4MzsiPjwhRU5USVRZIGdlc2RvdG9sICImI3gyQTg0OyI%2BPCFFTlRJVFkgbGFwICImI3gyQTg1OyI%2BPCFFTlRJVFkgbGVzc2FwcHJveCAiJiN4MkE4NTsiPjwhRU5USVRZIGdhcCAiJiN4MkE4NjsiPjwhRU5USVRZIGd0cmFwcHJveCAiJiN4MkE4NjsiPjwh
RU5USVRZIGxuZSAiJiN4MkE4NzsiPjwhRU5USVRZIGxuZXEgIiYjeDJBODc7Ij48IUVOVElUWSBnbmUgIiYjeDJBODg7Ij48IUVOVElUWSBnbmVxICImI3gyQTg4OyI%2BPCFFTlRJVFkgbG5hcCAiJiN4MkE4OTsiPjwhRU5USVRZIGxuYXBwcm94ICImI3gyQTg5OyI%2BPCFFTlRJVFkgZ25hcCAiJiN4MkE4QTsiPjwhRU5USVRZIGduYXBwcm94ICImI3gyQThBOyI%2BPCFFTlRJVFkgbEVnICImI3gyQThCOyI%2BPCFFTlRJVFkgbGVzc2VxcWd0ciAiJiN4MkE4QjsiPjwhRU5USVRZIGdFbCAiJiN4MkE4QzsiPjwhRU5USVRZIGd0cmVxcWxlc3MgIiYjeDJBOEM7Ij48IUVOVElUWSBsc2ltZSAiJiN4MkE4RDsiPjwhRU5USVRZIGdzaW1lICImI3gyQThFOyI%2BPCFFTlRJVFkgbHNpbWcgIiYjeDJBOEY7Ij48IUVOVElUWSBnc2ltbCAiJiN4MkE5MDsiPjwhRU5USVRZIGxnRSAiJiN4MkE5MTsiPjwhRU5USVRZIGdsRSAiJiN4MkE5MjsiPjwhRU5USVRZIGxlc2dlcyAiJiN4MkE5MzsiPjwhRU5USVRZIGdlc2xlcyAiJiN4MkE5NDsiPjwhRU5USVRZIGVscyAiJiN4MkE5NTsiPjwhRU5USVRZIGVxc2xhbnRsZXNzICImI3gyQTk1OyI%2BPCFFTlRJVFkgZWdzICImI3gyQTk2OyI%2BPCFFTlRJVFkgZXFzbGFudGd0ciAiJiN4MkE5NjsiPjwhRU5USVRZIGVsc2RvdCAiJiN4MkE5NzsiPjwhRU5USVRZIGVnc2RvdCAiJiN4MkE5ODsiPjwhRU5USVRZIGVsICImI3gyQTk5OyI%2BPCFFTlRJVFkgZWcgIiYjeDJBOUE7Ij48IUVOVElUWSBzaW1sICImI3gyQTlEOyI%2BPCFFTlRJVFkgc2ltZyAiJiN4MkE5RTsiPjwhRU5USVRZIHNpbWxFICImI3gyQTlGOyI%2BPCFFTlRJVFkgc2ltZ0UgIiYjeDJBQTA7Ij48IUVOVElUWSBMZXNzTGVzcyAiJiN4MkFBMTsiPjwhRU5USVRZIE5vdE5lc3RlZExlc3NMZXNzICImI3gyQUExOyYjeDMzODsiPjwhRU5USVRZIEdyZWF0ZXJHcmVhdGVyICImI3gyQUEyOyI%2BPCFFTlRJVFkgTm90TmVzdGVkR3JlYXRlckdyZWF0ZXIgIiYjeDJBQTI7JiN4MzM4OyI%2BPCFFTlRJVFkgZ2xqICImI3gyQUE0OyI%2BPCFFTlRJVFkgZ2xhICImI3gyQUE1OyI%2BPCFFTlRJVFkgbHRjYyAiJiN4MkFBNjsiPjwhRU5USVRZIGd0Y2MgIiYjeDJBQTc7Ij48IUVOVElUWSBsZXNjYyAiJiN4MkFBODsiPjwhRU5USVRZIGdlc2NjICImI3gyQUE5OyI%2BPCFFTlRJVFkgc210ICImI3gyQUFBOyI%2BPCFFTlRJVFkgbGF0ICImI3gyQUFCOyI%2BPCFFTlRJVFkgc210ZSAiJiN4MkFBQzsiPjwhRU5USVRZIHNtdGVzICImI3gyQUFDOyYjeEZFMDA7Ij48IUVOVElUWSBsYXRlICImI3gyQUFEOyI%2BPCFFTlRJVFkgbGF0ZXMgIiYjeDJBQUQ7JiN4RkUwMDsiPjwhRU5USVRZIGJ1bXBFICImI3gyQUFFOyI%2BPCFFTlRJVFkgcHJlICImI3gyQUFGOyI%2BPCFFTlRJVFkgcHJlY2VxICImI3gyQUFGOyI%2BPCFFTlRJVFkgUHJlY2VkZXNFcXVhbCAiJiN4MkFBRjsiPjwhRU5USVRZIG5wcmUgIiYjeDJBQUY7JiN4MzM4OyI%2BPCFFTlRJVFkgbnByZWNlcSAiJiN4MkFBRjsmI3gzMzg7Ij48IUVOVElUWSBOb3RQcmVjZWRlc0VxdWFsICImI3gyQUFGOyYjeDMzODsiPjwhRU5USVRZIHNjZSAiJiN4MkFCMDsiPjwhRU5USVRZIHN1Y2NlcSAiJiN4MkFCMDsiPjwhRU5USVRZIFN1Y2NlZWRzRXF1YWwgIiYjeDJBQjA7Ij48IUVOVElUWSBuc2NlICImI3gyQUIwOyYjeDMzODsiPjwhRU5USVRZIG5zdWNjZXEgIiYjeDJBQjA7JiN4MzM4OyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHNFcXVhbCAiJiN4MkFCMDsmI3gzMzg7Ij48IUVOVElUWSBwckUgIiYjeDJBQjM7Ij48IUVOVElUWSBzY0UgIiYjeDJBQjQ7Ij48IUVOVElUWSBwcm5FICImI3gyQUI1OyI%2BPCFFTlRJVFkgcHJlY25lcXEgIiYjeDJBQjU7Ij48IUVOVElUWSBzY25FICImI3gyQUI2OyI%2BPCFFTlRJVFkgc3VjY25lcXEgIiYjeDJBQjY7Ij48IUVOVElUWSBwcmFwICImI3gyQUI3OyI%2BPCFFTlRJVFkgcHJlY2FwcHJveCAiJiN4MkFCNzsiPjwhRU5USVRZIHNjYXAgIiYjeDJBQjg7Ij48IUVOVElUWSBzdWNjYXBwcm94ICImI3gyQUI4OyI%2BPCFFTlRJVFkgcHJuYXAgIiYjeDJBQjk7Ij48IUVOVElUWSBwcmVjbmFwcHJveCAiJiN4MkFCOTsiPjwhRU5USVRZIHNjbmFwICImI3gyQUJBOyI%2BPCFFTlRJVFkgc3VjY25hcHByb3ggIiYjeDJBQkE7Ij48IUVOVElUWSBQciAiJiN4MkFCQjsiPjwhRU5USVRZIFNjICImI3gyQUJDOyI%2BPCFFTlRJVFkgc3ViZG90ICImI3gyQUJEOyI%2BPCFFTlRJVFkgc3VwZG90ICImI3gyQUJFOyI%2BPCFFTlRJVFkgc3VicGx1cyAiJiN4MkFCRjsiPjwhRU5USVRZIHN1cHBsdXMgIiYjeDJBQzA7Ij48IUVOVElUWSBzdWJtdWx0ICImI3gyQUMxOyI%2BPCFFTlRJVFkgc3VwbXVsdCAiJiN4MkFDMjsiPjwhRU5USVRZIHN1YmVkb3QgIiYjeDJBQzM7Ij48IUVOVElUWSBzdXBlZG90ICImI3gyQUM0OyI%2BPCFFTlRJVFkgc3ViRSAiJiN4MkFDNTsiPjwhRU5USVRZIHN1YnNldGVxcSAiJiN4MkFDNTsiPjwhRU5USVRZIG5zdWJFICImI3gyQUM1OyYjeDMzODsiPjwhRU5USVRZIG5zdWJzZXRlcXEgIiYjeDJBQzU7JiN4MzM4OyI%2BPCFFTlRJVFkgc3VwRSAiJiN4MkFDNjsiPjwhRU5USVRZIHN1cHNldGVxcSAiJiN4MkFDNjsiPjwhRU5USVRZIG5zdXBFICImI3gyQUM2OyYjeDMzODsiPjwhRU5USVRZIG5zdXBzZXRlcXEgIiYjeDJBQzY7JiN4MzM4OyI%2BPCFFTlRJVFkgc3Vic2ltICImI3gyQUM3OyI%2BPCFFTlRJVFkgc3Vwc2ltICImI3gyQUM4OyI%2BPCFFTlRJVFkgc3VibkUgIiYjeDJBQ0I7Ij48IUVOVElUWSBzdWJzZXRuZXFxICImI3gyQUNCOyI%2BPCFFTlRJVFkgdnN1Ym5FICImI3gyQUNCOyYjeEZFMDA7Ij48IUVOVElUWSB2YXJzdWJzZXRuZXFxICImI3gyQUNCOyYjeEZFMDA7Ij48IUVOVElUWSBzdXBuRSAiJiN4MkFDQzsiPjwhRU5USVRZIHN1cHNldG5lcXEgIiYjeDJBQ0M7Ij48IUVOVElUWSB2c3VwbkUgIiYjeDJBQ0M7JiN4RkUwMDsiPjwhRU5USVRZIHZhcnN1cHNldG5lcXEgIiYjeDJBQ0M7JiN4RkUwMDsiPjwhRU5USVRZIGNzdWIgIiYjeDJBQ0Y7Ij48IUVOVElUWSBjc3VwICImI3gyQUQwOyI%2BPCFFTlRJVFkgY3N1YmUgIiYjeDJBRDE7Ij48IUVOVElUWSBjc3VwZSAiJiN4MkFEMjsiPjwhRU5USVRZIHN1YnN1cCAiJiN4MkFEMzsiPjwhRU5USVRZIHN1cHN1YiAiJiN4MkFENDsiPjwhRU5USVRZIHN1YnN1YiAiJiN4MkFENTsiPjwhRU5USVRZIHN1cHN1cCAiJiN4MkFENjsiPjwhRU5USVRZIHN1cGhzdWIgIiYjeDJBRDc7Ij48IUVOVElUWSBzdXBkc3ViICImI3gyQUQ4OyI%2BPCFFTlRJVFkgZm9ya3YgIiYjeDJBRDk7Ij48IUVOVElUWSB0b3Bmb3JrICImI3gyQURBOyI%2BPCFFTlRJVFkgbWxjcCAiJiN4MkFEQjsiPjwhRU5USVRZIERhc2h2ICImI3gyQUU0OyI%2BPCFFTlRJVFkgRG91YmxlTGVmdFRlZSAiJiN4MkFFNDsiPjwhRU5USVRZIFZkYXNobCAiJiN4MkFFNjsiPjwhRU5USVRZIEJhcnYgIiYjeDJBRTc7Ij48IUVOVElUWSB2QmFyICImI3gyQUU4OyI%2BPCFFTlRJVFkgdkJhcnYgIiYjeDJBRTk7Ij48IUVOVElUWSBWYmFyICImI3gyQUVCOyI%2BPCFFTlRJVFkgTm90ICImI3gyQUVDOyI%2BPCFFTlRJVFkgYk5vdCAiJiN4MkFFRDsiPjwhRU5USVRZIHJubWlkICImI3gyQUVFOyI%2BPCFFTlRJVFkgY2lybWlkICImI3gyQUVGOyI%2BPCFFTlRJVFkgbWlkY2lyICImI3gyQUYwOyI%2BPCFFTlRJVFkgdG9wY2lyICImI3gyQUYxOyI%2BPCFFTlRJVFkgbmhwYXIgIiYjeDJBRjI7Ij48IUVOVElUWSBwYXJzaW0gIiYjeDJBRjM7Ij48IUVOVElUWSBwYXJzbCAiJiN4MkFGRDsiPjwhRU5USVRZIG5wYXJzbCAiJiN4MkFGRDsmI3gyMEU1OyI%2BPCFFTlRJVFkgZmZsaWcgIiYjeEZCMDA7Ij48IUVOVElUWSBmaWxpZyAiJiN4RkIwMTsiPjwhRU5USVRZIGZsbGlnICImI3hGQjAyOyI%2BPCFFTlRJVFkgZmZpbGlnICImI3hGQjAzOyI%2BPCFFTlRJVFkgZmZsbGlnICImI3hGQjA0OyI%2BPCFFTlRJVFkgQXNjciAiJiN4MUQ0OUM7Ij48IUVOVElUWSBDc2NyICImI3gxRDQ5RTsiPjwhRU5USVRZIERzY3IgIiYjeDFENDlGOyI%2BPCFFTlRJVFkgR3NjciAiJiN4MUQ0QTI7Ij48IUVOVElUWSBKc2NyICImI3gxRDRBNTsiPjwhRU5USVRZIEtzY3IgIiYjeDFENEE2OyI%2BPCFFTlRJVFkgTnNjciAiJiN4MUQ0QTk7Ij48IUVOVElUWSBPc2NyICImI3gxRDRBQTsiPjwhRU5USVRZIFBzY3IgIiYjeDFENEFCOyI%2BPCFFTlRJVFkgUXNjciAiJiN4MUQ0QUM7Ij48IUVOVElUWSBTc2NyICImI3gxRDRBRTsiPjwhRU5USVRZIFRzY3IgIiYjeDFENEFGOyI%2BPCFFTlRJVFkgVXNjciAiJiN4MUQ0QjA7Ij48IUVOVElUWSBWc2NyICImI3gxRDRCMTsiPjwhRU5USVRZIFdzY3IgIiYjeDFENEIyOyI%2BPCFFTlRJVFkgWHNjciAiJiN4MUQ0QjM7Ij48IUVOVElUWSBZc2NyICImI3gxRDRCNDsiPjwhRU5USVRZIFpzY3IgIiYjeDFENEI1OyI%2BPCFFTlRJVFkgYXNjciAiJiN4MUQ0QjY7Ij48IUVOVElUWSBic2NyICImI3gxRDRCNzsiPjwhRU5USVRZIGNzY3IgIiYjeDFENEI4OyI%2BPCFFTlRJVFkgZHNjciAiJiN4MUQ0Qjk7Ij48IUVOVElUWSBmc2NyICImI3gxRDRCQjsiPjwhRU5USVRZIGhzY3IgIiYjeDFENEJEOyI%2BPCFFTlRJVFkgaXNjciAiJiN4MUQ0QkU7Ij48IUVOVElUWSBqc2NyICImI3gxRDRCRjsiPjwhRU5USVRZIGtzY3IgIiYjeDFENEMwOyI%2BPCFFTlRJVFkgbHNjciAiJiN4MUQ0QzE7Ij48IUVOVElUWSBtc2NyICImI3gxRDRDMjsiPjwhRU5USVRZIG5zY3IgIiYjeDFENEMzOyI%2BPCFFTlRJVFkgcHNjciAiJiN4MUQ0QzU7Ij48IUVOVElUWSBxc2NyICImI3gxRDRDNjsiPjwhRU5USVRZIHJzY3IgIiYjeDFENEM3OyI%2BPCFFTlRJVFkgc3NjciAiJiN4MUQ0Qzg7Ij48IUVOVElUWSB0c2NyICImI3gxRDRDOTsiPjwhRU5USVRZIHVzY3IgIiYjeDFENENBOyI%2BPCFFTlRJVFkgdnNjciAiJiN4MUQ0Q0I7Ij48IUVOVElUWSB3c2NyICImI3gxRDRDQzsiPjwhRU5USVRZIHhzY3IgIiYjeDFENENEOyI%2BPCFFTlRJVFkgeXNjciAiJiN4MUQ0Q0U7Ij48IUVOVElUWSB6c2NyICImI3gxRDRDRjsiPjwhRU5USVRZIEFmciAiJiN4MUQ1MDQ7Ij48IUVOVElUWSBCZnIgIiYjeDFENTA1OyI%2BPCFFTlRJVFkgRGZyICImI3gxRDUwNzsiPjwhRU5USVRZIEVmciAiJiN4MUQ1MDg7Ij48IUVOVElUWSBGZnIgIiYjeDFENTA5OyI%2BPCFFTlRJVFkgR2ZyICImI3gxRDUwQTsiPjwhRU5USVRZIEpmciAiJiN4MUQ1MEQ7Ij48IUVOVElUWSBLZnIgIiYjeDFENTBFOyI%2BPCFFTlRJVFkgTGZyICImI3gxRDUwRjsiPjwhRU5USVRZIE1mciAiJiN4MUQ1MTA7Ij48IUVOVElUWSBOZnIgIiYjeDFENTExOyI%2BPCFFTlRJVFkgT2ZyICImI3gxRDUxMjsiPjwhRU5USVRZIFBmciAiJiN4MUQ1MTM7Ij48IUVOVElUWSBRZnIgIiYjeDFENTE0OyI%2BPCFFTlRJVFkgU2ZyICImI3gxRDUxNjsiPjwhRU5USVRZIFRmciAiJiN4MUQ1MTc7Ij48IUVOVElUWSBVZnIgIiYjeDFENTE4OyI%2BPCFFTlRJVFkgVmZyICImI3gxRDUxOTsiPjwhRU5USVRZIFdmciAiJiN4MUQ1MUE7Ij48IUVOVElUWSBYZnIgIiYjeDFENTFCOyI%2BPCFFTlRJVFkgWWZyICImI3gxRDUxQzsiPjwhRU5USVRZIGFmciAiJiN4MUQ1MUU7Ij48IUVOVElUWSBiZnIgIiYjeDFENTFGOyI%2BPCFFTlRJVFkgY2ZyICImI3gxRDUyMDsiPjwhRU5USVRZIGRmciAiJiN4MUQ1MjE7Ij48IUVOVElUWSBlZnIgIiYjeDFENTIyOyI%2BPCFFTlRJVFkgZmZyICImI3gxRDUyMzsiPjwhRU5USVRZIGdmciAiJiN4MUQ1MjQ7Ij48IUVOVElUWSBoZnIgIiYjeDFENTI1OyI%2BPCFFTlRJVFkgaWZyICImI3gxRDUyNjsiPjwhRU5USVRZIGpmciAiJiN4MUQ1Mjc7Ij48IUVOVElUWSBrZnIgIiYjeDFENTI4OyI%2BPCFFTlRJVFkgbGZyICImI3gxRDUyOTsiPjwhRU5USVRZIG1mciAiJiN4MUQ1MkE7Ij48IUVOVElUWSBuZnIgIiYjeDFENTJCOyI%2BPCFFTlRJVFkgb2ZyICImI3gxRDUyQzsiPjwhRU5USVRZIHBmciAiJiN4MUQ1MkQ7Ij48IUVOVElUWSBxZnIgIiYjeDFENTJFOyI%2BPCFFTlRJVFkgcmZyICImI3gxRDUyRjsiPjwhRU5USVRZIHNmciAiJiN4MUQ1MzA7Ij48IUVOVElUWSB0ZnIgIiYjeDFENTMxOyI%2BPCFFTlRJVFkgdWZyICImI3gxRDUzMjsiPjwhRU5USVRZIHZmciAiJiN4MUQ1MzM7Ij48IUVOVElUWSB3ZnIgIiYjeDFENTM0OyI%2BPCFFTlRJVFkgeGZyICImI3gxRDUzNTsiPjwhRU5USVRZIHlmciAiJiN4MUQ1MzY7Ij48IUVOVElUWSB6ZnIgIiYjeDFENTM3OyI%2BPCFFTlRJVFkgQW9wZiAiJiN4MUQ1Mzg7Ij48IUVOVElUWSBCb3BmICImI3gxRDUzOTsiPjwhRU5USVRZIERvcGYgIiYjeDFENTNCOyI%2BPCFFTlRJVFkgRW9wZiAiJiN4MUQ1M0M7Ij48IUVOVElUWSBGb3BmICImI3gxRDUzRDsiPjwhRU5USVRZIEdvcGYgIiYjeDFENTNFOyI%2BPCFFTlRJVFkgSW9wZiAiJiN4MUQ1NDA7Ij48IUVOVElUWSBKb3BmICImI3gxRDU0MTsiPjwhRU5USVRZIEtvcGYgIiYjeDFENTQyOyI%2BPCFFTlRJVFkgTG9wZiAiJiN4MUQ1NDM7Ij48IUVOVElUWSBNb3BmICImI3gxRDU0NDsiPjwhRU5USVRZIE9vcGYgIiYjeDFENTQ2OyI%2BPCFFTlRJVFkgU29wZiAiJiN4MUQ1NEE7Ij48IUVOVElUWSBUb3BmICImI3gxRDU0QjsiPjwhRU5USVRZIFVvcGYgIiYjeDFENTRDOyI%2BPCFFTlRJVFkgVm9wZiAiJiN4MUQ1NEQ7Ij48IUVOVElUWSBXb3BmICImI3gxRDU0RTsiPjwhRU5USVRZIFhvcGYgIiYjeDFENTRGOyI%2BPCFFTlRJVFkgWW9wZiAiJiN4MUQ1NTA7Ij48IUVOVElUWSBhb3BmICImI3gxRDU1MjsiPjwhRU5USVRZIGJvcGYgIiYjeDFENTUzOyI%2BPCFFTlRJVFkgY29wZiAiJiN4MUQ1NTQ7Ij48IUVOVElUWSBkb3BmICImI3gxRDU1NTsiPjwhRU5USVRZIGVvcGYgIiYjeDFENTU2OyI%2BPCFFTlRJVFkgZm9wZiAiJiN4MUQ1NTc7Ij48IUVOVElUWSBnb3BmICImI3gxRDU1ODsiPjwhRU5USVRZIGhvcGYgIiYjeDFENTU5OyI%2BPCFFTlRJVFkgaW9wZiAiJiN4MUQ1NUE7Ij48IUVOVElUWSBqb3BmICImI3gxRDU1QjsiPjwhRU5USVRZIGtvcGYgIiYjeDFENTVDOyI%2BPCFFTlRJVFkgbG9wZiAiJiN4MUQ1NUQ7Ij48IUVOVElUWSBtb3BmICImI3gxRDU1RTsiPjwhRU5USVRZIG5vcGYgIiYjeDFENTVGOyI%2BPCFFTlRJVFkgb29wZiAiJiN4MUQ1NjA7Ij48IUVOVElUWSBwb3BmICImI3gxRDU2MTsiPjwhRU5USVRZIHFvcGYgIiYjeDFENTYyOyI%2BPCFFTlRJVFkgcm9wZiAiJiN4MUQ1NjM7Ij48IUVOVElUWSBzb3BmICImI3gxRDU2NDsiPjwhRU5USVRZIHRvcGYgIiYjeDFENTY1OyI%2BPCFFTlRJVFkgdW9wZiAiJiN4MUQ1NjY7Ij48IUVOVElUWSB2b3BmICImI3gxRDU2NzsiPjwhRU5USVRZIHdvcGYgIiYjeDFENTY4OyI%2BPCFFTlRJVFkgeG9wZiAiJiN4MUQ1Njk7Ij48IUVOVElUWSB5b3BmICImI3gxRDU2QTsiPjwhRU5USVRZIHpvcGYgIiYjeDFENTZCOyI%2B
https://www.w3.org/TR/xml/#sec-entity-decl
https://www.w3.org/TR/xml/#sec-entity-decl
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#interface-documentfragment

When an XML parserp1384 creates a Node object, its node document must be set to the node document of the node into which the newly
created node is to be inserted.

Certain algorithms in this specification spoon-feed the parser characters one string at a time. In such cases, the XML parserp1384

must act as it would have if faced with a single string consisting of the concatenation of all those characters.

When an XML parserp1384 reaches the end of its input, it must stop parsingp1358, following the same rules as the HTML parserp1271. An
XML parserp1384 can also be abortedp1359, which must again be done in the same way as for an HTML parserp1271.

For the purposes of conformance checkers, if a resource is determined to be in the XML syntaxp1384, then it is an XML document.

The XML fragment serialization algorithm for a Documentp130 or Element node either returns a fragment of XML that represents
that node or throws an exception.

For Documentp130s, the algorithm must return a string in the form of a document entity, if none of the error cases below apply.

For Elements, the algorithm must return a string in the form of an internal general parsed entity, if none of the error cases below apply.

In both cases, the string returned must be XML namespace-well-formed and must be an isomorphic serialization of all of that node's
relevant child nodesp1386, in tree order. User agents may adjust prefixes and namespace declarations in the serialization (and indeed
might be forced to do so in some cases to obtain namespace-well-formed XML). User agents may use a combination of regular text and
character references to represent Text nodes in the DOM.

A node's relevant child nodes are those that apply given the following rules:

For templatep671 elements
The relevant child nodesp1386 are the child nodes of the templatep671 element's template contentsp673, if any.

For all other nodes
The relevant child nodesp1386 are the child nodes of node itself, if any.

For Elements, if any of the elements in the serialization are in no namespace, the default namespace in scope for those elements must
be explicitly declared as the empty string. (This doesn't apply in the Documentp130 case.) [XML]p1484 [XMLNS]p1484

For the purposes of this section, an internal general parsed entity is considered XML namespace-well-formed if a document consisting
of an element with no namespace declarations whose contents are the internal general parsed entity would itself be XML namespace-
well-formed.

If any of the following error cases are found in the DOM subtree being serialized, then the algorithm must throw an
"InvalidStateError" DOMException instead of returning a string:

• A Documentp130 node with no child element nodes.

• A DocumentType node that has an external subset public identifier that contains characters that are not matched by the XML
PubidChar production. [XML]p1484

• A DocumentType node that has an external subset system identifier that contains both a U+0022 QUOTATION MARK (") and a
U+0027 APOSTROPHE (') or that contains characters that are not matched by the XML Char production. [XML]p1484

• A node with a local name containing a U+003A COLON (:).

• A node with a local name that does not match the XML Name production. [XML]p1484

• An Attr node with no namespace whose local name is the lowercase string "xmlns". [XMLNS]p1484

• An Element node with two or more attributes with the same local name and namespace.

• An Attr node, Text node, Comment node, or ProcessingInstruction node whose data contains characters that are not
matched by the XML Char production. [XML]p1484

• A Comment node whose data contains two adjacent U+002D HYPHEN-MINUS characters (-) or ends with such a character.

14.3 Serializing XML fragments §p13

86

1386

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#xml-document
https://dom.spec.whatwg.org/#interface-element
https://www.w3.org/TR/xml/#sec-well-formed
https://dom.spec.whatwg.org/#interface-element
https://www.w3.org/TR/xml/#wf-entities
https://dom.spec.whatwg.org/#concept-tree-order
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-element
https://webidl.spec.whatwg.org/#invalidstateerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#interface-documenttype
https://dom.spec.whatwg.org/#interface-documenttype
https://www.w3.org/TR/xml/#NT-Name
https://dom.spec.whatwg.org/#interface-attr
https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-attr
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-comment
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-comment

• A ProcessingInstruction node whose target name is an ASCII case-insensitive match for the string "xml".

• A ProcessingInstruction node whose target name contains a U+003A COLON (:).

• A ProcessingInstruction node whose data contains the string "?>".

The XML fragment parsing algorithm either returns a Documentp130 or throws a "SyntaxError" DOMException. Given a string input
and a context element contextp1373, the algorithm is as follows:

1. Create a new XML parserp1384.

2. Feed the parserp1386 just created the string corresponding to the start tag of the contextp1373 element, declaring all the
namespace prefixes that are in scope on that element in the DOM, as well as declaring the default namespace (if any) that is
in scope on that element in the DOM.

A namespace prefix is in scope if the DOM lookupNamespaceURI() method on the element would return a non-null value for
that prefix.

The default namespace is the namespace for which the DOM isDefaultNamespace() method on the element would return
true.

3. Feed the parserp1386 just created the string input.

4. Feed the parserp1386 just created the string corresponding to the end tag of the contextp1373 element.

5. If there is an XML well-formedness or XML namespace well-formedness error, then throw a "SyntaxError" DOMException.

6. If the document element of the resulting Documentp130 has any sibling nodes, then throw a "SyntaxError" DOMException.

7. Return the child nodes of the document element of the resulting Documentp130, in tree order.

These are the only ways to make a DOM unserialisable. The DOM enforces all the other XML constraints; for example, trying to
append two elements to a Documentp130 node will throw a "HierarchyRequestError" DOMException.

Note

14.4 Parsing XML fragments §p13

87

No DOCTYPE is passed to the parser, and therefore no external subset is referenced, and therefore no entities will be
recognized.

Note

1387

https://dom.spec.whatwg.org/#interface-processinginstruction
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#interface-processinginstruction
https://dom.spec.whatwg.org/#interface-processinginstruction
https://webidl.spec.whatwg.org/#hierarchyrequesterror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#document-element
https://webidl.spec.whatwg.org/#syntaxerror
https://webidl.spec.whatwg.org/#dfn-DOMException
https://dom.spec.whatwg.org/#document-element
https://dom.spec.whatwg.org/#concept-tree-order

User agents are not required to present HTML documents in any particular way. However, this section provides a set of suggestions for
rendering HTML documents that, if followed, are likely to lead to a user experience that closely resembles the experience intended by
the documents' authors. So as to avoid confusion regarding the normativity of this section, "must" has not been used. Instead, the
term "expected" is used to indicate behavior that will lead to this experience. For the purposes of conformance for user agents
designated as supporting the suggested default renderingp48, the term "expected" in this section has the same conformance
implications as "must".

The suggestions in this section are generally expressed in CSS terms. User agents are expected to either support CSS, or translate
from the CSS rules given in this section to approximations for other presentation mechanisms.

In the absence of style-layer rules to the contrary (e.g. author style sheets), user agents are expected to render an element so that it
conveys to the user the meaning that the element representsp141, as described by this specification.

The suggestions in this section generally assume a visual output medium with a resolution of 96dpi or greater, but HTML is intended to
apply to multiple media (it is a media-independent language). User agent implementers are encouraged to adapt the suggestions in
this section to their target media.

An element is being rendered if it has any associated CSS layout boxes, SVG layout boxes, or some equivalent in other styling
languages.

An element is said to intersect the viewport when it is being renderedp1388 and its associated CSS layout box intersects the viewport.

An element is delegating its rendering to its children if it is not being renderedp1388 but its children (if any) could be renderedp1388,
as a result of CSS 'display: contents', or some equivalent in other styling languages. [CSSDISPLAY]p1476

User agents that do not honor author-level CSS style sheets are nonetheless expected to act as if they applied the CSS rules given in
these sections in a manner consistent with this specification and the relevant CSS and Unicode specifications. [CSS]p1476

[UNICODE]p1483 [BIDI]p1475

15 Rendering §p13

88

15.1 Introduction §p13

88

Just being off-screen does not mean the element is not being renderedp1388. The presence of the hiddenp824 attribute normally
means the element is not being renderedp1388, though this might be overridden by the style sheets.

Note

The fully activep1003 state does not affect whether an element is being renderedp1388 or not. Even if a document is not fully
activep1003 and not shown at all to the user, elements within it can still qualify as "being rendered".

Note

Similar to the being renderedp1388 state, elements in non-fully activep1003 documents can still intersect the viewportp1388. The
viewport is not shared between documents and might not always be shown to the user, so an element in a non-fully activep1003

document can still intersect the viewport associated with its document.

Note

This specification does not define the precise timing for when the intersection is tested, but it is suggested that the timing match
that of the Intersection Observer API. [INTERSECTIONOBSERVER]p1479

Note

1388

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css2/#viewport

The CSS rules given in these subsections are, except where otherwise specified, expected to be used as part of the user-agent level
style sheet defaults for all documents that contain HTML elementsp45.

Some rules are intended for the author-level zero-specificity presentational hints part of the CSS cascade; these are explicitly called out
as presentational hints.

When the text below says that an attribute attribute on an element element maps to the pixel length property (or properties)
properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for parsing non-
negative integersp77 doesn't generate an error, then the user agent is expected to use the parsed value as a pixel length for a
presentational hintp1389 for properties.

When the text below says that an attribute attribute on an element element maps to the dimension property (or properties)
properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for parsing
dimension valuesp79 doesn't generate an error, then the user agent is expected to use the parsed dimension as the value for a
presentational hintp1389 for properties, with the value given as a pixel length if the dimension was a length, and with the value given as
a percentage if the dimension was a percentage.

When the text below says that an attribute attribute on an element element maps to the dimension property (ignoring zero) (or
properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for
parsing nonzero dimension valuesp80 doesn't generate an error, then the user agent is expected to use the parsed dimension as the
value for a presentational hintp1389 for properties, with the value given as a pixel length if the dimension was a length, and with the
value given as a percentage if the dimension was a percentage.

When the text below says that a pair of attributes w and h on an element element map to the aspect-ratio property, it means that
if element has both attributes w and h, and parsing those attributes' values using the rules for parsing non-negative integersp77 doesn't
generate an error for either, then the user agent is expected to use the parsed integers as a presentational hintp1389 for the 'aspect-
ratio' property of the form auto w / h.

When the text below says that a pair of attributes w and h on an element element map to the aspect-ratio property (using
dimension rules), it means that if element has both attributes w and h, and parsing those attributes' values using the rules for
parsing dimension valuesp79 doesn't generate an error or return a percentage for either, then the user agent is expected to use the
parsed dimensions as a presentational hintp1389 for the 'aspect-ratio' property of the form auto w / h.

When a user agent is to align descendants of a node, the user agent is expected to align only those descendants that have both
their 'margin-inline-start' and 'margin-inline-end' properties computing to a value other than 'auto', that are over-constrained and that
have one of those two margins with a used value forced to a greater value, and that do not themselves have an applicable align
attribute. When multiple elements are to alignp1389 a particular descendant, the most deeply nested such element is expected to
override the others. Aligned elements are expected to be aligned by having the used values of their margins on the line-left and line-
right sides be set accordingly. [CSSLOGICAL]p1477 [CSSWM]p1477

@namespace "http://www.w3.org/1999/xhtml";

area, base, basefont, datalist, head, link, meta, noembed,
noframes, param, rp, script, style, template, title {

display: none;
}

This is especially important for issues relating to the 'display', 'unicode-bidi', and 'direction' properties.
Note

15.2 The CSS user agent style sheet and presentational hints §p13

89

15.3 Non-replaced elements §p13

89

CSS

15.3.1 Hidden elements §p13

89

1389

https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-sizing-4/#aspect-ratio
https://drafts.csswg.org/css-sizing-4/#aspect-ratio
https://drafts.csswg.org/css-sizing-4/#aspect-ratio
https://drafts.csswg.org/css-logical/#propdef-margin-inline-start
https://drafts.csswg.org/css-logical/#propdef-margin-inline-end
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-writing-modes/#line-left
https://drafts.csswg.org/css-writing-modes/#line-right
https://drafts.csswg.org/css-writing-modes/#line-right

[hidden]:not([hidden=until-found i]):not(embed) {
display: none;

}

[hidden=until-found i]:not(embed) {
content-visibility: hidden;

}

embed[hidden] { display: inline; height: 0; width: 0; }

input[type=hidden i] { display: none !important; }

@media (scripting) {
noscript { display: none !important; }

}

@namespace "http://www.w3.org/1999/xhtml";

html, body { display: block; }

For each property in the table below, given a bodyp205 element, the first attribute that exists maps to the pixel length propertyp1389 on
the bodyp205 element. If none of the attributes for a property are found, or if the value of the attribute that was found cannot be parsed
successfully, then a default value of 8px is expected to be used for that property instead.

Property Source

'margin-top' The bodyp205 element's marginheightp1430 attribute
The bodyp205 element's topmarginp1430 attribute
The bodyp205 element's container frame elementp1390 's marginheightp1430 attribute

'margin-right' The bodyp205 element's marginwidthp1430 attribute
The bodyp205 element's rightmarginp1430 attribute
The bodyp205 element's container frame elementp1390 's marginwidthp1430 attribute

'margin-bottom' The bodyp205 element's marginheightp1430 attribute
The bodyp205 element's bottommarginp1430 attribute
The bodyp205 element's container frame elementp1390 's marginheightp1430 attribute

'margin-left' The bodyp205 element's marginwidthp1430 attribute
The bodyp205 element's leftmarginp1430 attribute
The bodyp205 element's container frame elementp1390 's marginwidthp1430 attribute

If the bodyp205 element's node document's node navigablep989 is a child navigablep992, and the containerp991 of that navigablep989 is a
framep1433 or iframep390 element, then the container frame element of the bodyp205 element is that framep1433 or iframep390 element.
Otherwise, there is no container frame elementp1390.

If a Documentp130 's node navigablep989 is a child navigablep992, then it is expected to be positioned and sized to fit inside the content box
of the containerp991 of that navigablep989. If the containerp991 is not being renderedp1388, the navigablep989 is expected to have a
viewport with zero width and zero height.

If a Documentp130 's node navigablep989 is a child navigablep992, the containerp991 of that navigablep989 is a framep1433 or iframep390

element, that element has a scrolling attribute, and that attribute's value is an ASCII case-insensitive match for the string "off",

The above requirements imply that a page can change the margins of another page (including one from another
originp898) using, for example, an iframep390. This is potentially a security risk, as it might in some cases allow an
attack to contrive a situation in which a page is rendered not as the author intended, possibly for the purposes of
phishing or otherwise misleading the user.

⚠Warning!

CSS

15.3.2 The page §p13

90

1390

https://drafts.csswg.org/css-box/#propdef-margin-top
https://drafts.csswg.org/css-box/#propdef-margin-right
https://drafts.csswg.org/css-box/#propdef-margin-bottom
https://drafts.csswg.org/css-box/#propdef-margin-left
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-box/#content-box
https://drafts.csswg.org/css2/#viewport
https://infra.spec.whatwg.org/#ascii-case-insensitive

"noscroll", or "no", then the user agent is expected to prevent any scrollbars from being shown for the viewport of the Documentp130 's
node navigablep989, regardless of the 'overflow' property that applies to that viewport.

When a bodyp205 element has a backgroundp1431 attribute set to a non-empty value, the new value is expected to be encoding-parsed-
and-serializedp97 relative to the element's node document, and if that does not return failure, the user agent is expected to treat the
attribute as a presentational hintp1389 setting the element's 'background-image' property to the return value.

When a bodyp205 element has a bgcolorp1430 attribute set, the new value is expected to be parsed using the rules for parsing a legacy
color valuep94, and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting
the element's 'background-color' property to the resulting color.

When a bodyp205 element has a textp1430 attribute, its value is expected to be parsed using the rules for parsing a legacy color valuep94,
and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the element's
'color' property to the resulting color.

When a bodyp205 element has a linkp1430 attribute, its value is expected to be parsed using the rules for parsing a legacy color valuep94,
and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the 'color'
property of any element in the Documentp130 matching the :linkp783 pseudo-class to the resulting color.

When a bodyp205 element has a vlinkp1430 attribute, its value is expected to be parsed using the rules for parsing a legacy color
valuep94, and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the
'color' property of any element in the Documentp130 matching the :visitedp783 pseudo-class to the resulting color.

When a bodyp205 element has an alinkp1430 attribute, its value is expected to be parsed using the rules for parsing a legacy color
valuep94, and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the
'color' property of any element in the Documentp130 matching the :activep783 pseudo-class and either the :linkp783 pseudo-class or the
:visitedp783 pseudo-class to the resulting color.

@namespace "http://www.w3.org/1999/xhtml";

address, blockquote, center, dialog, div, figure, figcaption, footer, form,
header, hr, legend, listing, main, p, plaintext, pre, search, xmp {

display: block;
}

blockquote, figure, listing, p, plaintext, pre, xmp {
margin-block: 1em;

}

blockquote, figure { margin-inline: 40px; }

address { font-style: italic; }
listing, plaintext, pre, xmp {

font-family: monospace; white-space: pre;
}

dialog:not([open]) { display: none; }
dialog {

position: absolute;
inset-inline-start: 0; inset-inline-end: 0;
width: fit-content;
height: fit-content;
margin: auto;
border: solid;
padding: 1em;
background-color: Canvas;
color: CanvasText;

CSS

15.3.3 Flow content §p13

91

1391

https://drafts.csswg.org/css2/#viewport
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css2/#viewport
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-backgrounds/#propdef-background-image
https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class
https://drafts.csswg.org/selectors/#pseudo-class

}
dialog:modal {

position: fixed;
overflow: auto;
inset-block: 0;
max-width: calc(100% - 6px - 2em);
max-height: calc(100% - 6px - 2em);

}
dialog::backdrop {

background: rgba(0,0,0,0.1);
}

[popover]:not(:popover-open):not(dialog[open]) {
display:none;

}

dialog:popover-open {
display:block;

}

[popover] {
position: fixed;
inset: 0;
width: fit-content;
height: fit-content;
margin: auto;
border: solid;
padding: 0.25em;
overflow: auto;
color: CanvasText;
background-color: Canvas;

}

:popover-open::backdrop {
position: fixed;
inset: 0;
pointer-events: none !important;
background-color: transparent;

}

slot {
display: contents;

}

The following rules are also expected to apply, as presentational hintsp1389:

@namespace "http://www.w3.org/1999/xhtml";

pre[wrap] { white-space: pre-wrap; }

In quirks mode, the following rules are also expected to apply:

@namespace "http://www.w3.org/1999/xhtml";

form { margin-block-end: 1em; }

The centerp1427 element, and the divp256 element when it has an alignp1430 attribute whose value is an ASCII case-insensitive match
for either the string "center" or the string "middle", are expected to center text within themselves, as if they had their 'text-align'
property set to 'center' in a presentational hintp1389, and to align descendantsp1389 to the center.

CSS

CSS

1392

https://dom.spec.whatwg.org/#concept-document-quirks
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property

The divp256 element, when it has an alignp1430 attribute whose value is an ASCII case-insensitive match for the string "left", is
expected to left-align text within itself, as if it had its 'text-align' property set to 'left' in a presentational hintp1389, and to align
descendantsp1389 to the left.

The divp256 element, when it has an alignp1430 attribute whose value is an ASCII case-insensitive match for the string "right", is
expected to right-align text within itself, as if it had its 'text-align' property set to 'right' in a presentational hintp1389, and to align
descendantsp1389 to the right.

The divp256 element, when it has an alignp1430 attribute whose value is an ASCII case-insensitive match for the string "justify", is
expected to full-justify text within itself, as if it had its 'text-align' property set to 'justify' in a presentational hintp1389, and to align
descendantsp1389 to the left.

@namespace "http://www.w3.org/1999/xhtml";

cite, dfn, em, i, var { font-style: italic; }
b, strong { font-weight: bolder; }
code, kbd, samp, tt { font-family: monospace; }
big { font-size: larger; }
small { font-size: smaller; }

sub { vertical-align: sub; }
sup { vertical-align: super; }
sub, sup { line-height: normal; font-size: smaller; }

ruby { display: ruby; }
rt { display: ruby-text; }

:link { color: #0000EE; }
:visited { color: #551A8B; }
:link:active, :visited:active { color: #FF0000; }
:link, :visited { text-decoration: underline; cursor: pointer; }

:focus-visible { outline: auto; }

mark { background: yellow; color: black; } /* this color is just a suggestion and can be changed based
on implementation feedback */

abbr[title], acronym[title] { text-decoration: dotted underline; }
ins, u { text-decoration: underline; }
del, s, strike { text-decoration: line-through; }

q::before { content: open-quote; }
q::after { content: close-quote; }

br { display-outside: newline; } /* this also has bidi implications */
nobr { white-space: nowrap; }
wbr { display-outside: break-opportunity; } /* this also has bidi implications */
nobr wbr { white-space: normal; }

The following rules are also expected to apply, as presentational hintsp1389:

@namespace "http://www.w3.org/1999/xhtml";

br[clear=left i] { clear: left; }
br[clear=right i] { clear: right; }
br[clear=all i], br[clear=both i] { clear: both; }

For the purposes of the CSS ruby model, runs of children of rubyp270 elements that are not rtp277 or rpp277 elements are expected to be

CSS

CSS

15.3.4 Phrasing content §p13

93

1393

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property

wrapped in anonymous boxes whose 'display' property has the value 'ruby-base'. [CSSRUBY]p1477

When a particular part of a ruby has more than one annotation, the annotations should be distributed on both sides of the base text so
as to minimize the stacking of ruby annotations on one side.

User agents that do not support correct ruby rendering are expected to render parentheses around the text of rtp277 elements in the
absence of rpp277 elements.

User agents are expected to support the 'clear' property on inline elements (in order to render brp299 elements with clearp1430

attributes) in the manner described in the non-normative note to this effect in CSS.

The initial value for the 'color' property is expected to be black. The initial value for the 'background-color' property is expected to be
'transparent'. The canvas's background is expected to be white.

When a fontp1427 element has a color attribute, its value is expected to be parsed using the rules for parsing a legacy color valuep94,
and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the element's
'color' property to the resulting color.

When a fontp1427 element has a face attribute, the user agent is expected to treat the attribute as a presentational hintp1389 setting the
element's 'font-family' property to the attribute's value.

When a fontp1427 element has a size attribute, the user agent is expected to use the following steps, known as the rules for parsing
a legacy font size, to treat the attribute as a presentational hintp1389 setting the element's 'font-size' property:

1. Let input be the attribute's value.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip ASCII whitespace within input given position.

4. If position is past the end of input, there is no presentational hintp1389. Return.

5. If the character at position is a U+002B PLUS SIGN character (+), then let mode be relative-plus, and advance position to the
next character. Otherwise, if the character at position is a U+002D HYPHEN-MINUS character (-), then let mode be relative-
minus, and advance position to the next character. Otherwise, let mode be absolute.

6. Collect a sequence of code points that are ASCII digits from input given position, and let the resulting sequence be digits.

7. If digits is the empty string, there is no presentational hintp1389. Return.

8. Interpret digits as a base-ten integer. Let value be the resulting number.

9. If mode is relative-plus, then increment value by 3. If mode is relative-minus, then let value be the result of subtracting value
from 3.

10. If value is greater than 7, let it be 7.

11. If value is less than 1, let it be 1.

12. Set 'font-size' to the keyword corresponding to the value of value according to the following table:

value 'font-size' keyword

1 'x-small'
2 'small'
3 'medium'
4 'large'
5 'x-large'
6 'xx-large'

When it becomes possible to do so, the preceding requirement will be updated to be expressed in terms of CSS ruby. (Currently,
CSS ruby does not handle nested rubyp270 elements or multiple sequential rtp277 elements, which is how this semantic is
expressed.)

Note

1394

https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-ruby/#valdef-display-ruby-base
https://drafts.csswg.org/css2/#flow-control
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-fonts/#font-family-prop
https://drafts.csswg.org/css-fonts/#font-size-prop
https://infra.spec.whatwg.org/#skip-ascii-whitespace
https://infra.spec.whatwg.org/#collect-a-sequence-of-code-points
https://infra.spec.whatwg.org/#ascii-digit
https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-fonts/#font-size-prop

value 'font-size' keyword

7 'xxx-large'

@namespace "http://www.w3.org/1999/xhtml";

[dir]:dir(ltr), bdi:dir(ltr), input[type=tel i]:dir(ltr) { direction: ltr; }
[dir]:dir(rtl), bdi:dir(rtl) { direction: rtl; }

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp, article, aside, h1, h2,
h3, h4, h5, h6, hgroup, nav, section, search, table, caption, colgroup, col,
thead, tbody, tfoot, tr, td, th, dir, dd, dl, dt, menu, ol, ul, li, bdi, output,
[dir=ltr i], [dir=rtl i], [dir=auto i] {

unicode-bidi: isolate;
}

bdo, bdo[dir] { unicode-bidi: isolate-override; }

input[dir=auto i]:is([type=search i], [type=tel i], [type=url i],
[type=email i]), textarea[dir=auto i], pre[dir=auto i] {

unicode-bidi: plaintext;
}
/* see prose for input elements whose type attribute is in the Text state */

/* the rules setting the 'content' property on br and wbr elements also has bidi implications */

When an inputp520 element's dirp160 attribute is in the autop160 state and its typep523 attribute is in the Textp527 state, then the user
agent is expected to act as if it had a user-agent-level style sheet rule setting the 'unicode-bidi' property to 'plaintext'.

Input fields (i.e. textareap579 elements, and inputp520 elements when their typep523 attribute is in the Textp527, Searchp527,
Telephonep528, URLp529, or Emailp530 state) are expected to present an editing user interface with a directionality that matches the
element's 'direction' property.

When the document's character encoding is ISO-8859-8, the following rules are additionally expected to apply, following those above:
[ENCODING]p1478

@namespace "http://www.w3.org/1999/xhtml";

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp, article, aside, h1, h2,
h3, h4, h5, h6, hgroup, nav, section, search, table, caption, colgroup, col,
thead, tbody, tfoot, tr, td, th, dir, dd, dl, dt, menu, ol, ul, li, [dir=ltr i],
[dir=rtl i], [dir=auto i], *|* {

unicode-bidi: bidi-override;
}
input:not([type=submit i]):not([type=reset i]):not([type=button i]),
textarea {

unicode-bidi: normal;
}

@namespace "http://www.w3.org/1999/xhtml";

article, aside, h1, h2, h3, h4, h5, h6, hgroup, nav, section {

CSS

CSS

CSS

15.3.5 Bidirectional text §p13

95

15.3.6 Sections and headings §p13

95

1395

https://drafts.csswg.org/css-fonts/#font-size-prop
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-writing-modes/#direction
https://encoding.spec.whatwg.org/#iso-8859-8

display: block;
}

h1 { margin-block: 0.67em; font-size: 2.00em; font-weight: bold; }
h2 { margin-block: 0.83em; font-size: 1.50em; font-weight: bold; }
h3 { margin-block: 1.00em; font-size: 1.17em; font-weight: bold; }
h4 { margin-block: 1.33em; font-size: 1.00em; font-weight: bold; }
h5 { margin-block: 1.67em; font-size: 0.83em; font-weight: bold; }
h6 { margin-block: 2.33em; font-size: 0.67em; font-weight: bold; }

In the following CSS block, x is shorthand for the following selector: :is(article, aside, nav, section)

@namespace "http://www.w3.org/1999/xhtml";

x h1 { margin-block: 0.83em; font-size: 1.50em; }
x x h1 { margin-block: 1.00em; font-size: 1.17em; }
x x x h1 { margin-block: 1.33em; font-size: 1.00em; }
x x x x h1 { margin-block: 1.67em; font-size: 0.83em; }
x x x x x h1 { margin-block: 2.33em; font-size: 0.67em; }

@namespace "http://www.w3.org/1999/xhtml";

dir, dd, dl, dt, menu, ol, ul { display: block; }
li { display: list-item; text-align: match-parent; }

dir, dl, menu, ol, ul { margin-block: 1em; }

:is(dir, dl, menu, ol, ul) :is(dir, dl, menu, ol, ul) {
margin-block: 0;

}

dd { margin-inline-start: 40px; }
dir, menu, ol, ul { padding-inline-start: 40px; }

ol, ul, menu { counter-reset: list-item; }
ol { list-style-type: decimal; }

dir, menu, ul {
list-style-type: disc;

}
:is(dir, menu, ol, ul) :is(dir, menu, ul) {

list-style-type: circle;
}
:is(dir, menu, ol, ul) :is(dir, menu, ol, ul) :is(dir, menu, ul) {

list-style-type: square;
}

The following rules are also expected to apply, as presentational hintsp1389:

@namespace "http://www.w3.org/1999/xhtml";

ol[type="1"], li[type="1"] { list-style-type: decimal; }

The shorthand is used to keep this block at least mildly readable.
Note

CSS

CSS

CSS

15.3.7 Lists §p13

96

1396

ol[type=a s], li[type=a s] { list-style-type: lower-alpha; }
ol[type=A s], li[type=A s] { list-style-type: upper-alpha; }
ol[type=i s], li[type=i s] { list-style-type: lower-roman; }
ol[type=I s], li[type=I s] { list-style-type: upper-roman; }
ul[type=none i], li[type=none i] { list-style-type: none; }
ul[type=disc i], li[type=disc i] { list-style-type: disc; }
ul[type=circle i], li[type=circle i] { list-style-type: circle; }
ul[type=square i], li[type=square i] { list-style-type: square; }

When rendering lip241 elements, non-CSS user agents are expected to use the ordinal valuep242 of the lip241 element to render the
counter in the list item marker.

For CSS user agents, some aspects of rendering list items are defined by the CSS Lists specification. Additionally, the following
attribute mappings are expected to apply: [CSSLISTS]p1477

When an lip241 element has a valuep242 attribute, and parsing that attribute's value using the rules for parsing integersp76 doesn't
generate an error, the user agent is expected to use the parsed value value as a presentational hintp1389 for the 'counter-set' property
of the form list-item value.

When an olp238 element has a startp238 attribute or a reversedp238 attribute, or both, the user agent is expected to use the following
steps to treat the attributes as a presentational hintp1389 for the 'counter-reset' property:

1. Let value be null.

2. If the element has a startp238 attribute, then set value to the result of parsing the attribute's value using the rules for
parsing integersp76.

3. If the element has a reversedp238 attribute, then:

1. If value is an integer, then increment value by 1 and return reversed(list-item) value.

2. Otherwise, return reversed(list-item).

4. Otherwise:

1. If value is an integer, then decrement value by 1 and return list-item value.

2. Otherwise, there is no presentational hintp1389.

@namespace "http://www.w3.org/1999/xhtml";

table { display: table; }
caption { display: table-caption; }
colgroup, colgroup[hidden] { display: table-column-group; }
col, col[hidden] { display: table-column; }
thead, thead[hidden] { display: table-header-group; }
tbody, tbody[hidden] { display: table-row-group; }
tfoot, tfoot[hidden] { display: table-footer-group; }
tr, tr[hidden] { display: table-row; }
td, th { display: table-cell; }

colgroup[hidden], col[hidden], thead[hidden], tbody[hidden],
tfoot[hidden], tr[hidden] {

visibility: collapse;
}

Either the startp238 attribute was absent, or parsing its value resulted in an error.
Note

CSS

15.3.8 Tables §p13

97

1397

https://drafts.csswg.org/css-lists/#list-item
https://drafts.csswg.org/css-lists/#propdef-counter-set
https://drafts.csswg.org/css-lists/#propdef-counter-reset

table {
box-sizing: border-box;
border-spacing: 2px;
border-collapse: separate;
text-indent: initial;

}
td, th { padding: 1px; }
th { font-weight: bold; }

caption { text-align: center; }
thead, tbody, tfoot, table > tr { vertical-align: middle; }
tr, td, th { vertical-align: inherit; }

thead, tbody, tfoot, tr { border-color: inherit; }
table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i], table[frame=void i],
table[frame=above i], table[frame=below i], table[frame=hsides i],
table[frame=lhs i], table[frame=rhs i], table[frame=vsides i],
table[frame=box i], table[frame=border i],
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {

border-color: black;
}

The following rules are also expected to apply, as presentational hintsp1389:

@namespace "http://www.w3.org/1999/xhtml";

table[align=left i] { float: left; }
table[align=right i] { float: right; }
table[align=center i] { margin-inline: auto; }
thead[align=absmiddle i], tbody[align=absmiddle i], tfoot[align=absmiddle i],
tr[align=absmiddle i], td[align=absmiddle i], th[align=absmiddle i] {

text-align: center;
}

caption[align=bottom i] { caption-side: bottom; }
p[align=left i], h1[align=left i], h2[align=left i], h3[align=left i],
h4[align=left i], h5[align=left i], h6[align=left i] {

text-align: left;
}
p[align=right i], h1[align=right i], h2[align=right i], h3[align=right i],
h4[align=right i], h5[align=right i], h6[align=right i] {

text-align: right;

CSS

1398

}
p[align=center i], h1[align=center i], h2[align=center i], h3[align=center i],
h4[align=center i], h5[align=center i], h6[align=center i] {

text-align: center;
}
p[align=justify i], h1[align=justify i], h2[align=justify i], h3[align=justify i],
h4[align=justify i], h5[align=justify i], h6[align=justify i] {

text-align: justify;
}
thead[valign=top i], tbody[valign=top i], tfoot[valign=top i],
tr[valign=top i], td[valign=top i], th[valign=top i] {

vertical-align: top;
}
thead[valign=middle i], tbody[valign=middle i], tfoot[valign=middle i],
tr[valign=middle i], td[valign=middle i], th[valign=middle i] {

vertical-align: middle;
}
thead[valign=bottom i], tbody[valign=bottom i], tfoot[valign=bottom i],
tr[valign=bottom i], td[valign=bottom i], th[valign=bottom i] {

vertical-align: bottom;
}
thead[valign=baseline i], tbody[valign=baseline i], tfoot[valign=baseline i],
tr[valign=baseline i], td[valign=baseline i], th[valign=baseline i] {

vertical-align: baseline;
}

td[nowrap], th[nowrap] { white-space: nowrap; }

table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i] {

border-style: hidden;
border-collapse: collapse;

}
table[border] { border-style: outset; } /* only if border is not equivalent to zero */
table[frame=void i] { border-style: hidden; }
table[frame=above i] { border-style: outset hidden hidden hidden; }
table[frame=below i] { border-style: hidden hidden outset hidden; }
table[frame=hsides i] { border-style: outset hidden outset hidden; }
table[frame=lhs i] { border-style: hidden hidden hidden outset; }
table[frame=rhs i] { border-style: hidden outset hidden hidden; }
table[frame=vsides i] { border-style: hidden outset; }
table[frame=box i], table[frame=border i] { border-style: outset; }

table[border] > tr > td, table[border] > tr > th,
table[border] > thead > tr > td, table[border] > thead > tr > th,
table[border] > tbody > tr > td, table[border] > tbody > tr > th,
table[border] > tfoot > tr > td, table[border] > tfoot > tr > th {

/* only if border is not equivalent to zero */
border-width: 1px;
border-style: inset;

}
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,

1399

table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th {
border-width: 1px;
border-style: none;

}
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th {

border-width: 1px;
border-block-style: none;
border-inline-style: solid;

}
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {

border-width: 1px;
border-style: solid;

}

table[rules=groups i] > colgroup {
border-inline-width: 1px;
border-inline-style: solid;

}
table[rules=groups i] > thead,
table[rules=groups i] > tbody,
table[rules=groups i] > tfoot {

border-block-width: 1px;
border-block-style: solid;

}

table[rules=rows i] > tr, table[rules=rows i] > thead > tr,
table[rules=rows i] > tbody > tr, table[rules=rows i] > tfoot > tr {

border-block-width: 1px;
border-block-style: solid;

}

In quirks mode, the following rules are also expected to apply:

@namespace "http://www.w3.org/1999/xhtml";

table {
font-weight: initial;
font-style: initial;
font-variant: initial;
font-size: initial;
line-height: initial;
white-space: initial;
text-align: initial;

}

For the purposes of the CSS table model, the colp488 element is expected to be treated as if it was present as many times as its
spanp488 attribute specifiesp77.

For the purposes of the CSS table model, the colgroupp487 element, if it contains no colp488 element, is expected to be treated as if it
had as many such children as its spanp488 attribute specifiesp77.

For the purposes of the CSS table model, the colspanp496 and rowspanp497 attributes on tdp493 and thp495 elements are expected to
providep77 the special knowledge regarding cells spanning rows and columns.

In HTML documents, the following rules are also expected to apply:

CSS

1400

https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#html-document

@namespace "http://www.w3.org/1999/xhtml";

:is(table, thead, tbody, tfoot, tr) > form { display: none !important; }

The tablep478 element's cellspacingp1431 attribute maps to the pixel length propertyp1389 'border-spacing' on the element.

The tablep478 element's cellpaddingp1431 attribute maps to the pixel length propertiesp1389 'padding-top', 'padding-right', 'padding-
bottom', and 'padding-left' of any tdp493 and thp495 elements that have corresponding cellsp497 in the tablep497 corresponding to the
tablep478 element.

The tablep478 element's heightp1431 attribute maps to the dimension propertyp1389 'height' on the tablep478 element.

The tablep478 element's widthp1431 attribute maps to the dimension property (ignoring zero)p1389 'width' on the tablep478 element.

The colp488 element's widthp1430 attribute maps to the dimension propertyp1389 'width' on the colp488 element.

The theadp490, tbodyp489, and tfootp491 elements' heightp1431 attribute maps to the dimension propertyp1389 'height' on the element.

The trp492 element's heightp1431 attribute maps to the dimension propertyp1389 'height' on the trp492 element.

The tdp493 and thp495 elements' heightp1431 attributes map to the dimension property (ignoring zero)p1389 'height' on the element.

The tdp493 and thp495 elements' widthp1431 attributes map to the dimension property (ignoring zero)p1389 'width' on the element.

The theadp490, tbodyp489, tfootp491, trp492, tdp493, and thp495 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for either the string "center" or the string "middle", are expected to center text within themselves, as if they
had their 'text-align' property set to 'center' in a presentational hintp1389, and to align descendantsp1389 to the center.

The theadp490, tbodyp489, tfootp491, trp492, tdp493, and thp495 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for the string "left", are expected to left-align text within themselves, as if they had their 'text-align' property
set to 'left' in a presentational hintp1389, and to align descendantsp1389 to the left.

The theadp490, tbodyp489, tfootp491, trp492, tdp493, and thp495 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for the string "right", are expected to right-align text within themselves, as if they had their 'text-align'
property set to 'right' in a presentational hintp1389, and to align descendantsp1389 to the right.

The theadp490, tbodyp489, tfootp491, trp492, tdp493, and thp495 elements, when they have an align attribute whose value is an ASCII
case-insensitive match for the string "justify", are expected to full-justify text within themselves, as if they had their 'text-align'
property set to 'justify' in a presentational hintp1389, and to align descendantsp1389 to the left.

User agents are expected to have a rule in their user agent style sheet that matches thp495 elements that have a parent node whose
computed value for the 'text-align' property is its initial value, whose declaration block consists of just a single declaration that sets the
'text-align' property to the value 'center'.

When a tablep478, theadp490, tbodyp489, tfootp491, trp492, tdp493, or thp495 element has a backgroundp1431 attribute set to a non-empty
value, the new value is expected to be encoding-parsed-and-serializedp97 relative to the element's node document, and if that does not
return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the element's 'background-image'
property to the return value.

When a tablep478, theadp490, tbodyp489, tfootp491, trp492, tdp493, or thp495 element has a bgcolor attribute set, the new value is
expected to be parsed using the rules for parsing a legacy color valuep94, and if that does not return failure, the user agent is expected
to treat the attribute as a presentational hintp1389 setting the element's 'background-color' property to the resulting color.

When a tablep478 element has a bordercolorp1431 attribute, its value is expected to be parsed using the rules for parsing a legacy
color valuep94, and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting
the element's 'border-top-color', 'border-right-color', 'border-bottom-color', and 'border-left-color' properties to the resulting color.

The tablep478 element's borderp1431 attribute maps to the pixel length propertiesp1389 'border-top-width', 'border-right-width', 'border-
bottom-width', 'border-left-width' on the element. If the attribute is present but parsing the attribute's value using the rules for parsing

CSS

1401

https://drafts.csswg.org/css-tables/#propdef-border-spacing
https://drafts.csswg.org/css-box/#propdef-padding-top
https://drafts.csswg.org/css-box/#propdef-padding-right
https://drafts.csswg.org/css-box/#propdef-padding-bottom
https://drafts.csswg.org/css-box/#propdef-padding-bottom
https://drafts.csswg.org/css-box/#propdef-padding-left
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-text/#text-align-property
https://drafts.csswg.org/css-text/#text-align-property
https://dom.spec.whatwg.org/#concept-node-document
https://drafts.csswg.org/css-backgrounds/#propdef-background-image
https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-color
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-width

non-negative integersp77 generates an error, a default value of 1px is expected to be used for that property instead.

Rules marked "only if border is not equivalent to zero" in the CSS block above is expected to only be applied if the borderp1431

attribute mentioned in the selectors for the rule is not only present but, when parsed using the rules for parsing non-negative
integersp77, is also found to have a value other than zero or to generate an error.

In quirks mode, a tdp493 element or a thp495 element that has a nowrapp1431 attribute but also has a widthp1431 attribute whose value,
when parsed using the rules for parsing nonzero dimension valuesp80, is found to be a length (not an error or a number classified as a
percentage), is expected to have a presentational hintp1389 setting the element's 'white-space' property to 'normal', overriding the rule
in the CSS block above that sets it to 'nowrap'.

A node is substantial if it is a text node that is not inter-element whitespacep147, or if it is an element node.

A node is blank if it is an element that contains no substantialp1402 nodes.

The elements with default margins are the following elements: blockquotep235, dirp1426, dlp244, h1p216, h2p216, h3p216, h4p216, h5p216,
h6p216, listingp1426, menup240, olp238, pp229, plaintextp1426, prep233, ulp239, xmpp1427

In quirks mode, any element with default marginsp1402 that is the child of a bodyp205, tdp493, or thp495 element and has no
substantialp1402 previous siblings is expected to have a user-agent level style sheet rule that sets its 'margin-block-start' property to
zero.

In quirks mode, any element with default marginsp1402 that is the child of a bodyp205, tdp493, or thp495 element, has no substantialp1402

previous siblings, and is blankp1402, is expected to have a user-agent level style sheet rule that sets its 'margin-block-end' property to
zero also.

In quirks mode, any element with default marginsp1402 that is the child of a tdp493 or thp495 element, has no substantialp1402 following
siblings, and is blankp1402, is expected to have a user-agent level style sheet rule that sets its 'margin-block-start' property to zero.

In quirks mode, any pp229 element that is the child of a tdp493 or thp495 element and has no substantialp1402 following siblings, is
expected to have a user-agent level style sheet rule that sets its 'margin-block-end' property to zero.

@namespace "http://www.w3.org/1999/xhtml";

input, select, button, textarea {
letter-spacing: initial;
word-spacing: initial;
line-height: initial;
text-transform: initial;
text-indent: initial;
text-shadow: initial;
appearance: auto;

}

input:not([type=image i], [type=range i], [type=checkbox i], [type=radio i]) {
overflow: clip !important;
overflow-clip-margin: 0 !important;

}

input, select, textarea {
text-align: initial;

}

CSS

15.3.9 Margin collapsing quirks §p14

02

15.3.10 Form controls §p14

02

1402

https://dom.spec.whatwg.org/#concept-document-quirks
https://drafts.csswg.org/css-text/#white-space-property
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-start
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-end
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-start
https://dom.spec.whatwg.org/#concept-document-quirks
https://dom.spec.whatwg.org/#concept-tree-child
https://drafts.csswg.org/css-logical/#propdef-margin-block-end

:autofill {
field-sizing: fixed !important;

}

input:is([type=reset i], [type=button i], [type=submit i]), button {
text-align: center;

}

input, button {
display: inline-block;

}

input[type=hidden i], input[type=file i], input[type=image i] {
appearance: none;

}

input:is([type=radio i], [type=checkbox i], [type=reset i], [type=button i],
[type=submit i], [type=color i], [type=search i]), select, button {

box-sizing: border-box;
}

textarea { white-space: pre-wrap; }

In quirks mode, the following rules are also expected to apply:

@namespace "http://www.w3.org/1999/xhtml";

input:not([type=image i]), textarea { box-sizing: border-box; }

Each kind of form control is also described in the Widgetsp1410 section, which describes the look and feel of the control.

For inputp520 elements where the typep523 attribute is not in the Hiddenp527 state or the Image Buttonp547 state, and that are being
renderedp1388, are expected to act as follows:

• The inner display type is always 'flow-root'.

@namespace "http://www.w3.org/1999/xhtml";

hr {
color: gray;
border-style: inset;
border-width: 1px;
margin-block: 0.5em;
margin-inline: auto;
overflow: hidden;

}

The following rules are also expected to apply, as presentational hintsp1389:

@namespace "http://www.w3.org/1999/xhtml";

hr[align=left i] { margin-left: 0; margin-right: auto; }
hr[align=right i] { margin-left: auto; margin-right: 0; }
hr[align=center i] { margin-left: auto; margin-right: auto; }
hr[color], hr[noshade] { border-style: solid; }

If an hrp231 element has either a colorp1430 attribute or a noshadep1430 attribute, and furthermore also has a sizep1430 attribute, and

CSS

CSS

CSS

15.3.11 The hrp231 element §p14

03

1403

https://dom.spec.whatwg.org/#concept-document-quirks
https://drafts.csswg.org/css-display/#inner-display-type

parsing that attribute's value using the rules for parsing non-negative integersp77 doesn't generate an error, then the user agent is
expected to use the parsed value divided by two as a pixel length for presentational hintsp1389 for the properties 'border-top-width',
'border-right-width', 'border-bottom-width', and 'border-left-width' on the element.

Otherwise, if an hrp231 element has neither a colorp1430 attribute nor a noshadep1430 attribute, but does have a sizep1430 attribute, and
parsing that attribute's value using the rules for parsing non-negative integersp77 doesn't generate an error, then: if the parsed value is
one, then the user agent is expected to use the attribute as a presentational hintp1389 setting the element's 'border-bottom-width' to 0;
otherwise, if the parsed value is greater than one, then the user agent is expected to use the parsed value minus two as a pixel length
for presentational hintsp1389 for the 'height' property on the element.

The widthp1430 attribute on an hrp231 element maps to the dimension propertyp1389 'width' on the element.

When an hrp231 element has a colorp1430 attribute, its value is expected to be parsed using the rules for parsing a legacy color valuep94,
and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the element's
'color' property to the resulting color.

@namespace "http://www.w3.org/1999/xhtml";

fieldset {
display: block;
margin-inline: 2px;
border: groove 2px ThreeDFace;
padding-block: 0.35em 0.625em;
padding-inline: 0.75em;
min-inline-size: min-content;

}

legend {
padding-inline: 2px;

}

legend[align=left i] {
justify-self: left;

}

legend[align=center i] {
justify-self: center;

}

legend[align=right i] {
justify-self: right;

}

The fieldsetp594 element, when it generates a CSS box, is expected to act as follows:

• The element is expected to establish a new block formatting context.

• The 'display' property is expected to act as follows:

◦ If the computed value of 'display' is a value such that the outer display type is 'inline', then behave as 'inline-
block'.

◦ Otherwise, behave as 'flow-root'.

• If the element's box has a child box that matches the conditions in the list below, then the first such child box is the 'fieldset'
element's rendered legend:

This does not change the computed value.
Note

CSS

15.3.12 The fieldsetp594 and legendp596 elements §p14

04

1404

https://drafts.csswg.org/css-backgrounds/#propdef-border-top-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-width
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-display/#block-formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#outer-display-type

◦ The child is a legendp596 element.
◦ The child's used value of 'float' is 'none'.
◦ The child's used value of 'position' is not 'absolute' or 'fixed'.

• If the element has a rendered legendp1404, then the border is expected to not be painted behind the rectangle defined as
follows, using the writing mode of the fieldset:

1. The block-start edge of the rectangle is the smaller of the block-start edge of the rendered legendp1404 's margin
rectangle at its static position (ignoring transforms), and the block-start outer edge of the fieldsetp594 's border.

2. The block-end edge of the rectangle is the larger of the block-end edge of the rendered legendp1404 's margin
rectangle at its static position (ignoring transforms), and the block-end outer edge of the fieldsetp594 's border.

3. The inline-start edge of the rectangle is the smaller of the inline-start edge of the rendered legendp1404 's border
rectangle at its static position (ignoring transforms), and the inline-start outer edge of the fieldsetp594 's border.

4. The inline-end edge of the rectangle is the larger of the inline-end edge of the rendered legendp1404 's border
rectangle at its static position (ignoring transforms), and the inline-end outer edge of the fieldsetp594 's border.

• The space allocated for the element's border on the block-start side is expected to be the element's 'border-block-start-width'
or the rendered legendp1404 's margin box size in the fieldsetp594 's block-flow direction, whichever is greater.

• For the purpose of calculating the used 'block-size', if the computed 'block-size' is not 'auto', the space allocated for the
rendered legendp1404 's margin box that spills out past the border, if any, is expected to be subtracted from the 'block-size'. If
the content box's block-size would be negative, then let the content box's block-size be zero instead.

• If the element has a rendered legendp1404, then that element is expected to be the first child box.

• The anonymous fieldset content boxp1405 is expected to appear after the rendered legendp1404 and is expected to contain the
content (including the '::before' and '::after' pseudo-elements) of the fieldsetp594 element except for the rendered
legendp1404, if there is one.

• The used value of the 'padding-top', 'padding-right', 'padding-bottom', and 'padding-left' properties are expected to be zero.

• For the purpose of calculating the min-content inline size, use the greater of the min-content inline size of the rendered
legendp1404 and the min-content inline size of the anonymous fieldset content boxp1405.

• For the purpose of calculating the max-content inline size, use the greater of the max-content inline size of the rendered
legendp1404 and the max-content inline size of the anonymous fieldset content boxp1405.

A fieldsetp594 element's rendered legendp1404, if any, is expected to act as follows:

• The element is expected to establish a new formatting context for its contents. The type of this formatting context is
determined by its 'display' value, as usual.

• The 'display' property is expected to behave as if its computed value was blockified.

• If the computed value of 'inline-size' is 'auto', then the used value is the fit-content inline size.

• The element is expected to be positioned in the inline direction as is normal for blocks (e.g., taking into account margins and
the 'justify-self' property).

• The element's box is expected to be constrained in the inline direction by the inline content size of the fieldsetp594 as if it
had used its computed inline padding.

• The element is expected to be positioned in the block-flow direction such that its border box is centered over the border on
the block-start side of the fieldsetp594 element.

A fieldsetp594 element's anonymous fieldset content box is expected to act as follows:

This does not change the computed value.
Note

For example, if the fieldsetp594 has a specified padding of 50px, then the rendered legendp1404 will be positioned 50px in
from the fieldsetp594 's border. The padding will further apply to the anonymous fieldset content boxp1405 instead of the
fieldsetp594 element itself.

Example

1405

https://drafts.csswg.org/css2/#float-position
https://drafts.csswg.org/css-position/#position-property
https://drafts.csswg.org/css-logical/#propdef-border-block-start-width
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-box/#propdef-padding-top
https://drafts.csswg.org/css-box/#propdef-padding-right
https://drafts.csswg.org/css-box/#propdef-padding-bottom
https://drafts.csswg.org/css-box/#propdef-padding-left
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-sizing/#fit-content-inline-size
https://drafts.csswg.org/css-align/#propdef-justify-self

• The 'display' property is expected to act as follows:

◦ If the computed value of 'display' on the fieldsetp594 element is 'grid' or 'inline-grid', then set the used value to
'grid'.

◦ If the computed value of 'display' on the fieldsetp594 element is 'flex' or 'inline-flex', then set the used value to
'flex'.

◦ Otherwise, set the used value to 'flow-root'.

• The following properties are expected to inherit from the fieldsetp594 element:

◦ 'align-content'
◦ 'align-items'
◦ 'border-radius'
◦ 'column-count'
◦ 'column-fill'
◦ 'column-gap'
◦ 'column-rule'
◦ 'column-width'
◦ 'flex-direction'
◦ 'flex-wrap'
◦ 'grid-auto-columns'
◦ 'grid-auto-flow'
◦ 'grid-auto-rows'
◦ 'grid-column-gap'
◦ 'grid-row-gap'
◦ 'grid-template-areas'
◦ 'grid-template-columns'
◦ 'grid-template-rows'
◦ 'justify-content'
◦ 'justify-items'
◦ 'overflow'
◦ 'padding-bottom'
◦ 'padding-left'
◦ 'padding-right'
◦ 'padding-top'
◦ 'text-overflow'
◦ 'unicode-bidi'

• The 'block-size' property is expected to be set to '100%'.

• For the purpose of calculating percentage padding, act as if the padding was calculated for the fieldsetp594 element.

fieldset's margin

legend

padding legend's margin

padding
anonymous fieldset content box

content

The legend is rendered over the top border, and the top border area reserves vertical space for the legend. The fieldset's top
margin starts at the top margin edge of the legend. The legend's horizontal margins, or the 'justify-self' property, gives its
horizontal position. The anonymous fieldset content boxp1405 appears below the legend.

Note

1406

https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-align/#propdef-align-content
https://drafts.csswg.org/css-align/#propdef-align-items
https://drafts.csswg.org/css-backgrounds/#propdef-border-radius
https://drafts.csswg.org/css-multicol/#propdef-column-count
https://drafts.csswg.org/css-multicol/#propdef-column-fill
https://drafts.csswg.org/css-multicol/#propdef-column-gap
https://drafts.csswg.org/css-multicol/#propdef-column-rule
https://drafts.csswg.org/css-multicol/#propdef-column-width
https://drafts.csswg.org/css-flexbox/#propdef-flex-direction
https://drafts.csswg.org/css-flexbox/#propdef-flex-wrap
https://drafts.csswg.org/css-grid/#propdef-grid-auto-columns
https://drafts.csswg.org/css-grid/#propdef-grid-auto-flow
https://drafts.csswg.org/css-grid/#propdef-grid-auto-rows
https://drafts.csswg.org/css-grid/#propdef-grid-column-gap
https://drafts.csswg.org/css-grid/#propdef-grid-row-gap
https://drafts.csswg.org/css-grid/#propdef-grid-template-areas
https://drafts.csswg.org/css-grid/#propdef-grid-template-columns
https://drafts.csswg.org/css-grid/#propdef-grid-template-rows
https://drafts.csswg.org/css-align/#propdef-propdef-justify-content
https://drafts.csswg.org/css-align/#propdef-propdef-justify-items
https://drafts.csswg.org/css-overflow/#propdef-overflow
https://drafts.csswg.org/css-box/#propdef-padding-bottom
https://drafts.csswg.org/css-box/#propdef-padding-left
https://drafts.csswg.org/css-box/#propdef-padding-right
https://drafts.csswg.org/css-box/#propdef-padding-top
https://drafts.csswg.org/css-overflow/#propdef-text-overflow
https://drafts.csswg.org/css-writing-modes/#unicode-bidi
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-align/#propdef-justify-self

The embedp399, iframep390, and videop406 elements are expected to be treated as replaced elements.

A canvasp677 element that representsp141 embedded contentp150 is expected to be treated as a replaced element; the contents of such
elements are the element's bitmap, if any, or else a transparent black bitmap with the same natural dimensions as the element. Other
canvasp677 elements are expected to be treated as ordinary elements in the rendering model.

An objectp402 element that representsp141 an image, plugin, or its content navigablep991 is expected to be treated as a replaced
element. Other objectp402 elements are expected to be treated as ordinary elements in the rendering model.

The audiop410 element, when it is exposing a user interfacep464, is expected to be treated as a replaced element about one line high, as
wide as is necessary to expose the user agent's user interface features. When an audiop410 element is not exposing a user
interfacep464, the user agent is expected to force its 'display' property to compute to 'none', irrespective of CSS rules.

Whether a videop406 element is exposing a user interfacep464 is not expected to affect the size of the rendering; controls are expected
to be overlaid above the page content without causing any layout changes, and are expected to disappear when the user does not
need them.

When a videop406 element represents a poster frame or frame of video, the poster frame or frame of video is expected to be rendered
at the largest size that maintains the aspect ratio of that poster frame or frame of video without being taller or wider than the
videop406 element itself, and is expected to be centered in the videop406 element.

Any subtitles or captions are expected to be overlaid directly on top of their videop406 element, as defined by the relevant rendering
rules; for WebVTT, those are the rules for updating the display of WebVTT text tracks. [WEBVTT]p1484

When the user agent starts exposing a user interfacep464 for a videop406 element, the user agent should run the rules for updating the
text track renderingp450 of each of the text tracksp449 in the videop406 element's list of text tracksp449 that are showingp450 and whose
text track kindp449 is one of subtitlesp449 or captionsp449 (e.g., for text tracksp449 based on WebVTT, the rules for updating the display
of WebVTT text tracks). [WEBVTT]p1484

The following CSS rules are expected to apply:

@namespace "http://www.w3.org/1999/xhtml";

iframe { border: 2px inset; }
video { object-fit: contain; }

User agents are expected to render imgp346 elements and inputp520 elements whose typep523 attributes are in the Image Buttonp547

state, according to the first applicable rules from the following list:

↪ If the element representsp141 an image
The user agent is expected to treat the element as a replaced element and render the image according to the rules for doing so
defined in CSS.

15.4 Replaced elements §p14

07

The following elements can be replaced elements: audiop410, canvasp677, embedp399, iframep390, imgp346, inputp520, objectp402, and
videop406.

Note

Resizing videop406 and canvasp677 elements does not interrupt video playback or clear the canvas.
Note

CSS

15.4.1 Embedded content §p14

07

15.4.2 Images §p14

07

1407

https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css2/#display-prop
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://w3c.github.io/webvtt/#rules-for-updating-the-display-of-webvtt-text-tracks
https://drafts.csswg.org/css-display/#replaced-element

↪ If the element does not representp141 an image and either:
• the user agent has reason to believe that the image will become availablep364 and be rendered in due course, or
• the element has no alt attribute, or
• the Documentp130 is in quirks mode, and the element already has natural dimensions (e.g., from the dimension

attributesp477 or CSS rules)
The user agent is expected to treat the element as a replaced element whose content is the text that the element represents, if
any, optionally alongside an icon indicating that the image is being obtained (if applicable). For inputp520 elements, the element
is expected to appear button-like to indicate that the element is a buttonp514.

↪ If the element is an imgp346 element that representsp141 some text and the user agent does not expect this to change
The user agent is expected to treat the element as a non-replaced phrasing element whose content is the text, optionally with
an icon indicating that an image is missing, so that the user can request the image be displayed or investigate why it is not
rendering. In non-graphical contexts, such an icon should be omitted.

↪ If the element is an imgp346 element that representsp141 nothing and the user agent does not expect this to change
The user agent is expected to treat the element as a replaced element whose natural dimensions are 0. (In the absence of
further styles, this will cause the element to essentially not be rendered.)

↪ If the element is an inputp520 element that does not representp141 an image and the user agent does not expect this
to change

The user agent is expected to treat the element as a replaced element consisting of a button whose content is the element's
alternative text. The natural dimensions of the button are expected to be about one line in height and whatever width is
necessary to render the text on one line.

The icons mentioned above are expected to be relatively small so as not to disrupt most text but be easily clickable. In a visual
environment, for instance, icons could be 16 pixels by 16 pixels square, or 1em by 1em if the images are scalable. In an audio
environment, the icon could be a short bleep. The icons are intended to indicate to the user that they can be used to get to whatever
options the UA provides for images, and, where appropriate, are expected to provide access to the context menu that would have
come up if the user interacted with the actual image.

All animated images with the same absolute URL and the same image data are expected to be rendered synchronized to the same
timeline as a group, with the timeline starting at the time of the least recent addition to the group.

When a user agent is to restart the animation for an imgp346 element showing an animated image, all animated images with the
same absolute URL and the same image data in that imgp346 element's node document are expected to restart their animation from the
beginning.

The following CSS rules are expected to apply:

@namespace "http://www.w3.org/1999/xhtml";

img:is([sizes="auto" i], [sizes^="auto," i]) {
contain: size !important;
contain-intrinsic-size: 300px 150px;

}

The following CSS rules are expected to apply when the Documentp130 is in quirks mode:

@namespace "http://www.w3.org/1999/xhtml";

img[align=left i] { margin-right: 3px; }
img[align=right i] { margin-left: 3px; }

In other words, when a second image with the same absolute URL and animated image data is inserted into a document, it jumps
to the point in the animation cycle that is currently being displayed by the first image.

Note

CSS

CSS

1408

https://dom.spec.whatwg.org/#concept-document-quirks
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-images/#natural-dimensions
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-images/#natural-dimensions
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://dom.spec.whatwg.org/#concept-node-document
https://dom.spec.whatwg.org/#concept-document-quirks

The following CSS rules are expected to apply as presentational hintsp1389:

@namespace "http://www.w3.org/1999/xhtml";

iframe[frameborder='0'], iframe[frameborder=no i] { border: none; }

embed[align=left i], iframe[align=left i], img[align=left i],
input[type=image i][align=left i], object[align=left i] {

float: left;
}

embed[align=right i], iframe[align=right i], img[align=right i],
input[type=image i][align=right i], object[align=right i] {

float: right;
}

embed[align=top i], iframe[align=top i], img[align=top i],
input[type=image i][align=top i], object[align=top i] {

vertical-align: top;
}

embed[align=baseline i], iframe[align=baseline i], img[align=baseline i],
input[type=image i][align=baseline i], object[align=baseline i] {

vertical-align: baseline;
}

embed[align=texttop i], iframe[align=texttop i], img[align=texttop i],
input[type=image i][align=texttop i], object[align=texttop i] {

vertical-align: text-top;
}

embed[align=absmiddle i], iframe[align=absmiddle i], img[align=absmiddle i],
input[type=image i][align=absmiddle i], object[align=absmiddle i],
embed[align=abscenter i], iframe[align=abscenter i], img[align=abscenter i],
input[type=image i][align=abscenter i], object[align=abscenter i] {

vertical-align: middle;
}

embed[align=bottom i], iframe[align=bottom i], img[align=bottom i],
input[type=image i][align=bottom i], object[align=bottom i] {

vertical-align: bottom;
}

When an embedp399, iframep390, imgp346, or objectp402 element, or an inputp520 element whose typep523 attribute is in the Image
Buttonp547 state, has an align attribute whose value is an ASCII case-insensitive match for the string "center" or the string "middle",
the user agent is expected to act as if the element's 'vertical-align' property was set to a value that aligns the vertical middle of the
element with the parent element's baseline.

The hspace attribute of embedp399, imgp346, or objectp402 elements, and inputp520 elements with a typep523 attribute in the Image
Buttonp547 state, maps to the dimension propertiesp1389 'margin-left' and 'margin-right' on the element.

The vspace attribute of embedp399, imgp346, or objectp402 elements, and inputp520 elements with a typep523 attribute in the Image
Buttonp547 state, maps to the dimension propertiesp1389 'margin-top' and 'margin-bottom' on the element.

When an imgp346 element, objectp402 element, or inputp520 element with a typep523 attribute in the Image Buttonp547 state has a
border attribute whose value, when parsed using the rules for parsing non-negative integersp77, is found to be a number greater than
zero, the user agent is expected to use the parsed value for eight presentational hintsp1389: four setting the parsed value as a pixel
length for the element's 'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' properties, and four
setting the element's 'border-top-style', 'border-right-style', 'border-bottom-style', and 'border-left-style' properties to the value 'solid'.

The widthp477 and heightp477 attributes on an imgp346 element's dimension attribute sourcep347 map to the dimension propertiesp1389

CSS

15.4.3 Attributes for embedded content and images §p14

09

1409

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css-box/#propdef-margin-left
https://drafts.csswg.org/css-box/#propdef-margin-right
https://drafts.csswg.org/css-box/#propdef-margin-top
https://drafts.csswg.org/css-box/#propdef-margin-bottom
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-width
https://drafts.csswg.org/css-backgrounds/#propdef-border-top-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-right-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-bottom-style
https://drafts.csswg.org/css-backgrounds/#propdef-border-left-style

'width' and 'height' on the imgp346 element respectively. They similarly map to the aspect-ratio property (using dimension rules)p1389 of
the imgp346 element.

The widthp477 and heightp477 attributes on embedp399, iframep390, objectp402, and videop406 elements, and inputp520 elements with a
typep523 attribute in the Image Buttonp547 state and that either represents an image or that the user expects will eventually represent
an image, map to the dimension propertiesp1389 'width' and 'height' on the element respectively.

The widthp477 and heightp477 attributes map to the aspect-ratio property (using dimension rules)p1389 on imgp346 and videop406

elements, and inputp520 elements with a typep523 attribute in the Image Buttonp547 state.

The widthp678 and heightp678 attributes map to the aspect-ratio propertyp1389 on canvasp677 elements.

Shapes on an image mapp473 are expected to act, for the purpose of the CSS cascade, as elements independent of the original areap471

element that happen to match the same style rules but inherit from the imgp346 or objectp402 element.

For the purposes of the rendering, only the 'cursor' property is expected to have any effect on the shape.

The CSS Basic User Interface specification calls elements that can have a native appearance widgets, and defines whether to use that
native appearance depending on the 'appearance' property. That logic, in turn, depends on whether on whether each the element is
classified as a devolvable widget or non-devolvable widget. This section defines which elements match these concepts for HTML, what
their native appearance is, and any particularity of their devolved state or primitive appearance. [CSSUI]p1477

The following elements can have a native appearance for the purpose of the CSS 'appearance' property.

• buttonp566

• inputp520

• meterp589

• progressp587

• selectp568

• textareap579

Several widgets have their rendering controlled by the 'writing-mode' CSS property. For the purposes of those widgets, we have the
following definitions.

A horizontal writing mode is when resolving the 'writing-mode' property of the control results in a computed value of 'horizontal-tb'.

A vertical writing mode is when resolving the 'writing-mode' property of the control results in a computed value of either 'vertical-rl',
'vertical-lr', 'sideways-rl' or 'sideways-lr'.

Thus, for example, if an areap471 element has a stylep163 attribute that sets the 'cursor' property to 'help', then when the user
designates that shape, the cursor would change to a Help cursor.

Example

Similarly, if an areap471 element had a CSS rule that set its 'cursor' property to 'inherit' (or if no rule setting the 'cursor' property
matched the element at all), the shape's cursor would be inherited from the imgp346 or objectp402 element of the image mapp473,
not from the parent of the areap471 element.

Example

15.5 Widgets §p14

10

15.4.4 Image maps §p14

10

15.5.1 Native appearance §p14

10

15.5.2 Writing mode §p14

10

1410

https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#cursor
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#widget
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#appearance-switching
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#non-devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#devolved
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#appearance-switching
https://drafts.csswg.org/css-writing-modes/#propdef-writing-mode
https://drafts.csswg.org/css-writing-modes/#propdef-writing-mode
https://drafts.csswg.org/css-writing-modes/#propdef-writing-mode

When an element uses button layoutp1411, it is a devolvable widget, and it's native appearance is that of a button.

Button layout is as follows:

• If the element is a buttonp566 element, then the 'display' property is expected to act as follows:

◦ If the computed value of 'display' is 'inline-grid', 'grid', 'inline-flex', 'flex', 'none', or 'contents', then behave as the
computed value.

◦ Otherwise, if the computed value of 'display' is a value such that the outer display type is 'inline', then behave as
'inline-block'.

◦ Otherwise, behave as 'flow-root'.

• The element is expected to establish a new formatting context for its contents. The type of this formatting context is
determined by its 'display' value, as usual.

• If the element is absolutely-positioned, then for the purpose of the CSS visual formatting model, act as if the element is a
replaced element. [CSS]p1476

• If the computed value of 'inline-size' is 'auto', then the used value is the fit-content inline size.

• For the purpose of the 'normal' keyword of the 'align-self' property, act as if the element is a replaced element.

• If the element is an inputp520 element, or if it is a buttonp566 element and its computed value for 'display' is not 'inline-grid',
'grid', 'inline-flex', or 'flex', then the element's box has a child anonymous button content box with the following
behaviors:

◦ The box is a block-level block container that establishes a new block formatting context (i.e., 'display' is 'flow-root').

◦ If the box does not overflow in the horizontal axis, then it is centered horizontally.

◦ If the box does not overflow in the vertical axis, then it is centered vertically.

Otherwise, there is no anonymous button content boxp1411.

Need to define the expected primitive appearance.

The buttonp566 element, when it generates a CSS box, is expected to depict a button and to use button layoutp1411 whose anonymous
button content boxp1411 's contents (if there is an anonymous button content boxp1411) are the child boxes the element's box would
otherwise have.

@namespace "http://www.w3.org/1999/xhtml";

details, summary {
display: block;

}
details > summary:first-of-type {

display: list-item;
counter-increment: list-item 0;
list-style: disclosure-closed inside;

}
details[open] > summary:first-of-type {

list-style-type: disclosure-open;
}

CSS

15.5.3 Button layout §p14

11

15.5.4 The buttonp566 element §p14

11

15.5.5 The detailsp637 and summaryp643 elements §p14

11

1411

https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#outer-display-type
https://drafts.csswg.org/css-display/#formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-position/#absolute-position
https://drafts.csswg.org/css2/#visuren
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-sizing/#fit-content-inline-size
https://drafts.csswg.org/css-align/#propdef-align-self
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-display/#block-level
https://drafts.csswg.org/css-display/#block-container
https://drafts.csswg.org/css-display/#block-formatting-context
https://drafts.csswg.org/css2/#display-prop
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-display/#css-box

The detailsp637 element is expected to have an internal shadow tree with three child elements:

1. The first child element is a slotp675 that is expected to take the detailsp637 element's first summaryp643 element child, if any.
This element has a single child summaryp643 element called the default summary which has text content that is
implementation-defined (and probably locale-specific).

The summaryp643 element that this slot representsp141 is expected to allow the user to request the details be shown or hidden.

2. The second child element is a slotp675 that is expected to take the detailsp637 element's remaining descendants, if any. This
element has no contents.

This element is expected to match the '::details-content' pseudo-element.

This element is expected to have its stylep163 attribute set to "display: block; content-visibility: hidden;" when the
detailsp637 element does not have an openp638 attribute. When it does have the openp638 attribute, the stylep163 attribute is
expected to be set to "display: block;".

3. The third child element is either a linkp177 or stylep200 element with the following styles for the default summaryp1412:

:host summary {
display: list-item;
counter-increment: list-item 0;
list-style: disclosure-closed inside;

}
:host([open]) summary {

list-style-type: disclosure-open;
}

An inputp520 element whose typep523 attribute is in the Textp527, Telephonep528, URLp529, or Emailp530 state, is a devolvable widget. Its
expected native appearance is to render as an 'inline-block' box depicting a one-line text control.

An inputp520 element whose typep523 attribute is in the Searchp527 state is a devolvable widget. Its expected native appearance is to
render as an 'inline-block' box depicting a one-line text control. If the computed value of the element's 'appearance' property is not
'textfield', it may have a distinct style indicating that it is a search field.

An inputp520 element whose typep523 attribute is in the Passwordp531 state is a devolvable widget. Its expected native appearance is to
render as an 'inline-block' box depicting a one-line text control that obscures data entry.

For inputp520 elements whose typep523 attribute is in one of the above states, the used value of the 'line-height' property must be a
length value that is no smaller than what the used value would be for 'line-height: normal'.

Because the slots are hidden inside a shadow tree, this stylep163 attribute is not directly visible to author code. Its
impacts, however, are visible. Notably, the choice of content-visibility: hidden instead of, e.g., display: none,
impacts the results of various APIs that query layout information.

Note

The position of this child element relative to the other two is not observable. This means that implementations might
have it in a different order relative to its siblings. Implementations might even associate the style with the shadow tree
using a mechanism that is not an element.

Note

The structure of this shadow tree is observable through the ways that the children of the detailsp637 element and the '::details-
content' pseudo-element respond to CSS styles.

Note

The used value will not be the actual keyword 'normal'. Also, this rule does not affect the computed value.
Note

CSS

15.5.6 The inputp520 element as a text entry widget §p14

12

1412

https://dom.spec.whatwg.org/#concept-shadow-tree
https://infra.spec.whatwg.org/#implementation-defined
https://drafts.csswg.org/css-pseudo/#details-content-pseudo
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#appearance-switching
https://drafts.csswg.org/css-ui/#valdef-appearance-textfield
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css2/#propdef-line-height
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-cascade/#used-value
https://drafts.csswg.org/css-cascade/#computed-value

If these text controls provide a text selection, then, when the user changes the current selection, the user agent is expected to queue
an element taskp1125 on the user interaction task sourcep1134 given the inputp520 element to fire an event named selectp1472 at the
element, with the bubbles attribute initialized to true.

An inputp520 element whose typep523 attribute is in one of the above states is an element with default preferred size, and user agents
are expected to apply the 'field-sizing' CSS property to the element. User agents are expected to determine the inline size of its
intrinsic size by the following steps:

1. If the 'field-sizing' property on the element has a computed value of 'content', the inline size is determined by the text which
the element shows. The text is either a valuep597 or a short hint specified by the placeholderp559 attribute. User agents may
take the text caret size into account in the inline size.

2. If the element has a sizep551 attribute, and parsing that attribute's value using the rules for parsing non-negative integersp77

doesn't generate an error, return the value obtained from applying the converting a character width to pixelsp1413 algorithm
to the value of the attribute.

3. Otherwise, return the value obtained from applying the converting a character width to pixelsp1413 algorithm to the number
20.

The converting a character width to pixels algorithm returns (size-1)×avg + max, where size is the character width to convert,
avg is the average character width of the primary font for the element for which the algorithm is being run, in pixels, and max is the
maximum character width of that same font, also in pixels. (The element's 'letter-spacing' property does not affect the result.)

These text controls are expected to be scroll containers and support scrolling in the inline axis, but not the block axis.

Need to detail the expected native appearance and primitive appearance.

An inputp520 element whose typep523 attribute is in the Datep532 state is a devolvable widget expected to render as an 'inline-block' box
depicting a date control.

An inputp520 element whose typep523 attribute is in the Monthp533 state is a devolvable widget expected to render as an 'inline-block'
box depicting a month control.

An inputp520 element whose typep523 attribute is in the Weekp534 state is a devolvable widget expected to render as an 'inline-block'
box depicting a week control.

An inputp520 element whose typep523 attribute is in the Timep535 state is a devolvable widget expected to render as an 'inline-block' box
depicting a time control.

An inputp520 element whose typep523 attribute is in the Local Date and Timep536 state is a devolvable widget expected to render as an
'inline-block' box depicting a local date and time control.

An inputp520 element whose typep523 attribute is in the Numberp537 state is a devolvable widget expected to render as an 'inline-block'
box depicting a number control.

An inputp520 element whose typep523 attribute is in the Numberp537 state is an element with default preferred size, and user agents are
expected to apply the 'field-sizing' CSS property to the element. The block size of the intrinsic size is about one line high. If the 'field-
sizing' property on the element has a computed value of 'content', the inline size of the intrinsic size is expected to be about as wide
as necessary to show the current valuep597. Otherwise, the inline size of the intrinsic size is expected to be about as wide as necessary
to show the widest possible value.

An inputp520 element whose typep523 attribute is in the Datep532, Monthp533, Weekp534, Timep535, or Local Date and Timep536 state, is
expected to be about one line high, and about as wide as necessary to show the widest possible value.

Need to detail the expected native appearance and primitive appearance.

15.5.7 The inputp520 element as domain-specific widgets §p14

13

1413

https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-text/#letter-spacing-property
https://drafts.csswg.org/css-overflow/#scroll-container
https://drafts.csswg.org/css-writing-modes/#inline-axis
https://drafts.csswg.org/css-writing-modes/#block-axis
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-writing-modes/#block-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance

An inputp520 element whose typep523 attribute is in the Rangep538 state is a non-devolvable widget. Its expected native appearance is
to render as an 'inline-block' box depicting a slider control.

When this control has a horizontal writing modep1410, the control is expected to be a horizontal slider. Its lowest value is on the right if
the 'direction' property has a computed value of 'rtl', and on the left otherwise. When this control has a vertical writing modep1410, it is
expected to be a vertical slider. Its lowest value is on the bottom if the 'direction' property has a computed value of 'rtl', and on the top
otherwise.

Predefined suggested values (provided by the listp557 attribute) are expected to be shown as tick marks on the slider, which the slider
can snap to.

Need to detail the expected primitive appearance.

An inputp520 element whose typep523 attribute is in the Colorp541 state is expected to depict a color well, which, when activated,
provides the user with a color picker (e.g. a color wheel or color palette) from which the color can be changed. The element, when it
generates a CSS box, is expected to use button layoutp1411, that has no child boxes of the anonymous button content boxp1411. The
anonymous button content boxp1411 is expected to have a presentational hintp1389 setting the 'background-color' property to the
element's valuep597.

Predefined suggested values (provided by the listp557 attribute) are expected to be shown in the color picker interface, not on the
color well itself.

Need to detail the expected native appearance and primitive appearance.

An inputp520 element whose typep523 attribute is in the Checkboxp542 state is a non-devolvable widget expected to render as an 'inline-
block' box containing a single checkbox control, with no label.

Need to detail the expected native appearance and primitive appearance.

An inputp520 element whose typep523 attribute is in the Radio Buttonp543 state is a non-devolvable widget expected to render as an
'inline-block' box containing a single radio button control, with no label.

Need to detail the expected native appearance and primitive appearance.

An inputp520 element whose typep523 attribute is in the File Uploadp544 state, when it generates a CSS box, is expected to render as an
'inline-block' box containing a span of text giving the filename(s) of the selected filesp544, if any, followed by a button that, when
activated, provides the user with a file picker from which the selection can be changed. The button is expected to use button
layoutp1411 and match the '::file-selector-button' pseudo-element. The contents of its anonymous button content boxp1411 are expected
to be implementation-defined (and possibly locale-specific) text, for example "Choose file".

User agents may handle an inputp520 element whose typep523 attribute is in the File Uploadp544 state as an element with default
preferred size, and user agents may apply the 'field-sizing' CSS property to the element. If the 'field-sizing' property on the element
has a computed value of 'content', the intrinsic size of the element is expected to depend on its content such as the '::file-selector-
button' pseudo-element and chosen file names.

15.5.8 The inputp520 element as a range control §p14

14

15.5.9 The inputp520 element as a color well §p14

14

15.5.10 The inputp520 element as a checkbox and radio button widgets §p14

14

15.5.11 The inputp520 element as a file upload control §p14

14

1414

https://drafts.csswg.org/css-ui/#non-devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#non-devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#non-devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-display/#css-box
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-pseudo/#file-selector-button-pseudo
https://infra.spec.whatwg.org/#implementation-defined
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-pseudo/#file-selector-button-pseudo
https://drafts.csswg.org/css-pseudo/#file-selector-button-pseudo

An inputp520 element whose typep523 attribute is in the Submit Buttonp546, Reset Buttonp549, or Buttonp550 state, when it generates a
CSS box, is expected to depict a button and use button layoutp1411 and the contents of the anonymous button content boxp1411 are
expected to be the text of the element's valuep525 attribute, if any, or text derived from the element's typep523 attribute in an
implementation-defined (and probably locale-specific) fashion, if not.

@namespace "http://www.w3.org/1999/xhtml";

marquee {
display: inline-block;
text-align: initial;
overflow: hidden !important;

}

The marqueep1431 element, while turned onp1432, is expected to render in an animated fashion according to its attributes as follows:

If the element's behaviorp1432 attribute is in the scrollp1432 state
Slide the contents of the element in the direction described by the directionp1432 attribute as defined below, such that it begins off
the start side of the marqueep1431, and ends flush with the inner end side.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp1433. If the element is still
turned onp1432 after this, then the user agent is expected to restart the animation.

If the element's behaviorp1432 attribute is in the slidep1432 state
Slide the contents of the element in the direction described by the directionp1432 attribute as defined below, such that it begins off
the start side of the marqueep1431, and ends off the end side of the marqueep1431.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp1433. If the element is still
turned onp1432 after this, then the user agent is expected to restart the animation.

If the element's behaviorp1432 attribute is in the alternatep1432 state
When the marquee current loop indexp1433 is even (or zero), slide the contents of the element in the direction described by the
directionp1432 attribute as defined below, such that it begins flush with the start side of the marqueep1431, and ends flush with the
end side of the marqueep1431.

When the marquee current loop indexp1433 is odd, slide the contents of the element in the opposite direction than that described by
the directionp1432 attribute as defined below, such that it begins flush with the end side of the marqueep1431, and ends flush with the
start side of the marqueep1431.

For example, if the directionp1432 attribute is leftp1432 (the default), then the contents would start such that their left edge are
off the side of the right edge of the marqueep1431 's content area, and the contents would then slide up to the point where the left
edge of the contents are flush with the left inner edge of the marqueep1431 's content area.

Example

For example, if the directionp1432 attribute is leftp1432 (the default), then the contents would start such that their left edge are
off the side of the right edge of the marqueep1431 's content area, and the contents would then slide up to the point where the
right edge of the contents are flush with the left inner edge of the marqueep1431 's content area.

Example

For example, if the directionp1432 attribute is leftp1432 (the default), then the contents would with their right edge flush with the
right inner edge of the marqueep1431 's content area, and the contents would then slide up to the point where the left edge of the
contents are flush with the left inner edge of the marqueep1431 's content area.

Example

CSS

15.5.12 The inputp520 element as a button §p14

15

15.5.13 The marqueep1431 element §p14

15

1415

https://drafts.csswg.org/css-display/#css-box
https://infra.spec.whatwg.org/#implementation-defined
https://drafts.csswg.org/css-box/#content-area
https://drafts.csswg.org/css-box/#content-area
https://drafts.csswg.org/css-box/#content-area
https://drafts.csswg.org/css-box/#content-area
https://drafts.csswg.org/css-box/#content-area
https://drafts.csswg.org/css-box/#content-area

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp1433. If the element is still
turned onp1432 after this, then the user agent is expected to continue the animation.

The directionp1432 attribute has the meanings described in the following table:

directionp1432 attribute state Direction of animation Start edge End edge Opposite direction

leftp1432 ← Right to left Right Left → Left to Right
rightp1432 → Left to Right Left Right ← Right to left
upp1432 ↑ Up (Bottom to Top) Bottom Top ↓ Down (Top to Bottom)
downp1432 ↓ Down (Top to Bottom) Top Bottom ↑ Up (Bottom to Top)

In any case, the animation should proceed such that there is a delay given by the marquee scroll intervalp1432 between each frame, and
such that the content moves at most the distance given by the marquee scroll distancep1432 with each frame.

When a marqueep1431 element has a bgcolor attribute set, the value is expected to be parsed using the rules for parsing a legacy color
valuep94, and if that does not return failure, the user agent is expected to treat the attribute as a presentational hintp1389 setting the
element's 'background-color' property to the resulting color.

The width and height attributes on a marqueep1431 element map to the dimension propertiesp1389 'width' and 'height' on the element
respectively.

The natural height of a marqueep1431 element with its directionp1432 attribute in the upp1432 or downp1432 states is 200 CSS pixels.

The vspace attribute of a marqueep1431 element maps to the dimension propertiesp1389 'margin-top' and 'margin-bottom' on the
element. The hspace attribute of a marqueep1431 element maps to the dimension propertiesp1389 'margin-left' and 'margin-right' on the
element.

@namespace "http://www.w3.org/1999/xhtml";

meter { appearance: auto; }

The meterp589 element is a devolvable widget. Its expected native appearance is to render as an 'inline-block' box with a 'block-size' of
'1em' and a 'inline-size' of '5em', a 'vertical-align' of '-0.2em', and with its contents depicting a gauge.

When this element has a horizontal writing modep1410, the depiction is expected to be of a horizontal gauge. Its minimum value is on
the right if the 'direction' property has a computed value of 'rtl', and on the left otherwise. When this element has a vertical writing
modep1410, it is expected to depict a vertical gauge. Its minimum value is on the bottom if the 'direction' property has a computed
value of 'rtl', and on the top otherwise.

User agents are expected to use a presentation consistent with platform conventions for gauges, if any.

Need to detail the expected primitive appearance.

@namespace "http://www.w3.org/1999/xhtml";

progress { appearance: auto; }

The progressp587 element is a devolvable widget. Its expected native appearance is to render as an 'inline-block' box with a 'block-size'
of '1em' and a 'inline-size' of '10em', and a 'vertical-align' of '-0.2em'.

Requirements for what must be depicted in the gauge are included in the definition of the meterp589 element.
Note

CSS

CSS

15.5.14 The meterp589 element §p14

16

15.5.15 The progressp587 element §p14

16

1416

https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css2/#the-width-property
https://drafts.csswg.org/css2/#the-height-property
https://drafts.csswg.org/css-images/#natural-height
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-box/#propdef-margin-top
https://drafts.csswg.org/css-box/#propdef-margin-bottom
https://drafts.csswg.org/css-box/#propdef-margin-left
https://drafts.csswg.org/css-box/#propdef-margin-right
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css2/#propdef-vertical-align
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-logical/#propdef-block-size
https://drafts.csswg.org/css-logical/#propdef-inline-size
https://drafts.csswg.org/css2/#propdef-vertical-align

When the this element has a horizontal writing modep1410, the element is expected
to be depicted as a horizontal progress bar. The start is on the right and the end is on the left if the 'direction' property on this element
has a computed value of 'rtl', and with the start on the left and the end on the right otherwise. When this element has a vertical writing
modep1410, it is expected to be depicted as a vertical progress bar. The start is on the bottom and the end is on the top if the 'direction'
property on this element has a computed value of 'rtl', and with the start on the top and the end on the bottom otherwise.

User agents are expected to use a presentation consistent with platform conventions for progress bars. In particular, user agents are
expected to use different presentations for determinate and indeterminate progress bars. User agents are also expected to vary the
presentation based on the dimensions of the element.

Need to detail the expected primitive appearance.

The selectp568 element is an element with default preferred size, and user agents are expected to apply the 'field-sizing' CSS property
to selectp568 elements.

A selectp568 element is either a list box or a drop-down box, depending on its attributes.

A selectp568 element whose multiplep569 attribute is present is expected to render as a multi-select list boxp1417.

A selectp568 element whose multiplep569 attribute is absent, and whose display sizep569 is greater than 1, is expected to render as a
single-select list boxp1417.

When the element renders as a list boxp1417, it is a devolvable widget expected to render as an 'inline-block' box. The inline size of its
intrinsic size is the width of the select's labelsp1418 plus the width of a scrollbar. The block size of its intrinsic size is determined by the
following steps:

1. If the 'field-sizing' property on the element has a computed value of 'content', return the height necessary to contain all rows
for items.

2. If the sizep569 attribute is absent or it has no valid value, return the height necessary to contain four rows.

3. Otherwise, return the height necessary to contain as many rows for items as given by the element's display sizep569.

A selectp568 element whose multiplep569 attribute is absent, and whose display sizep569 is 1, is expected to render as an 'inline-block'
one-line drop-down boxp1417. The inline size of its intrinsic size is the width of the select's labelsp1418. If the 'field-sizing' property on the
element has a computed value of 'content', the inline size of the intrinsic size depends on the shown text. The shown text is typically
the label of an optionp577 of which selectednessp578 is set to true.

When the element renders as a drop-down boxp1417, it is a devolvable widget. Its appearance in the devolved state, as well as its
appearance when the computed value of the element's 'appearance' property is 'menulist-button', is that of a drop-down box,
including a "drop-down button", but not necessarily rendered using a native control of the host operating system. In such a state, CSS
properties such as 'color', 'background-color', and 'border' should not be disregarded (as is generally permissible when rendering an
element according to its native appearance).

In either case (list boxp1417 or drop-down boxp1417), the element's items are expected to be the element's list of optionsp569, with the
element's optgroupp576 element children providing headers for groups of options where applicable.

An optgroupp576 element is expected to be rendered by displaying the element's labelp576 attribute.

Requirements for how to determine if the progress bar is determinate or indeterminate, and what progress a determinate progress
bar is to show, are included in the definition of the progressp587 element.

Note

15.5.16 The selectp568 element §p14

17

1417

https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-writing-modes/#direction
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-writing-modes/#block-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css2/#value-def-inline-block
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css-writing-modes/#inline-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#appearance-switching
https://drafts.csswg.org/css-ui/#valdef-appearance-menulist-button
https://drafts.csswg.org/css-color/#the-color-property
https://drafts.csswg.org/css-backgrounds/#propdef-background-color
https://drafts.csswg.org/css-ui/#native-appearance
https://dom.spec.whatwg.org/#concept-tree-child

An optionp577 element is expected to be rendered by displaying the element's labelp578, indented under its optgroupp576 element if it
has one.

Each sequence of one or more child hrp231 element siblings may be rendered as a single separator.

The width of the select's labels is the wider of the width necessary to render the widest optgroupp576, and the width necessary to
render the widest optionp577 element in the element's list of optionsp569 (including its indent, if any).

If a selectp568 element contains a placeholder label optionp570, the user agent is expected to render that optionp577 in a manner that
conveys that it is a label, rather than a valid option of the control. This can include preventing the placeholder label optionp570 from
being explicitly selected by the user. When the placeholder label optionp570 's selectednessp578 is true, the control is expected to be
displayed in a fashion that indicates that no valid option is currently selected.

User agents are expected to render the labels in a selectp568 in such a manner that any alignment remains consistent whether the
label is being displayed as part of the page or in a menu control.

Need to detail the expected native appearance and primitive appearance.

The textareap579 element is a devolvable widget expected to render as an 'inline-block' box depicting a multiline text control. If this
multiline text control provides a selection, then, when the user changes the current selection, the user agent is expected to queue an
element taskp1125 on the user interaction task sourcep1134 given the textareap579 element to fire an event named selectp1472 at the
element, with the bubbles attribute initialized to true.

The textareap579 element is an element with default preferred size, and user agents are expected to apply the 'field-sizing' CSS
property to textareap579 elements.

If the 'field-sizing' property on the element has a computed value of 'content', the intrinsic size is determined from the text which the
element shows. The text is either a raw valuep581 or a short hint specified by the placeholderp583 attribute. User agents may take the
text caret size into account in the intrinsic size. Otherwise, its intrinsic size is computed from textarea effective widthp1418 and textarea
effective heightp1418 (as defined below).

The textarea effective width of a textareap579 element is size×avg + sbw, where size is the element's character widthp582, avg is
the average character width of the primary font of the element, in CSS pixels, and sbw is the width of a scrollbar, in CSS pixels. (The
element's 'letter-spacing' property does not affect the result.)

The textarea effective height of a textareap579 element is the height in CSS pixels of the number of lines specified the element's
character heightp582, plus the height of a scrollbar in CSS pixels.

User agents are expected to apply the 'white-space' CSS property to textareap579 elements. For historical reasons, if the element has a
wrapp582 attribute whose value is an ASCII case-insensitive match for the string "off", then the user agent is expected to treat the
attribute as a presentational hintp1389 setting the element's 'white-space' property to 'pre'.

Need to detail the expected native appearance and primitive appearance.

User agents are expected to render framesetp1433 elements as a box with the height and width of the viewport, with a surface rendered
according to the following layout algorithm:

1. The cols and rows variables are lists of zero or more pairs consisting of a number and a unit, the unit being one of
percentage, relative, and absolute.

Use the rules for parsing a list of dimensionsp81 to parse the value of the element's cols attribute, if there is one. Let cols be
the result, or an empty list if there is no such attribute.

15.6 Frames and framesets §p14

18

15.5.17 The textareap579 element §p14

18

1418

https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css-ui/#devolvable
https://drafts.csswg.org/css2/#value-def-inline-block
https://dom.spec.whatwg.org/#concept-event-fire
https://dom.spec.whatwg.org/#dom-event-bubbles
https://drafts.csswg.org/css-ui/#element-with-default-preferred-size
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-ui/#field-sizing
https://drafts.csswg.org/css-cascade/#computed-value
https://drafts.csswg.org/css-ui/#valdef-field-sizing-content
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-sizing/#intrinsic-size
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-text/#letter-spacing-property
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-text/#white-space-property
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://drafts.csswg.org/css-text/#white-space-property
https://drafts.csswg.org/css-ui/#native-appearance
https://drafts.csswg.org/css-ui/#primitive-appearance
https://drafts.csswg.org/css2/#viewport

Use the rules for parsing a list of dimensionsp81 to parse the value of the element's rows attribute, if there is one. Let rows be
the result, or an empty list if there is no such attribute.

2. For any of the entries in cols or rows that have the number zero and the unit relative, change the entry's number to one.

3. If cols has no entries, then add a single entry consisting of the value 1 and the unit relative to cols.

If rows has no entries, then add a single entry consisting of the value 1 and the unit relative to rows.

4. Invoke the algorithm defined below to convert a list of dimensions to a list of pixel valuesp1420 using cols as the input list, and
the width of the surface that the framesetp1433 is being rendered into, in CSS pixels, as the input dimension. Let sized cols be
the resulting list.

Invoke the algorithm defined below to convert a list of dimensions to a list of pixel valuesp1420 using rows as the input list,
and the height of the surface that the framesetp1433 is being rendered into, in CSS pixels, as the input dimension. Let sized
rows be the resulting list.

5. Split the surface into a grid of w×h rectangles, where w is the number of entries in sized cols and h is the number of entries
in sized rows.

Size the columns so that each column in the grid is as many CSS pixels wide as the corresponding entry in the sized cols list.

Size the rows so that each row in the grid is as many CSS pixels high as the corresponding entry in the sized rows list.

6. Let children be the list of framep1433 and framesetp1433 elements that are children of the framesetp1433 element for which the
algorithm was invoked.

7. For each row of the grid of rectangles created in the previous step, from top to bottom, run these substeps:

1. For each rectangle in the row, from left to right, run these substeps:

1. If there are any elements left in children, take the first element in the list, and assign it to the rectangle.

If this is a framesetp1433 element, then recurse the entire framesetp1433 layout algorithm for that
framesetp1433 element, with the rectangle as the surface.

Otherwise, it is a framep1433 element; render its content navigablep991, positioned and sized to fit the
rectangle.

2. If there are any elements left in children, remove the first element from children.

8. If the framesetp1433 element has a borderp1419, draw an outer set of borders around the rectangles, using the element's frame
border colorp1419.

For each rectangle, if there is an element assigned to that rectangle, and that element has a borderp1419, draw an inner set of
borders around that rectangle, using the element's frame border colorp1419.

For each (visible) border that does not abut a rectangle that is assigned a framep1433 element with a noresize attribute
(including rectangles in further nested framesetp1433 elements), the user agent is expected to allow the user to move the
border, resizing the rectangles within, keeping the proportions of any nested framesetp1433 grids.

A framesetp1433 or framep1433 element has a border if the following algorithm returns true:

1. If the element has a frameborder attribute whose value is not the empty string and whose first character is either
a U+0031 DIGIT ONE (1) character, a U+0079 LATIN SMALL LETTER Y character (y), or a U+0059 LATIN CAPITAL
LETTER Y character (Y), then return true.

2. Otherwise, if the element has a frameborder attribute, return false.

3. Otherwise, if the element has a parent element that is a framesetp1433 element, then return true if that element
has a borderp1419, and false if it does not.

4. Otherwise, return true.

The frame border color of a framesetp1433 or framep1433 element is the color obtained from the following algorithm:

1. If the element has a bordercolor attribute, and applying the rules for parsing a legacy color valuep94 to that
attribute's value does not return failure, then return the color so obtained.

2. Otherwise, if the element has a parent element that is a framesetp1433 element, then return the frame border

1419

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px
https://dom.spec.whatwg.org/#concept-tree-child

colorp1419 of that element.

3. Otherwise, return gray.

The algorithm to convert a list of dimensions to a list of pixel values consists of the following steps:

1. Let input list be the list of numbers and units passed to the algorithm.

Let output list be a list of numbers the same length as input list, all zero.

Entries in output list correspond to the entries in input list that have the same position.

2. Let input dimension be the size passed to the algorithm.

3. Let count percentage be the number of entries in input list whose unit is percentage.

Let total percentage be the sum of all the numbers in input list whose unit is percentage.

Let count relative be the number of entries in input list whose unit is relative.

Let total relative be the sum of all the numbers in input list whose unit is relative.

Let count absolute be the number of entries in input list whose unit is absolute.

Let total absolute be the sum of all the numbers in input list whose unit is absolute.

Let remaining space be the value of input dimension.

4. If total absolute is greater than remaining space, then for each entry in input list whose unit is absolute, set the
corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total
absolute. Then, set remaining space to zero.

Otherwise, for each entry in input list whose unit is absolute, set the corresponding value in output list to the number of the
entry in input list. Then, decrement remaining space by total absolute.

5. If total percentage multiplied by the input dimension and divided by 100 is greater than remaining space, then for each entry
in input list whose unit is percentage, set the corresponding value in output list to the number of the entry in input list
multiplied by remaining space and divided by total percentage. Then, set remaining space to zero.

Otherwise, for each entry in input list whose unit is percentage, set the corresponding value in output list to the number of
the entry in input list multiplied by the input dimension and divided by 100. Then, decrement remaining space by total
percentage multiplied by the input dimension and divided by 100.

6. For each entry in input list whose unit is relative, set the corresponding value in output list to the number of the entry in
input list multiplied by remaining space and divided by total relative.

7. Return output list.

User agents working with integer values for frame widths (as opposed to user agents that can lay frames out with subpixel accuracy)
are expected to distribute the remainder first to the last entry whose unit is relative, then equally (not proportionally) to each entry
whose unit is percentage, then equally (not proportionally) to each entry whose unit is absolute, and finally, failing all else, to the last
entry.

The contents of a framep1433 element that does not have a framesetp1433 parent are expected to be rendered as transparent black; the
user agent is expected to not render its content navigablep991 in this case, and its content navigablep991 is expected to have a viewport
with zero width and zero height.

User agents are expected to allow the user to control aspects of hyperlinkp302 activation and form submissionp628, such as which
navigablep989 is to be used for the subsequent navigationp1014.

User agents are expected to allow users to discover the destination of hyperlinksp302 and of formsp514 before triggering their

15.7 Interactive media §p14

20

15.7.1 Links, forms, and navigation §p14

20

1420

https://drafts.csswg.org/css-color/#transparent-black
https://drafts.csswg.org/css2/#viewport

navigationp1014.

User agents are expected to inform the user of whether a hyperlinkp302 includes hyperlink auditingp312, and to let them know at a
minimum which domains will be contacted as part of such auditing.

User agents may allow users to navigatep1014 navigablesp989 to the URLs indicatedp97 by the cite attributes on qp266, blockquotep235,
insp337, and delp338 elements.

User agents may surface hyperlinksp302 created by linkp177 elements in their user interface, as discussed previouslyp189.

User agents are expected to expose the advisory informationp157 of elements upon user request, and to make the user aware of the
presence of such information.

On interactive graphical systems where the user can use a pointing device, this could take the form of a tooltip. When the user is
unable to use a pointing device, then the user agent is expected to make the content available in some other fashion, e.g. by making
the element a focusable areap835 and always displaying the advisory informationp157 of the currently focusedp836 element, or by showing
the advisory informationp157 of the elements under the user's finger on a touch device as the user pans around the screen.

U+000A LINE FEED (LF) characters are expected to cause line breaks in the tooltip; U+0009 CHARACTER TABULATION (tab) characters
are expected to render as a nonzero horizontal shift that lines up the next glyph with the next tab stop, with tab stops occurring at
points that are multiples of 8 times the width of a U+0020 SPACE character.

The current text editing caret (i.e. the active range, if it is empty and in an editing hostp855), if any, is expected to act like an inline
replaced element with the vertical dimensions of the caret and with zero width for the purposes of the CSS rendering model.

User agents are expected to honor the Unicode semantics of text that is exposed in user interfaces, for example supporting the
bidirectional algorithm in text shown in dialogs, title bars, popup menus, and tooltips. Text from the contents of elements is expected
to be rendered in a manner that honors the directionalityp160 of the element from which the text was obtained. Text from attributes is
expected to be rendered in a manner that honours the directionality of the attributep162.

For example, a visual user agent could make elements with a titlep157 attribute focusablep837, and could make any focusedp836

element with a titlep157 attribute show its tooltip under the element while the element has focus. This would allow a user to tab
around the document to find all the advisory text.

Example

As another example, a screen reader could provide an audio cue when reading an element with a tooltip, with an associated key to
read the last tooltip for which a cue was played.

Example

This means that even an empty block can have the caret inside it, and that when the caret is in such an element, it prevents
margins from collapsing through the element.

Note

Consider the following markup, which has Hebrew text asking for a programming language, the languages being text for which a
left-to-right direction is important given the punctuation in some of their names:

Example

15.7.2 The titlep157 attribute §p14

21

15.7.3 Editing hosts §p14

21

15.7.4 Text rendered in native user interfaces §p14

21

1421

https://w3c.github.io/editing/docs/execCommand/#active-range
https://drafts.csswg.org/css-display/#replaced-element
https://drafts.csswg.org/css2/#collapsing-margins

A string provided by a script (e.g. the argument to window.alert()p1167) is expected to be treated as an independent set of one or
more bidirectional algorithm paragraphs when displayed, as defined by the bidirectional algorithm, including, for instance, supporting
the paragraph-breaking behavior of U+000A LINE FEED (LF) characters. For the purposes of determining the paragraph level of such
text in the bidirectional algorithm, this specification does not provide a higher-level override of rules P2 and P3. [BIDI]p1475

When necessary, authors can enforce a particular direction for a given paragraph by starting it with the Unicode U+200E LEFT-TO-
RIGHT MARK or U+200F RIGHT-TO-LEFT MARK characters.

<p dir="rtl" lang="he">
<label>

:תכנות שפת בחר
> select>

<option dir="ltr">C++</option>
<option dir="ltr">C#</option>
<option dir="ltr">FreePascal</option>
<option dir="ltr">F#</option>

</select>
</label>

</p>

If the selectp568 element was rendered as a drop down box, a correct rendering would ensure that the punctuation was the same
both in the drop down, and in the box showing the current selection.

The directionality of attributes depends on the attribute and on the element's dirp160 attribute, as the following example
demonstrates. Consider this markup:

<table>
<tr>
<th abbr="(א" dir=ltr>A
<th abbr="(א" dir=rtl>A
<th abbr="(א" dir=auto>A

</table>

If the abbrp495 attributes are rendered, e.g. in a tooltip or other user interface, the first will have a left parenthesis (because the
direction is 'ltr'), the second will have a right parenthesis (because the direction is 'rtl'), and the third will have a right parenthesis
(because the direction is determined from the attribute value to be 'rtl').

However, if instead the attribute was not a directionality-capable attributep162, the results would be different:

<table>
<tr>
<th data-abbr="(א" dir=ltr>A
<th data-abbr="(א" dir=rtl>A
<th data-abbr="(א" dir=auto>A

</table>

In this case, if the user agent were to expose the data-abbr attribute in the user interface (e.g. in a debugging environment), the
last case would be rendered with a left parenthesis, because the direction would be determined from the element's contents.

Example

1422

User agents are expected to allow the user to request the opportunity to obtain a physical form (or a representation of a physical
form) of a Documentp130. For example, selecting the option to print a page or convert it to PDF format. [PDF]p1480

When the user actually obtains a physical formp1423 (or a representation of a physical form) of a Documentp130, the user agent is
expected to create a new rendering of the Documentp130 for the print media.

HTML user agents may, in certain circumstances, find themselves rendering non-HTML documents that use vocabularies for which they
lack any built-in knowledge. This section provides for a way for user agents to handle such documents in a somewhat useful manner.

While a Documentp130 is an unstyled documentp1423, the user agent is expected to render an unstyled document viewp1424.

A Documentp130 is an unstyled document while it matches the following conditions:

• The Documentp130 has no author style sheets (whether referenced by HTTP headers, processing instructions, elements like
linkp177, inline elements like stylep200, or any other mechanism).

• None of the elements in the Documentp130 have any presentational hintsp1389.

• None of the elements in the Documentp130 have any style attributes.

• None of the elements in the Documentp130 are in any of the following namespaces: HTML namespace, SVG namespace,
MathML namespace

• The Documentp130 has no focusable areap835 (e.g. from XLink) other than the viewport.

Thus, the following script:

alert('\u05DC\u05DE\u05D3 HTML \u05D4\u05D9\u05D5\u05DD!')

...would always result in a message reading " היום!HTMLלמד " (not "למד HTML regardless of the language of the user agent ,("!היום
interface or the direction of the page or any of its elements.

Example

For a more complex example, consider the following script:

/* Warning: this script does not handle right-to-left scripts correctly */
var s;
if (s = prompt('What is your name?')) {

alert(s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

When the user enters "Kitty", the user agent would alert "Kitty! Ok, Fred, Kitty, and Wilma will get the car.".
However, if the user enters " أفهملا ", then the bidirectional algorithm will determine that the direction of the paragraph is right-to-
left, and so the output will be the following unintended mess: " carthegetwillWilma.andأفهم,لا,Fred,Okأفهم!لا "

To force an alert that starts with user-provided text (or other text of unknown directionality) to render left-to-right, the string can be
prefixed with a U+200E LEFT-TO-RIGHT MARK character:

var s;
if (s = prompt('What is your name?')) {

alert('\u200E' + s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

Example

15.8 Print media §p14

23

15.9 Unstyled XML documents §p14

23

1423

https://drafts.csswg.org/css-style-attr/#style-attribute
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#svg-namespace
https://infra.spec.whatwg.org/#mathml-namespace
https://drafts.csswg.org/css2/#viewport

• The Documentp130 has no hyperlinksp302 (e.g. from XLink).

• There exists no scriptp1084 whose settings objectp1084 's global objectp1077 is a Windowp922 object with this Documentp130 as its
associated Documentp923.

• None of the elements in the Documentp130 have any registered event listeners.

An unstyled document view is one where the DOM is not rendered according to CSS (which would, since there are no applicable
styles in this context, just result in a wall of text), but is instead rendered in a manner that is useful for a developer. This could consist
of just showing the Documentp130 object's source, maybe with syntax highlighting, or it could consist of displaying just the DOM tree, or
simply a message saying that the page is not a styled document.

If a Documentp130 stops being an unstyled documentp1423, then the conditions above stop applying, and thus a user agent following
these requirements will switch to using the regular CSS rendering.

Note

1424

Features listed in this section will trigger warnings in conformance checkers.

Authors should not specify a borderp1430 attribute on an imgp346 element. If the attribute is present, its value must be the string "0".
CSS should be used instead.

Authors should not specify a charsetp1427 attribute on a scriptp652 element. If the attribute is present, its value must be an ASCII case-
insensitive match for "utf-8". (This has no effect in a document that conforms to the requirements elsewhere in this standard of being
encoded as UTF-8.)

Authors should not specify a languagep1429 attribute on a scriptp652 element. If the attribute is present, its value must be an ASCII
case-insensitive match for the string "JavaScript" and either the typep653 attribute must be omitted or its value must be an ASCII
case-insensitive match for the string "text/javascript". The attribute should be entirely omitted instead (with the value
"JavaScript", it has no effect), or replaced with use of the typep653 attribute.

Authors should not specify a value for the typep653 attribute on scriptp652 elements that is the empty string or a JavaScript MIME type
essence match. Instead, they should omit the attribute, which has the same effect.

Authors should not specify a typep1429 attribute on a stylep200 element. If the attribute is present, its value must be an ASCII case-
insensitive match for "text/cssp1474".

Authors should not specify the namep1427 attribute on ap257 elements. If the attribute is present, its value must not be the empty string
and must neither be equal to the value of any of the IDs in the element's tree other than the element's own ID, if any, nor be equal to
the value of any of the other namep1427 attributes on ap257 elements in the element's tree. If this attribute is present and the element has
an ID, then the attribute's value must be equal to the element's ID. In earlier versions of the language, this attribute was intended as a
way to specify possible targets for fragments in URLs. The idp154 attribute should be used instead.

Authors should not, but may despite requirements to the contrary elsewhere in this specification, specify the maxlengthp551 and
sizep551 attributes on inputp520 elements whose typep523 attributes are in the Numberp537 state. One valid reason for using these
attributes regardless is to help legacy user agents that do not support inputp520 elements with type="number" to still render the text
control with a useful width.

To ease the transition from HTML4 Transitional documents to the language defined in this specification, and to discourage certain
features that are only allowed in very few circumstances, conformance checkers must warn the user when the following features are
used in a document. These are generally old obsolete features that have no effect, and are allowed only to distinguish between likely
mistakes (regular conformance errors) and mere vestigial markup or unusual and discouraged practices (these warnings).

The following features must be categorized as described above:

• The presence of a borderp1430 attribute on an imgp346 element if its value is the string "0".

• The presence of a charsetp1427 attribute on a scriptp652 element if its value is an ASCII case-insensitive match for "utf-8".

• The presence of a languagep1429 attribute on a scriptp652 element if its value is an ASCII case-insensitive match for the string
"JavaScript" and if there is no typep653 attribute or there is and its value is an ASCII case-insensitive match for the string
"text/javascript".

• The presence of a typep1429 attribute on a scriptp652 element if its value is a JavaScript MIME type essence match.

• The presence of a typep1429 attribute on a stylep200 element if its value is an ASCII case-insensitive match for "text/
cssp1474".

• The presence of a namep1427 attribute on an ap257 element, if its value is not the empty string.

• The presence of a maxlengthp551 attribute on an inputp520 element whose typep523 attribute is in the Numberp537 state.

16 Obsolete features §p14

25

16.1 Obsolete but conforming features §p14

25

16.1.1 Warnings for obsolete but conforming features §p14

25

1425

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://encoding.spec.whatwg.org/#utf-8
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-tree
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#concept-url-fragment
https://url.spec.whatwg.org/#concept-url
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://infra.spec.whatwg.org/#ascii-case-insensitive

• The presence of a sizep551 attribute on an inputp520 element whose typep523 attribute is in the Numberp537 state.

Conformance checkers must distinguish between pages that have no conformance errors and have none of these obsolete features,
and pages that have no conformance errors but do have some of these obsolete features.

Elements in the following list are entirely obsolete, and must not be used by authors:

applet
Use embedp399 or objectp402 instead.

acronym
Use abbrp269 instead.

bgsound
Use audiop410 instead.

dir
Use ulp239 instead.

framep1433

framesetp1433

noframes
Either use iframep390 and CSS instead, or use server-side includes to generate complete pages with the various invariant parts
merged in.

isindex
Use an explicit formp514 and text controlp527 combination instead.

keygen
For enterprise device management use cases, use native on-device management capabilities.

For certificate enrollment use cases, use the Web Cryptography API to generate a keypair for the certificate, and then export the
certificate and key to allow the user to install them manually. [WEBCRYPTO]p1483

listing
Use prep233 and codep286 instead.

menuitem
To implement a custom context menu, use script to handle the contextmenu event.

nextid
Use GUIDs instead.

noembed
Use objectp402 instead of embedp399 when fallback is necessary.

param
Use the datap403 attribute of the objectp402 element to set the URL of the external resource.

plaintext
Use the "text/plain" MIME type instead.

For example, a validator could report some pages as "Valid HTML" and others as "Valid HTML with warnings".
Example

16.2 Non-conforming features §p14

26

1426

https://w3c.github.io/uievents/#event-type-contextmenu
https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://mimesniff.spec.whatwg.org/#mime-type

rb
rtc

Providing the ruby base directly inside the rubyp270 element or using nested rubyp270 elements is sufficient.

strike
Use delp338 instead if the element is marking an edit, otherwise use sp264 instead.

xmp
Use prep233 and codep286 instead, and escape "<" and "&" characters as "<" and "&" respectively.

basefont
big
blink
center
font
marqueep1431

multicol
nobr
spacer
tt

Use appropriate elements or CSS instead.

Where the ttp1427 element would have been used for marking up keyboard input, consider the kbdp289 element; for variables,
consider the varp287 element; for computer code, consider the codep286 element; and for computer output, consider the sampp288

element.

Similarly, if the bigp1427 element is being used to denote a heading, consider using the h1p216 element; if it is being used for marking
up important passages, consider the strongp261 element; and if it is being used for highlighting text for reference purposes, consider
the markp294 element.

See also the text-level semantics usage summaryp301 for more suggestions with examples.

The following attributes are obsolete (though the elements are still part of the language), and must not be used by authors:

charset on ap257 elements
charset on linkp177 elements

Use an HTTP `Content-Typep98` header on the linked resource instead.

charset on scriptp652 elements (except as noted in the previous section)
Omit the attribute. Both documents and scripts are required to use UTF-8, so it is redundant to specify it on the scriptp652 element
since it inherits from the document.

coords on ap257 elements
shape on ap257 elements

Use areap471 instead of ap257 for image maps.

methods on ap257 elements
methods on linkp177 elements

Use the HTTP OPTIONS feature instead.

name on ap257 elements (except as noted in the previous section)
name on embedp399 elements
name on imgp346 elements
name on optionp577 elements

Use the idp154 attribute instead.

1427

https://encoding.spec.whatwg.org/#utf-8

rev on ap257 elements
rev on linkp177 elements

Use the relp303 attribute instead, with an opposite term. (For example, instead of rev="made", use rel="author".)

urn on ap257 elements
urn on linkp177 elements

Specify the preferred persistent identifier using the hrefp303 attribute instead.

accept on formp514 elements
Use the acceptp544 attribute directly on the inputp520 elements instead.

hreflang on areap471 elements
type on areap471 elements

These attributes do not do anything useful, and for historical reasons there are no corresponding IDL attributes on areap471

elements. Omit them altogether.

nohref on areap471 elements
Omitting the hrefp303 attribute is sufficient; the nohrefp1428 attribute is unnecessary. Omit it altogether.

profile on headp173 elements
Unnecessary. Omit it altogether.

manifest on htmlp172 elements
Use service workers instead. [SW]p1482

version on htmlp172 elements
Unnecessary. Omit it altogether.

ismap on inputp520 elements
Unnecessary. Omit it altogether. All inputp520 elements with a typep523 attribute in the Image Buttonp547 state are processed as
server-side image maps.

usemap on inputp520 elements
usemap on objectp402 elements

Use the imgp346 element for image maps.

longdesc on iframep390 elements
longdesc on imgp346 elements

Use a regular ap257 element to link to the description, or (in the case of images) use an image mapp473 to provide a link from the
image to the image's description.

lowsrc on imgp346 elements
Use a progressive JPEG image (given in the srcp347 attribute), instead of using two separate images.

target on linkp177 elements
Unnecessary. Omit it altogether.

type on menup240 elements
To implement a custom context menu, use script to handle the contextmenu event. For toolbar menus, omit the attribute.

label on menup240 elements
contextmenu on all elements
onshow on all elements

To implement a custom context menu, use script to handle the contextmenu event.

scheme on metap189 elements
Use only one scheme per field, or make the scheme declaration part of the value.

1428

https://w3c.github.io/uievents/#event-type-contextmenu
https://w3c.github.io/uievents/#event-type-contextmenu

archive on objectp402 elements
classid on objectp402 elements
code on objectp402 elements
codebase on objectp402 elements
codetype on objectp402 elements

Use the datap403 and typep403 attributes to invoke pluginsp47.

declare on objectp402 elements
Repeat the objectp402 element completely each time the resource is to be reused.

standby on objectp402 elements
Optimize the linked resource so that it loads quickly or, at least, incrementally.

typemustmatch on objectp402 elements
Avoid using objectp402 elements with untrusted resources.

language on scriptp652 elements (except as noted in the previous section)
Omit the attribute for JavaScript; for data blocksp653, use the typep653 attribute instead.

event on scriptp652 elements
for on scriptp652 elements

Use DOM events mechanisms to register event listeners. [DOM]p1478

type on stylep200 elements (except as noted in the previous section)
Omit the attribute for CSS; for data blocksp653, use scriptp652 as the container instead of stylep200.

datapagesize on tablep478 elements
Unnecessary. Omit it altogether.

summary on tablep478 elements
Use one of the techniques for describing tablesp482 given in the tablep478 section instead.

abbr on tdp493 elements
Use text that begins in an unambiguous and terse manner, and include any more elaborate text after that. The titlep157 attribute
can also be useful in including more detailed text, so that the cell's contents can be made terse. If it's a heading, use thp495 (which
has an abbrp495 attribute).

axis on tdp493 and thp495 elements
Use the scopep495 attribute on the relevant thp495.

scope on tdp493 elements
Use thp495 elements for heading cells.

datasrc on ap257, buttonp566, divp256, framep1433, iframep390, imgp346, inputp520, labelp518, legendp596, marqueep1431, objectp402,
optionp577, selectp568, spanp298, tablep478, and textareap579 elements
datafld on ap257, buttonp566, divp256, fieldsetp594, framep1433, iframep390, imgp346, inputp520, labelp518, legendp596, marqueep1431,
objectp402, selectp568, spanp298, and textareap579 elements
dataformatas on buttonp566, divp256, inputp520, labelp518, legendp596, marqueep1431, objectp402, optionp577, selectp568, spanp298, and
tablep478 elements

Use script and a mechanism such as XMLHttpRequest to populate the page dynamically. [XHR]p1484

dropzone on all elements
Use script to handle the dragenterp884 and dragoverp884 events instead.

1429

https://xhr.spec.whatwg.org/#xmlhttprequest

alink on bodyp205 elements
bgcolor on bodyp205 elements
bottommargin on bodyp205 elements
leftmargin on bodyp205 elements
link on bodyp205 elements
marginheight on bodyp205 elements
marginwidth on bodyp205 elements
rightmargin on bodyp205 elements
text on bodyp205 elements
topmargin on bodyp205 elements
vlink on bodyp205 elements
clear on brp299 elements
align on captionp486 elements
align on colp488 elements
char on colp488 elements
charoff on colp488 elements
valign on colp488 elements
width on colp488 elements
align on divp256 elements
compact on dlp244 elements
align on embedp399 elements
hspace on embedp399 elements
vspace on embedp399 elements
align on hrp231 elements
color on hrp231 elements
noshade on hrp231 elements
size on hrp231 elements
width on hrp231 elements
align on h1p216—h6p216 elements
align on iframep390 elements
allowtransparency on iframep390 elements
frameborder on iframep390 elements
framespacing on iframep390 elements
hspace on iframep390 elements
marginheight on iframep390 elements
marginwidth on iframep390 elements
scrolling on iframep390 elements
vspace on iframep390 elements
align on inputp520 elements
border on inputp520 elements
hspace on inputp520 elements
vspace on inputp520 elements
align on imgp346 elements
border on imgp346 elements (except as noted in the previous section)
hspace on imgp346 elements
vspace on imgp346 elements
align on legendp596 elements
type on lip241 elements
compact on menup240 elements
align on objectp402 elements
border on objectp402 elements
hspace on objectp402 elements
vspace on objectp402 elements

1430

compact on olp238 elements
align on pp229 elements
width on prep233 elements
align on tablep478 elements
bgcolor on tablep478 elements
border on tablep478 elements
bordercolor on tablep478 elements
cellpadding on tablep478 elements
cellspacing on tablep478 elements
frame on tablep478 elements
height on tablep478 elements
rules on tablep478 elements
width on tablep478 elements
align on tbodyp489, theadp490, and tfootp491 elements
char on tbodyp489, theadp490, and tfootp491 elements
charoff on tbodyp489, theadp490, and tfootp491 elements
height on theadp490, tbodyp489, and tfootp491 elements
valign on tbodyp489, theadp490, and tfootp491 elements
align on tdp493 and thp495 elements
bgcolor on tdp493 and thp495 elements
char on tdp493 and thp495 elements
charoff on tdp493 and thp495 elements
height on tdp493 and thp495 elements
nowrap on tdp493 and thp495 elements
valign on tdp493 and thp495 elements
width on tdp493 and thp495 elements
align on trp492 elements
bgcolor on trp492 elements
char on trp492 elements
charoff on trp492 elements
height on trp492 elements
valign on trp492 elements
compact on ulp239 elements
type on ulp239 elements
background on bodyp205, tablep478, theadp490, tbodyp489, tfootp491, trp492, tdp493, and thp495 elements

Use CSS instead.

The marqueep1431 element is a presentational element that animates content. CSS transitions and animations are a more appropriate
mechanism. [CSSANIMATIONS]p1476 [CSSTRANSITIONS]p1477

The marqueep1431 element must implement the HTMLMarqueeElementp1431 interface.

[Exposed=Window]
interface HTMLMarqueeElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString behavior;
[CEReactions] attribute DOMString bgColor;
[CEReactions] attribute DOMString direction;

16.3 Requirements for implementations §p14

31

IDL

16.3.1 The marquee element §p14

31

1431

[CEReactions] attribute DOMString height;
[CEReactions] attribute unsigned long hspace;
[CEReactions] attribute long loop;
[CEReactions] attribute unsigned long scrollAmount;
[CEReactions] attribute unsigned long scrollDelay;
[CEReactions] attribute boolean trueSpeed;
[CEReactions] attribute unsigned long vspace;
[CEReactions] attribute DOMString width;

undefined start();
undefined stop();

};

A marqueep1431 element can be turned on or turned off. When it is created, it is turned onp1432.

When the start() method is called, the marqueep1431 element must be turned onp1432.

When the stop() method is called, the marqueep1431 element must be turned offp1432.

The behavior content attribute on marqueep1431 elements is an enumerated attributep76 with the following keywords and states (all
non-conforming):

Keyword State

scroll scroll
slide slide
alternate alternate

The attribute's missing value defaultp76 and invalid value defaultp76 are both the scrollp1432 state.

The direction content attribute on marqueep1431 elements is an enumerated attributep76 with the following keywords and states (all
non-conforming):

Keyword State

left left
right right
up up
down down

The attribute's missing value defaultp76 and invalid value defaultp76 are both the leftp1432 state.

The truespeed content attribute on marqueep1431 elements is a boolean attributep75.

A marqueep1431 element has a marquee scroll interval, which is obtained as follows:

1. If the element has a scrolldelay attribute, and parsing its value using the rules for parsing non-negative integersp77 does
not return an error, then let delay be the parsed value. Otherwise, let delay be 85.

2. If the element does not have a truespeedp1432 attribute, and the delay value is less than 60, then let delay be 60 instead.

3. The marquee scroll intervalp1432 is delay, interpreted in milliseconds.

A marqueep1431 element has a marquee scroll distance, which, if the element has a scrollamount attribute, and parsing its value
using the rules for parsing non-negative integersp77 does not return an error, is the parsed value interpreted in CSS pixels, and
otherwise is 6 CSS pixels.

1432

https://drafts.csswg.org/css-values/#px
https://drafts.csswg.org/css-values/#px

A marqueep1431 element has a marquee loop count, which, if the element has a loop attribute, and parsing its value using the rules
for parsing integersp76 does not return an error or a number less than 1, is the parsed value, and otherwise is −1.

The loop IDL attribute, on getting, must return the element's marquee loop countp1433; and on setting, if the new value is different than
the element's marquee loop countp1433 and either greater than zero or equal to −1, must set the element's loopp1433 content attribute
(adding it if necessary) to the valid integerp76 that represents the new value. (Other values are ignored.)

A marqueep1431 element also has a marquee current loop index, which is zero when the element is created.

The rendering layer will occasionally increment the marquee current loop index, which must cause the following steps to be run:

1. If the marquee loop countp1433 is −1, then return.

2. Increment the marquee current loop indexp1433 by one.

3. If the marquee current loop indexp1433 is now greater than or equal to the element's marquee loop countp1433, turn offp1432 the
marqueep1431 element.

The behavior, direction, height, hspace, vspace, and width IDL attributes must reflectp104 the respective content attributes of the
same name.

The bgColor IDL attribute must reflectp104 the bgcolor content attribute.

The scrollAmount IDL attribute must reflectp104 the scrollamount content attribute. The default valuep106 is 6.

The scrollDelay IDL attribute must reflectp104 the scrolldelay content attribute. The default valuep106 is 85.

The trueSpeed IDL attribute must reflectp104 the truespeedp1432 content attribute.

The frameset element acts as the body elementp136 in documents that use frames.

The framesetp1433 element must implement the HTMLFrameSetElementp1433 interface.

[Exposed=Window]
interface HTMLFrameSetElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString cols;
[CEReactions] attribute DOMString rows;

};
HTMLFrameSetElement includes WindowEventHandlers;

The cols and rows IDL attributes of the framesetp1433 element must reflectp104 the respective content attributes of the same name.

The framesetp1433 element exposes as event handler content attributesp1138 a number of the event handlersp1136 of the Windowp922

object. It also mirrors their event handler IDL attributesp1137.

The event handlersp1136 of the Windowp922 object named by the Window-reflecting body element event handler setp1145, exposed on the
framesetp1433 element, replace the generic event handlersp1136 with the same names normally supported by HTML elementsp45.

The frame element has a content navigablep991 similar to the iframep390 element, but rendered within a framesetp1433 element.

The framep1433 HTML element insertion stepsp45, given insertedNode, are:

1. If insertedNode is not in a document tree, then return.

2. If insertedNode's root's browsing contextp999 is null, then return.

IDL

16.3.2 Frames §p14

33

1433

https://dom.spec.whatwg.org/#in-a-document-tree
https://dom.spec.whatwg.org/#concept-tree-root

3. Create a new child navigablep992 for insertedNode.

4. Process the frame attributesp1434 for insertedNode, with initialInsertionp1434 set to true.

The framep1433 HTML element removing stepsp45, given removedNode, are to destroy a child navigablep995 given removedNode.

Whenever a framep1433 element with a non-null content navigablep991 has its src attribute set, changed, or removed, the user agent
must process the frame attributesp1434.

To process the frame attributes for an element element, with an optional boolean initialInsertion:

1. Let url be the result of running the shared attribute processing steps for iframe and frame elementsp394 given element and
initialInsertion.

2. If url is null, then return.

3. If url matches about:blankp96 and initialInsertion is true, then:

1. Fire an event named loadp1471 at element.

2. Return.

4. Navigate an iframe or framep394 given element, url, and the empty string.

The framep1433 element potentially delays the load eventp395.

The framep1433 element must implement the HTMLFrameElementp1434 interface.

[Exposed=Window]
interface HTMLFrameElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString scrolling;
[CEReactions] attribute USVString src;
[CEReactions] attribute DOMString frameBorder;
[CEReactions] attribute USVString longDesc;
[CEReactions] attribute boolean noResize;
readonly attribute Document? contentDocument;
readonly attribute WindowProxy? contentWindow;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginHeight;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginWidth;

};

The name, scrolling, and src IDL attributes of the framep1433 element must reflectp104 the respective content attributes of the same
name. For the purposes of reflection, the framep1433 element's src content attribute is defined as containing a URL.

The frameBorder IDL attribute of the framep1433 element must reflectp104 the element's frameborder content attribute.

The longDesc IDL attribute of the framep1433 element must reflectp104 the element's longdesc content attribute, which for the purposes
of reflection is defined as containing a URL.

The noResize IDL attribute of the framep1433 element must reflectp104 the element's noresize content attribute.

The marginHeight IDL attribute of the framep1433 element must reflectp104 the element's marginheight content attribute.

The marginWidth IDL attribute of the framep1433 element must reflectp104 the element's marginwidth content attribute.

The contentDocument getter steps are to return this's content documentp992.

The contentWindow getter steps are to return this's content windowp992.

IDL

1434

https://dom.spec.whatwg.org/#concept-event-fire
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url
https://webidl.spec.whatwg.org/#this
https://webidl.spec.whatwg.org/#this

User agents must treat acronymp1426 elements in a manner equivalent to abbrp269 elements in terms of semantics and for purposes of
rendering.

partial interface HTMLAnchorElement {
[CEReactions] attribute DOMString coords;
[CEReactions] attribute DOMString charset;
[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString rev;
[CEReactions] attribute DOMString shape;

};

The coords, charset, name, rev, and shape IDL attributes of the ap257 element must reflectp104 the respective content attributes of the
same name.

partial interface HTMLAreaElement {
[CEReactions] attribute boolean noHref;

};

The noHref IDL attribute of the areap471 element must reflectp104 the element's nohrefp1428 content attribute.

partial interface HTMLBodyElement {
[CEReactions] attribute [LegacyNullToEmptyString] DOMString text;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString link;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString vLink;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString aLink;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
[CEReactions] attribute DOMString background;

};

The text IDL attribute of the bodyp205 element must reflectp104 the element's textp1430 content attribute.

The link IDL attribute of the bodyp205 element must reflectp104 the element's linkp1430 content attribute.

The aLink IDL attribute of the bodyp205 element must reflectp104 the element's alinkp1430 content attribute.

The vLink IDL attribute of the bodyp205 element must reflectp104 the element's vlinkp1430 content attribute.

The bgColor IDL attribute of the bodyp205 element must reflectp104 the element's bgcolorp1430 content attribute.

The background IDL attribute of the bodyp205 element must reflectp104 the element's backgroundp1431 content attribute. (The
backgroundp1431 content is not defined to contain a URL, despite rules regarding its handling in the Rendering section above.)

partial interface HTMLBRElement {
[CEReactions] attribute DOMString clear;

};

The clear IDL attribute of the brp299 element must reflectp104 the content attribute of the same name.

partial interface HTMLTableCaptionElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the captionp486 element must reflectp104 the content attribute of the same name.

IDL

IDL

IDL

IDL

IDL

16.3.3 Other elements, attributes and APIs §p14

35

1435

https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url

partial interface HTMLTableColElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute DOMString vAlign;
[CEReactions] attribute DOMString width;

};

The align and width IDL attributes of the colp488 element must reflectp104 the respective content attributes of the same name.

The ch IDL attribute of the colp488 element must reflectp104 the element's charp1430 content attribute.

The chOff IDL attribute of the colp488 element must reflectp104 the element's charoffp1430 content attribute.

The vAlign IDL attribute of the colp488 element must reflectp104 the element's valignp1430 content attribute.

User agents must treat dirp1426 elements in a manner equivalent to ulp239 elements in terms of semantics and for purposes of
rendering.

The dirp1426 element must implement the HTMLDirectoryElementp1436 interface.

[Exposed=Window]
interface HTMLDirectoryElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute boolean compact;
};

The compact IDL attribute of the dirp1426 element must reflectp104 the content attribute of the same name.

partial interface HTMLDivElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the divp256 element must reflectp104 the content attribute of the same name.

partial interface HTMLDListElement {
[CEReactions] attribute boolean compact;

};

The compact IDL attribute of the dlp244 element must reflectp104 the content attribute of the same name.

partial interface HTMLEmbedElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString name;

};

The name and align IDL attributes of the embedp399 element must reflectp104 the respective content attributes of the same name.

The fontp1427 element must implement the HTMLFontElementp1436 interface.

[Exposed=Window]
interface HTMLFontElement : HTMLElement {

[HTMLConstructor] constructor();

IDL

IDL

IDL

IDL

IDL

IDL

1436

[CEReactions] attribute [LegacyNullToEmptyString] DOMString color;
[CEReactions] attribute DOMString face;
[CEReactions] attribute DOMString size;

};

The color, face, and size IDL attributes of the fontp1427 element must reflectp104 the respective content attributes of the same name.

partial interface HTMLHeadingElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the h1p216–h6p216 elements must reflectp104 the content attribute of the same name.

partial interface HTMLHRElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString color;
[CEReactions] attribute boolean noShade;
[CEReactions] attribute DOMString size;
[CEReactions] attribute DOMString width;

};

The align, color, size, and width IDL attributes of the hrp231 element must reflectp104 the respective content attributes of the same
name.

The noShade IDL attribute of the hrp231 element must reflectp104 the element's noshadep1430 content attribute.

partial interface HTMLHtmlElement {
[CEReactions] attribute DOMString version;

};

The version IDL attribute of the htmlp172 element must reflectp104 the content attribute of the same name.

partial interface HTMLIFrameElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString scrolling;
[CEReactions] attribute DOMString frameBorder;
[CEReactions] attribute USVString longDesc;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginHeight;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString marginWidth;

};

The align and scrolling IDL attributes of the iframep390 element must reflectp104 the respective content attributes of the same name.

The frameBorder IDL attribute of the iframep390 element must reflectp104 the element's frameborderp1430 content attribute.

The longDesc IDL attribute of the iframep390 element must reflectp104 the element's longdescp1428 content attribute, which for the
purposes of reflection is defined as containing a URL.

The profile IDL attribute on headp173 elements (with the HTMLHeadElementp173 interface) is intentionally omitted. Unless so
required by another applicable specificationp73, implementations would therefore not support this attribute. (It is mentioned here
as it was defined in a previous version of DOM.)

Note

IDL

IDL

IDL

IDL

1437

https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url

The marginHeight IDL attribute of the iframep390 element must reflectp104 the element's marginheightp1430 content attribute.

The marginWidth IDL attribute of the iframep390 element must reflectp104 the element's marginwidthp1430 content attribute.

partial interface HTMLImageElement {
[CEReactions] attribute DOMString name;
[CEReactions] attribute USVString lowsrc;
[CEReactions] attribute DOMString align;
[CEReactions] attribute unsigned long hspace;
[CEReactions] attribute unsigned long vspace;
[CEReactions] attribute USVString longDesc;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString border;
};

The name, align, border, hspace, and vspace IDL attributes of the imgp346 element must reflectp104 the respective content attributes of
the same name.

The longDesc IDL attribute of the imgp346 element must reflectp104 the element's longdescp1428 content attribute, which for the
purposes of reflection is defined as containing a URL.

The lowsrc IDL attribute of the imgp346 element must reflectp104 the element's lowsrcp1428 content attribute, which for the purposes of
reflection is defined as containing a URL.

partial interface HTMLInputElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString useMap;

};

The align IDL attribute of the inputp520 element must reflectp104 the content attribute of the same name.

The useMap IDL attribute of the inputp520 element must reflectp104 the element's usemapp1428 content attribute.

partial interface HTMLLegendElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the legendp596 element must reflectp104 the content attribute of the same name.

partial interface HTMLLIElement {
[CEReactions] attribute DOMString type;

};

The type IDL attribute of the lip241 element must reflectp104 the content attribute of the same name.

partial interface HTMLLinkElement {
[CEReactions] attribute DOMString charset;
[CEReactions] attribute DOMString rev;
[CEReactions] attribute DOMString target;

};

The charset, rev, and target IDL attributes of the linkp177 element must reflectp104 the respective content attributes of the same
name.

IDL

IDL

IDL

IDL

IDL

1438

https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://url.spec.whatwg.org/#concept-url
https://url.spec.whatwg.org/#concept-url

User agents must treat listingp1426 elements in a manner equivalent to prep233 elements in terms of semantics and for purposes of
rendering.

partial interface HTMLMenuElement {
[CEReactions] attribute boolean compact;

};

The compact IDL attribute of the menup240 element must reflectp104 the content attribute of the same name.

partial interface HTMLMetaElement {
[CEReactions] attribute DOMString scheme;

};

User agents may treat the schemep1428 content attribute on the metap189 element as an extension of the element's namep190 content
attribute when processing a metap189 element with a namep190 attribute whose value is one that the user agent recognizes as supporting
the schemep1428 attribute.

User agents are encouraged to ignore the schemep1428 attribute and instead process the value given to the metadata name as if it had
been specified for each expected value of the schemep1428 attribute.

The scheme IDL attribute of the metap189 element must reflectp104 the content attribute of the same name.

partial interface HTMLObjectElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString archive;
[CEReactions] attribute DOMString code;
[CEReactions] attribute boolean declare;
[CEReactions] attribute unsigned long hspace;
[CEReactions] attribute DOMString standby;
[CEReactions] attribute unsigned long vspace;
[CEReactions] attribute DOMString codeBase;
[CEReactions] attribute DOMString codeType;
[CEReactions] attribute DOMString useMap;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString border;
};

The align, archive, border, code, declare, hspace, standby, and vspace IDL attributes of the objectp402 element must reflectp104 the
respective content attributes of the same name.

For example, if the user agent acts on metap189 elements with namep190 attributes having the value "eGMS.subject.keyword", and
knows that the schemep1428 attribute is used with this metadata name, then it could take the schemep1428 attribute into account,
acting as if it was an extension of the namep190 attribute. Thus the following two metap189 elements could be treated as two
elements giving values for two different metadata names, one consisting of a combination of "eGMS.subject.keyword" and "LGCL",
and the other consisting of a combination of "eGMS.subject.keyword" and "ORLY":

<!-- this markup is invalid -->
<meta name="eGMS.subject.keyword" scheme="LGCL" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" scheme="ORLY" content="Mah car: kthxbye">

The suggested processing of this markup, however, would be equivalent to the following:

<meta name="eGMS.subject.keyword" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" content="Mah car: kthxbye">

Example

IDL

IDL

IDL

1439

https://webidl.spec.whatwg.org/#LegacyNullToEmptyString

The codeBase IDL attribute of the objectp402 element must reflectp104 the element's codebasep1429 content attribute, which for the
purposes of reflection is defined as containing a URL.

The codeType IDL attribute of the objectp402 element must reflectp104 the element's codetypep1429 content attribute.

The useMap IDL attribute must reflectp104 the usemapp473 content attribute.

partial interface HTMLOListElement {
[CEReactions] attribute boolean compact;

};

The compact IDL attribute of the olp238 element must reflectp104 the content attribute of the same name.

partial interface HTMLParagraphElement {
[CEReactions] attribute DOMString align;

};

The align IDL attribute of the pp229 element must reflectp104 the content attribute of the same name.

The paramp1426 element must implement the HTMLParamElementp1440 interface.

[Exposed=Window]
interface HTMLParamElement : HTMLElement {

[HTMLConstructor] constructor();

[CEReactions] attribute DOMString name;
[CEReactions] attribute DOMString value;
[CEReactions] attribute DOMString type;
[CEReactions] attribute DOMString valueType;

};

The name, value, and type IDL attributes of the paramp1426 element must reflectp104 the respective content attributes of the same
name.

The valueType IDL attribute of the paramp1426 element must reflectp104 the element's valuetype content attribute.

User agents must treat plaintextp1426 elements in a manner equivalent to prep233 elements in terms of semantics and for purposes of
rendering. (The parser has special behavior for this element, though.)

partial interface HTMLPreElement {
[CEReactions] attribute long width;

};

The width IDL attribute of the prep233 element must reflectp104 the content attribute of the same name.

partial interface HTMLStyleElement {
[CEReactions] attribute DOMString type;

};

The type IDL attribute of the stylep200 element must reflectp104 the element's typep1429 content attribute.

IDL

IDL

IDL

IDL

IDL

✔ MDN

1440

https://url.spec.whatwg.org/#concept-url

partial interface HTMLScriptElement {
[CEReactions] attribute DOMString charset;
[CEReactions] attribute DOMString event;
[CEReactions] attribute DOMString htmlFor;

};

The charset and event IDL attributes of the scriptp652 element must reflectp104 the respective content attributes of the same name.

The htmlFor IDL attribute of the scriptp652 element must reflectp104 the element's forp1429 content attribute.

partial interface HTMLTableElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString border;
[CEReactions] attribute DOMString frame;
[CEReactions] attribute DOMString rules;
[CEReactions] attribute DOMString summary;
[CEReactions] attribute DOMString width;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString cellPadding;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString cellSpacing;

};

The align, border, frame, summary, rules, and width, IDL attributes of the tablep478 element must reflectp104 the respective content
attributes of the same name.

The bgColor IDL attribute of the tablep478 element must reflectp104 the element's bgcolorp1431 content attribute.

The cellPadding IDL attribute of the tablep478 element must reflectp104 the element's cellpaddingp1431 content attribute.

The cellSpacing IDL attribute of the tablep478 element must reflectp104 the element's cellspacingp1431 content attribute.

partial interface HTMLTableSectionElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute DOMString vAlign;

};

The align IDL attribute of the tbodyp489, theadp490, and tfootp491 elements must reflectp104 the content attribute of the same name.

The ch IDL attribute of the tbodyp489, theadp490, and tfootp491 elements must reflectp104 the elements' charp1431 content attributes.

The chOff IDL attribute of the tbodyp489, theadp490, and tfootp491 elements must reflectp104 the elements' charoffp1431 content
attributes.

The vAlign IDL attribute of the tbodyp489, theadp490, and tfootp491 element must reflectp104 the elements' valignp1431 content
attributes.

partial interface HTMLTableCellElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString axis;
[CEReactions] attribute DOMString height;
[CEReactions] attribute DOMString width;

[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;

IDL

IDL

IDL

IDL

1441

https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString

[CEReactions] attribute boolean noWrap;
[CEReactions] attribute DOMString vAlign;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
};

The align, axis, height, and width IDL attributes of the tdp493 and thp495 elements must reflectp104 the respective content attributes
of the same name.

The ch IDL attribute of the tdp493 and thp495 elements must reflectp104 the elements' charp1431 content attributes.

The chOff IDL attribute of the tdp493 and thp495 elements must reflectp104 the elements' charoffp1431 content attributes.

The noWrap IDL attribute of the tdp493 and thp495 elements must reflectp104 the elements' nowrapp1431 content attributes.

The vAlign IDL attribute of the tdp493 and thp495 elements must reflectp104 the elements' valignp1431 content attributes.

The bgColor IDL attribute of the tdp493 and thp495 elements must reflectp104 the elements' bgcolorp1431 content attributes.

partial interface HTMLTableRowElement {
[CEReactions] attribute DOMString align;
[CEReactions] attribute DOMString ch;
[CEReactions] attribute DOMString chOff;
[CEReactions] attribute DOMString vAlign;

[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;
};

The align IDL attribute of the trp492 element must reflectp104 the content attribute of the same name.

The ch IDL attribute of the trp492 element must reflectp104 the element's charp1431 content attribute.

The chOff IDL attribute of the trp492 element must reflectp104 the element's charoffp1431 content attribute.

The vAlign IDL attribute of the trp492 element must reflectp104 the element's valignp1431 content attribute.

The bgColor IDL attribute of the trp492 element must reflectp104 the element's bgcolorp1431 content attribute.

partial interface HTMLUListElement {
[CEReactions] attribute boolean compact;
[CEReactions] attribute DOMString type;

};

The compact and type IDL attributes of the ulp239 element must reflectp104 the respective content attributes of the same name.

User agents must treat xmpp1427 elements in a manner equivalent to prep233 elements in terms of semantics and for purposes of
rendering. (The parser has special behavior for this element though.)

partial interface Document {
[CEReactions] attribute [LegacyNullToEmptyString] DOMString fgColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString linkColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString vlinkColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString alinkColor;
[CEReactions] attribute [LegacyNullToEmptyString] DOMString bgColor;

[SameObject] readonly attribute HTMLCollection anchors;

IDL

IDL

IDL

1442

https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://webidl.spec.whatwg.org/#LegacyNullToEmptyString
https://dom.spec.whatwg.org/#interface-htmlcollection

[SameObject] readonly attribute HTMLCollection applets;

undefined clear();
undefined captureEvents();
undefined releaseEvents();

[SameObject] readonly attribute HTMLAllCollection all;
};

The attributes of the Documentp130 object listed in the first column of the following table must reflectp104 the content attribute on the
body elementp136 with the name given in the corresponding cell in the second column on the same row, if the body elementp136 is a
bodyp205 element (as opposed to a framesetp1433 element). When there is no body elementp136 or if it is a framesetp1433 element, the
attributes must instead return the empty string on getting and do nothing on setting.

IDL attribute Content attribute

fgColor textp1430

linkColor linkp1430

vlinkColor vlinkp1430

alinkColor alinkp1430

bgColor bgcolorp1430

The anchors attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches only ap257 elements with
namep1427 attributes.

The applets attribute must return an HTMLCollection rooted at the Documentp130 node, whose filter matches nothing. (It exists for
historical reasons.)

The clear(), captureEvents(), and releaseEvents() methods must do nothing.

The all attribute must return an HTMLAllCollectionp111 rooted at the Documentp130 node, whose filter matches all elements.

partial interface Window {
undefined captureEvents();
undefined releaseEvents();

[Replaceable, SameObject] readonly attribute External external;
};

The captureEvents() and releaseEvents() methods must do nothing.

The external attribute of the Windowp922 interface must return an instance of the Externalp1443 interface:

[Exposed=Window]
interface External {

undefined AddSearchProvider();
undefined IsSearchProviderInstalled();

};

The AddSearchProvider() and IsSearchProviderInstalled() methods must do nothing.

IDL

IDL

1443

https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection
https://dom.spec.whatwg.org/#interface-htmlcollection

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
html

Required parameters:
No required parameters

Optional parameters:
charset

The charset parameter may be provided to specify the document's character encoding, overriding any character encoding
declarationsp199 in the document other than a Byte Order Mark (BOM). The parameter's value must be an ASCII case-insensitive
match for the string "utf-8". [ENCODING]p1478

Encoding considerations:
8bit (see the section on character encoding declarationsp199)

Security considerations:
Entire novels have been written about the security considerations that apply to HTML documents. Many are listed in this document,
to which the reader is referred for more details. Some general concerns bear mentioning here, however:

HTML is scripted language, and has a large number of APIs (some of which are described in this document). Script can expose the
user to potential risks of information leakage, credential leakage, cross-site scripting attacks, cross-site request forgeries, and a host
of other problems. While the designs in this specification are intended to be safe if implemented correctly, a full implementation is a
massive undertaking and, as with any software, user agents are likely to have security bugs.

Even without scripting, there are specific features in HTML which, for historical reasons, are required for broad compatibility with
legacy content but that expose the user to unfortunate security problems. In particular, the imgp346 element can be used in
conjunction with some other features as a way to effect a port scan from the user's location on the Internet. This can expose local
network topologies that the attacker would otherwise not be able to determine.

HTML relies on a compartmentalization scheme sometimes known as the same-origin policy. An originp898 in most cases consists of
all the pages served from the same host, on the same port, using the same protocol.

It is critical, therefore, to ensure that any untrusted content that forms part of a site be hosted on a different originp898 than any
sensitive content on that site. Untrusted content can easily spoof any other page on the same origin, read data from that origin,
cause scripts in that origin to execute, submit forms to and from that origin even if they are protected from cross-site request
forgery attacks by unique tokens, and make use of any third-party resources exposed to or rights granted to that origin.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification. Labeling a resource with the text/htmlp1444 type asserts that the resource is an HTML
document using the HTML syntaxp1259.

Applications that use this media type:
Web browsers, tools for processing web content, HTML authoring tools, search engines, validators.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify an HTML document. More information on detecting HTML documents is available in
MIME Sniffing. [MIMESNIFF]p1480

File extension(s):
"html" and "htm" are commonly, but certainly not exclusively, used as the extension for HTML documents.

17 IANA considerations §p14

44

17.1 text/html §p14

44

1444

https://dom.spec.whatwg.org/#concept-document-encoding
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#html-document
https://dom.spec.whatwg.org/#html-document

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments used with text/htmlp1444 resources either refer to the indicated partp1054 of the corresponding Documentp130, or provide state
information for in-page scripts.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
multipart

Subtype name:
x-mixed-replace

Required parameters:

• boundary (defined in RFC2046) [RFC2046]p1481

Optional parameters:
No optional parameters.

Encoding considerations:
binary

Security considerations:
Subresources of a multipart/x-mixed-replacep1445 resource can be of any type, including types with non-trivial security
implications such as text/htmlp1444.

Interoperability considerations:
None.

Published specification:
This specification describes processing rules for web browsers. Conformance requirements for generating resources with this type
are the same as for multipart/mixedp1474. [RFC2046]p1481

Applications that use this media type:
This type is intended to be used in resources generated by web servers, for consumption by web browsers.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify a multipart/x-mixed-replacep1445 resource.
File extension(s):

No specific file extensions are recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

17.2 multipart/x-mixed-replace §p14

45

1445

https://url.spec.whatwg.org/#concept-url-fragment

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments used with multipart/x-mixed-replacep1445 resources apply to each body part as defined by the type used by that body
part.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
application

Subtype name:
xhtml+xml

Required parameters:
Same as for application/xmlp1473 [RFC7303]p1482

Optional parameters:
Same as for application/xmlp1473 [RFC7303]p1482

Encoding considerations:
Same as for application/xmlp1473 [RFC7303]p1482

Security considerations:
Same as for application/xmlp1473 [RFC7303]p1482

Interoperability considerations:
Same as for application/xmlp1473 [RFC7303]p1482

Published specification:
Labeling a resource with the application/xhtml+xmlp1446 type asserts that the resource is an XML document that likely has a
document element from the HTML namespace. Thus, the relevant specifications are XML, Namespaces in XML, and this
specification. [XML]p1484 [XMLNS]p1484

Applications that use this media type:
Same as for application/xmlp1473 [RFC7303]p1482

Additional information:
Magic number(s):

Same as for application/xmlp1473 [RFC7303]p1482

File extension(s):
"xhtml" and "xht" are sometimes used as extensions for XML resources that have a document element from the HTML
namespace.

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

17.3 application/xhtml+xml §p14

46

1446

https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#html-namespace
https://dom.spec.whatwg.org/#document-element
https://infra.spec.whatwg.org/#html-namespace
https://infra.spec.whatwg.org/#html-namespace

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

Fragments used with application/xhtml+xmlp1446 resources have the same semantics as with any XML MIME type. [RFC7303]p1482

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
ping

Required parameters:
No parameters

Optional parameters:
charset

The charset parameter may be provided. The parameter's value must be "utf-8". This parameter serves no purpose; it is only
allowed for compatibility with legacy servers.

Encoding considerations:
Not applicable.

Security considerations:
If used exclusively in the fashion described in the context of hyperlink auditingp312, this type introduces no new security concerns.

Interoperability considerations:
Rules applicable to this type are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):

text/pingp1447 resources always consist of the four bytes 0x50 0x49 0x4E 0x47 (`PING`).
File extension(s):

No specific file extension is recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
Only intended for use with HTTP POST requests generated as part of a web browser's processing of the pingp303 attribute.

Author:
Ian Hickson <ian@hixie.ch>

17.4 text/ping §p14

47

1447

https://url.spec.whatwg.org/#concept-url-fragment
https://mimesniff.spec.whatwg.org/#xml-mime-type

Change controller:
W3C

Fragments have no meaning with text/pingp1447 resources.

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
application

Subtype name:
microdata+json

Required parameters:
Same as for application/jsonp1473 [JSON]p1479

Optional parameters:
Same as for application/jsonp1473 [JSON]p1479

Encoding considerations:
8bit (always UTF-8)

Security considerations:
Same as for application/jsonp1473 [JSON]p1479

Interoperability considerations:
Same as for application/jsonp1473 [JSON]p1479

Published specification:
Labeling a resource with the application/microdata+jsonp1448 type asserts that the resource is a JSON text that consists of an
object with a single entry called "items" consisting of an array of entries, each of which consists of an object with an entry called
"id" whose value is a string, an entry called "type" whose value is another string, and an entry called "properties" whose value is
an object whose entries each have a value consisting of an array of either objects or strings, the objects being of the same form as
the objects in the aforementioned "items" entry. Thus, the relevant specifications are JSON and this specification. [JSON]p1479

Applications that use this media type:
Applications that transfer data intended for use with HTML's microdata feature, especially in the context of drag-and-drop, are the
primary application class for this type.

Additional information:
Magic number(s):

Same as for application/jsonp1473 [JSON]p1479

File extension(s):
Same as for application/jsonp1473 [JSON]p1479

Macintosh file type code(s):
Same as for application/jsonp1473 [JSON]p1479

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C

17.5 application/microdata+json §p14

48

1448

https://url.spec.whatwg.org/#concept-url-fragment

Fragments used with application/microdata+jsonp1448 resources have the same semantics as when used with application/
jsonp1473 (namely, at the time of writing, no semantics at all). [JSON]p1479

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text

Subtype name:
event-stream

Required parameters:
No parameters

Optional parameters:
charset

The charset parameter may be provided. The parameter's value must be "utf-8". This parameter serves no purpose; it is only
allowed for compatibility with legacy servers.

Encoding considerations:
8bit (always UTF-8)

Security considerations:
An event stream from an origin distinct from the origin of the content consuming the event stream can result in information
leakage. To avoid this, user agents are required to apply CORS semantics. [FETCH]p1478

Event streams can overwhelm a user agent; a user agent is expected to apply suitable restrictions to avoid depleting local
resources because of an overabundance of information from an event stream.

Servers can be overwhelmed if a situation develops in which the server is causing clients to reconnect rapidly. Servers should use a
5xx status code to indicate capacity problems, as this will prevent conforming clients from reconnecting automatically.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers and tools using web services.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify an event stream.
File extension(s):

No specific file extensions are recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
This format is only expected to be used by dynamic open-ended streams served using HTTP or a similar protocol. Finite resources
are not expected to be labeled with this type.

Author:
Ian Hickson <ian@hixie.ch>

17.6 text/event-stream §p14

49

1449

https://url.spec.whatwg.org/#concept-url-fragment

Change controller:
W3C

Fragments have no meaning with text/event-streamp1449 resources.

This section describes a convention for use with the IANA URI scheme registry. It does not itself register a specific scheme.
[RFC7595]p1481

Scheme name:
Schemes starting with the four characters "web+" followed by one or more letters in the range a-z.

Status:
Permanent

Scheme syntax:
Scheme-specific.

Scheme semantics:
Scheme-specific.

Encoding considerations:
All "web+" schemes should use UTF-8 encodings where relevant.

Applications/protocols that use this scheme name:
Scheme-specific.

Interoperability considerations:
The scheme is expected to be used in the context of web applications.

Security considerations:
Any web page is able to register a handler for all "web+" schemes. As such, these schemes must not be used for features intended
to be core platform features (e.g., HTTP). Similarly, such schemes must not store confidential information in their URLs, such as
usernames, passwords, personal information, or confidential project names.

Contact:
Ian Hickson <ian@hixie.ch>

Change controller:
Ian Hickson <ian@hixie.ch>

References:
Custom scheme handlers, HTML Living Standard: https://html.spec.whatwg.org/#custom-handlersp1174

17.7 web+ scheme prefix §p14

50

1450

https://url.spec.whatwg.org/#concept-url-fragment

The following sections only cover conforming elements and features.

This section is non-normative.

List of elements
Element Description Categories Parents† Children Attributes Interface

ap257 Hyperlink flowp149;
phrasingp150*;
interactivep150;
palpablep150

phrasingp150 transparentp151* globalsp154; hrefp303; targetp303; downloadp303;
pingp303; relp303; hreflangp303; typep303;
referrerpolicyp303

HTMLAnchorElementp258

abbrp269 Abbreviation flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

addressp222 Contact
information
for a page or
articlep206

element

flowp149;
palpablep150

flowp149 flowp149* globalsp154 HTMLElementp142

areap471 Hyperlink or
dead area on
an image
map

flowp149;
phrasingp150

phrasingp150* empty globalsp154; altp472; coordsp473; shapep472;
hrefp303; targetp303; downloadp303; pingp303;
relp303; referrerpolicyp303

HTMLAreaElementp472

articlep206 Self-
contained
syndicatable
or reusable
composition

flowp149;
sectioningp149;
palpablep150

flowp149 flowp149 globalsp154 HTMLElementp142

asidep214 Sidebar for
tangentially
related
content

flowp149;
sectioningp149;
palpablep150

flowp149 flowp149 globalsp154 HTMLElementp142

audiop410 Audio player flowp149;
phrasingp150;
embeddedp150;
interactivep150;
palpablep150*

phrasingp150 sourcep343*;
trackp411*;
transparentp151*

globalsp154; srcp416; crossoriginp417;
preloadp429; autoplayp435; loopp433; mutedp465;
controlsp464

HTMLAudioElementp411

bp292 Keywords flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

basep175 Base URL and
default target
navigablep989

for
hyperlinksp303

and formsp603

metadatap148 headp173 empty globalsp154; hrefp176; targetp176 HTMLBaseElementp175

bdip297 Text
directionality
isolation

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

bdop298 Text
directionality
formatting

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

blockquotep235 A section
quoted from
another
source

flowp149;
palpablep150

flowp149 flowp149 globalsp154; citep235 HTMLQuoteElementp235

bodyp205 Document
body

none htmlp172 flowp149 globalsp154; onafterprintp1145;
onbeforeprintp1145; onbeforeunloadp1145;

HTMLBodyElementp205

Index §p14

51

Elements §p14

51

1451

Element Description Categories Parents† Children Attributes Interface

onhashchangep1145; onlanguagechangep1145;
onmessagep1145; onmessageerrorp1145;
onofflinep1145; ononlinep1145;
onpageswapp1145; onpagehidep1145;
onpagerevealp1145; onpageshowp1145;
onpopstatep1145; onrejectionhandledp1145;
onstoragep1145; onunhandledrejectionp1145;
onunloadp1145

brp299 Line break,
e.g. in poem
or postal
address

flowp149;
phrasingp150

phrasingp150 empty globalsp154 HTMLBRElementp299

buttonp566 Button control flowp149;
phrasingp150;
interactivep150;
listedp513;
labelablep514;
submittablep514;
form-
associatedp513;
palpablep150

phrasingp150 phrasingp150* globalsp154; disabledp601; formp598;
formactionp602; formenctypep603;
formmethodp602; formnovalidatep603;
formtargetp603; namep599; popovertargetp894;
popovertargetactionp894; typep567; valuep568

HTMLButtonElementp566

canvasp677 Scriptable
bitmap
canvas

flowp149;
phrasingp150;
embeddedp150;
palpablep150

phrasingp150 transparentp151 globalsp154; widthp678; heightp678 HTMLCanvasElementp677

captionp486 Table caption none tablep478 flowp149* globalsp154 HTMLTableCaptionElementp486

citep265 Title of a work flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

codep286 Computer
code

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

colp488 Table column none colgroupp487 empty globalsp154; spanp488 HTMLTableColElementp488

colgroupp487 Group of
columns in a
table

none tablep478 colp488*;
templatep671*

globalsp154; spanp488 HTMLTableColElementp488

datap278 Machine-
readable
equivalent

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154; valuep279 HTMLDataElementp278

datalistp574 Container for
options for
combo box
controlp557

flowp149;
phrasingp150

phrasingp150 phrasingp150*;
optionp577*;
script-
supporting
elementsp151*

globalsp154 HTMLDataListElementp575

ddp248 Content for
corresponding
dtp247

element(s)

none dlp244; divp256* flowp149 globalsp154 HTMLElementp142

delp338 A removal
from the
document

flowp149;
phrasingp150*;
palpablep150

phrasingp150 transparentp151 globalsp154; citep339; datetimep339 HTMLModElementp340

detailsp637 Disclosure
control for
hiding details

flowp149;
interactivep150;
palpablep150

flowp149 summaryp643*;
flowp149

globalsp154; namep638; openp638 HTMLDetailsElementp637

dfnp268 Defining
instance

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150* globalsp154 HTMLElementp142

dialogp646 Dialog box or
window

flowp149 flowp149 flowp149 globalsp154; openp648 HTMLDialogElementp647

divp256 Generic flow
container, or
container for
name-value
groups in
dlp244

elements

flowp149;
palpablep150

flowp149; dlp244 flowp149 globalsp154 HTMLDivElementp256

dlp244 Association flowp149; flowp149 dtp247*; ddp248*; globalsp154 HTMLDListElementp244

1452

Element Description Categories Parents† Children Attributes Interface

list consisting
of zero or
more name-
value groups

palpablep150 divp256*; script-
supporting
elementsp151

dtp247 Legend for
corresponding
ddp248

element(s)

none dlp244; divp256* flowp149* globalsp154 HTMLElementp142

emp260 Stress
emphasis

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

embedp399 Pluginp47 flowp149;
phrasingp150;
embeddedp150;
interactivep150;
palpablep150

phrasingp150 empty globalsp154; srcp400; typep400; widthp477;
heightp477; any*

HTMLEmbedElementp400

fieldsetp594 Group of form
controls

flowp149;
listedp513; form-
associatedp513;
palpablep150

flowp149 legendp596*;
flowp149

globalsp154; disabledp594; formp598; namep599 HTMLFieldSetElementp594

figcaptionp252 Caption for
figurep249

none figurep249 flowp149 globalsp154 HTMLElementp142

figurep249 Figure with
optional
caption

flowp149;
palpablep150

flowp149 figcaptionp252*;
flowp149

globalsp154 HTMLElementp142

footerp220 Footer for a
page or
section

flowp149;
palpablep150

flowp149 flowp149* globalsp154 HTMLElementp142

formp514 User-
submittable
form

flowp149;
palpablep150

flowp149 flowp149* globalsp154; accept-charsetp515; actionp602;
autocompletep515; enctypep603; methodp602;
namep515; novalidatep603; relp515; targetp603

HTMLFormElementp514

h1p216, h2p216,
h3p216, h4p216,
h5p216, h6p216

Heading flowp149;
headingp149;
palpablep150

legendp596;
summaryp643;
flowp149

phrasingp150 globalsp154 HTMLHeadingElementp217

headp173 Container for
document
metadata

none htmlp172 metadata
contentp148*

globalsp154 HTMLHeadElementp173

headerp218 Introductory
or
navigational
aids for a
page or
section

flowp149;
palpablep150

flowp149 flowp149* globalsp154 HTMLElementp142

hgroupp218 Heading
container

flowp149;
palpablep150

legendp596;
summaryp643;
flowp149

h1p216; h2p216;
h3p216; h4p216;
h5p216; h6p216;
script-
supporting
elementsp151

globalsp154 HTMLElementp142

hrp231 Thematic
break

flowp149 flowp149 empty globalsp154 HTMLHRElementp232

htmlp172 Root element none none* headp173*;
bodyp205*

globalsp154; manifestp1428 HTMLHtmlElementp172

ip291 Alternate
voice

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

iframep390 Child
navigablep992

flowp149;
phrasingp150;
embeddedp150;
interactivep150;
palpablep150

phrasingp150 empty globalsp154; srcp391; srcdocp391; namep395;
sandboxp395; allowp397; allowfullscreenp397;
widthp477; heightp477; referrerpolicyp398;
loadingp398

HTMLIFrameElementp391

imgp346 Image flowp149;
phrasingp150;
embeddedp150;
interactivep150*;
form-
associatedp513;

phrasingp150;
picturep342

empty globalsp154; altp347; srcp347; srcsetp347;
sizesp347; crossoriginp348; usemapp473;
ismapp350; widthp477; heightp477;
referrerpolicyp348; decodingp348;
loadingp348; fetchpriorityp348

HTMLImageElementp347

1453

Element Description Categories Parents† Children Attributes Interface

palpablep150

inputp520 Form control flowp149;
phrasingp150;
interactivep150*;
listedp513;
labelablep514;
submittablep514;
resettablep514;
form-
associatedp513;
palpablep150*

phrasingp150 empty globalsp154; acceptp544; alphap541; altp548;
autocompletep604; checkedp525;
colorspacep541; dirnamep600; disabledp601;
formp598; formactionp602; formenctypep603;
formmethodp602; formnovalidatep603;
formtargetp603; heightp477; listp557; maxp555;
maxlengthp551; minp555; minlengthp551;
multiplep553; namep599; patternp554;
placeholderp559; popovertargetp894;
popovertargetactionp894; readonlyp551;
requiredp552; sizep551; srcp547; stepp556;
typep523; valuep525; widthp477

HTMLInputElementp522

insp337 An addition to
the document

flowp149;
phrasingp150*;
palpablep150

phrasingp150 transparentp151 globalsp154; citep339; datetimep339 HTMLModElementp340

kbdp289 User input flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

labelp518 Caption for a
form control

flowp149;
phrasingp150;
interactivep150;
palpablep150

phrasingp150 phrasingp150* globalsp154; forp519 HTMLLabelElementp518

legendp596 Caption for
fieldsetp594

none fieldsetp594 phrasingp150;
heading
contentp149

globalsp154 HTMLLegendElementp597

lip241 List item none olp238; ulp239;
menup240*

flowp149 globalsp154; valuep242* HTMLLIElementp242

linkp177 Link
metadata

metadatap148;
flowp149*;
phrasingp150*

headp173;
noscriptp669*;
phrasingp150*

empty globalsp154; hrefp178; crossoriginp179; relp178;
asp181; mediap179; hreflangp179; typep179;
sizesp180; imagesrcsetp180; imagesizesp180;
referrerpolicyp179; integrityp179;
blockingp181; colorp181; disabledp181;
fetchpriorityp181

HTMLLinkElementp178

mainp253 Container for
the dominant
contents of
the document

flowp149;
palpablep150

flowp149* flowp149 globalsp154 HTMLElementp142

mapp470 Image
mapp473

flowp149;
phrasingp150*;
palpablep150

phrasingp150 transparentp151;
areap471*

globalsp154; namep471 HTMLMapElementp470

markp294 Highlight flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

MathML math MathML root flowp149;
phrasingp150;
embeddedp150;
palpablep150

phrasingp150 per
[MATHML]p1479

per [MATHML]p1479 Element

menup240 Menu of
commands

flowp149;
palpablep150*

flowp149 lip241; script-
supporting
elementsp151

globalsp154 HTMLMenuElementp241

metap189 Text
metadata

metadatap148;
flowp149*;
phrasingp150*

headp173;
noscriptp669*;
phrasingp150*

empty globalsp154; namep190; http-equivp195;
contentp190; charsetp190; mediap190

HTMLMetaElementp190

meterp589 Gauge flowp149;
phrasingp150;
labelablep514;
palpablep150

phrasingp150 phrasingp150* globalsp154; valuep590; minp590; maxp590; lowp590;
highp590; optimump590

HTMLMeterElementp589

navp211 Section with
navigational
links

flowp149;
sectioningp149;
palpablep150

flowp149 flowp149 globalsp154 HTMLElementp142

noscriptp669 Fallback
content for
script

metadatap148;
flowp149;
phrasingp150

headp173*;
phrasingp150*

varies* globalsp154 HTMLElementp142

objectp402 Image, child
navigablep992,
or pluginp47

flowp149;
phrasingp150;
embeddedp150;

phrasingp150 transparentp151 globalsp154; datap403; typep403; namep403;
formp598; widthp477; heightp477

HTMLObjectElementp402

1454

https://w3c.github.io/mathml-core/#the-top-level-math-element
https://dom.spec.whatwg.org/#interface-element

Element Description Categories Parents† Children Attributes Interface

interactivep150*;
listedp513; form-
associatedp513;
palpablep150

olp238 Ordered list flowp149;
palpablep150*

flowp149 lip241; script-
supporting
elementsp151

globalsp154; reversedp238; startp238; typep238 HTMLOListElementp238

optgroupp576 Group of
options in a
list box

none selectp568 optionp577;
script-
supporting
elementsp151

globalsp154; disabledp576; labelp576 HTMLOptGroupElementp576

optionp577 Option in a
list box or
combo box
control

none selectp568;
datalistp574;
optgroupp576

textp150* globalsp154; disabledp578; labelp578;
selectedp578; valuep578

HTMLOptionElementp577

outputp584 Calculated
output value

flowp149;
phrasingp150;
listedp513;
labelablep514;
resettablep514;
form-
associatedp513;
palpablep150

phrasingp150 phrasingp150 globalsp154; forp585; formp598; namep599 HTMLOutputElementp585

pp229 Paragraph flowp149;
palpablep150

flowp149 phrasingp150 globalsp154 HTMLParagraphElementp229

picturep342 Image flowp149;
phrasingp150;
embeddedp150;
palpablep150

phrasingp150 sourcep343*; one
imgp346; script-
supporting
elementsp151

globalsp154 HTMLPictureElementp342

prep233 Block of
preformatted
text

flowp149;
palpablep150

flowp149 phrasingp150 globalsp154 HTMLPreElementp233

progressp587 Progress bar flowp149;
phrasingp150;
labelablep514;
palpablep150

phrasingp150 phrasingp150* globalsp154; valuep587; maxp587 HTMLProgressElementp587

qp266 Quotation flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154; citep267 HTMLQuoteElementp235

rpp277 Parenthesis
for ruby
annotation
text

none rubyp270 textp150 globalsp154 HTMLElementp142

rtp277 Ruby
annotation
text

none rubyp270 phrasingp150 globalsp154 HTMLElementp142

rubyp270 Ruby
annotation(s)

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150;
rtp277; rpp277*

globalsp154 HTMLElementp142

sp264 Inaccurate
text

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

sampp288 Computer
output

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

scriptp652 Embedded
script

metadatap148;
flowp149;
phrasingp150;
script-
supportingp151

headp173;
phrasingp150;
script-
supportingp151

script, data, or
script
documentation*

globalsp154; srcp654; typep653; nomodulep654;
asyncp654; deferp654; crossoriginp655;
integrityp655; referrerpolicyp655;
blockingp655; fetchpriorityp655

HTMLScriptElementp653

searchp254 Container for
search
controls

flowp149;
palpablep150

flowp149 flowp149 globalsp154 HTMLElementp142

sectionp209 Generic
document or
application
section

flowp149;
sectioningp149;
palpablep150

flowp149 flowp149 globalsp154 HTMLElementp142

1455

Element Description Categories Parents† Children Attributes Interface

selectp568 List box
control

flowp149;
phrasingp150;
interactivep150;
listedp513;
labelablep514;
submittablep514;
resettablep514;
form-
associatedp513;
palpablep150

phrasingp150 optionp577;
optgroupp576;
script-
supporting
elementsp151

globalsp154; autocompletep604; disabledp601;
formp598; multiplep569; namep599; requiredp570;
sizep569

HTMLSelectElementp569

slotp675 Shadow tree
slot

flowp149;
phrasingp150

phrasingp150 transparentp151 globalsp154; namep676 HTMLSlotElementp675

smallp262 Side
comment

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

sourcep343 Image source
for imgp346 or
media source
for videop406

or audiop410

none picturep342;
videop406;
audiop410

empty globalsp154; typep343; mediap343; srcp344;
srcsetp344; sizesp344; widthp477; heightp477

HTMLSourceElementp343

spanp298 Generic
phrasing
container

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLSpanElementp299

strongp261 Importance flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

stylep200 Embedded
styling
information

metadatap148 headp173;
noscriptp669*

text* globalsp154; mediap201; blockingp201 HTMLStyleElementp200

subp290 Subscript flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

summaryp643 Caption for
detailsp637

none detailsp637 phrasingp150;
heading
contentp149

globalsp154 HTMLElementp142

supp290 Superscript flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

SVG svg SVG root flowp149;
phrasingp150;
embeddedp150;
palpablep150

phrasingp150 per [SVG]p1482 per [SVG]p1482 SVGSVGElement

tablep478 Table flowp149;
palpablep150

flowp149 captionp486*;
colgroupp487*;
theadp490*;
tbodyp489*;
tfootp491*;
trp492*; script-
supporting
elementsp151

globalsp154 HTMLTableElementp478

tbodyp489 Group of rows
in a table

none tablep478 trp492; script-
supporting
elementsp151

globalsp154 HTMLTableSectionElementp489

tdp493 Table cell none trp492 flowp149 globalsp154; colspanp496; rowspanp497;
headersp497

HTMLTableCellElementp494

templatep671 Template metadatap148;
flowp149;
phrasingp150;
script-
supportingp151

metadatap148;
phrasingp150;
script-
supportingp151;
colgroupp487*

empty globalsp154; shadowrootmodep672;
shadowrootdelegatesfocusp672;
shadowrootclonablep672;
shadowrootserializablep672

HTMLTemplateElementp672

textareap579 Multiline text
controls

flowp149;
phrasingp150;
interactivep150;
listedp513;
labelablep514;
submittablep514;
resettablep514;

phrasingp150 textp150 globalsp154; autocompletep604; colsp582;
dirnamep600; disabledp601; formp598;
maxlengthp582; minlengthp582; namep599;
placeholderp583; readonlyp581; requiredp582;
rowsp582; wrapp582

HTMLTextAreaElementp580

1456

https://svgwg.org/svg2-draft/struct.html#SVGElement
https://svgwg.org/svg2-draft/struct.html#InterfaceSVGSVGElement

Element Description Categories Parents† Children Attributes Interface

form-
associatedp513;
palpablep150

tfootp491 Group of
footer rows in
a table

none tablep478 trp492; script-
supporting
elementsp151

globalsp154 HTMLTableSectionElementp489

thp495 Table header
cell

interactivep150* trp492 flowp149* globalsp154; colspanp496; rowspanp497;
headersp497; scopep495; abbrp495

HTMLTableCellElementp494

theadp490 Group of
heading rows
in a table

none tablep478 trp492; script-
supporting
elementsp151

globalsp154 HTMLTableSectionElementp489

timep279 Machine-
readable
equivalent of
date- or time-
related data

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154; datetimep280 HTMLTimeElementp280

titlep174 Document
title

metadatap148 headp173 textp150* globalsp154 HTMLTitleElementp174

trp492 Table row none tablep478;
theadp490;
tbodyp489;
tfootp491

thp495*; tdp493;
script-
supporting
elementsp151

globalsp154 HTMLTableRowElementp492

trackp411 Timed text
track

none audiop410;
videop406

empty globalsp154; defaultp413; kindp412; labelp413;
srcp412; srclangp413

HTMLTrackElementp412

up294 Unarticulated
annotation

flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

ulp239 List flowp149;
palpablep150*

flowp149 lip241; script-
supporting
elementsp151

globalsp154 HTMLUListElementp240

varp287 Variable flowp149;
phrasingp150;
palpablep150

phrasingp150 phrasingp150 globalsp154 HTMLElementp142

videop406 Video player flowp149;
phrasingp150;
embeddedp150;
interactivep150;
palpablep150

phrasingp150 sourcep343*;
trackp411*;
transparentp151*

globalsp154; srcp416; crossoriginp417;
posterp407; preloadp429; autoplayp435;
playsinlinep408; loopp433; mutedp465;
controlsp464; widthp477; heightp477

HTMLVideoElementp407

wbrp300 Line breaking
opportunity

flowp149;
phrasingp150

phrasingp150 empty globalsp154 HTMLElementp142

autonomous
custom
elementsp759

Author-
defined
elements

flowp149;
phrasingp150;
palpablep150

flowp149;
phrasingp150

transparentp151 globalsp154; any, as decided by the element's
author

Supplied by the element's
author (inherits from
HTMLElementp142)

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.
† Categories in the "Parents" column refer to parents that list the given categories in their content model, not to elements that themselves are in
those categories. For example, the ap257 element's "Parents" column says "phrasing", so any element whose content model contains the "phrasing"
category could be a parent of an ap257 element. Since the "flow" category includes all the "phrasing" elements, that means the thp495 element could be
a parent to an ap257 element.

This section is non-normative.

List of element content categories
Category Elements Elements with exceptions

Metadata
contentp148

basep175; linkp177; metap189; noscriptp669; scriptp652; stylep200; templatep671; titlep174 —

Flow
contentp149

ap257; abbrp269; addressp222; articlep206; asidep214; audiop410; bp292; bdip297; bdop298;
blockquotep235; brp299; buttonp566; canvasp677; citep265; codep286; datap278; datalistp574;
delp338; detailsp637; dfnp268; dialogp646; divp256; dlp244; emp260; embedp399; fieldsetp594;
figurep249; footerp220; formp514; h1p216; h2p216; h3p216; h4p216; h5p216; h6p216; headerp218;

areap471 (if it is a descendant of a mapp470

element); linkp177 (if it is allowed in the
bodyp179); mainp253 (if it is a hierarchically correct
main elementp253); metap189 (if the itempropp795

Element content categories §p14

57

1457

Category Elements Elements with exceptions

hgroupp218; hrp231; ip291; iframep390; imgp346; inputp520; insp337; kbdp289; labelp518; mapp470;
markp294; MathML math; menup240; meterp589; navp211; noscriptp669; objectp402; olp238;
outputp584; pp229; picturep342; prep233; progressp587; qp266; rubyp270; sp264; sampp288; scriptp652;
searchp254; sectionp209; selectp568; slotp675; smallp262; spanp298; strongp261; subp290; supp290;
SVG svg; tablep478; templatep671; textareap579; timep279; up294; ulp239; varp287; videop406;
wbrp300; autonomous custom elementsp759; Textp150

attribute is present)

Sectioning
contentp149

articlep206; asidep214; navp211; sectionp209 —

Heading
contentp149

h1p216; h2p216; h3p216; h4p216; h5p216; h6p216; hgroupp218 —

Phrasing
contentp150

ap257; abbrp269; audiop410; bp292; bdip297; bdop298; brp299; buttonp566; canvasp677; citep265;
codep286; datap278; datalistp574; delp338; dfnp268; emp260; embedp399; ip291; iframep390; imgp346;
inputp520; insp337; kbdp289; labelp518; mapp470; markp294; MathML math; meterp589; noscriptp669;
objectp402; outputp584; picturep342; progressp587; qp266; rubyp270; sp264; sampp288; scriptp652;
selectp568; slotp675; smallp262; spanp298; strongp261; subp290; supp290; SVG svg; templatep671;
textareap579; timep279; up294; varp287; videop406; wbrp300; autonomous custom elementsp759;
Textp150

areap471 (if it is a descendant of a mapp470

element); linkp177 (if it is allowed in the
bodyp179); metap189 (if the itempropp795 attribute
is present)

Embedded
contentp150

audiop410; canvasp677; embedp399; iframep390; imgp346; MathML math; objectp402; picturep342;
SVG svg; videop406

—

Interactive
contentp150

buttonp566; detailsp637; embedp399; iframep390; labelp518; selectp568; textareap579 ap257 (if the hrefp303 attribute is present);
audiop410 (if the controlsp464 attribute is
present); imgp346 (if the usemapp473 attribute is
present); inputp520 (if the typep523 attribute is
not in the Hiddenp527 state); videop406 (if the
controlsp464 attribute is present)

Form-
associated
elementsp513

buttonp566; fieldsetp594; inputp520; labelp518; objectp402; outputp584; selectp568;
textareap579; imgp346; form-associated custom elementsp760

—

Listed
elementsp513

buttonp566; fieldsetp594; inputp520; objectp402; outputp584; selectp568; textareap579; form-
associated custom elementsp760

—

Submittable
elementsp514

buttonp566; inputp520; selectp568; textareap579; form-associated custom elementsp760 —

Resettable
elementsp514

inputp520; outputp584; selectp568; textareap579; form-associated custom elementsp760 —

Autocapitalize-
and-
autocorrect
inheriting
elementsp514

buttonp566; fieldsetp594; inputp520; outputp584; selectp568; textareap579 —

Labelable
elementsp514

buttonp566; inputp520; meterp589; outputp584; progressp587; selectp568; textareap579; form-
associated custom elementsp760

—

Palpable
contentp150

ap257; abbrp269; addressp222; articlep206; asidep214; bp292; bdip297; bdop298; blockquotep235;
buttonp566; canvasp677; citep265; codep286; datap278; delp338; detailsp637; dfnp268; divp256; emp260;
embedp399; fieldsetp594; figurep249; footerp220; formp514; h1p216; h2p216; h3p216; h4p216; h5p216;
h6p216; headerp218; hgroupp218; ip291; iframep390; imgp346; insp337; kbdp289; labelp518; mainp253;
mapp470; markp294; MathML math; meterp589; navp211; objectp402; outputp584; pp229; picturep342;
prep233; progressp587; qp266; rubyp270; sp264; sampp288; searchp254; sectionp209; selectp568;
smallp262; spanp298; strongp261; subp290; supp290; SVG svg; tablep478; textareap579; timep279;
up294; varp287; videop406; autonomous custom elementsp759

audiop410 (if the controlsp464 attribute is
present); dlp244 (if the element's children include
at least one name-value group); inputp520 (if the
typep523 attribute is not in the Hiddenp527 state);
menup240 (if the element's children include at
least one lip241 element); olp238 (if the element's
children include at least one lip241 element);
ulp239 (if the element's children include at least
one lip241 element); Textp150 that is not inter-
element whitespacep147

Script-
supporting
elementsp151

scriptp652; templatep671 —

This section is non-normative.

List of attributes (excluding event handler content attributes)
Attribute Element(s) Description Value

abbr thp495 Alternative label to use for the
header cell when referencing the

Textp147*

Attributes §p14

58

1458

https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement
https://w3c.github.io/mathml-core/#the-top-level-math-element
https://svgwg.org/svg2-draft/struct.html#SVGElement

Attribute Element(s) Description Value

cell in other contexts
accept inputp544 Hint for expected file type in file

upload controlsp544
Set of comma-separated tokensp95* consisting of valid MIME
type strings with no parameters or audio/*, video/*, or
image/*

accept-charset formp515 Character encodings to use for form
submissionp628

ASCII case-insensitive match for "UTF-8"

accesskey HTML elementsp851 Keyboard shortcut to activate or
focus element

Ordered set of unique space-separated tokensp95, none of which
are identical to another, each consisting of one code point in
length

action formp602 URL to use for form submissionp628 Valid non-empty URL potentially surrounded by spacesp96

allow iframep397 Permissions policy to be applied to
the iframep390 's contents

Serialized permissions policy

allowfullscreen iframep397 Whether to allow the iframep390 's
contents to use
requestFullscreen()

Boolean attributep75

alpha inputp541 Allow the color's alpha component
to be set

Boolean attributep75

alt areap472; imgp347; inputp548 Replacement text for use when
images are not available

Textp147*

as linkp181 Potential destination for a preload
request (for relp178="preloadp328"
and relp178="modulepreloadp323")

Potential destination, for relp178="preloadp328"; script-like
destination, for relp178="modulepreloadp323"

async scriptp654 Execute script when available,
without blocking while fetching

Boolean attributep75

autocapitalize HTML elementsp859 Recommended autocapitalization
behavior (for supported input
methods)

"onp859"; "offp859"; "nonep859"; "sentencesp859"; "wordsp859";
"charactersp859"

autocomplete formp515 Default setting for autofill feature
for controls in the form

"on"; "off"

autocomplete inputp604; selectp604;
textareap604

Hint for form autofill feature Autofill fieldp606 name and related tokens*

autocorrect HTML elementsp860 Recommended autocorrection
behavior (for supported input
methods)

"onp860"; "offp860"

autofocus HTML elementsp848 Automatically focus the element
when the page is loaded

Boolean attributep75

autoplay audiop435; videop435 Hint that the media resourcep415 can
be started automatically when the
page is loaded

Boolean attributep75

blocking linkp181; scriptp655;
stylep201

Whether the element is potentially
render-blockingp103

Unordered set of unique space-separated tokensp95*

charset metap190 Character encoding declarationp199 "utf-8"
checked inputp525 Whether the control is checked Boolean attributep75

cite blockquotep235; delp339;
insp339; qp267

Link to the source of the quotation
or more information about the edit

Valid URL potentially surrounded by spacesp96

class HTML elementsp154 Classes to which the element
belongs

Set of space-separated tokensp94

color linkp181 Color to use when customizing a
site's icon (for relp178="mask-icon")

CSS <color>

colorspace inputp541 The color space of the serialized
color

"limited-srgbp541"; "display-p3p541"

cols textareap582 Maximum number of characters per
line

Valid non-negative integerp77 greater than zero

colspan tdp496; thp496 Number of columns that the cell is
to span

Valid non-negative integerp77 greater than zero

content metap190 Value of the element Textp147*
contenteditable HTML elementsp853 Whether the element is editable "true"; "plaintext-only"; "false"
controls audiop464; videop464 Show user agent controls Boolean attributep75

coords areap473 Coordinates for the shape to be
created in an image mapp473

Valid list of floating-point numbersp80*

crossorigin audiop417; imgp348; linkp179;
scriptp655; videop417

How the element handles
crossorigin requests

"anonymousp99"; "use-credentialsp99"

data objectp403 Address of the resource Valid non-empty URL potentially surrounded by spacesp96

1459

https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://mimesniff.spec.whatwg.org/#valid-mime-type-with-no-parameters
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#string-is
https://url.spec.whatwg.org/#concept-url
https://w3c.github.io/webappsec-feature-policy/#permissions-policy
https://w3c.github.io/webappsec-feature-policy/#serialized-permissions-policy
https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#concept-potential-destination
https://fetch.spec.whatwg.org/#request-destination-script-like
https://fetch.spec.whatwg.org/#request-destination-script-like
https://drafts.csswg.org/css-color/#typedef-color

Attribute Element(s) Description Value

datetime delp339; insp339 Date and (optionally) time of the
change

Valid date string with optional timep93

datetime timep280 Machine-readable value Valid month stringp82, valid date stringp83, valid yearless date
stringp83, valid time stringp84, valid local date and time stringp85,
valid time-zone offset stringp86, valid global date and time
stringp87, valid week stringp89, valid non-negative integerp77, or
valid duration stringp90

decoding imgp348 Decoding hint to use when
processing this image for
presentation

"syncp366"; "asyncp366"; "autop366"

default trackp413 Enable the track if no other text
trackp449 is more suitable

Boolean attributep75

defer scriptp654 Defer script execution Boolean attributep75

dir HTML elementsp160 The text directionalityp160 of the
element

"ltrp160"; "rtlp160"; "autop160"

dir bdop298 The text directionalityp160 of the
element

"ltrp160"; "rtlp160"

dirname inputp600; textareap600 Name of form control to use for
sending the element's
directionalityp160 in form
submissionp628

Textp147*

disabled buttonp601; inputp601;
optgroupp576; optionp578;
selectp601; textareap601;
form-associated custom
elementsp601

Whether the form control is disabled Boolean attributep75

disabled fieldsetp594 Whether the descendant form
controls, except any inside
legendp596, are disabled

Boolean attributep75

disabled linkp181 Whether the link is disabled Boolean attributep75

download ap303; areap303 Whether to download the resource
instead of navigating to it, and its
filename if so

Text

draggable HTML elementsp885 Whether the element is draggable "true"; "false"
enctype formp603 Entry listp632 encoding type to use

for form submissionp628
"application/x-www-form-urlencodedp603"; "multipart/
form-datap603"; "text/plainp603"

enterkeyhint HTML elementsp861 Hint for selecting an enter key
action

"enterp861"; "donep861"; "gop861"; "nextp862"; "previousp862";
"searchp862"; "sendp862"

fetchpriority imgp348; linkp181; scriptp655 Sets the priority for fetches initiated
by the element

"autop103"; "highp103"; "lowp103"

for labelp519 Associate the label with form control ID*
for outputp585 Specifies controls from which the

output was calculated
Unordered set of unique space-separated tokensp95 consisting
of IDs*

form buttonp598; fieldsetp598;
inputp598; objectp598;
outputp598; selectp598;
textareap598; form-
associated custom
elementsp598

Associates the element with a
formp514 element

ID*

formaction buttonp602; inputp602 URL to use for form submissionp628 Valid non-empty URL potentially surrounded by spacesp96

formenctype buttonp603; inputp603 Entry listp632 encoding type to use
for form submissionp628

"application/x-www-form-urlencodedp603"; "multipart/
form-datap603"; "text/plainp603"

formmethod buttonp602; inputp602 Variant to use for form
submissionp628

"GET"; "POST"; "dialog"

formnovalidate buttonp603; inputp603 Bypass form control validation for
form submissionp628

Boolean attributep75

formtarget buttonp603; inputp603 Navigablep989 for form
submissionp628

Valid navigable target name or keywordp996

headers tdp497; thp497 The header cells for this cell Unordered set of unique space-separated tokensp95 consisting
of IDs*

height canvasp678; embedp477;
iframep477; imgp477;
inputp477; objectp477;
sourcep477 (in picturep342);

Vertical dimension Valid non-negative integerp77

1460

https://fetch.spec.whatwg.org/#request-priority
https://fetch.spec.whatwg.org/#concept-fetch
https://dom.spec.whatwg.org/#concept-id
https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#concept-url

Attribute Element(s) Description Value

videop477

hidden HTML elementsp824 Whether the element is relevant "until-foundp824"; "hiddenp824"; the empty string
high meterp590 Low limit of high range Valid floating-point numberp77*
href ap303; areap303 Address of the hyperlinkp302 Valid URL potentially surrounded by spacesp96

href linkp178 Address of the hyperlinkp302 Valid non-empty URL potentially surrounded by spacesp96

href basep176 Document base URLp96 Valid URL potentially surrounded by spacesp96

hreflang ap303; linkp179 Language of the linked resource Valid BCP 47 language tag
http-equiv metap195 Pragma directive "content-typep195"; "default-stylep195"; "refreshp195"; "x-

ua-compatiblep195"; "content-security-policyp195"
id HTML elementsp154 The element's ID Textp147*
imagesizes linkp180 Image sizes for different page

layouts (for relp178="preloadp328")
Valid source size listp363

imagesrcset linkp180 Images to use in different situations,
e.g., high-resolution displays, small
monitors, etc. (for
relp178="preloadp328")

Comma-separated list of image candidate stringsp362

inert HTML elementsp828 Whether the element is inertp827. Boolean attributep75

inputmode HTML elementsp861 Hint for selecting an input modality "nonep861"; "textp861"; "telp861"; "emailp861"; "urlp861";
"numericp861"; "decimalp861"; "searchp861"

integrity linkp179; scriptp655 Integrity metadata used in
Subresource Integrity checks
[SRI]p1482

Textp147

is HTML elementsp759 Creates a customized built-in
elementp759

Valid custom element namep760 of a defined customized built-in
elementp759

ismap imgp350 Whether the image is a server-side
image map

Boolean attributep75

itemid HTML elementsp794 Global identifierp794 for a microdata
item

Valid URL potentially surrounded by spacesp96

itemprop HTML elementsp795 Property namesp796 of a microdata
item

Unordered set of unique space-separated tokensp95 consisting
of valid absolute URLs, defined property namesp796, or text*

itemref HTML elementsp794 Referencedp141 elements Unordered set of unique space-separated tokensp95 consisting
of IDs*

itemscope HTML elementsp793 Introduces a microdata item Boolean attributep75

itemtype HTML elementsp793 Item typesp793 of a microdata item Unordered set of unique space-separated tokensp95 consisting
of valid absolute URLs*

kind trackp412 The type of text track "subtitlesp412"; "captionsp412"; "descriptionsp412";
"chaptersp412"; "metadatap412"

label optgroupp576; optionp578;
trackp413

User-visible label Textp147

lang HTML elementsp158 Languagep158 of the element Valid BCP 47 language tag or the empty string
list inputp557 List of autocomplete options ID*
loading iframep398; imgp348 Used when determining loading

deferral
"lazyp101"; "eagerp101"

loop audiop433; videop433 Whether to loop the media
resourcep415

Boolean attributep75

low meterp590 High limit of low range Valid floating-point numberp77*
max inputp555 Maximum value Varies*
max meterp590; progressp587 Upper bound of range Valid floating-point numberp77*
maxlength inputp551; textareap582 Maximum length of value Valid non-negative integerp77

media linkp179; metap190;
sourcep343; stylep201

Applicable media Valid media query listp95

method formp602 Variant to use for form
submissionp628

"GETp602"; "POSTp602"; "dialogp602"

min inputp555 Minimum value Varies*
min meterp590 Lower bound of range Valid floating-point numberp77*
minlength inputp551; textareap582 Minimum length of value Valid non-negative integerp77

multiple inputp553; selectp569 Whether to allow multiple values Boolean attributep75

muted audiop465; videop465 Whether to mute the media
resourcep415 by default

Boolean attributep75

name buttonp599; fieldsetp599; Name of the element to use for form Textp147*

1461

https://dom.spec.whatwg.org/#concept-id
https://url.spec.whatwg.org/#syntax-url-absolute
https://url.spec.whatwg.org/#syntax-url-absolute
https://dom.spec.whatwg.org/#concept-id
https://infra.spec.whatwg.org/#string-length
https://infra.spec.whatwg.org/#string-length

Attribute Element(s) Description Value

inputp599; outputp599;
selectp599; textareap599;
form-associated custom
elementsp599

submissionp628 and in the
form.elementsp516 API

name detailsp638 Name of group of mutually-
exclusive detailsp637 elements

Textp147*

name formp515 Name of form to use in the
document.formsp137 API

Textp147*

name iframep395; objectp403 Name of content navigablep991 Valid navigable target name or keywordp996

name mapp471 Name of image mapp473 to
referencep141 from the usemapp473

attribute

Textp147*

name metap190 Metadata name Textp147*
name slotp676 Name of shadow tree slot Textp147

nomodule scriptp654 Prevents execution in user agents
that support module scriptsp1085

Boolean attributep75

nonce HTML elementsp100 Cryptographic nonce used in
Content Security Policy checks
[CSP]p1476

Textp147

novalidate formp603 Bypass form control validation for
form submissionp628

Boolean attributep75

open detailsp638 Whether the details are visible Boolean attributep75

open dialogp648 Whether the dialog box is showing Boolean attributep75

optimum meterp590 Optimum value in gauge Valid floating-point numberp77*
pattern inputp554 Pattern to be matched by the form

control's value
Regular expression matching the JavaScript Pattern production

ping ap303; areap303 URLs to ping Set of space-separated tokensp94 consisting of valid non-empty
URLsp96

placeholder inputp559; textareap583 User-visible label to be placed within
the form control

Textp147*

playsinline videop408 Encourage the user agent to display
video content within the element's
playback area

Boolean attributep75

popover HTML elementsp886 Makes the element a popoverp886

element
"autop887"; "manualp887";

popovertarget buttonp894; inputp894 Targets a popover element to
toggle, show, or hide

ID*

popovertargetaction buttonp894; inputp894 Indicates whether a targeted
popover element is to be toggled,
shown, or hidden

"togglep894"; "showp894"; "hidep894"

poster videop407 Poster frame to show prior to video
playback

Valid non-empty URL potentially surrounded by spacesp96

preload audiop429; videop429 Hints how much buffering the media
resourcep415 will likely need

"nonep429"; "metadatap429"; "autop429"

readonly inputp551; textareap581 Whether to allow the value to be
edited by the user

Boolean attributep75

readonly form-associated custom
elementsp760

Affects willValidatep625, plus any
behavior added by the custom
element author

Boolean attributep75

referrerpolicy ap303; areap303; iframep398;
imgp348; linkp179; scriptp655

Referrer policy for fetches initiated
by the element

Referrer policy

rel ap303; areap303 Relationship between the location in
the document containing the
hyperlinkp302 and the destination
resource

Unordered set of unique space-separated tokensp95*

rel linkp178 Relationship between the document
containing the hyperlinkp302 and the
destination resource

Unordered set of unique space-separated tokensp95*

required inputp552; selectp570;
textareap582

Whether the control is required for
form submissionp628

Boolean attributep75

reversed olp238 Number the list backwards Boolean attributep75

rows textareap582 Number of lines to show Valid non-negative integerp77 greater than zero
rowspan tdp497; thp497 Number of rows that the cell is to Valid non-negative integerp77

1462

https://tc39.es/ecma262/#prod-Pattern
https://url.spec.whatwg.org/#concept-url
https://dom.spec.whatwg.org/#concept-id
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-fetch
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy

Attribute Element(s) Description Value

span
sandbox iframep395 Security rules for nested content Unordered set of unique space-separated tokensp95, ASCII case-

insensitive, consisting of

• "allow-downloadsp917"
• "allow-formsp916"
• "allow-modalsp916"
• "allow-orientation-lockp916"
• "allow-pointer-lockp916"
• "allow-popupsp916"
• "allow-popups-to-escape-sandboxp916"
• "allow-presentationp917"
• "allow-same-originp916"
• "allow-scriptsp916"
• "allow-top-navigationp916"
• "allow-top-navigation-by-user-activationp916"
• "allow-top-navigation-to-custom-

protocolsp917"

scope thp495 Specifies which cells the header cell
applies to

"rowp495"; "colp495"; "rowgroupp495"; "colgroupp495"

selected optionp578 Whether the option is selected by
default

Boolean attributep75

shadowrootclonable templatep672 Sets clonable on a declarative
shadow root

Boolean attributep75

shadowrootdelegatesfocus templatep672 Sets delegates focus on a
declarative shadow root

Boolean attributep75

shadowrootmode templatep672 Enables streaming declarative
shadow roots

"open"; "closed"

shadowrootserializable templatep672 Sets serializablep117 on a declarative
shadow root

Boolean attributep75

shape areap472 The kind of shape to be created in
an image mapp473

"circlep472"; "defaultp473"; "polyp473"; "rectp473"

size inputp551; selectp569 Size of the control Valid non-negative integerp77 greater than zero
sizes linkp180 Sizes of the icons (for

relp178="iconp320")
Unordered set of unique space-separated tokensp95, ASCII case-
insensitive, consisting of sizes*

sizes imgp347; sourcep344 Image sizes for different page
layouts

Valid source size listp363

slot HTML elementsp154 The element's desired slot Textp147

span colp488; colgroupp488 Number of columns spanned by the
element

Valid non-negative integerp77 greater than zero

spellcheck HTML elementsp855 Whether the element is to have its
spelling and grammar checked

"truep855"; "falsep855"; the empty string

src audiop416; embedp400;
iframep391; imgp347;
inputp547; scriptp654;
sourcep344 (in videop406 or
audiop410); trackp412;
videop416

Address of the resource Valid non-empty URL potentially surrounded by spacesp96

srcdoc iframep391 A document to render in the
iframep390

The source of an iframe srcdoc documentp391*

srclang trackp413 Language of the text track Valid BCP 47 language tag
srcset imgp347; sourcep344 Images to use in different situations,

e.g., high-resolution displays, small
monitors, etc.

Comma-separated list of image candidate stringsp362

start olp238 Starting valuep238 of the list Valid integerp76

step inputp556 Granularity to be matched by the
form control's value

Valid floating-point numberp77 greater than zero, or "any"

style HTML elementsp163 Presentational and formatting
instructions

CSS declarations*

tabindex HTML elementsp838 Whether the element is
focusablep837 and sequentially
focusablep837, and the relative order
of the element for the purposes of
sequential focus navigationp844

Valid integerp76

target ap303; areap303 Navigablep989 for hyperlinkp302

navigationp1014
Valid navigable target name or keywordp996

target basep176 Default navigablep989 for Valid navigable target name or keywordp996

1463

https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://dom.spec.whatwg.org/#shadowroot-clonable
https://dom.spec.whatwg.org/#shadowroot-delegates-focus
https://infra.spec.whatwg.org/#ascii-case-insensitive
https://infra.spec.whatwg.org/#ascii-case-insensitive

Attribute Element(s) Description Value

hyperlinkp302 navigationp1014 and
form submissionp628

target formp603 Navigablep989 for form
submissionp628

Valid navigable target name or keywordp996

title HTML elementsp157 Advisory information for the
element

Textp147

title abbrp269; dfnp268 Full term or expansion of
abbreviation

Textp147

title inputp555 Description of pattern (when used
with patternp554 attribute)

Textp147

title linkp179 Title of the link Textp147

title linkp179; stylep201 CSS style sheet set name Textp147

translate HTML elementsp159 Whether the element is to be
translated when the page is
localized

"yes"; "no"

type ap303; linkp179 Hint for the type of the referenced
resource

Valid MIME type string

type buttonp567 Type of button "submitp567"; "resetp567"; "buttonp567"
type embedp400; objectp403;

sourcep343

Type of embedded resource Valid MIME type string

type inputp523 Type of form control input type keywordp523

type olp238 Kind of list marker "1p239"; "ap239"; "Ap239"; "ip239"; "Ip239"
type scriptp653 Type of script "module"; a valid MIME type string that is not a JavaScript MIME

type essence match
usemap imgp473 Name of image mapp473 to use Valid hash-name referencep95*
value buttonp568; optionp578 Value to be used for form

submissionp628
Textp147

value datap279 Machine-readable value Textp147*
value inputp525 Value of the form control Varies*
value lip242 Ordinal valuep242 of the list item Valid integerp76

value meterp590; progressp587 Current value of the element Valid floating-point numberp77

width canvasp678; embedp477;
iframep477; imgp477;
inputp477; objectp477;
sourcep477 (in picturep342);
videop477

Horizontal dimension Valid non-negative integerp77

wrap textareap582 How the value of the form control is
to be wrapped for form
submissionp628

"softp582"; "hardp582"

writingsuggestions HTML elementsp857 Whether the element can offer
writing suggestions or not.

"truep857"; "falsep857"; the empty string

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.

List of event handler content attributes
Attribute Element(s) Description Value

onafterprint bodyp1145 afterprintp1471 event handler for Windowp922 object Event handler content attributep1138

onauxclick HTML elementsp1143 auxclick event handler Event handler content attributep1138

onbeforeinput HTML elementsp1143 beforeinput event handler Event handler content attributep1138

onbeforematch HTML elementsp1143 beforematchp1471 event handler Event handler content attributep1138

onbeforeprint bodyp1145 beforeprintp1471 event handler for Windowp922 object Event handler content attributep1138

onbeforeunload bodyp1145 beforeunloadp1471 event handler for Windowp922 object Event handler content attributep1138

onbeforetoggle HTML elementsp1143 beforetogglep1471 event handler Event handler content attributep1138

onblur HTML elementsp1145 blurp1471 event handler Event handler content attributep1138

oncancel HTML elementsp1143 cancelp1471 event handler Event handler content attributep1138

oncanplay HTML elementsp1143 canplayp467 event handler Event handler content attributep1138

oncanplaythrough HTML elementsp1143 canplaythroughp467 event handler Event handler content attributep1138

onchange HTML elementsp1144 changep1471 event handler Event handler content attributep1138

onclick HTML elementsp1144 click event handler Event handler content attributep1138

✔ MDN

1464

https://drafts.csswg.org/cssom/#css-style-sheet-set-name
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#valid-mime-type
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://mimesniff.spec.whatwg.org/#javascript-mime-type-essence-match
https://w3c.github.io/uievents/#event-type-auxclick
https://w3c.github.io/uievents/#event-type-beforeinput
https://w3c.github.io/uievents/#event-type-click

Attribute Element(s) Description Value

onclose HTML elementsp1144 closep1471 event handler Event handler content attributep1138

oncontextlost HTML elementsp1144 contextlostp1471 event handler Event handler content attributep1138

oncontextmenu HTML elementsp1144 contextmenu event handler Event handler content attributep1138

oncontextrestored HTML elementsp1144 contextrestoredp1471 event handler Event handler content attributep1138

oncopy HTML elementsp1144 copy event handler Event handler content attributep1138

oncuechange HTML elementsp1144 cuechangep468 event handler Event handler content attributep1138

oncut HTML elementsp1144 cut event handler Event handler content attributep1138

ondblclick HTML elementsp1144 dblclick event handler Event handler content attributep1138

ondrag HTML elementsp1144 dragp884 event handler Event handler content attributep1138

ondragend HTML elementsp1144 dragendp885 event handler Event handler content attributep1138

ondragenter HTML elementsp1144 dragenterp884 event handler Event handler content attributep1138

ondragleave HTML elementsp1144 dragleavep884 event handler Event handler content attributep1138

ondragover HTML elementsp1144 dragoverp884 event handler Event handler content attributep1138

ondragstart HTML elementsp1144 dragstartp884 event handler Event handler content attributep1138

ondrop HTML elementsp1144 dropp885 event handler Event handler content attributep1138

ondurationchange HTML elementsp1144 durationchangep468 event handler Event handler content attributep1138

onemptied HTML elementsp1144 emptiedp467 event handler Event handler content attributep1138

onended HTML elementsp1144 endedp468 event handler Event handler content attributep1138

onerror HTML elementsp1145 errorp1471 event handler Event handler content attributep1138

onfocus HTML elementsp1145 focusp1471 event handler Event handler content attributep1138

onformdata HTML elementsp1144 formdatap1471 event handler Event handler content attributep1138

onhashchange bodyp1145 hashchangep1471 event handler for Windowp922 object Event handler content attributep1138

oninput HTML elementsp1144 input event handler Event handler content attributep1138

oninvalid HTML elementsp1144 invalidp1471 event handler Event handler content attributep1138

onkeydown HTML elementsp1144 keydown event handler Event handler content attributep1138

onkeypress HTML elementsp1144 keypress event handler Event handler content attributep1138

onkeyup HTML elementsp1144 keyup event handler Event handler content attributep1138

onlanguagechange bodyp1145 languagechangep1471 event handler for Windowp922 object Event handler content attributep1138

onload HTML elementsp1145 loadp1471 event handler Event handler content attributep1138

onloadeddata HTML elementsp1144 loadeddatap467 event handler Event handler content attributep1138

onloadedmetadata HTML elementsp1144 loadedmetadatap467 event handler Event handler content attributep1138

onloadstart HTML elementsp1144 loadstartp467 event handler Event handler content attributep1138

onmessage bodyp1145 messagep1471 event handler for Windowp922 object Event handler content attributep1138

onmessageerror bodyp1145 messageerrorp1472 event handler for Windowp922 object Event handler content attributep1138

onmousedown HTML elementsp1144 mousedown event handler Event handler content attributep1138

onmouseenter HTML elementsp1144 mouseenter event handler Event handler content attributep1138

onmouseleave HTML elementsp1144 mouseleave event handler Event handler content attributep1138

onmousemove HTML elementsp1144 mousemove event handler Event handler content attributep1138

onmouseout HTML elementsp1144 mouseout event handler Event handler content attributep1138

onmouseover HTML elementsp1144 mouseover event handler Event handler content attributep1138

onmouseup HTML elementsp1144 mouseup event handler Event handler content attributep1138

onoffline bodyp1145 offlinep1472 event handler for Windowp922 object Event handler content attributep1138

ononline bodyp1145 onlinep1472 event handler for Windowp922 object Event handler content attributep1138

onpagehide bodyp1145 pagehidep1472 event handler for Windowp922 object Event handler content attributep1138

onpagereveal bodyp1145 pagerevealp1472 event handler for Windowp922 object Event handler content attributep1138

onpageshow bodyp1145 pageshowp1472 event handler for Windowp922 object Event handler content attributep1138

onpageswap bodyp1145 pageswapp1472 event handler for Windowp922 object Event handler content attributep1138

onpaste HTML elementsp1144 paste event handler Event handler content attributep1138

onpause HTML elementsp1144 pausep468 event handler Event handler content attributep1138

onplay HTML elementsp1144 playp468 event handler Event handler content attributep1138

onplaying HTML elementsp1144 playingp468 event handler Event handler content attributep1138

onpopstate bodyp1145 popstatep1472 event handler for Windowp922 object Event handler content attributep1138

onprogress HTML elementsp1144 progressp467 event handler Event handler content attributep1138

onratechange HTML elementsp1144 ratechangep468 event handler Event handler content attributep1138

1465

https://w3c.github.io/uievents/#event-type-contextmenu
https://w3c.github.io/clipboard-apis/#clipboard-event-copy
https://w3c.github.io/clipboard-apis/#clipboard-event-cut
https://w3c.github.io/uievents/#event-type-dblclick
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-keydown
https://w3c.github.io/uievents/#event-type-keypress
https://w3c.github.io/uievents/#event-type-keyup
https://w3c.github.io/uievents/#event-type-mousedown
https://w3c.github.io/uievents/#event-type-mouseenter
https://w3c.github.io/uievents/#event-type-mouseleave
https://w3c.github.io/uievents/#event-type-mousemove
https://w3c.github.io/uievents/#event-type-mouseout
https://w3c.github.io/uievents/#event-type-mouseover
https://w3c.github.io/uievents/#event-type-mouseup
https://w3c.github.io/clipboard-apis/#clipboard-event-paste

Attribute Element(s) Description Value

onreset HTML elementsp1144 resetp1472 event handler Event handler content attributep1138

onresize HTML elementsp1145 resize event handler Event handler content attributep1138

onrejectionhandled bodyp1145 rejectionhandledp1472 event handler for Windowp922 object Event handler content attributep1138

onscroll HTML elementsp1145 scroll event handler Event handler content attributep1138

onscrollend HTML elementsp1144 scrollend event handler Event handler content attributep1138

onsecuritypolicyviolation HTML elementsp1144 securitypolicyviolation event handler Event handler content attributep1138

onseeked HTML elementsp1144 seekedp468 event handler Event handler content attributep1138

onseeking HTML elementsp1144 seekingp468 event handler Event handler content attributep1138

onselect HTML elementsp1144 selectp1472 event handler Event handler content attributep1138

onslotchange HTML elementsp1144 slotchange event handler Event handler content attributep1138

onstalled HTML elementsp1144 stalledp467 event handler Event handler content attributep1138

onstorage bodyp1145 storagep1472 event handler for Windowp922 object Event handler content attributep1138

onsubmit HTML elementsp1144 submitp1472 event handler Event handler content attributep1138

onsuspend HTML elementsp1144 suspendp467 event handler Event handler content attributep1138

ontimeupdate HTML elementsp1144 timeupdatep468 event handler Event handler content attributep1138

ontoggle HTML elementsp1144 togglep1472 event handler Event handler content attributep1138

onunhandledrejection bodyp1145 unhandledrejectionp1472 event handler for Windowp922 object Event handler content attributep1138

onunload bodyp1145 unloadp1472 event handler for Windowp922 object Event handler content attributep1138

onvolumechange HTML elementsp1144 volumechangep468 event handler Event handler content attributep1138

onwaiting HTML elementsp1145 waitingp468 event handler Event handler content attributep1138

onwheel HTML elementsp1145 wheel event handler Event handler content attributep1138

This section is non-normative.

List of interfaces for elements
Element(s) Interface(s)

ap257 HTMLAnchorElementp258 : HTMLElementp142

abbrp269 HTMLElementp142

addressp222 HTMLElementp142

areap471 HTMLAreaElementp472 : HTMLElementp142

articlep206 HTMLElementp142

asidep214 HTMLElementp142

audiop410 HTMLAudioElementp411 : HTMLMediaElementp414 : HTMLElementp142

bp292 HTMLElementp142

basep175 HTMLBaseElementp175 : HTMLElementp142

bdip297 HTMLElementp142

bdop298 HTMLElementp142

blockquotep235 HTMLQuoteElementp235 : HTMLElementp142

bodyp205 HTMLBodyElementp205 : HTMLElementp142

brp299 HTMLBRElementp299 : HTMLElementp142

buttonp566 HTMLButtonElementp566 : HTMLElementp142

canvasp677 HTMLCanvasElementp677 : HTMLElementp142

captionp486 HTMLTableCaptionElementp486 : HTMLElementp142

citep265 HTMLElementp142

codep286 HTMLElementp142

colp488 HTMLTableColElementp488 : HTMLElementp142

colgroupp487 HTMLTableColElementp488 : HTMLElementp142

datap278 HTMLDataElementp278 : HTMLElementp142

datalistp574 HTMLDataListElementp575 : HTMLElementp142

ddp248 HTMLElementp142

delp338 HTMLModElementp340 : HTMLElementp142

Element interfaces §p14

66

1466

https://drafts.csswg.org/cssom-view/#eventdef-window-resize
https://drafts.csswg.org/cssom-view/#eventdef-document-scroll
https://drafts.csswg.org/cssom-view/#eventdef-document-scrollend
https://w3c.github.io/webappsec-csp/#eventdef-globaleventhandlers-securitypolicyviolation
https://dom.spec.whatwg.org/#eventdef-htmlslotelement-slotchange
https://w3c.github.io/uievents/#event-type-wheel

Element(s) Interface(s)

detailsp637 HTMLDetailsElementp637 : HTMLElementp142

dfnp268 HTMLElementp142

dialogp646 HTMLDialogElementp647 : HTMLElementp142

divp256 HTMLDivElementp256 : HTMLElementp142

dlp244 HTMLDListElementp244 : HTMLElementp142

dtp247 HTMLElementp142

emp260 HTMLElementp142

embedp399 HTMLEmbedElementp400 : HTMLElementp142

fieldsetp594 HTMLFieldSetElementp594 : HTMLElementp142

figcaptionp252 HTMLElementp142

figurep249 HTMLElementp142

footerp220 HTMLElementp142

formp514 HTMLFormElementp514 : HTMLElementp142

h1p216 HTMLHeadingElementp217 : HTMLElementp142

h2p216 HTMLHeadingElementp217 : HTMLElementp142

h3p216 HTMLHeadingElementp217 : HTMLElementp142

h4p216 HTMLHeadingElementp217 : HTMLElementp142

h5p216 HTMLHeadingElementp217 : HTMLElementp142

h6p216 HTMLHeadingElementp217 : HTMLElementp142

headp173 HTMLHeadElementp173 : HTMLElementp142

headerp218 HTMLElementp142

hgroupp218 HTMLElementp142

hrp231 HTMLHRElementp232 : HTMLElementp142

htmlp172 HTMLHtmlElementp172 : HTMLElementp142

ip291 HTMLElementp142

iframep390 HTMLIFrameElementp391 : HTMLElementp142

imgp346 HTMLImageElementp347 : HTMLElementp142

inputp520 HTMLInputElementp522 : HTMLElementp142

insp337 HTMLModElementp340 : HTMLElementp142

kbdp289 HTMLElementp142

labelp518 HTMLLabelElementp518 : HTMLElementp142

legendp596 HTMLLegendElementp597 : HTMLElementp142

lip241 HTMLLIElementp242 : HTMLElementp142

linkp177 HTMLLinkElementp178 : HTMLElementp142

mainp253 HTMLElementp142

mapp470 HTMLMapElementp470 : HTMLElementp142

markp294 HTMLElementp142

menup240 HTMLMenuElementp241 : HTMLElementp142

metap189 HTMLMetaElementp190 : HTMLElementp142

meterp589 HTMLMeterElementp589 : HTMLElementp142

navp211 HTMLElementp142

noscriptp669 HTMLElementp142

objectp402 HTMLObjectElementp402 : HTMLElementp142

olp238 HTMLOListElementp238 : HTMLElementp142

optgroupp576 HTMLOptGroupElementp576 : HTMLElementp142

optionp577 HTMLOptionElementp577 : HTMLElementp142

outputp584 HTMLOutputElementp585 : HTMLElementp142

pp229 HTMLParagraphElementp229 : HTMLElementp142

picturep342 HTMLPictureElementp342 : HTMLElementp142

prep233 HTMLPreElementp233 : HTMLElementp142

progressp587 HTMLProgressElementp587 : HTMLElementp142

qp266 HTMLQuoteElementp235 : HTMLElementp142

rpp277 HTMLElementp142

rtp277 HTMLElementp142

1467

Element(s) Interface(s)

rubyp270 HTMLElementp142

sp264 HTMLElementp142

sampp288 HTMLElementp142

searchp254 HTMLElementp142

scriptp652 HTMLScriptElementp653 : HTMLElementp142

sectionp209 HTMLElementp142

selectp568 HTMLSelectElementp569 : HTMLElementp142

slotp675 HTMLSlotElementp675 : HTMLElementp142

smallp262 HTMLElementp142

sourcep343 HTMLSourceElementp343 : HTMLElementp142

spanp298 HTMLSpanElementp299 : HTMLElementp142

strongp261 HTMLElementp142

stylep200 HTMLStyleElementp200 : HTMLElementp142

subp290 HTMLElementp142

summaryp643 HTMLElementp142

supp290 HTMLElementp142

tablep478 HTMLTableElementp478 : HTMLElementp142

tbodyp489 HTMLTableSectionElementp489 : HTMLElementp142

tdp493 HTMLTableCellElementp494 : HTMLElementp142

templatep671 HTMLTemplateElementp672 : HTMLElementp142

textareap579 HTMLTextAreaElementp580 : HTMLElementp142

tfootp491 HTMLTableSectionElementp489 : HTMLElementp142

thp495 HTMLTableCellElementp494 : HTMLElementp142

theadp490 HTMLTableSectionElementp489 : HTMLElementp142

timep279 HTMLTimeElementp280 : HTMLElementp142

titlep174 HTMLTitleElementp174 : HTMLElementp142

trp492 HTMLTableRowElementp492 : HTMLElementp142

trackp411 HTMLTrackElementp412 : HTMLElementp142

up294 HTMLElementp142

ulp239 HTMLUListElementp240 : HTMLElementp142

varp287 HTMLElementp142

videop406 HTMLVideoElementp407 : HTMLMediaElementp414 : HTMLElementp142

wbrp300 HTMLElementp142

custom elementsp759 supplied by the element's author (inherits from HTMLElementp142)

This section is non-normative.

• AudioTrackp445

• AudioTrackListp445

• BarPropp932

• BeforeUnloadEventp983

• BroadcastChannelp1209

• CanvasGradientp685

• CanvasPatternp685

• CanvasRenderingContext2Dp682

• CloseWatcherp867

• CustomElementRegistryp762

• CustomStateSetp775

• DOMParserp1154

• DOMStringListp116

• DOMStringMapp165

• DataTransferp872

• DataTransferItemp877

• DataTransferItemListp875

• DedicatedWorkerGlobalScopep1230

• Documentp130, partial 1p130 2p1442

All interfaces §p14

68

1468

• DragEventp878

• Element, partialp1153

• ElementInternalsp771

• ErrorEventp1099

• EventSourcep1191

• Externalp1443

• FormDataEventp636

• HTMLAllCollectionp111

• HTMLAnchorElementp258, partialp1435

• HTMLAreaElementp472, partialp1435

• HTMLAudioElementp411

• HTMLBRElementp299, partialp1435

• HTMLBaseElementp175

• HTMLBodyElementp205, partialp1435

• HTMLButtonElementp566

• HTMLCanvasElementp677

• HTMLDListElementp244, partialp1436

• HTMLDataElementp278

• HTMLDataListElementp575

• HTMLDetailsElementp637

• HTMLDialogElementp647

• HTMLDirectoryElementp1436

• HTMLDivElementp256, partialp1436

• HTMLElementp142

• HTMLEmbedElementp400, partialp1436

• HTMLFieldSetElementp594

• HTMLFontElementp1436

• HTMLFormControlsCollectionp112

• HTMLFormElementp514

• HTMLFrameElementp1434

• HTMLFrameSetElementp1433

• HTMLHRElementp232, partialp1437

• HTMLHeadElementp173

• HTMLHeadingElementp217, partialp1437

• HTMLHtmlElementp172, partialp1437

• HTMLIFrameElementp391, partialp1437

• HTMLImageElementp347, partialp1438

• HTMLInputElementp522, partialp1438

• HTMLLIElementp242, partialp1438

• HTMLLabelElementp518

• HTMLLegendElementp597, partialp1438

• HTMLLinkElementp178, partialp1438

• HTMLMapElementp470

• HTMLMarqueeElementp1431

• HTMLMediaElementp414

• HTMLMenuElementp241, partialp1439

• HTMLMetaElementp190, partialp1439

• HTMLMeterElementp589

• HTMLModElementp340

• HTMLOListElementp238, partialp1440

• HTMLObjectElementp402, partialp1439

• HTMLOptGroupElementp576

• HTMLOptionElementp577

• HTMLOptionsCollectionp114

• HTMLOutputElementp585

• HTMLParagraphElementp229, partialp1440

• HTMLParamElementp1440

• HTMLPictureElementp342

• HTMLPreElementp233, partialp1440

• HTMLProgressElementp587

• HTMLQuoteElementp235

• HTMLScriptElementp653, partialp1441

• HTMLSelectElementp569

• HTMLSlotElementp675

• HTMLSourceElementp343

• HTMLSpanElementp299

• HTMLStyleElementp200, partialp1440

• HTMLTableCaptionElementp486, partialp1435

• HTMLTableCellElementp494, partialp1441

• HTMLTableColElementp488, partialp1436

• HTMLTableElementp478, partialp1441

• HTMLTableRowElementp492, partialp1442

• HTMLTableSectionElementp489, partialp1441

• HTMLTemplateElementp672

• HTMLTextAreaElementp580

• HTMLTimeElementp280

1469

https://dom.spec.whatwg.org/#interface-element

• HTMLTitleElementp174

• HTMLTrackElementp412

• HTMLUListElementp240, partialp1442

• HTMLUnknownElementp142

• HTMLVideoElementp407

• HashChangeEventp981

• Historyp944

• ImageBitmapp1181

• ImageBitmapRenderingContextp739

• ImageDatap686

• Locationp937

• MediaErrorp416

• MessageChannelp1204

• MessageEventp1189

• MessagePortp1205

• MimeTypep1178

• MimeTypeArrayp1178

• NavigateEventp970

• Navigationp952

• NavigationActivationp969

• NavigationCurrentEntryChangeEventp980

• NavigationDestinationp973

• NavigationHistoryEntryp956

• NavigationTransitionp968

• Navigatorp1170, partialp832

• NotRestoredReasonDetailsp984

• NotRestoredReasonsp984

• OffscreenCanvasp741

• OffscreenCanvasRenderingContext2Dp745

• PageRevealEventp982

• PageSwapEventp982

• PageTransitionEventp983

• Path2Dp686

• Pluginp47

• PluginArrayp1178

• PopStateEventp981

• PromiseRejectionEventp1100

• RadioNodeListp112

• Range, partialp1161

• ShadowRoot, partialp1154

• SharedWorkerp1237

• SharedWorkerGlobalScopep1230

• Storagep1252

• StorageEventp1255

• SubmitEventp636

• TextMetricsp686

• TextTrackp457

• TextTrackCuep461

• TextTrackCueListp460

• TextTrackListp456

• TimeRangesp466

• ToggleEventp833

• TrackEventp467

• UserActivationp832

• ValidityStatep626

• VideoTrackp446

• VideoTrackListp445

• VisibilityStateEntryp827

• Windowp922, partialp1443

• Workerp1236

• WorkerGlobalScopep1228

• WorkerLocationp1240

• WorkerNavigatorp1240

• Workletp1248

• WorkletGlobalScopep1245

This section is non-normative.

The following table lists events fired by this document, excluding those already defined in media element eventsp467 and drag-and-drop

Events §p14

70

1470

https://dom.spec.whatwg.org/#interface-range
https://dom.spec.whatwg.org/#interface-shadowroot

eventsp884.

List of events
Event Interface Interesting targets Description

DOMContentLoaded Event Documentp130 Fired at the Documentp130 once the parser has
finished

afterprint Event Windowp922 Fired at the Windowp922 after printing
beforeprint Event Windowp922 Fired at the Windowp922 before printing
beforematch Event Elements Fired on elements with the hidden=until-foundp824

attribute before they are revealed.
beforetoggle ToggleEventp833 Elements Fired on elements with the popoverp886 attribute

when they are transitioning between showing and
hidden

beforeunload BeforeUnloadEventp983 Windowp922 Fired at the Windowp922 when the page is about to be
unloaded, in case the page would like to show a
warning prompt

blur Event Windowp922, elements Fired at nodes when they stop being focusedp836

cancel Event CloseWatcherp867, dialogp646 elements,
inputp520 elements

Fired at CloseWatcherp867 objects or dialogp646

elements when they receive a close requestp863, or
at inputp520 elements in the Filep544 state when the
user does not change their selection

change Event Form controls Fired at controls when the user commits a value
change (see also the input event)

click PointerEvent Elements Normally a mouse event; also synthetically fired at
an element before its activation behavior is run,
when an element is activated from a non-pointer
input device (e.g. a keyboard)

close Event CloseWatcherp867, dialogp646 elements,
MessagePortp1205

Fired at CloseWatcherp867 objects or dialogp646

elements when they are closed via a close
requestp863 or via web developer code, or at
MessagePortp1205 objects when disentangledp1206

connect MessageEventp1189 SharedWorkerGlobalScopep1230 Fired at a shared worker's global scope when a new
client connects

contextlost Event canvasp677 elements,
OffscreenCanvasp741 objects

Fired when the corresponding
CanvasRenderingContext2Dp682 or
OffscreenCanvasRenderingContext2Dp745 is lost

contextrestored Event canvasp677 elements,
OffscreenCanvasp741 objects

Fired when the corresponding
CanvasRenderingContext2Dp682 or
OffscreenCanvasRenderingContext2Dp745 is
restored after being lost

currententrychange NavigationCurrentEntryChangeEventp980 Navigationp952 Fired when navigation.currentEntryp958 changes
dispose Event NavigationHistoryEntryp956 Fired when the session history entryp1005

corresponding to the NavigationHistoryEntryp956

has been permanently evicted from session history
and can no longer be traversed to

error Event or ErrorEventp1099 Global scope objects, Workerp1236

objects, elements, networking-related
objects

Fired when unexpected errors occur (e.g.
networking errors, script errors, decoding errors)

focus Event Windowp922, elements Fired at nodes gaining focusp836

formdata FormDataEventp636 formp514 elements Fired at a formp514 element when it is constructing
the entry listp632

hashchange HashChangeEventp981 Windowp922 Fired at the Windowp922 when the fragment part of
the document's URL changes

input Event Elements Fired when the user changes the
contenteditablep853 element's content, or the form
control's value. See also the changep1471 event for
form controls.

invalid Event Form controls Fired at controls during form validation if they do
not satisfy their constraints

languagechange Event Global scope objects Fired at the global scope object when the user's
preferred languages change

load Event Windowp922, elements Fired at the Windowp922 when the document has
finished loading; fired at an element containing a
resource (e.g. imgp346, embedp399) when its resource
has finished loading

message MessageEventp1189 Windowp922, EventSourcep1191, Fired at an object when it receives a message

✔ MDN

✔ MDN

✔ MDN

⚠ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

⚠ MDN

⚠ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

1471

https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://w3c.github.io/uievents/#event-type-input
https://w3c.github.io/uievents/#event-type-click
https://w3c.github.io/pointerevents/#pointerevent-interface
https://dom.spec.whatwg.org/#eventtarget-activation-behavior
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://url.spec.whatwg.org/#concept-url-fragment
https://dom.spec.whatwg.org/#concept-document-url
https://w3c.github.io/uievents/#event-type-input
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

Event Interface Interesting targets Description

MessagePortp1205,
BroadcastChannelp1209,
DedicatedWorkerGlobalScopep1230,
Workerp1236, ServiceWorkerContainer

messageerror MessageEventp1189 Windowp922, MessagePortp1205,
BroadcastChannelp1209,
DedicatedWorkerGlobalScopep1230,
Workerp1236, ServiceWorkerContainer

Fired at an object when it receives a message that
cannot be deserialized

navigate NavigateEventp970 Navigationp952 Fired before the navigablep989 navigatesp1014,
reloadsp1027, traversesp1028, or otherwisep946 changes
its URL

navigateerror ErrorEventp1099 Navigationp952 Fired when a navigation does not complete
successfully

navigatesuccess Event Navigationp952 Fired when a navigation completes successfully
offline Event Global scope objects Fired at the global scope object when the network

connections fails
online Event Global scope objects Fired at the global scope object when the network

connections returns
open Event EventSourcep1191 Fired at EventSourcep1191 objects when a connection

is established
pageswap PageSwapEventp982 Windowp922 Fired at the Windowp922 right before a document is

unloadedp1064 as a result of a navigation.
pagehide PageTransitionEventp983 Windowp922 Fired at the Windowp922 when the page's session

history entryp1005 stops being the active entryp989

pagereveal PageRevealEventp982 Windowp922 Fired at the Windowp922 when the page begins to
render for the first time after it has been initialized
or reactivatedp1051

pageshow PageTransitionEventp983 Windowp922 Fired at the Windowp922 when the page's session
history entryp1005 becomes the active entryp989

pointercancel PointerEvent Elements and Text nodes Fired at the source nodep880 when the user attempts
to initiate a drag-and-drop operation

popstate PopStateEventp981 Windowp922 Fired at the Windowp922 when in some cases of
session history traversalp1028

readystatechange Event Documentp130 Fired at the Documentp130 when it finishes parsing
and again when all its subresources have finished
loading

rejectionhandled PromiseRejectionEventp1100 Global scope objects Fired at global scope objects when a previously-
unhandled promise rejection becomes handled

reset Event formp514 elements Fired at a formp514 element when it is resetp637

select Event Form controls Fired at form controls when their text selection is
adjusted (whether by an API or by the user)

storage StorageEventp1255 Windowp922 Fired at Windowp922 event when the corresponding
localStoragep1255 or sessionStoragep1254 storage
areas change

submit SubmitEventp636 formp514 elements Fired at a formp514 element when it is submittedp629

toggle ToggleEventp833 detailsp637 and popoverp886 elements Fired at detailsp637 elements when they open or
close; fired on elements with the popoverp886

attribute when they are transitioning between
showing and hidden

unhandledrejection PromiseRejectionEventp1100 Global scope objects Fired at global scope objects when a promise
rejection goes unhandled

unload Event Windowp922 Fired at the Windowp922 object when the page is
going away

visibilitychange Event Documentp130 Fired at the Documentp130 object when the page
becomes visible or hidden to the user

This section is non-normative.

The following HTTP request headers are defined by this specification:

HTTP headers §p14

72

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

✔ MDN

1472

https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://w3c.github.io/ServiceWorker/#serviceworkercontainer
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://w3c.github.io/pointerevents/#the-pointercancel-event
https://w3c.github.io/pointerevents/#pointerevent-interface
https://dom.spec.whatwg.org/#interface-text
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-event

• `Last-Event-IDp1194`

• `Ping-Fromp313`

• `Ping-Top313`

The following HTTP response headers are defined by this specification:

• `Cross-Origin-Embedder-Policyp913`

• `Cross-Origin-Embedder-Policy-Report-Onlyp913`

• `Cross-Origin-Opener-Policyp904`

• `Cross-Origin-Opener-Policy-Report-Onlyp904`

• `Origin-Agent-Clusterp902`

• `Refreshp1069`

• `X-Frame-Optionsp1068`

This section is non-normative.

The following MIME types are mentioned in this specification:

application/atom+xml
Atom [ATOM]p1475

application/json
JSON [JSON]p1479

application/octet-stream
Generic binary data [RFC2046]p1481

application/microdata+jsonp1448

Microdata as JSON

application/rss+xml
RSS

application/wasm
WebAssembly [WASM]p1483

application/x-www-form-urlencoded
Form submission

application/xhtml+xmlp1446

HTML

application/xml
XML [XML]p1484 [RFC7303]p1482

image/gif
GIF images [GIF]p1478

image/jpeg
JPEG images [JPEG]p1479

image/png
PNG images [PNG]p1481

image/svg+xml
SVG images [SVG]p1482

MIME types §p14

73

1473

https://www.rfc-editor.org/rfc/rfc2046#section-4.5.1
https://url.spec.whatwg.org/#concept-urlencoded

multipart/form-data
Form submission [RFC7578]p1482

multipart/mixed
Generic mixed content [RFC2046]p1481

multipart/x-mixed-replacep1445

Streaming server push

text/css
CSS [CSS]p1476

text/event-streamp1449

Server-sent event streams

text/javascript
JavaScript [JAVASCRIPT]p1479 [RFC9239]p1481

text/json
JSON (legacy type)

text/plain
Generic plain text [RFC2046]p1481 [RFC3676]p1481

text/htmlp1444

HTML

text/pingp1447

Hyperlink auditing

text/uri-list
List of URLs [RFC2483]p1481

text/vcard
vCard [RFC6350]p1481

text/vtt
WebVTT [WEBVTT]p1484

text/xml
XML [XML]p1484 [RFC7303]p1482

video/mp4
MPEG-4 video [RFC4337]p1481

video/mpeg
MPEG video [RFC2046]p1481

1474

https://www.rfc-editor.org/rfc/rfc2046#section-4.1.3
https://www.rfc-editor.org/rfc/rfc4337#section-3

All references are normative unless marked "Non-normative".

[ABNF]
Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell. IETF.

[ABOUT]
The 'about' URI scheme, S. Moonesamy. IETF.

[APNG]
(Non-normative) APNG Specification. S. Parmenter, V. Vukicevic, A. Smith. Mozilla.

[ARIA]
Accessible Rich Internet Applications (WAI-ARIA), J. Diggs, J. Nurthen, M. Cooper. W3C.

[ARIAHTML]
ARIA in HTML, S. Faulkner, S. O'Hara. W3C.

[ATAG]
(Non-normative) Authoring Tool Accessibility Guidelines (ATAG) 2.0, J. Richards, J. Spellman, J. Treviranus. W3C.

[ATOM]
(Non-normative) The Atom Syndication Format, M. Nottingham, R. Sayre. IETF.

[BATTERY]
(Non-normative) Battery Status API, A. Kostiainen, M. Lamouri. W3C.

[BCP47]
Tags for Identifying Languages; Matching of Language Tags, A. Phillips, M. Davis. IETF.

[BEZIER]
Courbes à poles, P. de Casteljau. INPI, 1959.

[BIDI]
UAX #9: Unicode Bidirectional Algorithm, M. Davis. Unicode Consortium.

[BOCU1]
(Non-normative) UTN #6: BOCU-1: MIME-Compatible Unicode Compression, M. Scherer, M. Davis. Unicode Consortium.

[CESU8]
(Non-normative) UTR #26: Compatibility Encoding Scheme For UTF-16: 8-BIT (CESU-8), T. Phipps. Unicode Consortium.

[CHARMOD]
(Non-normative) Character Model for the World Wide Web 1.0: Fundamentals, M. Dürst, F. Yergeau, R. Ishida, M. Wolf, T. Texin. W3C.

[CHARMODNORM]
(Non-normative) Character Model for the World Wide Web: String Matching, A. Phillips. W3C.

[CLIPBOARD-APIS]
Clipboard API and events, G. Kacmarcik, A. Snigdha. W3C.

[COMPOSITE]
Compositing and Blending, R. Cabanier, N. Andronikos. W3C.

[COMPUTABLE]
(Non-normative) On computable numbers, with an application to the Entscheidungsproblem, A. Turing. In Proceedings of the London
Mathematical Society, series 2, volume 42, pages 230-265. London Mathematical Society, 1937.

[COMPUTEPRESSURE]
(Non-normative) Compute Pressure, K. Christiansen, A. Mandy. W3C.

[CONSOLE]
Console, T. Stock, R. Kowalski, D. Farolino. WHATWG.

References §p14

75

1475

https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc6694
https://wiki.mozilla.org/APNG_Specification
https://w3c.github.io/aria/
https://w3c.github.io/html-aria/
https://www.w3.org/TR/ATAG20/
https://www.rfc-editor.org/rfc/rfc4287
https://w3c.github.io/battery/
https://www.rfc-editor.org/info/bcp47
https://www.unicode.org/reports/tr9/
https://www.unicode.org/notes/tn6/
https://www.unicode.org/reports/tr26/
https://www.w3.org/TR/charmod/
https://w3c.github.io/charmod-norm/
https://w3c.github.io/clipboard-apis/
https://drafts.fxtf.org/compositing/
http://www.turingarchive.org/browse.php/B/12
https://w3c.github.io/compute-pressure/
https://console.spec.whatwg.org/

[COOKIES]
HTTP State Management Mechanism, A. Barth. IETF.

[CREDMAN]
Credential Management, N. Satragno, J. Hodges, M. West. W3C.

[CSP]
Content Security Policy, M. West, D. Veditz. W3C.

[CSS]
Cascading Style Sheets Level 2 Revision 2, B. Bos, T. Çelik, I. Hickson, H. Lie. W3C.

[CSSALIGN]
CSS Box Alignment, E. Etemad, T. Atkins. W3C.

[CSSANCHOR]
CSS Anchor Positioning, T. Atkins, E. Etemad, I. Kilpatrick. W3C.

[CSSANIMATIONS]
CSS Animations, D. Jackson, D. Hyatt, C. Marrin, S. Galineau, L. Baron. W3C.

[CSSATTR]
CSS Style Attributes, T. Çelik, E. Etemad. W3C.

[CSSBG]
CSS Backgrounds and Borders, B. Bos, E. Etemad, B. Kemper. W3C.

[CSSBOX]
CSS Box Model, E. Etemad. W3C.

[CSSCASCADE]
CSS Cascading and Inheritance, E. Etemad, T. Atkins. W3C.

[CSSCONTAIN]
CSS Containment, T. Atkins, F. Rivoal, V. Levin. W3C.

[CSSCOLOR]
CSS Color Module, T. Çelik, C. Lilley, L. Baron. W3C.

[CSSCOLORADJUST]
CSS Color Adjustment Module, E. Etemad, R. Atanassov, R. Lillesveen, T. Atkins. W3C.

[CSSDEVICEADAPT]
CSS Device Adaption, F. Rivoal, M. Rakow. W3C.

[CSSDISPLAY]
CSS Display, T. Atkins, E. Etemad. W3C.

[CSSFONTLOAD]
CSS Font Loading, T. Atkins, J. Daggett. W3C.

[CSSFONTS]
CSS Fonts, J. Daggett. W3C.

[CSSFLEXBOX]
CSS Flexible Box Layout, T. Atkins, E. Etemad, R. Atanassov. W3C.

[CSSGC]
CSS Generated Content, H. Lie, E. Etemad, I. Hickson. W3C.

[CSSGRID]
CSS Grid Layout, T. Atkins, E. Etemad, R. Atanassov. W3C.

[CSSIMAGES]
CSS Images Module, E. Etemad, T. Atkins, L. Verou. W3C.

[CSSIMAGES4]
CSS Images Module Level 4, E. Etemad, T. Atkins, L. Verou. W3C.

1476

https://httpwg.org/specs/rfc6265.html
https://w3c.github.io/webappsec-credential-management/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/csswg-drafts/css2/
https://w3c.github.io/csswg-drafts/css-align/
https://drafts.csswg.org/css-anchor-position/
https://w3c.github.io/csswg-drafts/css-animations/
https://w3c.github.io/csswg-drafts/css-style-attr/
https://w3c.github.io/csswg-drafts/css-backgrounds/
https://w3c.github.io/csswg-drafts/css-box-3/
https://w3c.github.io/csswg-drafts/css-cascade/
https://w3c.github.io/csswg-drafts/css-contain/
https://w3c.github.io/csswg-drafts/css-color/
https://w3c.github.io/csswg-drafts/css-color-adjust/
https://w3c.github.io/csswg-drafts/css-device-adapt/
https://w3c.github.io/csswg-drafts/css-display/
https://w3c.github.io/csswg-drafts/css-font-loading/
https://w3c.github.io/csswg-drafts/css-fonts/
https://w3c.github.io/csswg-drafts/css-flexbox/
https://w3c.github.io/csswg-drafts/css-content/
https://w3c.github.io/csswg-drafts/css-grid/
https://w3c.github.io/csswg-drafts/css-images/
https://w3c.github.io/csswg-drafts/css-images-4/

[CSSINLINE]
CSS Inline Layout, D. Cramer, E. Etemad. W3C.

[CSSLISTS]
CSS Lists and Counters, T. Atkins. W3C.

[CSSLOGICAL]
CSS Logical Properties, R. Atanassov, E. Etemad. W3C.

[CSSMULTICOL]
CSS Multi-column Layout, H. Lie, F. Rivoal, R. Andrew. W3C.

[CSSOM]
Cascading Style Sheets Object Model (CSSOM), S. Pieters, G. Adams. W3C.

[CSSOMVIEW]
CSSOM View Module, S. Pieters, G. Adams. W3C.

[CSSOVERFLOW]
CSS Overflow Module, L. Baron, F. Rivoal. W3C.

[CSSPAINT]
(Non-normative) CSS Painting API, I. Kilpatrick, D. Jackson. W3C.

[CSSPOSITION]
CSS Positioned Layout, R. Atanassov, A. Eicholz. W3C.

[CSSPSEUDO]
CSS Pseudo-Elements, D. Glazman, E. Etemad, A. Stearns. W3C.

[CSSRUBY]
CSS3 Ruby Module, R. Ishida. W3C.

[CSSSCOPING]
CSS Scoping Module, T. Atkins. W3C.

[CSSSIZING]
CSS Box Sizing Module, T. Atkins, E. Etemad. W3C.

[CSSSCROLLANCHORING]
(Non-normative) CSS Scroll Anchoring, T. Atkins-Bittner. W3C.

[CSSSYNTAX]
CSS Syntax, T. Atkins, S. Sapin. W3C.

[CSSTRANSITIONS]
(Non-normative) CSS Transitions, L. Baron, D. Jackson, B. Birtles. W3C.

[CSSTABLE]
CSS Table, F. Remy, G. Whitworth. W3C.

[CSSTEXT]
CSS Text, E. Etemad, K. Ishii. W3C.

[CSSVALUES]
CSS3 Values and Units, H. Lie, T. Atkins, E. Etemad. W3C.

[CSSVIEWTRANSITIONS]
CSS View Transitions, T. Atkins Jr.; J. Archibald; K Sagar. W3C.

[CSSUI]
CSS3 Basic User Interface Module, F. Rivoal. W3C.

[CSSWM]
CSS Writing Modes, E. Etemad, K. Ishii. W3C.

[DASH]
Dynamic adaptive streaming over HTTP (DASH). ISO.

1477

https://w3c.github.io/csswg-drafts/css-inline/
https://w3c.github.io/csswg-drafts/css-lists/
https://w3c.github.io/csswg-drafts/css-logical/
https://w3c.github.io/csswg-drafts/css-multicol/
https://w3c.github.io/csswg-drafts/cssom/
https://w3c.github.io/csswg-drafts/cssom-view/
https://w3c.github.io/csswg-drafts/css-overflow-3/
https://drafts.css-houdini.org/css-paint-api/
https://w3c.github.io/csswg-drafts/css-position/
https://w3c.github.io/csswg-drafts/css-pseudo/
https://w3c.github.io/csswg-drafts/css-ruby/
https://w3c.github.io/csswg-drafts/css-scoping/
https://w3c.github.io/csswg-drafts/css-sizing/
https://drafts.csswg.org/css-scroll-anchoring/
https://w3c.github.io/csswg-drafts/css-syntax/
https://drafts.csswg.org/css-transitions/
https://w3c.github.io/csswg-drafts/css-tables/
https://w3c.github.io/csswg-drafts/css-text/
https://w3c.github.io/csswg-drafts/css-values/
https://drafts.csswg.org/css-view-transitions/
https://w3c.github.io/csswg-drafts/css-ui/
https://w3c.github.io/csswg-drafts/css-writing-modes/
https://www.iso.org/standard/65274.html

[DEVICEPOSTURE]
(Non-normative) Device Posture API, D. Gonzalez-Zuniga, K. Christiansen. W3C.

[DOM]
DOM, A. van Kesteren, A. Gregor, Ms2ger. WHATWG.

[DOMPARSING]
DOM Parsing and Serialization, T. Leithead. W3C.

[DOT]
(Non-normative) The DOT Language. Graphviz.

[E163]
Recommendation E.163 — Numbering Plan for The International Telephone Service, CCITT Blue Book, Fascicle II.2, pp. 128-134,
November 1988.

[ENCODING]
Encoding, A. van Kesteren, J. Bell. WHATWG.

[EXECCOMMAND]
execCommand, J. Wilm, A. Gregor. W3C Editing APIs CG.

[EXIF]
(Non-normative) Exchangeable image file format. JEITA.

[FETCH]
Fetch, A. van Kesteren. WHATWG.

[FETCH-METADATA]
Fetch Metadata Request Headers, M.West. W3C.

[FILEAPI]
File API, A. Ranganathan. W3C.

[FILTERS]
Filter Effects, D. Schulze, D. Jackson, C. Harrelson. W3C.

[FULLSCREEN]
Fullscreen, A. van Kesteren, T. Çelik. WHATWG.

[GEOMETRY]
Geometry Interfaces. S. Pieters, D. Schulze, R. Cabanier. W3C.

[GIF]
(Non-normative) Graphics Interchange Format. CompuServe.

[GRAPHICS]
(Non-normative) Computer Graphics: Principles and Practice in C, Second Edition, J. Foley, A. van Dam, S. Feiner, J. Hughes. Addison-
Wesley. ISBN 0-201-84840-6.

[GREGORIAN]
(Non-normative) Inter Gravissimas, A. Lilius, C. Clavius. Gregory XIII Papal Bull, February 1582.

[HRT]
High Resolution Time, I. Grigorik, J. Simonsen, J. Mann. W3C.

[HTMLAAM]
HTML Accessibility API Mappings 1.0, S. Faulkner, A. Surkov, S. O'Hara. W3C.

[HTTP]
Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing, R. Fielding, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, R. Fielding, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, R. Fielding, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Range Requests, R. Fielding, Y. Lafon, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Caching, R. Fielding, M. Nottingham, J. Reschke. IETF.
Hypertext Transfer Protocol (HTTP/1.1): Authentication, R. Fielding, J. Reschke. IETF.

[INDEXEDDB]
Indexed Database API, A. Alabbas, J. Bell. W3C.

1478

https://w3c.github.io/device-posture/
https://dom.spec.whatwg.org/
https://w3c.github.io/DOM-Parsing/
https://graphviz.org/doc/info/lang.html
https://encoding.spec.whatwg.org/
https://w3c.github.io/editing/docs/execCommand/
https://www.jeita.or.jp/cgi-bin/standard_e/list.cgi?cateid=1&subcateid=4
https://fetch.spec.whatwg.org/
https://w3c.github.io/webappsec-fetch-metadata/
https://w3c.github.io/FileAPI/
https://drafts.fxtf.org/filter-effects/
https://fullscreen.spec.whatwg.org/
https://drafts.fxtf.org/geometry/
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://w3c.github.io/hr-time/
https://w3c.github.io/html-aam/
https://httpwg.org/specs/rfc7230.html
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7233.html
https://httpwg.org/specs/rfc7234.html
https://httpwg.org/specs/rfc7235.html
https://w3c.github.io/IndexedDB/

[INBAND]
Sourcing In-band Media Resource Tracks from Media Containers into HTML, S. Pfeiffer, B. Lund. W3C.

[INFRA]
Infra, A. van Kesteren, D. Denicola. WHATWG.

[INTERSECTIONOBSERVER]
Intersection Observer, S. Zager. W3C.

[RESIZEOBSERVER]
Resize Observer, O. Brufau, E. Álvarez. W3C.

[ISO3166]
ISO 3166: Codes for the representation of names of countries and their subdivisions. ISO.

[ISO4217]
ISO 4217: Codes for the representation of currencies and funds. ISO.

[ISO8601]
(Non-normative) ISO8601: Data elements and interchange formats — Information interchange — Representation of dates and times.
ISO.

[JAVASCRIPT]
ECMAScript Language Specification. Ecma International.

[JLREQ]
Requirements for Japanese Text Layout. W3C.

[JPEG]
JPEG File Interchange Format, E. Hamilton.

[JSERRORSTACKS]
(Non-normative) Error Stacks. Ecma International.

[JSDYNAMICCODEBRANDCHECKS]
Dynamic code brand checks. Ecma International.

[JSIMPORTATTRIBUTES]
Import attributes. Ecma International.

[JSJSONMODULES]
JSON Modules. Ecma International.

[JSRESIZABLEBUFFERS]
Resizable ArrayBuffer and growable SharedArrayBuffer. Ecma International.

[JSINTL]
ECMAScript Internationalization API Specification. Ecma International.

[JSON]
The JavaScript Object Notation (JSON) Data Interchange Format, T. Bray. IETF.

[JSTEMPORAL]
Temporal. Ecma International.

[LONGTASKS]
Long Tasks, D. Denicola, I. Grigorik, S. Panicker. W3C.

[LONGANIMATIONFRAMES]
Long Animation Frames, N. Rosenthal. W3C.

[MAILTO]
(Non-normative) The 'mailto' URI scheme, M. Duerst, L. Masinter, J. Zawinski. IETF.

[MANIFEST]
Web App Manifest, M. Caceres, K. Rohde Christiansen, M. Lamouri, A. Kostiainen, M. Giuca, A. Gustafson. W3C.

[MATHMLCORE]
Mathematical Markup Language (MathML), D. Carlisle, Frédéric Wang. W3C.

1479

https://dev.w3.org/html5/html-sourcing-inband-tracks/
https://infra.spec.whatwg.org/
https://w3c.github.io/IntersectionObserver/
http://w3c.github.io/csswg-drafts/resize-observer-1/
https://www.iso.org/iso-3166-country-codes.html
https://www.iso.org/iso-4217-currency-codes.html
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
https://tc39.es/ecma262/
https://www.w3.org/TR/jlreq/
https://www.w3.org/Graphics/JPEG/jfif3.pdf
https://tc39.es/proposal-error-stacks/
https://tc39.es/proposal-dynamic-code-brand-checks/
https://tc39.es/proposal-import-attributes/
https://tc39.es/proposal-json-modules/
https://tc39.es/proposal-resizablearraybuffer/
https://tc39.es/ecma402/
https://www.rfc-editor.org/rfc/rfc8259
https://tc39.es/proposal-temporal/
https://w3c.github.io/longtasks/
https://w3c.github.io/long-animation-frames/
https://www.rfc-editor.org/rfc/rfc6068
https://www.w3.org/TR/appmanifest/
https://w3c.github.io/mathml-core/

[MEDIAFRAG]
Media Fragments URI, R. Troncy, E. Mannens, S. Pfeiffer, D. Van Deursen. W3C.

[MEDIASOURCE]
Media Source Extensions, A. Colwell, A. Bateman, M. Watson. W3C.

[MEDIASTREAM]
Media Capture and Streams, D. Burnett, A. Bergkvist, C. Jennings, A. Narayanan. W3C.

[REPORTING]
Reporting, D. Creager, I. Clelland, M. West. W3C.

[MFREL]
Microformats Wiki: existing rel values. Microformats.

[MIMESNIFF]
MIME Sniffing, G. Hemsley. WHATWG.

[MIX]
Mixed Content, M. West. W3C.

[MNG]
MNG (Multiple-image Network Graphics) Format. G. Randers-Pehrson.

[MPEG2]
ISO/IEC 13818-1: Information technology — Generic coding of moving pictures and associated audio information: Systems. ISO/IEC.

[MPEG4]
ISO/IEC 14496-12: ISO base media file format. ISO/IEC.

[MQ]
Media Queries, H. Lie, T. Çelik, D. Glazman, A. van Kesteren. W3C.

[MULTIPLEBUFFERING]
(Non-normative) Multiple buffering. Wikipedia.

[NAVIGATIONTIMING]
Navigation Timing, Y. Weiss. W3C.

[NPAPI]
(Non-normative) Gecko Plugin API Reference. Mozilla.

[OGGSKELETONHEADERS]
SkeletonHeaders. Xiph.Org.

[OPENSEARCH]
Autodiscovery in HTML/XHTML. In OpenSearch 1.1 Draft 6. GitHub.

[ORIGIN]
(Non-normative) The Web Origin Concept, A. Barth. IETF.

[PAINTTIMING]
Paint Timing, S. Panicker. W3C.

[PAYMENTREQUEST]
Payment Request API, M. Cáceres, D. Wang, R. Solomakhin, I. Jacobs. W3C.

[PDF]
(Non-normative) Document management — Portable document format — Part 1: PDF. ISO.

[PERFORMANCETIMELINE]
Performance Timeline, N. Peña Moreno, W3C.

[PERMISSIONSPOLICY]
Permissions Policy, I. Clelland, W3C.

[PICTUREINPICTURE]
(Non-normative) Picture-in-Picture, F. Beaufort, M. Lamouri, W3C

1480

https://www.w3.org/TR/media-frags/
https://w3c.github.io/media-source/
https://w3c.github.io/mediacapture-main/getusermedia.html
https://w3c.github.io/reporting/
https://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions
https://mimesniff.spec.whatwg.org/
https://w3c.github.io/webappsec-mixed-content/
http://www.libpng.org/pub/mng/spec/
https://w3c.github.io/csswg-drafts/mediaqueries/
https://en.wikipedia.org/wiki/Multiple_buffering
https://w3c.github.io/navigation-timing/
https://developer.mozilla.org/en-US/docs/Plugins/Guide
https://wiki.xiph.org/SkeletonHeaders
https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md#autodiscovery-in-htmlxhtml
https://www.rfc-editor.org/rfc/rfc6454
https://w3c.github.io/paint-timing/
https://w3c.github.io/payment-request/
https://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
https://w3c.github.io/performance-timeline/
https://w3c.github.io/webappsec-feature-policy/
https://w3c.github.io/picture-in-picture/

[PINGBACK]
Pingback 1.0, S. Langridge, I. Hickson.

[PNG]
Portable Network Graphics (PNG) Specification, D. Duce. W3C.

[POINTEREVENTS]
Pointer Events, J. Rossi, M. Brubeck, R. Byers, P. H. Lauke. W3C.

[POINTERLOCK]
Pointer Lock, V. Scheib. W3C.

[PPUTF8]
(Non-normative) The Properties and Promises of UTF-8, M. Dürst. University of Zürich. In Proceedings of the 11th International
Unicode Conference.

[PRESENTATION]
Presentation API, M. Foltz, D. Röttsches. W3C.

[REFERRERPOLICY]
Referrer Policy, J. Eisinger, E. Stark. W3C.

[REQUESTIDLECALLBACK]
Cooperative Scheduling of Background Tasks, R. McIlroy, I. Grigorik. W3C.

[RESOURCETIMING]
Resource Timing, Yoav Weiss; Noam Rosenthal. W3C.

[RFC1034]
Domain Names - Concepts and Facilities, P. Mockapetris. IETF, November 1987.

[RFC1123]
Requirements for Internet Hosts -- Application and Support, R. Braden. IETF, October 1989.

[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed, N. Borenstein. IETF.

[RFC2397]
The "data" URL scheme, L. Masinter. IETF.

[RFC5545]
Internet Calendaring and Scheduling Core Object Specification (iCalendar), B. Desruisseaux. IETF.

[RFC2483]
URI Resolution Services Necessary for URN Resolution, M. Mealling, R. Daniel. IETF.

[RFC3676]
The Text/Plain Format and DelSp Parameters, R. Gellens. IETF.

[RFC9239]
Updates to ECMAScript Media Types, M. Miller, M. Borins, M. Bynens, B. Farias. IETF.

[RFC4337]
(Non-normative) MIME Type Registration for MPEG-4, Y. Lim, D. Singer. IETF.

[RFC7595]
Guidelines and Registration Procedures for URI Schemes, D. Thaler, T. Hansen, T. Hardie. IETF.

[RFC5322]
Internet Message Format, P. Resnick. IETF.

[RFC6381]
The 'Codecs' and 'Profiles' Parameters for "Bucket" Media Types, R. Gellens, D. Singer, P. Frojdh. IETF.

[RFC6266]
Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP), J. Reschke. IETF.

[RFC6350]
vCard Format Specification, S. Perreault. IETF.

1481

https://www.hixie.ch/specs/pingback/pingback
https://www.w3.org/TR/PNG/
https://w3c.github.io/pointerevents/
https://w3c.github.io/pointerlock/
https://www.sw.it.aoyama.ac.jp/2012/pub/IUC11-UTF-8.pdf
https://w3c.github.io/presentation-api/
https://w3c.github.io/webappsec-referrer-policy/
https://w3c.github.io/requestidlecallback/
https://w3c.github.io/resource-timing/
https://www.rfc-editor.org/rfc/rfc1034
https://www.rfc-editor.org/rfc/rfc1123
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2397
https://www.rfc-editor.org/rfc/rfc5545
https://www.rfc-editor.org/rfc/rfc2483
https://www.rfc-editor.org/rfc/rfc3676
https://www.rfc-editor.org/rfc/rfc9239
https://www.rfc-editor.org/rfc/rfc4337
https://www.rfc-editor.org/rfc/rfc7595
https://www.rfc-editor.org/rfc/rfc5322
https://www.rfc-editor.org/rfc/rfc6381
https://httpwg.org/specs/rfc6266.html
https://www.rfc-editor.org/rfc/rfc6350

[RFC6596]
The Canonical Link Relation, M. Ohye, J. Kupke. IETF.

[RFC6903]
Additional Link Relation Types, J. Snell. IETF.

[RFC7034]
(Non-normative) HTTP Header Field X-Frame-Options, D. Ross, T. Gondrom. IETF.

[RFC7303]
XML Media Types, H. Thompson, C. Lilley. IETF.

[RFC7578]
Returning Values from Forms: multipart/form-data, L. Masinter. IETF.

[RFC8297]
An HTTP Status Code for Indicating Hints, K. Oku. IETF.

[SCREENORIENTATION]
Screen Orientation, M. Cáceres. W3C.

[SCSU]
(Non-normative) UTR #6: A Standard Compression Scheme For Unicode, M. Wolf, K. Whistler, C. Wicksteed, M. Davis, A. Freytag, M.
Scherer. Unicode Consortium.

[SECURE-CONTEXTS]
Secure Contexts, M. West. W3C.

[SELECTION]
Selection API, R. Niwa. W3C.

[SELECTORS]
Selectors, E. Etemad, T. Çelik, D. Glazman, I. Hickson, P. Linss, J. Williams. W3C.

[SMS]
(Non-normative) URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS), E. Wilde, A. Vaha-
Sipila. IETF.

[STRUCTURED-FIELDS]
Structured Field Values for HTTP, M. Nottingham, P-H. Kamp. IETF.

[SRI]
Subresource Integrity, D. Akhawe, F. Braun, F. Marier, J. Weinberger. W3C.

[STORAGE]
Storage, A. van Kesteren. WHATWG.

[SVG]
Scalable Vector Graphics (SVG) 2, N Andronikos, R. Atanassov, T. Bah, B. Birtles, B. Brinza, C. Concolato, E. Dahlström, C. Lilley, C.
McCormack, D. Schepers, R. Schwerdtfeger, D. Storey, S. Takagi, J. Watt. W3C.

[SW]
Service Workers, A. Russell, J. Song, J. Archibald. W3C.

[TOR]
(Non-normative) Tor.

[TOUCH]
Touch Events, D. Schepers, S. Moon, M. Brubeck, A. Barstow, R. Byers. W3C.

[TRUSTED-TYPES]
Trusted Types, K. Kotowicz, M. West. W3C.

[TZDATABASE]
(Non-normative) Time Zone Database. IANA.

[UAAG]
(Non-normative) User Agent Accessibility Guidelines (UAAG) 2.0, J. Allan, K. Ford, J. Richards, J. Spellman. W3C.

1482

https://www.rfc-editor.org/rfc/rfc6596
https://www.rfc-editor.org/rfc/rfc6903
https://www.rfc-editor.org/rfc/rfc7034
https://www.rfc-editor.org/rfc/rfc7303
https://www.rfc-editor.org/rfc/rfc7578
https://httpwg.org/specs/rfc8297.html
https://w3c.github.io/screen-orientation/
https://www.unicode.org/reports/tr6/
https://w3c.github.io/webappsec-secure-contexts/
https://w3c.github.io/selection-api/
https://w3c.github.io/csswg-drafts/selectors/
https://www.rfc-editor.org/rfc/rfc5724
https://httpwg.org/specs/rfc8941.html
https://w3c.github.io/webappsec-subresource-integrity/
https://storage.spec.whatwg.org/
https://svgwg.org/svg2-draft/
https://w3c.github.io/ServiceWorker/
https://www.torproject.org/
https://w3c.github.io/touch-events/
https://w3c.github.io/trusted-types/dist/spec/
https://www.iana.org/time-zones
https://www.w3.org/TR/UAAG20/

[UIEVENTS]
UI Events Specification, G. Kacmarcik, T. Leithead. W3C.

[UNICODE]
The Unicode Standard. Unicode Consortium.

[UNIVCHARDET]
(Non-normative) A composite approach to language/encoding detection, S. Li, K. Momoi. Netscape. In Proceedings of the 19th
International Unicode Conference.

[URL]
URL, A. van Kesteren. WHATWG.

[URN]
URN Syntax, R. Moats. IETF.

[UTF7]
(Non-normative) UTF-7: A Mail-Safe Transformation Format of Unicode, D. Goldsmith, M. Davis. IETF.

[UTF8DET]
(Non-normative) Multilingual form encoding, M. Dürst. W3C.

[UTR36]
(Non-normative) UTR #36: Unicode Security Considerations, M. Davis, M. Suignard. Unicode Consortium.

[WASM]
WebAssembly Core Specification, A. Rossberg. W3C.

[WASMESM]
WebAssembly JavaScript Interface: ESM Integration, L. Clark, D. Ehrenberg., A. Takikawa., G. Bedford. W3C.

[WASMJS]
(Non-normative) WebAssembly JavaScript Interface, D. Ehrenberg. W3C.

[WCAG]
(Non-normative) Web Content Accessibility Guidelines (WCAG), A. Kirkpatrick, J. O Connor, A. Campbell, M. Cooper. W3C.

[WEBANIMATIONS]
Web Animations, B. Birtles, S. Stephens, D. Stockwell. W3C.

[WEBAUDIO]
(Non-normative) Web Audio API, P. Adenot, H. Choi. W3C.

[WEBAUTHN]
Web Authentication: An API for accessing Public Key Credentials, M. Jones, A. Kumar, E. Lundberg, D. Balfanz, V. Bharadwaj, A.
Birgisson, A. Czeskis, J. Hodges, J.C. Jones, H. Le Van Gong, A. Liao, R. Lindemann, J. Bradley, C. Brand, T. Cappalli, A. Langley, G.
Mandyam, M. Miller, N. Satragno, N. Steele, J. Tan, S. Weeden, M. West, J. Yasskin. W3C.

[WEBCODECS]
WebCodecs API, C. Cunningham, P. Adenot, B. Aboba. W3C.

[WEBCRYPTO]
Web Cryptography API, D. Huigens. W3C.

[WEBDRIVER]
WebDriver, S. Stewart, D. Burns. W3C.

[WEBDRIVERBIDI]
WebDriver BiDi. W3C

[WEBGL]
WebGL Specifications, D. Jackson, J. Gilbert. Khronos Group.

[WEBGPU]
WebGPU, D. Malyshau, K. Ninomiya. W3C.

[WEBIDL]
Web IDL, E. Chen, T. Gu. WHATWG.

1483

https://w3c.github.io/uievents/
https://www.unicode.org/versions/
https://www-archive.mozilla.org/projects/intl/UniversalCharsetDetection.html
https://url.spec.whatwg.org/
https://www.rfc-editor.org/rfc/rfc2141
https://www.rfc-editor.org/rfc/rfc2152
https://www.w3.org/International/questions/qa-forms-utf-8
https://www.unicode.org/reports/tr36/
https://webassembly.github.io/spec/core/bikeshed/index.html
https://webassembly.github.io/esm-integration/js-api/index.html
https://webassembly.github.io/spec/js-api/
https://w3c.github.io/wcag/guidelines/
https://w3c.github.io/csswg-drafts/web-animations-1/
https://webaudio.github.io/web-audio-api/
https://w3c.github.io/webauthn
https://w3c.github.io/webcodecs/
https://w3c.github.io/webcrypto/Overview.html
https://w3c.github.io/webdriver/
https://w3c.github.io/webdriver-bidi/
https://www.khronos.org/registry/webgl/specs/latest/
https://gpuweb.github.io/gpuweb/
https://webidl.spec.whatwg.org/

[WEBLINK]
Web Linking, M. Nottingham. IETF.

[WEBLOCKS]
(Non-normative) Web Locks API, J. Bell, K. Rosylight. W3C.

[WEBMCG]
WebM Container Guidelines. The WebM Project.

[WEBNFC]
(Non-normative) Web NFC, F. Beaufort, K. Christiansen, Z. Kis. W3C.

[WEBRTC]
(Non-normative) Web RTC, C. Jennings, F. Castelli, H. Boström, J. Bruaroey. W3C.

[WEBSOCKETS]
WebSockets, A. Rice. WHATWG.

[WEBTRANSPORT]
WebTransport, B. Aboba, N. Jaju, V. Vasiliev. W3C.

[WEBVTT]
WebVTT, S. Pieters. W3C.

[WHATWGWIKI]
The WHATWG Wiki. WHATWG.

[X121]
Recommendation X.121 — International Numbering Plan for Public Data Networks, CCITT Blue Book, Fascicle VIII.3, pp. 317-332.

[XFN]
XFN 1.1 profile, T. Çelik, M. Mullenweg, E. Meyer. GMPG.

[XHR]
XMLHttpRequest, A. van Kesteren. WHATWG.

[XKCD1288]
(Non-normative) Substitutions, Randall Munroe. xkcd.

[XML]
Extensible Markup Language, T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau. W3C.

[XMLENTITY]
(Non-normative) XML Entity Definitions for Characters, D. Carlisle, P. Ion. W3C.

[XMLNS]
Namespaces in XML, T. Bray, D. Hollander, A. Layman, R. Tobin. W3C.

[XMLSSPI]
Associating Style Sheets with XML documents, J. Clark, S. Pieters, H. Thompson. W3C.

[XPATH10]
XML Path Language (XPath) Version 1.0, J. Clark, S. DeRose. W3C.

[XSLT10]
(Non-normative) XSL Transformations (XSLT) Version 1.0, J. Clark. W3C.

[XSLTP]
(Non-normative) DOM XSLTProcessor, WHATWG Wiki. WHATWG.

1484

https://httpwg.org/specs/rfc8288.html
https://w3c.github.io/web-locks/
https://www.webmproject.org/docs/container/
https://w3c.github.io/web-nfc/
https://w3c.github.io/webrtc-pc/
https://websockets.spec.whatwg.org/
https://w3c.github.io/webtransport/
https://w3c.github.io/webvtt/
https://wiki.whatwg.org/
https://gmpg.org/xfn/11
https://xhr.spec.whatwg.org/
https://xkcd.com/1288/
https://www.w3.org/TR/xml/
https://www.w3.org/2003/entities/2007doc/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-stylesheet/
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/1999/REC-xslt-19991116
https://wiki.whatwg.org/wiki/DOM_XSLTProcessor

Thanks to Tim Berners-Lee for inventing HTML, without which none of this would exist.

Thanks to Aankhen, Aaqa Ishtyaq, Aaron Boodman, Aaron Leventhal, Aaron Krajeski, Abhishek Ghaskata, Abhishek Gupta, Adam Barth,
Adam de Boor, Adam Hepton, Adam Klein, Adam Rice, Adam Roben, Addison Phillips, Adele Peterson, Adrian Bateman, Adrian Roselli,
Adrian Sutton, Agustín Fernández, Aharon (Vladimir) Lanin, Ajai Tirumali, Ajay Poshak, Akash Balenalli, Akatsuki Kitamura, Alan Jeffrey,
Alan Plum, Alastair Campbell, Alejandro G. Castro, Alex Bishop, Alex Nicolaou, Alex Nozdriukhin, Alex Rousskov, Alex Soncodi,
Alexander Farkas, Alexander J. Vincent, Alexander Kalenik, Alexandre Dieulot, Alexandre Morgaut, Alexey Feldgendler, Алексей
Проскуряков (Alexey Proskuryakov), Alexey Shvayka, Alexis Deveria, Alfred Agrell, Ali Juma, Alice Boxhall, Alice Wonder, Allan
Clements, Allen Wirfs-Brock, Alex Komoroske, Alex Russell, Alphan Chen, Aman Ansari, Ami Fischman, Amos Jeffries, Amos Lim, Anders
Carlsson, André Bargull, André E. Veltstra, Andrea Rendine, Andreas, Andreas Deuschlinger, Andreas Farre, Andreas Kling, Andrei
Popescu, Andres Gomez, Andres Rios, Andreu Botella, Andrew Barfield, Andrew Clover, Andrew Gove, Andrew Grieve, Andrew Kaster,
Andrew Macpherson, Andrew Oakley, Andrew Paseltiner, Andrew Simons, Andrew Smith, Andrew W. Hagen, Andrew Williams, Andrey V.
Lukyanov, Andry Rendy, Andy Davies, Andy Earnshaw, Andy Heydon, Andy Paicu, Andy Palay, Anjana Vakil, Ankur Kaushal, Anna Belle
Leiserson, Anna Sidwell, Anthony Boyd, Anthony Bryan, Anthony Hickson, Anthony Ramine, Anthony Ricaud, Anton Vayvod, Antonio
Sartori, Antti Koivisto, Arfat Salman, Arkadiusz Michalski, Arne Thomassen, Aron Spohr, Arphen Lin, Arthur Hemery, Arthur Sonzogni,
Arthur Stolyar, Arun Patole, Aryeh Gregor, Asanka Herath, Asbjørn Ulsberg, Ashley Gullen, Ashley Sheridan, Asumu Takikawa, Atsushi
Takayama, Attila Haraszti, Aurelien Levy, Ave Wrigley, Avi Drissman, Axel Dahmen, 방성범 (Bang Seongbeom), Barry Pollard, Ben Boyle,
Ben Godfrey, Ben Golightly, Ben Kelly, Ben Lerner, Ben Leslie, Ben Meadowcroft, Ben Millard, Benjamin Carl Wiley Sittler, Benjamin
Hawkes-Lewis, Benji Bilheimer, Benoit Ren, Bert Bos, Bijan Parsia, Bil Corry, Bill Mason, Bill McCoy, Billy Wong, Billy Woods, Bjartur
Thorlacius, Björn Höhrmann, Blake Frantz, Bob Lund, Bob Owen, Bobby Holley, Boris Zbarsky, Brad Fults, Brad Neuberg, Brad Spencer,
Bradley Meck, Brady Eidson, Brandon Jones, Brendan Eich, Brenton Simpson, Brett Wilson, Brett Zamir, Brian Birtles, Brian Blakely,
Brian Campbell, Brian Korver, Brian Kuhn, Brian M. Dube, Brian Ryner, Brian Smith, Brian Wilson, Bryan Sullivan, Bruce Bailey, Bruce
D'Arcus, Bruce Lawson, Bruce Miller, Bugs Nash, C. Scott Ananian, C. Williams, Cameron McCormack, Cameron Zemek, Cao Yipeng,
Carlos Amengual, Carlos Gabriel Cardona, Carlos Ibarra López, Carlos Perelló Marín, Carolyn MacLeod, Casey Leask, Cătălin Badea,
Cătălin Mariș, Cem Turesoy, ceving, Chao Cai, 윤석찬 (Channy Yun), Charl van Niekerk, Charlene Wright, Charles Iliya Krempeaux,
Charles McCathie Nevile, Charlie Reis, 白丞祐 (Cheng-You Bai), Chris Apers, Chris Cressman, Chris Dumez, Chris Evans, Chris Harrelson,
Chris Markiewicz, Chris Morris, Chris Nardi, Chris Needham, Chris Pearce, Chris Peterson, Chris Rebert, Chris Weber, Chris Wilson,
Christian Biesinger, Christian Johansen, Christian Schmidt, Christoph Päper, Christophe Dumez, Christopher Aillon, Christopher
Cameron, Christopher Ferris, Chriswa, Clark Buehler, Cole Robison, Colin Fine, Collin Jackson, Corey Farwell, Corprew Reed, Craig
Cockburn, Csaba Gabor, Csaba Marton, Cynthia Shelly, Cyrille Tuzi, Daksh Shah, Dan Callahan, Dan Yoder, Dane Foster, Daniel Barclay,
Daniel Bratell, Daniel Brooks, Daniel Brumbaugh Keeney, Daniel Buchner, Daniel Cheng, Daniel Clark, Daniel Davis, Daniel Ehrenberg,
Daniel Glazman, Daniel Holbert, Daniel Peng, Daniel Schattenkirchner, Daniel Spång, Daniel Steinberg, Daniel Tan, Daniel Trebbien,
Daniel Vogelheim, Danny Sullivan, Daphne Preston-Kendal, Darien Maillet Valentine, Darin Adler, Darin Fisher, Darxus, Dave Camp,
Dave Cramer, Dave Hodder, Dave Lampton, Dave Singer, Dave Tapuska, Dave Townsend, David Baron, David Bloom, David Bokan,
David Bruant, David Carlisle, David E. Cleary, David Egan Evans, David Fink, David Flanagan, David Gerard, David Grogan, David Hale,
David Håsäther, David Hyatt, David I. Lehn, David John Burrowes, David Matja, David Remahl, David Resseguie, David Smith, David
Storey, David Vest, David Woolley, David Zbarsky, Dave Methvin, DeWitt Clinton, Dean Edridge, Dean Edwards, Dean Jackson,
Debanjana Sarkar, Debi Orton, Delan Azabani, Derek Featherstone, Derek Guenther, Devarshi Pant, Devdatta, Devin Mullins, Devin
Rousso, Di Zhang, Diego Ferreiro Val, Diego González Zúñiga, Diego Ponce de León, Dimitri Glazkov, Dimitry Golubovsky, Dirk Pranke,
Dirk Schulze, Dirkjan Ochtman, Divya Manian, Dmitry Lazutkin, Dmitry Titov, dolphinling, Dominic Cooney, Dominique Hazaël-
Massieux, Don Brutzman, Donovan Glover, Doron Rosenberg, Doug Kramer, Doug Simpkinson, Drew Wilson, Edgar Chen, Edmund Lai,
Eduard Pascual, Eduardo Vela, Edward Welbourne, Edward Z. Yang, Ehsan Akhgari, Eira Monstad, Eitan Adler, Eli Friedman, Eli Grey,
Eliot Graff, Elisabeth Robson, Elizabeth Castro, Elliott Sprehn, Elliotte Harold, Emilio Cobos Álvarez, Emily Stark, Eric Carlson, Eric
Casler, Eric Lawrence, Eric Portis, Eric Rescorla, Eric Semling, Eric Shepherd, Eric Willigers, Erik Arvidsson, Erik Charlebois, Erik Rose, 栗
本 英理子 (Eriko Kurimoto), espretto, Evan Jacobs, Evan Martin, Evan Prodromou, Evan Stade, Evert, Evgeny Kapun, ExE-Boss, Ezequiel
Garzón, fantasai, Félix Sanz, Felix Sasaki, Fernando Altomare Serboncini, Forbes Lindesay, Francesco Schwarz, Francis Brosnan
Blazquez, Franck 'Shift' Quélain, François Marier, Frank Barchard, Frank Liberato, Franklin Shirley, Frederik Braun, Fredrik Söderquist, 鵜
飼文敏 (Fumitoshi Ukai), Futomi Hatano, Gavin Carothers, Gavin Kistner, Gareth Rees, Garrett Smith, Gary Blackwood, Gary Kacmarcik,
Gary Katsevman, Geoff Richards, Geoffrey Garen, Georg Neis, George Lund, Gianmarco Armellin, Giovanni Campagna, Giuseppe
Pascale, Glenn Adams, Glenn Maynard, Graham Klyne, Greg Botten, Greg Houston, Greg Wilkins, Gregg Tavares, Gregory J. Rosmaita,
Gregory Terzian, Grey, guest271314, Guilherme Johansson Tramontina, Guy Bedford, Gytis Jakutonis, Håkon Wium Lie, Habib Virji,
Hajime Morrita, Hallvord Reiar Michaelsen Steen, Hanna Laakso, Hans S. Tømmerhalt, Hans Stimer, Harald Alvestrand, Hayato Ito, 何志
翔 (HE Zhixiang), Henri Sivonen, Henrik Lied, Henrik Lievonen, Henry Lewis, Henry Mason, Henry Story, Hermann Donfack Zeufack, 中川
博貴 (Hiroki Nakagawa), Hiroshige Hayashizaki, Hiroyuki USHITO, Hitoshi Yoshida, Hongchan Choi, 王华 (Hua Wang), Hugh Bellamy,
Hugh Guiney, Hugh Winkler, Ian Bicking, Ian Clelland, Ian Davis, Ian Fette, Ian Henderson, Ian Kilpatrick, Ibrahim Ahmed, Ido Green,
Ignacio Javier, Igor Oliveira, 安次嶺 一功 (Ikko Ashimine), Ilya Grigorik, Ingvar Stepanyan, isonmad, Iurii Kucherov, Ivan Enderlin, Ivan
Nikulin, Ivan Panchenko, Ivo Emanuel Gonçalves, J. King, J.C. Jones, Jackson Ray Hamilton, Jacob Davies, Jacques Distler, Jake Archibald,
Jake Verbaten, Jakub Vrána, Jakub Łopuszański, Jakub Wilk, James Craig, James Graham, James Greene, James Justin Harrell, James

Acknowledgments §p14

85

1485

Kozianski, James M Snell, James Perrett, James Robinson, Jamie Liu, Jamie Lokier, Jamie Mansfield, Jan Kühle, Jan Miksovsky, Janice Shiu,
Janusz Majnert, Jan-Ivar Bruaroey, Jan-Klaas Kollhof, Jared Jacobs, Jason Duell, Jason Kersey, Jason Lustig, Jason Orendorff, Jason White,
Jasper Bryant-Greene, Jasper St. Pierre, Jatinder Mann, Jay Henry Kao, Jean-Yves Avenard, Jed Hartman, Jeff Balogh, Jeff Cutsinger, Jeff
Gilbert, Jeff "=JeffH" Hodges, Jeff Schiller, Jeff Walden, Jeffrey Yasskin, Jeffrey Zeldman, 胡慧鋒 (Jennifer Braithwaite), Jellybean
Stonerfish, Jennifer Apacible, Jens Bannmann, Jens Fendler, Jens Oliver Meiert, Jens Widell, Jer Noble, Jeremey Hustman, Jeremy Keith,
Jeremy Orlow, Jeremy Roman, Jeroen van der Meer, Jerry Smith, Jesse Renée Beach, Jessica Jong, jfkthame, Jian Li, Jihye Hong, Jim
Jewett, Jim Ley, Jim Meehan, Jim Michaels, Jinho Bang, Jinjiang (勾三股四), Jirka Kosek, Jjgod Jiang, Joaquim Medeiros, João Eiras, Jochen
Eisinger, Joe Clark, Joe Gregorio, Joel Spolsky, Joel Verhagen, Joey Arhar, Johan Herland, Johanna Herman, John Boyer, John Bussjaeger,
John Carpenter, John Daggett, John Fallows, John Foliot, John Harding, John Keiser, John Law, John Musgrave, John Snyders, John
Stockton, John-Mark Bell, Johnny Stenback, Jon Coppeard, Jon Ferraiolo, Jon Gibbins, Jon Jensen, Jon Perlow, Jonas Sicking, Jonathan
Cook, Jonathan Kew, Jonathan Neal, Jonathan Oddy, Jonathan Rees, Jonathan Watt, Jonathan Worent, Jonny Axelsson, Joram Schrijver,
Jordan Tucker, Jorgen Horstink, Joris van der Wel, Jorunn Danielsen Newth, Joseph Kesselman, Joseph Mansfield, Joseph Pecoraro, Josh
Aas, Josh Hart, Josh Juran, Josh Levenberg, Josh Matthews, Joshua Bell, Joshua Chen, Joshua Randall, Juan Olvera, Juanmi Huertas, Jukka
K. Korpela, Jules Clément-Ripoche, Julian Reschke, Julio Lopez, 小勝 純 (Jun Kokatsu), Jun Yang (harttle), Jungkee Song, Jürgen Jeka,
Justin Lebar, Justin Novosad, Justin Rogers, Justin Schuh, Justin Sinclair, Juuso Lapinlampi, Ka-Sing Chou, Kagami Sascha Rosylight, Kai
Hendry, Kamishetty Sreeja, 呂康豪 (KangHao Lu), Karl Dubost, Karl Tomlinson, Kartik Arora, Kartikaya Gupta, Kathy Walton, 河童エクマ
（Kawarabe Ecma） Keith Cirkel, Keith Rollin, Keith Yeung, Kelly Ford, Kelly Norton, Ken Russell, Kenji Baheux, Kevin Benson, Kevin Cole,
Kevin Gadd, Kevin Venkiteswaran, Khushal Sagar, Kinuko Yasuda, Koji Ishii, Kornél Pál, Kornel Lesinski, 上野 康平 (UENO, Kouhei), Kris
Northfield, Kristian Spangsege, Kristof Zelechovski, Krzysztof Maczyński, 黒澤剛志 (Kurosawa Takeshi), Kyle Barnhart, Kyle Hofmann,
Kyle Huey, Léonard Bouchet, Léonie Watson, Lachlan Hunt, Larry Masinter, Larry Page, Lars Gunther, Lars Solberg, Laura Carlson, Laura
Granka, Laura L. Carlson, Laura Wisewell, Laurens Holst, Lawrence Forooghian, Lee Kowalkowski, Leif Halvard Silli, Leif Kornstaedt,
Lenny Domnitser, Leonard Rosenthol, Leons Petrazickis, Liviu Tinta, Lobotom Dysmon, Logan, Logan Moore, Loune, Lucas Gadani,
Łukasz Pilorz, Luke Kenneth Casson Leighton, Luke Warlow, Luke Wilde, Maciej Stachowiak, Magne Andersson, Magnus Kristiansen,
Maik Merten, Majid Valipour, Malcolm Rowe, Manish Goregaokar, Manish Tripathi, Manuel Martinez-Almeida, Manuel Rego Casasnovas,
Marc Hoyois, Marc-André Choquette, Marc-André Lafortune, Marco Zehe, Marcus Bointon, Marcus Otterström, Marijn Kruisselbrink, Mark
Amery, Mark Birbeck, Mark Davis, Mark Green, Mark Miller, Mark Nottingham, Mark Pilgrim, Mark Rogers, Mark Rowe, Mark Schenk,
Mark Vickers, Mark Wilton-Jones, Markus Cadonau, Markus Stange, Martijn van der Ven, Martijn Wargers, Martin Atkins, Martin Chaov,
Martin Dürst, Martin Honnen, Martin Janecke, Martin Kutschker, Martin Nilsson, Martin Thomson, Masataka Yakura, Masatoshi Kimura,
Mason Freed, Mason Mize, Mathias Bynens, Mathieu Henri, Matias Larsson, Matt Brubeck, Matt Di Pasquale, Matt Falkenhagen, Matt
Giuca, Matt Harding, Matt Schmidt, Matt Wright, Matthew Gaudet, Matthew Gregan, Matthew Mastracci, Matthew Noorenberghe,
Matthew Raymond, Matthew Thomas, Matthew Tylee Atkinson, Mattias Waldau, Max Romantschuk, Maxim Tsoy, Mayeul Cantan,
Menachem Salomon, Menno van Slooten, Micah Dubinko, Micah Nerren, Michael 'Ratt' Iannarelli, Michael A. Nachbaur, Michael A. Puls
II, Michael Carter, Michael Daskalov, Michael Day, Michael Dyck, Michael Enright, Michael Ficarra, Michael Gratton, Michael Kohler,
Michael McKelvey, Michael Nordman, Michael Powers, Michael Rakowski, Michael(tm) Smith, Michael Walmsley, Michal Zalewski, Michel
Buffa, Michel Fortin, Michelangelo De Simone, Michiel van der Blonk, Miguel Casas-Sanchez, Mihai Şucan, Mihai Parparita, Mike Brown,
Mike Dierken, Mike Dixon, Mike Hearn, Mike Pennisi, Mike Schinkel, Mike Shaver, Mikko Rantalainen, Mingye Wang, Mirko Brodesser,
Mohamed Zergaoui, Mohammad Al Houssami, Mohammad Reza Zakerinasab, Momdo Nakamura, Morten Stenshorne, Mounir Lamouri,
Ms2ger, mtrootyy, 邱慕安 (Mu-An Chiou), Mukilan Thiyagarajan, Mustaq Ahmed, Myles Borins, Nadia Heninger, Nate Chapin, NARUSE
Yui, Navid Zolghadr, Neil Deakin, Neil Rashbrook, Neil Soiffer, Nereida Rondon, networkException, Nicholas Shanks, Nicholas Stimpson,
Nicholas Zakas, Nickolay Ponomarev, Nicolas Gallagher, Nicolas Pena Moreno, Nicolò Ribaudo, Nidhi Jaju, Nikki Bee, Niklas Gögge, Nina
Satragno, Noah Mendelsohn, Noah Slater, Noam Rosenthal, Noel Gordon, Nolan Waite, NoozNooz42, Norbert Lindenberg, Oisín Nolan,
Ojan Vafai, Olaf Hoffmann, Olav Junker Kjær, Oldřich Vetešník, Oli Studholme, Oliver Hunt, Oliver Rigby, Olivia (Xiaoni) Lai, Olivier
Gendrin, Olli Pettay, Ondřej Žára, Ori Avtalion, Oriol Brufau, oSand, Pablo Flouret, Patrick Dark, Patrick Garies, Patrick H. Lauke, Patrik
Persson, Paul Adenot, Paul Lewis, Paul Norman, Per-Erik Brodin, 一丝 (percyley), Perry Smith, Peter Beverloo, Peter Karlsson, Peter
Kasting, Peter Moulder, Peter Occil, Peter Stark, Peter Van der Beken, Peter van der Zee, Peter-Paul Koch, Phil Pickering, Philip Ahlberg,
Philip Brembeck, Philip Taylor, Philip TAYLOR, Philippe De Ryck, Pierre-Arnaud Allumé, Pierre-Marie Dartus, Pierre-Yves Gérardy, Piers
Wombwell, Pooja Sanklecha, Prashant Hiremath, Prashanth Chandra, Prateek Rungta, Pravir Gupta, Prayag Verma, 李普君 (Pujun Li),
Rachid Finge, Rafael Weinstein, Rafał Miłecki, Rahul Purohit, Raj Doshi, Rajas Moonka, Rakina Zata Amni, Ralf Stoltze, Ralph Giles,
Raphael Champeimont, Rebecca Star, Remci Mizkur, Remco, Remy Sharp, Rene Saarsoo, Rene Stach, Ric Hardacre, Rich Clark, Rich
Doughty, Richa Rupela, Richard Gibson, Richard Ishida, Ricky Mondello, Rigo Wenning, Rikkert Koppes, Rimantas Liubertas, Riona
Macnamara, Rob Buis, Rob Ennals, Rob Jellinghaus, Rob S, Rob Smith, Robert Blaut, Robert Collins, Robert Hogan, Robert Kieffer, Robert
Linder, Robert Millan, Robert O'Callahan, Robert Sayre, Robin Berjon, Robin Schaufler, Rodger Combs, Roland Steiner, Roma
Matusevich, Romain Deltour, Roman Ivanov, Roy Fielding, Rune Lillesveen, Russell Bicknell, Ruud Steltenpool, Ryan King, Ryan Landay,
Ryan Sleevi, Ryo Kajiwara, Ryo Kato, Ryosuke Niwa, S. Mike Dierken, Salvatore Loreto, Sam Atkins, Sam Dutton, Sam Kuper, Sam Ruby,
Sam Sneddon, Sam Weinig, Samikshya Chand, Samuel Bronson, Samy Kamkar, Sander van Lambalgen, Sanjoy Pal, Sanket Joshi, Sarah
Gebauer, Sarven Capadisli, Satrujit Behera, Sayan Sivakumaran, Schalk Neethling, Scott Beardsley, Scott González, Scott Hess, Scott
Miles, Scott O'Hara, Sean B. Palmer, Sean Feng, Sean Fraser, Sean Hayes, Sean Hogan, Sean Knapp, Sebastian Markbåge, Sebastian
Schnitzenbaumer, Sendil Kumar N, Seth Call, Seth Dillingham, Shannon Moeller, Shanti Rao, Shaun Inman, Shiino Yuki, 贺师俊 (HE Shi-
Jun), Shiki Okasaka, Shivani Sharma, shreyateeza, Shubheksha Jalan, Sidak Singh Aulakh, Sierk Bornemann, Sigbjørn Finne, Sigbjørn
Vik, Silver Ghost, Silvia Pfeiffer, Šime Vidas, Simon Fraser, Simon Montagu, Simon Sapin, Yu Han, Simon Spiegel, Simon Wülker, skeww,
Smylers, Srirama Chandra Sekhar Mogali, Stanton McCandlish, stasoid, Stefan Håkansson, Stefan Haustein, Stefan Santesson, Stefan
Schumacher, Ştefan Vargyas, Stefan Weiss, Steffen Meschkat, Stephen Ma, Stephen Stewart, Stephen White, Steve Comstock, Steve
Faulkner, Steve Fink, Steve Orvell, Steve Runyon, Steven Bennett, Steven Bingler, Steven Garrity, Steven Tate, Stewart Brodie, Stuart

1486

Ballard, Stuart Langridge, Stuart Parmenter, Subramanian Peruvemba, Sudhanshu Jaiswal, sudokus999, Sunava Dutta, Surma, Susan
Borgrink, Susan Lesch, Sylvain Pasche, T.J. Crowder, Tab Atkins-Bittner, Taiju Tsuiki, Takashi Toyoshima, Takayoshi Kochi, Takeshi
Yoshino, Tantek Çelik, 田村健人 (Kent TAMURA), Tawanda Moyo, Taylor Hunt, Ted Mielczarek, Terence Eden, Terrence Wood, Tetsuharu
OHZEKI, Theresa O'Connor, Thijs van der Vossen, Thomas Broyer, Thomas Koetter, Thomas O'Connor, Tim Altman, Tim Dresser, Tim
Johansson, Tim Nguyen, Tim Perry, Tim van der Lippe, TJ VanToll, Tobias Schneider, Tobie Langel, Toby Inkster, Todd Moody, Tom Baker,
Tom Pike, Tom Schuster, Tom ten Thij, Tomasz Jakut, Tomek Wytrębowicz, Tommy Thorsen, Tony Ross, Tooru Fujisawa, Toru Kobayashi,
Traian Captan, Travis Leithead, Trevor Rowbotham, Trevor Saunders, Trey Eckels, triple-underscore, Tristan Fraipont, Tristan Parisot, 保呂
毅 (Tsuyoshi Horo), Tyler Close, Valentin Gosu, Vardhan Gupta, Vas Sudanagunta, Veli Şenol, Victor Carbune, Victor Costan, Vipul
Snehadeep Chawathe, Vitya Muhachev, Vlad Levin, Vladimir Katardjiev, Vladimir Vukićević, Vyacheslav Aristov, voracity, Walter
Steiner, Wakaba, Wayne Carr, Wayne Pollock, Wellington Fernando de Macedo, Wenson Hsieh, Weston Ruter, Wilhelm Joys Andersen,
Will Levine, Will Ray, William Chen, William Swanson, Willy Martin Aguirre Rodriguez, Wladimir Palant, Wojciech Mach, Wolfram Kriesing,
Xan Gregg, xenotheme, XhmikosR, Xida Chen, Xidorn Quan, Xue Fuqiao, Yang Chen, Yao Xiao, Yash Handa, Yay295, Ye-Kui Wang,
Yehuda Katz, Yi Xu, Yi-An Huang, Yngve Nysaeter Pettersen, Yoav Weiss, Yonathan Randolph, Yu Huojiang, Yuki Okushi, Yury Delendik, 平
野裕 (Yutaka Hirano), Yuzo Fujishima, 西條柚 (Yuzu Saijo), Zhenbin Xu, 张智强 (Zhiqiang Zhang), Zoltan Herczeg, Zyachel, and Øistein E.
Andersen, for their useful comments, both large and small, that have led to changes to this specification over the years.

Thanks also to everyone who has ever posted about HTML to their blogs, public mailing lists, or forums, including all the contributors to
the various W3C HTML WG lists and the various WHATWG lists.

Special thanks to Richard Williamson for creating the first implementation of canvasp677 in Safari, from which the canvas feature was
designed.

Special thanks also to the Microsoft employees who first implemented the event-based drag-and-drop mechanism,
contenteditablep853, and other features first widely deployed by the Windows Internet Explorer browser.

Special thanks and $10,000 to David Hyatt who came up with a broken implementation of the adoption agency algorithmp1340 that the
editor had to reverse engineer and fix before using it in the parsing section.

Thanks to the participants of the microdata usability study for allowing us to use their mistakes as a guide for designing the microdata
feature.

Thanks to the many sources that provided inspiration for the examples used in the specification.

Thanks also to the Microsoft blogging community for some ideas, to the attendees of the W3C Workshop on Web Applications and
Compound Documents for inspiration, to the #mrt crew, the #mrt.no crew, and the #whatwg crew, and to Pillar and Hedral for their
ideas and support.

Thanks to Igor Zhbanov for generating PDF versions of the specification.

Special thanks to the RICG for developing the picturep342 element and related features; in particular thanks to Adrian Bateman, Bruce
Lawson, David Newton, Ilya Grigorik, John Schoenick, Leon de Rijke, Mat Marquis, Marcos Cáceres, Tab Atkins, Theresa O'Connor, and
Yoav Weiss for their contributions.

Special thanks to the WPWG for incubating the custom elementsp749 feature. In particular, thanks to David Hyatt and Ian Hickson for
their influence through the XBL specifications, Dimitri Glazkov for the first draft of the custom elements specification, and to Alex
Komoroske, Alex Russell, Andres Rios, Boris Zbarsky, Brian Kardell, Daniel Buchner, Dominic Cooney, Erik Arvidsson, Elliott Sprehn,
Hajime Morrita, Hayato Ito, Jan Miksovsky, Jonas Sicking, Olli Pettay, Rafael Weinstein, Roland Steiner, Ryosuke Niwa, Scott Miles, Steve
Faulkner, Steve Orvell, Tab Atkins, Theresa O'Connor, Tim Perry, and William Chen for their contributions.

Special thanks to the CSSWG for developing the workletsp1242. In particular, thanks to Ian Kilpatrick for his work as editor of the original
worklets specification.

For about ten years starting in 2003, this standard was almost entirely written by Ian Hickson (Google, ian@hixie.ch).

Starting in 2015, the editor group expanded. It is currently maintained by Anne van Kesteren (Apple, annevk@annevk.nl), Domenic
Denicola (Google, d@domenic.me) Dominic Farolino (Google, domfarolino@gmail.com), Philip Jägenstedt (Google, philip@foolip.org),
and Simon Pieters (Mozilla, zcorpan@gmail.com).

1487

https://www.w3.org/html/wg/lists/
https://whatwg.org/mailing-list
https://www.w3.org/community/respimg/
https://www.w3.org/WebPlatform/WG/
https://www.w3.org/Style/CSS/members
https://www.google.com/
mailto:ian@hixie.ch
https://annevankesteren.nl/
https://www.apple.com/
mailto:annevk@annevk.nl
https://domenic.me/
https://domenic.me/
https://www.google.com/
mailto:d@domenic.me
https://domfarolino.com/
https://www.google.com/
mailto:domfarolino@gmail.com
https://foolip.org/
https://www.google.com/
mailto:philip@foolip.org
https://www.mozilla.org/
mailto:zcorpan@gmail.com

The image in the introduction is based on a photo by Wonderlane. (CC BY 2.0)

The image of the wolf in the embedded content introduction is based on a photo by Barry O'Neill. (Public domain)

The image of the kettlebell swing in the embedded content introduction is based on a photo by kokkarina. (CC0 1.0)

The Blue Robot Player sprite used in the canvas demo is based on a work by JohnColburn. (CC BY-SA 3.0)

The photograph of robot 148 climbing the tower at the FIRST Robotics Competition 2013 Silicon Valley Regional is based on a work by
Lenore Edman. (CC BY 2.0)

The diagram showing how asyncp654 and deferp654 impact scriptp652 loading is based on a similar diagram from a blog post by Peter
Beverloo. (CC0 1.0)

The image decoding demo used to demonstrate module-based workers draws on some example code from a tutorial by Ilmari
Heikkinen. (CC BY 3.0)

The <flag-icon> example was inspired by a custom element by Steven Skelton. (MIT)

Part of the revision history of the picturep342 element and related features can be found in the ResponsiveImagesCG/picture-
element repository, which is available under the W3C Software and Document License.

Part of the revision history of the theme-colorp193 metadata name can be found in the whatwg/meta-theme-color repository, which is
available under CC0.

Part of the revision history of the custom elementsp749 feature can be found in the w3c/webcomponents repository, which is available
under the W3C Software and Document License.

Part of the revision history of the innerTextp168 getter and setter can be found in the rocallahan/innerText-spec repository, which is
available under CC0.

Part of the revision history of the workletsp1242 feature can be found in the w3c/css-houdini-drafts repository, which is available
under the W3C Software and Document License.

Part of the revision history of the import mapsp1104 feature can be found in the WICG/import-maps repository, which is available under
the W3C Software and Document License.

Part of the revision history of the navigation APIp949 feature can be found in the WICG/navigation-api repository, which is available
under the W3C Software and Document License.

Part of the revision history of the Close requests and close watchersp863 section can be found in the WICG/close-watcher repository,
which is available under the W3C Software and Document License.

Copyright © WHATWG (Apple, Google, Mozilla, Microsoft). This work is licensed under a Creative Commons Attribution 4.0 International
License. To the extent portions of it are incorporated into source code, such portions in the source code are licensed under the BSD
3-Clause License instead.

This is the Living Standard. Those interested in the patent-review version should view the Living Standard Review Draft.

Intellectual property rights §p14

88

1488

https://www.flickr.com/photos/wonderlane/2986252088/
https://www.flickr.com/photos/wonderlane/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:WolfRunningInSnow.jpg
https://commons.wikimedia.org/wiki/File:WolfRunningInSnow.jpg
https://en.wikipedia.org/wiki/Public_domain
https://pixabay.com/en/functional-mobility-articular-606568/
https://pixabay.com/en/users/506563-506563/
https://creativecommons.org/publicdomain/zero/1.0/
https://johncolburn.deviantart.com/art/Blue-Robot-Player-Sprite-323813997
https://johncolburn.deviantart.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://www.flickr.com/photos/lenore-m/8631391979/
https://www.flickr.com/photos/lenore-m/
https://creativecommons.org/licenses/by/2.0/
https://peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/
https://peter.sh/about/
https://peter.sh/about/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.html5rocks.com/en/tutorials/canvas/imagefilters/
https://www.fhtr.net/
https://www.fhtr.net/
https://creativecommons.org/licenses/by/3.0/
https://github.com/stevenrskelton/flag-icon
http://stevenskelton.ca/
https://opensource.org/licenses/MIT
https://github.com/ResponsiveImagesCG/picture-element
https://github.com/ResponsiveImagesCG/picture-element
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://github.com/whatwg/meta-theme-color
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/w3c/webcomponents
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://github.com/rocallahan/innerText-spec
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/w3c/css-houdini-drafts
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://github.com/WICG/import-maps
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://github.com/WICG/navigation-api
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://github.com/WICG/close-watcher
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://html.spec.whatwg.org/review-drafts/2024-07/

	HTML
	Table of contents
	Full table of contents
	1 Introduction
	1.1 Where does this specification fit?
	1.2 Is this HTML5?
	1.3 Background
	1.4 Audience
	1.5 Scope
	1.6 History
	1.7 Design notes
	1.7.1 Serializability of script execution
	1.7.2 Compliance with other specifications
	1.7.3 Extensibility

	1.8 HTML vs XML syntax
	1.9 Structure of this specification
	1.9.1 How to read this specification
	1.9.2 Typographic conventions

	1.10 A quick introduction to HTML
	1.10.1 Writing secure applications with HTML
	1.10.2 Common pitfalls to avoid when using the scripting APIs
	1.10.3 How to catch mistakes when writing HTML: validators and conformance checkers

	1.11 Conformance requirements for authors
	1.11.1 Presentational markup
	1.11.2 Syntax errors
	1.11.3 Restrictions on content models and on attribute values

	1.12 Suggested reading

	2 Common infrastructure
	2.1 Terminology
	2.1.1 Parallelism
	2.1.2 Resources
	2.1.3 XML compatibility
	2.1.4 DOM trees
	2.1.5 Scripting
	2.1.6 Plugins
	2.1.7 Character encodings
	2.1.8 Conformance classes
	2.1.9 Dependencies
	2.1.10 Extensibility
	2.1.11 Interactions with XPath and XSLT

	2.2 Policy-controlled features
	2.3 Common microsyntaxes
	2.3.1 Common parser idioms
	2.3.2 Boolean attributes
	2.3.3 Keywords and enumerated attributes
	2.3.4 Numbers
	2.3.4.1 Signed integers
	2.3.4.2 Non-negative integers
	2.3.4.3 Floating-point numbers
	2.3.4.4 Percentages and lengths
	2.3.4.5 Nonzero percentages and lengths
	2.3.4.6 Lists of floating-point numbers
	2.3.4.7 Lists of dimensions

	2.3.5 Dates and times
	2.3.5.1 Months
	2.3.5.2 Dates
	2.3.5.3 Yearless dates
	2.3.5.4 Times
	2.3.5.5 Local dates and times
	2.3.5.6 Time zones
	2.3.5.7 Global dates and times
	2.3.5.8 Weeks
	2.3.5.9 Durations
	2.3.5.10 Vaguer moments in time

	2.3.6 Legacy colors
	2.3.7 Space-separated tokens
	2.3.8 Comma-separated tokens
	2.3.9 References
	2.3.10 Media queries
	2.3.11 Unique internal values

	2.4 URLs
	2.4.1 Terminology
	2.4.2 Parsing URLs
	2.4.3 Dynamic changes to base URLs

	2.5 Fetching resources
	2.5.1 Terminology
	2.5.2 Determining the type of a resource
	2.5.3 Extracting character encodings from meta elements
	2.5.4 CORS settings attributes
	2.5.5 Referrer policy attributes
	2.5.6 Nonce attributes
	2.5.7 Lazy loading attributes
	2.5.8 Blocking attributes
	2.5.9 Fetch priority attributes

	2.6 Common DOM interfaces
	2.6.1 Reflecting content attributes in IDL attributes
	2.6.2 Using reflect in specifications
	2.6.3 Collections
	2.6.3.1 The HTMLAllCollection interface
	2.6.3.1.1 [[Call]] (thisArgument, argumentsList)

	2.6.3.2 The HTMLFormControlsCollection interface
	2.6.3.3 The HTMLOptionsCollection interface

	2.6.4 The DOMStringList interface

	2.7 Safe passing of structured data
	2.7.1 Serializable objects
	2.7.2 Transferable objects
	2.7.3 StructuredSerializeInternal (value, forStorage [, memory])
	2.7.4 StructuredSerialize (value)
	2.7.5 StructuredSerializeForStorage (value)
	2.7.6 StructuredDeserialize (serialized, targetRealm [, memory])
	2.7.7 StructuredSerializeWithTransfer (value, transferList)
	2.7.8 StructuredDeserializeWithTransfer (serializeWithTransferResult, targetRealm)
	2.7.9 Performing serialization and transferring from other specifications
	2.7.10 Structured cloning API

	3 Semantics, structure, and APIs of HTML documents
	3.1 Documents
	3.1.1 The Document object
	3.1.2 The DocumentOrShadowRoot interface
	3.1.3 Resource metadata management
	3.1.4 Reporting document loading status
	3.1.5 Render-blocking mechanism
	3.1.6 DOM tree accessors

	3.2 Elements
	3.2.1 Semantics
	3.2.2 Elements in the DOM
	3.2.3 HTML element constructors
	3.2.4 Element definitions
	3.2.4.1 Attributes

	3.2.5 Content models
	3.2.5.1 The "nothing" content model
	3.2.5.2 Kinds of content
	3.2.5.2.1 Metadata content
	3.2.5.2.2 Flow content
	3.2.5.2.3 Sectioning content
	3.2.5.2.4 Heading content
	3.2.5.2.5 Phrasing content
	3.2.5.2.6 Embedded content
	3.2.5.2.7 Interactive content
	3.2.5.2.8 Palpable content
	3.2.5.2.9 Script-supporting elements

	3.2.5.3 Transparent content models
	3.2.5.4 Paragraphs

	3.2.6 Global attributes
	3.2.6.1 The title attribute
	3.2.6.2 The lang and xml:lang attributes
	3.2.6.3 The translate attribute
	3.2.6.4 The dir attribute
	3.2.6.5 The style attribute
	3.2.6.6 Embedding custom non-visible data with the data-* attributes

	3.2.7 The innerText and outerText properties
	3.2.8 Requirements relating to the bidirectional algorithm
	3.2.8.1 Authoring conformance criteria for bidirectional-algorithm formatting characters
	3.2.8.2 User agent conformance criteria

	3.2.9 Requirements related to ARIA and to platform accessibility APIs

	4 The elements of HTML
	4.1 The document element
	4.1.1 The html element

	4.2 Document metadata
	4.2.1 The head element
	4.2.2 The title element
	4.2.3 The base element
	4.2.4 The link element
	4.2.4.1 Processing the media attribute
	4.2.4.2 Processing the type attribute
	4.2.4.3 Fetching and processing a resource from a link element
	4.2.4.4 Processing `Link` headers
	4.2.4.5 Early hints
	4.2.4.6 Providing users with a means to follow hyperlinks created using the link element

	4.2.5 The meta element
	4.2.5.1 Standard metadata names
	4.2.5.2 Other metadata names
	4.2.5.3 Pragma directives
	4.2.5.4 Specifying the document's character encoding

	4.2.6 The style element
	4.2.7 Interactions of styling and scripting

	4.3 Sections
	4.3.1 The body element
	4.3.2 The article element
	4.3.3 The section element
	4.3.4 The nav element
	4.3.5 The aside element
	4.3.6 The h1, h2, h3, h4, h5, and h6 elements
	4.3.7 The hgroup element
	4.3.8 The header element
	4.3.9 The footer element
	4.3.10 The address element
	4.3.11 Headings and outlines
	4.3.11.1 Sample outlines
	4.3.11.2 Exposing outlines to users

	4.3.12 Usage summary
	4.3.12.1 Article or section?

	4.4 Grouping content
	4.4.1 The p element
	4.4.2 The hr element
	4.4.3 The pre element
	4.4.4 The blockquote element
	4.4.5 The ol element
	4.4.6 The ul element
	4.4.7 The menu element
	4.4.8 The li element
	4.4.9 The dl element
	4.4.10 The dt element
	4.4.11 The dd element
	4.4.12 The figure element
	4.4.13 The figcaption element
	4.4.14 The main element
	4.4.15 The search element
	4.4.16 The div element

	4.5 Text-level semantics
	4.5.1 The a element
	4.5.2 The em element
	4.5.3 The strong element
	4.5.4 The small element
	4.5.5 The s element
	4.5.6 The cite element
	4.5.7 The q element
	4.5.8 The dfn element
	4.5.9 The abbr element
	4.5.10 The ruby element
	4.5.11 The rt element
	4.5.12 The rp element
	4.5.13 The data element
	4.5.14 The time element
	4.5.15 The code element
	4.5.16 The var element
	4.5.17 The samp element
	4.5.18 The kbd element
	4.5.19 The sub and sup elements
	4.5.20 The i element
	4.5.21 The b element
	4.5.22 The u element
	4.5.23 The mark element
	4.5.24 The bdi element
	4.5.25 The bdo element
	4.5.26 The span element
	4.5.27 The br element
	4.5.28 The wbr element
	4.5.29 Usage summary

	4.6 Links
	4.6.1 Introduction
	4.6.2 Links created by a and area elements
	4.6.3 API for a and area elements
	4.6.4 Following hyperlinks
	4.6.5 Downloading resources
	4.6.6 Hyperlink auditing
	4.6.6.1 The `Ping-From` and `Ping-To` headers

	4.6.7 Link types
	4.6.7.1 Link type "alternate"
	4.6.7.2 Link type "author"
	4.6.7.3 Link type "bookmark"
	4.6.7.4 Link type "canonical"
	4.6.7.5 Link type "dns-prefetch"
	4.6.7.6 Link type "expect"
	4.6.7.7 Link type "external"
	4.6.7.8 Link type "help"
	4.6.7.9 Link type "icon"
	4.6.7.10 Link type "license"
	4.6.7.11 Link type "manifest"
	4.6.7.12 Link type "modulepreload"
	4.6.7.13 Link type "nofollow"
	4.6.7.14 Link type "noopener"
	4.6.7.15 Link type "noreferrer"
	4.6.7.16 Link type "opener"
	4.6.7.17 Link type "pingback"
	4.6.7.18 Link type "preconnect"
	4.6.7.19 Link type "prefetch"
	4.6.7.20 Link type "preload"
	4.6.7.21 Link type "privacy-policy"
	4.6.7.22 Link type "search"
	4.6.7.23 Link type "stylesheet"
	4.6.7.24 Link type "tag"
	4.6.7.25 Link Type "terms-of-service"
	4.6.7.26 Sequential link types
	4.6.7.26.1 Link type "next"
	4.6.7.26.2 Link type "prev"

	4.6.7.27 Other link types

	4.7 Edits
	4.7.1 The ins element
	4.7.2 The del element
	4.7.3 Attributes common to ins and del elements
	4.7.4 Edits and paragraphs
	4.7.5 Edits and lists
	4.7.6 Edits and tables

	4.8 Embedded content
	4.8.1 The picture element
	4.8.2 The source element
	4.8.3 The img element
	4.8.4 Images
	4.8.4.1 Introduction
	4.8.4.1.1 Adaptive images

	4.8.4.2 Attributes common to source, img, and link elements
	4.8.4.2.1 Srcset attributes
	4.8.4.2.2 Sizes attributes

	4.8.4.3 Processing model
	4.8.4.3.1 When to obtain images
	4.8.4.3.2 Reacting to DOM mutations
	4.8.4.3.3 The list of available images
	4.8.4.3.4 Decoding images
	4.8.4.3.5 Updating the image data
	4.8.4.3.6 Preparing an image for presentation
	4.8.4.3.7 Selecting an image source
	4.8.4.3.8 Creating a source set from attributes
	4.8.4.3.9 Updating the source set
	4.8.4.3.10 Parsing a srcset attribute
	4.8.4.3.11 Parsing a sizes attribute
	4.8.4.3.12 Normalizing the source densities
	4.8.4.3.13 Reacting to environment changes

	4.8.4.4 Requirements for providing text to act as an alternative for images
	4.8.4.4.1 General guidelines
	4.8.4.4.2 A link or button containing nothing but the image
	4.8.4.4.3 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs, maps, illustrations
	4.8.4.4.4 A short phrase or label with an alternative graphical representation: icons, logos
	4.8.4.4.5 Text that has been rendered to a graphic for typographical effect
	4.8.4.4.6 A graphical representation of some of the surrounding text
	4.8.4.4.7 Ancillary images
	4.8.4.4.8 A purely decorative image that doesn't add any information
	4.8.4.4.9 A group of images that form a single larger picture with no links
	4.8.4.4.10 A group of images that form a single larger picture with links
	4.8.4.4.11 A key part of the content
	4.8.4.4.12 An image not intended for the user
	4.8.4.4.13 An image in an email or private document intended for a specific person who is known to be able to view images
	4.8.4.4.14 Guidance for markup generators
	4.8.4.4.15 Guidance for conformance checkers

	4.8.5 The iframe element
	4.8.6 The embed element
	4.8.7 The object element
	4.8.8 The video element
	4.8.9 The audio element
	4.8.10 The track element
	4.8.11 Media elements
	4.8.11.1 Error codes
	4.8.11.2 Location of the media resource
	4.8.11.3 MIME types
	4.8.11.4 Network states
	4.8.11.5 Loading the media resource
	4.8.11.6 Offsets into the media resource
	4.8.11.7 Ready states
	4.8.11.8 Playing the media resource
	4.8.11.9 Seeking
	4.8.11.10 Media resources with multiple media tracks
	4.8.11.10.1 AudioTrackList and VideoTrackList objects
	4.8.11.10.2 Selecting specific audio and video tracks declaratively

	4.8.11.11 Timed text tracks
	4.8.11.11.1 Text track model
	4.8.11.11.2 Sourcing in-band text tracks
	4.8.11.11.3 Sourcing out-of-band text tracks
	4.8.11.11.4 Guidelines for exposing cues in various formats as text track cues
	4.8.11.11.5 Text track API
	4.8.11.11.6 Event handlers for objects of the text track APIs
	4.8.11.11.7 Best practices for metadata text tracks

	4.8.11.12 Identifying a track kind through a URL
	4.8.11.13 User interface
	4.8.11.14 Time ranges
	4.8.11.15 The TrackEvent interface
	4.8.11.16 Events summary
	4.8.11.17 Security and privacy considerations
	4.8.11.18 Best practices for authors using media elements
	4.8.11.19 Best practices for implementers of media elements

	4.8.12 The map element
	4.8.13 The area element
	4.8.14 Image maps
	4.8.14.1 Authoring
	4.8.14.2 Processing model

	4.8.15 MathML
	4.8.16 SVG
	4.8.17 Dimension attributes

	4.9 Tabular data
	4.9.1 The table element
	4.9.1.1 Techniques for describing tables
	4.9.1.2 Techniques for table design

	4.9.2 The caption element
	4.9.3 The colgroup element
	4.9.4 The col element
	4.9.5 The tbody element
	4.9.6 The thead element
	4.9.7 The tfoot element
	4.9.8 The tr element
	4.9.9 The td element
	4.9.10 The th element
	4.9.11 Attributes common to td and th elements
	4.9.12 Processing model
	4.9.12.1 Forming a table
	4.9.12.2 Forming relationships between data cells and header cells

	4.9.13 Examples

	4.10 Forms
	4.10.1 Introduction
	4.10.1.1 Writing a form's user interface
	4.10.1.2 Implementing the server-side processing for a form
	4.10.1.3 Configuring a form to communicate with a server
	4.10.1.4 Client-side form validation
	4.10.1.5 Enabling client-side automatic filling of form controls
	4.10.1.6 Improving the user experience on mobile devices
	4.10.1.7 The difference between the field type, the autofill field name, and the input modality
	4.10.1.8 Date, time, and number formats

	4.10.2 Categories
	4.10.3 The form element
	4.10.4 The label element
	4.10.5 The input element
	4.10.5.1 States of the type attribute
	4.10.5.1.1 Hidden state (type=hidden)
	4.10.5.1.2 Text (type=text) state and Search state (type=search)
	4.10.5.1.3 Telephone state (type=tel)
	4.10.5.1.4 URL state (type=url)
	4.10.5.1.5 Email state (type=email)
	4.10.5.1.6 Password state (type=password)
	4.10.5.1.7 Date state (type=date)
	4.10.5.1.8 Month state (type=month)
	4.10.5.1.9 Week state (type=week)
	4.10.5.1.10 Time state (type=time)
	4.10.5.1.11 Local Date and Time state (type=datetime-local)
	4.10.5.1.12 Number state (type=number)
	4.10.5.1.13 Range state (type=range)
	4.10.5.1.14 Color state (type=color)
	4.10.5.1.15 Checkbox state (type=checkbox)
	4.10.5.1.16 Radio Button state (type=radio)
	4.10.5.1.17 File Upload state (type=file)
	4.10.5.1.18 Submit Button state (type=submit)
	4.10.5.1.19 Image Button state (type=image)
	4.10.5.1.20 Reset Button state (type=reset)
	4.10.5.1.21 Button state (type=button)

	4.10.5.2 Implementation notes regarding localization of form controls
	4.10.5.3 Common input element attributes
	4.10.5.3.1 The maxlength and minlength attributes
	4.10.5.3.2 The size attribute
	4.10.5.3.3 The readonly attribute
	4.10.5.3.4 The required attribute
	4.10.5.3.5 The multiple attribute
	4.10.5.3.6 The pattern attribute
	4.10.5.3.7 The min and max attributes
	4.10.5.3.8 The step attribute
	4.10.5.3.9 The list attribute
	4.10.5.3.10 The placeholder attribute

	4.10.5.4 Common input element APIs
	4.10.5.5 Common event behaviors

	4.10.6 The button element
	4.10.7 The select element
	4.10.8 The datalist element
	4.10.9 The optgroup element
	4.10.10 The option element
	4.10.11 The textarea element
	4.10.12 The output element
	4.10.13 The progress element
	4.10.14 The meter element
	4.10.15 The fieldset element
	4.10.16 The legend element
	4.10.17 Form control infrastructure
	4.10.17.1 A form control's value
	4.10.17.2 Mutability
	4.10.17.3 Association of controls and forms

	4.10.18 Attributes common to form controls
	4.10.18.1 Naming form controls: the name attribute
	4.10.18.2 Submitting element directionality: the dirname attribute
	4.10.18.3 Limiting user input length: the maxlength attribute
	4.10.18.4 Setting minimum input length requirements: the minlength attribute
	4.10.18.5 Enabling and disabling form controls: the disabled attribute
	4.10.18.6 Form submission attributes
	4.10.18.7 Autofill
	4.10.18.7.1 Autofilling form controls: the autocomplete attribute
	4.10.18.7.2 Processing model

	4.10.19 APIs for the text control selections
	4.10.20 Constraints
	4.10.20.1 Definitions
	4.10.20.2 Constraint validation
	4.10.20.3 The constraint validation API
	4.10.20.4 Security

	4.10.21 Form submission
	4.10.21.1 Introduction
	4.10.21.2 Implicit submission
	4.10.21.3 Form submission algorithm
	4.10.21.4 Constructing the entry list
	4.10.21.5 Selecting a form submission encoding
	4.10.21.6 Converting an entry list to a list of name-value pairs
	4.10.21.7 URL-encoded form data
	4.10.21.8 Multipart form data
	4.10.21.9 Plain text form data
	4.10.21.10 The SubmitEvent interface
	4.10.21.11 The FormDataEvent interface

	4.10.22 Resetting a form

	4.11 Interactive elements
	4.11.1 The details element
	4.11.2 The summary element
	4.11.3 Commands
	4.11.3.1 Facets
	4.11.3.2 Using the a element to define a command
	4.11.3.3 Using the button element to define a command
	4.11.3.4 Using the input element to define a command
	4.11.3.5 Using the option element to define a command
	4.11.3.6 Using the accesskey attribute on a legend element to define a command
	4.11.3.7 Using the accesskey attribute to define a command on other elements

	4.11.4 The dialog element

	4.12 Scripting
	4.12.1 The script element
	4.12.1.1 Processing model
	4.12.1.2 Scripting languages
	4.12.1.3 Restrictions for contents of script elements
	4.12.1.4 Inline documentation for external scripts
	4.12.1.5 Interaction of script elements and XSLT

	4.12.2 The noscript element
	4.12.3 The template element
	4.12.3.1 Interaction of template elements with XSLT and XPath

	4.12.4 The slot element
	4.12.5 The canvas element
	4.12.5.1 The 2D rendering context
	4.12.5.1.1 Implementation notes
	4.12.5.1.2 The canvas state
	4.12.5.1.3 Line styles
	4.12.5.1.4 Text styles
	4.12.5.1.5 Building paths
	4.12.5.1.6 Path2D objects
	4.12.5.1.7 Transformations
	4.12.5.1.8 Image sources for 2D rendering contexts
	4.12.5.1.9 Fill and stroke styles
	4.12.5.1.10 Drawing rectangles to the bitmap
	4.12.5.1.11 Drawing text to the bitmap
	4.12.5.1.12 Drawing paths to the canvas
	4.12.5.1.13 Drawing focus rings
	4.12.5.1.14 Drawing images
	4.12.5.1.15 Pixel manipulation
	4.12.5.1.16 Compositing
	4.12.5.1.17 Image smoothing
	4.12.5.1.18 Shadows
	4.12.5.1.19 Filters
	4.12.5.1.20 Working with externally-defined SVG filters
	4.12.5.1.21 Drawing model
	4.12.5.1.22 Best practices
	4.12.5.1.23 Examples

	4.12.5.2 The ImageBitmap rendering context
	4.12.5.2.1 Introduction
	4.12.5.2.2 The ImageBitmapRenderingContext interface

	4.12.5.3 The OffscreenCanvas interface
	4.12.5.3.1 The offscreen 2D rendering context

	4.12.5.4 Color spaces and color space conversion
	4.12.5.5 Serializing bitmaps to a file
	4.12.5.6 Security with canvas elements
	4.12.5.7 Premultiplied alpha and the 2D rendering context

	4.13 Custom elements
	4.13.1 Introduction
	4.13.1.1 Creating an autonomous custom element
	4.13.1.2 Creating a form-associated custom element
	4.13.1.3 Creating a custom element with default accessible roles, states, and properties
	4.13.1.4 Creating a customized built-in element
	4.13.1.5 Drawbacks of autonomous custom elements
	4.13.1.6 Upgrading elements after their creation
	4.13.1.7 Exposing custom element states

	4.13.2 Requirements for custom element constructors and reactions
	4.13.3 Core concepts
	4.13.4 The CustomElementRegistry interface
	4.13.5 Upgrades
	4.13.6 Custom element reactions
	4.13.7 Element internals
	4.13.7.1 The ElementInternals interface
	4.13.7.2 Shadow root access
	4.13.7.3 Form-associated custom elements
	4.13.7.4 Accessibility semantics
	4.13.7.5 Custom state pseudo-class

	4.14 Common idioms without dedicated elements
	4.14.1 Breadcrumb navigation
	4.14.2 Tag clouds
	4.14.3 Conversations
	4.14.4 Footnotes

	4.15 Disabled elements
	4.16 Matching HTML elements using selectors and CSS
	4.16.1 Case-sensitivity of the CSS 'attr()' function
	4.16.2 Case-sensitivity of selectors
	4.16.3 Pseudo-classes

	5 Microdata
	5.1 Introduction
	5.1.1 Overview
	5.1.2 The basic syntax
	5.1.3 Typed items
	5.1.4 Global identifiers for items
	5.1.5 Selecting names when defining vocabularies

	5.2 Encoding microdata
	5.2.1 The microdata model
	5.2.2 Items
	5.2.3 Names: the itemprop attribute
	5.2.4 Values
	5.2.5 Associating names with items
	5.2.6 Microdata and other namespaces

	5.3 Sample microdata vocabularies
	5.3.1 vCard
	5.3.1.1 Conversion to vCard
	5.3.1.2 Examples

	5.3.2 vEvent
	5.3.2.1 Conversion to iCalendar
	5.3.2.2 Examples

	5.3.3 Licensing works
	5.3.3.1 Examples

	5.4 Converting HTML to other formats
	5.4.1 JSON

	6 User interaction
	6.1 The hidden attribute
	6.2 Page visibility
	6.2.1 The VisibilityStateEntry interface

	6.3 Inert subtrees
	6.3.1 Modal dialogs and inert subtrees
	6.3.2 The inert attribute

	6.4 Tracking user activation
	6.4.1 Data model
	6.4.2 Processing model
	6.4.3 APIs gated by user activation
	6.4.4 The UserActivation interface
	6.4.5 User agent automation

	6.5 Activation behavior of elements
	6.5.1 The ToggleEvent interface

	6.6 Focus
	6.6.1 Introduction
	6.6.2 Data model
	6.6.3 The tabindex attribute
	6.6.4 Processing model
	6.6.5 Sequential focus navigation
	6.6.6 Focus management APIs
	6.6.7 The autofocus attribute

	6.7 Assigning keyboard shortcuts
	6.7.1 Introduction
	6.7.2 The accesskey attribute
	6.7.3 Processing model

	6.8 Editing
	6.8.1 Making document regions editable: The contenteditable content attribute
	6.8.2 Making entire documents editable: the designMode getter and setter
	6.8.3 Best practices for in-page editors
	6.8.4 Editing APIs
	6.8.5 Spelling and grammar checking
	6.8.6 Writing suggestions
	6.8.7 Autocapitalization
	6.8.8 Autocorrection
	6.8.9 Input modalities: the inputmode attribute
	6.8.10 Input modalities: the enterkeyhint attribute

	6.9 Find-in-page
	6.9.1 Introduction
	6.9.2 Interaction with details and hidden=until-found
	6.9.3 Interaction with selection

	6.10 Close requests and close watchers
	6.10.1 Close requests
	6.10.2 Close watcher infrastructure
	6.10.3 The CloseWatcher interface

	6.11 Drag and drop
	6.11.1 Introduction
	6.11.2 The drag data store
	6.11.3 The DataTransfer interface
	6.11.3.1 The DataTransferItemList interface
	6.11.3.2 The DataTransferItem interface

	6.11.4 The DragEvent interface
	6.11.5 Processing model
	6.11.6 Events summary
	6.11.7 The draggable attribute
	6.11.8 Security risks in the drag-and-drop model

	6.12 The popover attribute
	6.12.1 The popover target attributes
	6.12.2 Popover light dismiss

	7 Loading web pages
	7.1 Supporting concepts
	7.1.1 Origins
	7.1.1.1 Sites
	7.1.1.2 Relaxing the same-origin restriction

	7.1.2 Origin-keyed agent clusters
	7.1.3 Cross-origin opener policies
	7.1.3.1 The headers
	7.1.3.2 Browsing context group switches due to opener policy
	7.1.3.3 Reporting

	7.1.4 Cross-origin embedder policies
	7.1.4.1 The headers
	7.1.4.2 Embedder policy checks

	7.1.5 Sandboxing
	7.1.6 Policy containers

	7.2 APIs related to navigation and session history
	7.2.1 Security infrastructure for Window, WindowProxy, and Location objects
	7.2.1.1 Integration with IDL
	7.2.1.2 Shared internal slot: [[CrossOriginPropertyDescriptorMap]]
	7.2.1.3 Shared abstract operations
	7.2.1.3.1 CrossOriginProperties (O)
	7.2.1.3.2 CrossOriginPropertyFallback (P)
	7.2.1.3.3 IsPlatformObjectSameOrigin (O)
	7.2.1.3.4 CrossOriginGetOwnPropertyHelper (O, P)
	7.2.1.3.5 CrossOriginGet (O, P, Receiver)
	7.2.1.3.6 CrossOriginSet (O, P, V, Receiver)
	7.2.1.3.7 CrossOriginOwnPropertyKeys (O)

	7.2.2 The Window object
	7.2.2.1 Opening and closing windows
	7.2.2.2 Indexed access on the Window object
	7.2.2.3 Named access on the Window object
	7.2.2.4 Accessing related windows
	7.2.2.5 Historical browser interface element APIs
	7.2.2.6 Script settings for Window objects

	7.2.3 The WindowProxy exotic object
	7.2.3.1 [[GetPrototypeOf]] ()
	7.2.3.2 [[SetPrototypeOf]] (V)
	7.2.3.3 [[IsExtensible]] ()
	7.2.3.4 [[PreventExtensions]] ()
	7.2.3.5 [[GetOwnProperty]] (P)
	7.2.3.6 [[DefineOwnProperty]] (P, Desc)
	7.2.3.7 [[Get]] (P, Receiver)
	7.2.3.8 [[Set]] (P, V, Receiver)
	7.2.3.9 [[Delete]] (P)
	7.2.3.10 [[OwnPropertyKeys]] ()

	7.2.4 The Location interface
	7.2.4.1 [[GetPrototypeOf]] ()
	7.2.4.2 [[SetPrototypeOf]] (V)
	7.2.4.3 [[IsExtensible]] ()
	7.2.4.4 [[PreventExtensions]] ()
	7.2.4.5 [[GetOwnProperty]] (P)
	7.2.4.6 [[DefineOwnProperty]] (P, Desc)
	7.2.4.7 [[Get]] (P, Receiver)
	7.2.4.8 [[Set]] (P, V, Receiver)
	7.2.4.9 [[Delete]] (P)
	7.2.4.10 [[OwnPropertyKeys]] ()

	7.2.5 The History interface
	7.2.6 The navigation API
	7.2.6.1 Introduction
	7.2.6.2 The Navigation interface
	7.2.6.3 Core infrastructure
	7.2.6.4 Initializing and updating the entry list
	7.2.6.5 The NavigationHistoryEntry interface
	7.2.6.6 The history entry list
	7.2.6.7 Initiating navigations
	7.2.6.8 Ongoing navigation tracking
	7.2.6.9 The NavigationActivation interface
	7.2.6.10 The navigate event
	7.2.6.10.1 The NavigateEvent interface
	7.2.6.10.2 The NavigationDestination interface
	7.2.6.10.3 Firing the event
	7.2.6.10.4 Scroll and focus behavior

	7.2.7 Event interfaces
	7.2.7.1 The NavigationCurrentEntryChangeEvent interface
	7.2.7.2 The PopStateEvent interface
	7.2.7.3 The HashChangeEvent interface
	7.2.7.4 The PageSwapEvent interface
	7.2.7.5 The PageRevealEvent interface
	7.2.7.6 The PageTransitionEvent interface
	7.2.7.7 The BeforeUnloadEvent interface

	7.2.8 The NotRestoredReasons interface

	7.3 Infrastructure for sequences of documents
	7.3.1 Navigables
	7.3.1.1 Traversable navigables
	7.3.1.2 Top-level traversables
	7.3.1.3 Child navigables
	7.3.1.4 Jake diagrams
	7.3.1.5 Related navigable collections
	7.3.1.6 Navigable destruction
	7.3.1.7 Navigable target names

	7.3.2 Browsing contexts
	7.3.2.1 Creating browsing contexts
	7.3.2.2 Related browsing contexts
	7.3.2.3 Groupings of browsing contexts

	7.3.3 Fully active documents

	7.4 Navigation and session history
	7.4.1 Session history
	7.4.1.1 Session history entries
	7.4.1.2 Document state
	7.4.1.3 Centralized modifications of session history
	7.4.1.4 Low-level operations on session history

	7.4.2 Navigation
	7.4.2.1 Supporting concepts
	7.4.2.2 Beginning navigation
	7.4.2.3 Ending navigation
	7.4.2.3.1 The usual cross-document navigation case
	7.4.2.3.2 The javascript: URL special case
	7.4.2.3.3 Fragment navigations
	7.4.2.3.4 Non-fetch schemes and external software

	7.4.2.4 Preventing navigation
	7.4.2.5 Aborting navigation

	7.4.3 Reloading and traversing
	7.4.4 Non-fragment synchronous "navigations"
	7.4.5 Populating a session history entry
	7.4.6 Applying the history step
	7.4.6.1 Updating the traversable
	7.4.6.2 Updating the document
	7.4.6.3 Revealing the document
	7.4.6.4 Scrolling to a fragment
	7.4.6.5 Persisted history entry state

	7.5 Document lifecycle
	7.5.1 Shared document creation infrastructure
	7.5.2 Loading HTML documents
	7.5.3 Loading XML documents
	7.5.4 Loading text documents
	7.5.5 Loading multipart/x-mixed-replace documents
	7.5.6 Loading media documents
	7.5.7 Loading a document for inline content that doesn't have a DOM
	7.5.8 Finishing the loading process
	7.5.9 Unloading documents
	7.5.10 Destroying documents
	7.5.11 Aborting a document load

	7.6 The `X-Frame-Options` header
	7.7 The `Refresh` header
	7.8 Browser user interface considerations

	8 Web application APIs
	8.1 Scripting
	8.1.1 Introduction
	8.1.2 Agents and agent clusters
	8.1.2.1 Integration with the JavaScript agent formalism
	8.1.2.2 Integration with the JavaScript agent cluster formalism

	8.1.3 Realms and their counterparts
	8.1.3.1 Environments
	8.1.3.2 Environment settings objects
	8.1.3.3 Realms, settings objects, and global objects
	8.1.3.3.1 Entry
	8.1.3.3.2 Incumbent
	8.1.3.3.3 Current
	8.1.3.3.4 Relevant

	8.1.3.4 Enabling and disabling scripting
	8.1.3.5 Secure contexts

	8.1.4 Script processing model
	8.1.4.1 Scripts
	8.1.4.2 Fetching scripts
	8.1.4.3 Creating scripts
	8.1.4.4 Calling scripts
	8.1.4.5 Killing scripts
	8.1.4.6 Runtime script errors
	8.1.4.7 Unhandled promise rejections
	8.1.4.8 Import map parse results

	8.1.5 Module specifier resolution
	8.1.5.1 The resolution algorithm
	8.1.5.2 Import maps
	8.1.5.3 Import map processing model

	8.1.6 JavaScript specification host hooks
	8.1.6.1 HostEnsureCanAddPrivateElement(O)
	8.1.6.2 HostEnsureCanCompileStrings(realm, parameterStrings, bodyString, codeString, compilationType, parameterArgs, bodyArg)
	8.1.6.3 HostGetCodeForEval(argument)
	8.1.6.4 HostPromiseRejectionTracker(promise, operation)
	8.1.6.5 HostSystemUTCEpochNanoseconds(global)
	8.1.6.6 Job-related host hooks
	8.1.6.6.1 HostCallJobCallback(callback, V, argumentsList)
	8.1.6.6.2 HostEnqueueFinalizationRegistryCleanupJob(finalizationRegistry)
	8.1.6.6.3 HostEnqueueGenericJob(job, realm)
	8.1.6.6.4 HostEnqueuePromiseJob(job, realm)
	8.1.6.6.5 HostEnqueueTimeoutJob(job, realm, milliseconds)
	8.1.6.6.6 HostMakeJobCallback(callable)

	8.1.6.7 Module-related host hooks
	8.1.6.7.1 HostGetImportMetaProperties(moduleRecord)
	8.1.6.7.2 HostGetSupportedImportAttributes()
	8.1.6.7.3 HostLoadImportedModule(referrer, moduleRequest, loadState, payload)

	8.1.7 Event loops
	8.1.7.1 Definitions
	8.1.7.2 Queuing tasks
	8.1.7.3 Processing model
	8.1.7.4 Generic task sources
	8.1.7.5 Dealing with the event loop from other specifications

	8.1.8 Events
	8.1.8.1 Event handlers
	8.1.8.2 Event handlers on elements, Document objects, and Window objects
	8.1.8.2.1 IDL definitions

	8.1.8.3 Event firing

	8.2 The WindowOrWorkerGlobalScope mixin
	8.3 Base64 utility methods
	8.4 Dynamic markup insertion
	8.4.1 Opening the input stream
	8.4.2 Closing the input stream
	8.4.3 document.write()
	8.4.4 document.writeln()

	8.5 DOM parsing and serialization APIs
	8.5.1 The DOMParser interface
	8.5.2 Unsafe HTML parsing methods
	8.5.3 HTML serialization methods
	8.5.4 The innerHTML property
	8.5.5 The outerHTML property
	8.5.6 The insertAdjacentHTML() method
	8.5.7 The createContextualFragment() method

	8.6 Timers
	8.7 Microtask queuing
	8.8 User prompts
	8.8.1 Simple dialogs
	8.8.2 Printing

	8.9 System state and capabilities
	8.9.1 The Navigator object
	8.9.1.1 Client identification
	8.9.1.2 Language preferences
	8.9.1.3 Browser state
	8.9.1.4 Custom scheme handlers: the registerProtocolHandler() method
	8.9.1.4.1 Security and privacy
	8.9.1.4.2 User agent automation

	8.9.1.5 Cookies
	8.9.1.6 PDF viewing support

	8.10 Images
	8.11 Animation frames

	9 Communication
	9.1 The MessageEvent interface
	9.2 Server-sent events
	9.2.1 Introduction
	9.2.2 The EventSource interface
	9.2.3 Processing model
	9.2.4 The `Last-Event-ID` header
	9.2.5 Parsing an event stream
	9.2.6 Interpreting an event stream
	9.2.7 Authoring notes
	9.2.8 Connectionless push and other features
	9.2.9 Garbage collection
	9.2.10 Implementation advice

	9.3 Cross-document messaging
	9.3.1 Introduction
	9.3.2 Security
	9.3.2.1 Authors
	9.3.2.2 User agents

	9.3.3 Posting messages

	9.4 Channel messaging
	9.4.1 Introduction
	9.4.1.1 Examples
	9.4.1.2 Ports as the basis of an object-capability model on the web
	9.4.1.3 Ports as the basis of abstracting out service implementations

	9.4.2 Message channels
	9.4.3 The MessageEventTarget mixin
	9.4.4 Message ports
	9.4.5 Ports and garbage collection

	9.5 Broadcasting to other browsing contexts

	10 Web workers
	10.1 Introduction
	10.1.1 Scope
	10.1.2 Examples
	10.1.2.1 A background number-crunching worker
	10.1.2.2 Using a JavaScript module as a worker
	10.1.2.3 Shared workers introduction
	10.1.2.4 Shared state using a shared worker
	10.1.2.5 Delegation
	10.1.2.6 Providing libraries

	10.1.3 Tutorials
	10.1.3.1 Creating a dedicated worker
	10.1.3.2 Communicating with a dedicated worker
	10.1.3.3 Shared workers

	10.2 Infrastructure
	10.2.1 The global scope
	10.2.1.1 The WorkerGlobalScope common interface
	10.2.1.2 Dedicated workers and the DedicatedWorkerGlobalScope interface
	10.2.1.3 Shared workers and the SharedWorkerGlobalScope interface

	10.2.2 The event loop
	10.2.3 The worker's lifetime
	10.2.4 Processing model
	10.2.5 Runtime script errors
	10.2.6 Creating workers
	10.2.6.1 The AbstractWorker mixin
	10.2.6.2 Script settings for workers
	10.2.6.3 Dedicated workers and the Worker interface
	10.2.6.4 Shared workers and the SharedWorker interface

	10.2.7 Concurrent hardware capabilities

	10.3 APIs available to workers
	10.3.1 Importing scripts and libraries
	10.3.2 The WorkerNavigator interface
	10.3.3 The WorkerLocation interface

	11 Worklets
	11.1 Introduction
	11.1.1 Motivations
	11.1.2 Code idempotence
	11.1.3 Speculative evaluation

	11.2 Examples
	11.2.1 Loading scripts
	11.2.2 Registering a class and invoking its methods

	11.3 Infrastructure
	11.3.1 The global scope
	11.3.1.1 Agents and event loops
	11.3.1.2 Creation and termination
	11.3.1.3 Script settings for worklets

	11.3.2 The Worklet class
	11.3.3 The worklet's lifetime

	12 Web storage
	12.1 Introduction
	12.2 The API
	12.2.1 The Storage interface
	12.2.2 The sessionStorage getter
	12.2.3 The localStorage getter
	12.2.4 The StorageEvent interface

	12.3 Privacy
	12.3.1 User tracking
	12.3.2 Sensitivity of data

	12.4 Security
	12.4.1 DNS spoofing attacks
	12.4.2 Cross-directory attacks
	12.4.3 Implementation risks

	13 The HTML syntax
	13.1 Writing HTML documents
	13.1.1 The DOCTYPE
	13.1.2 Elements
	13.1.2.1 Start tags
	13.1.2.2 End tags
	13.1.2.3 Attributes
	13.1.2.4 Optional tags
	13.1.2.5 Restrictions on content models
	13.1.2.6 Restrictions on the contents of raw text and escapable raw text elements

	13.1.3 Text
	13.1.3.1 Newlines

	13.1.4 Character references
	13.1.5 CDATA sections
	13.1.6 Comments

	13.2 Parsing HTML documents
	13.2.1 Overview of the parsing model
	13.2.2 Parse errors
	13.2.3 The input byte stream
	13.2.3.1 Parsing with a known character encoding
	13.2.3.2 Determining the character encoding
	13.2.3.3 Character encodings
	13.2.3.4 Changing the encoding while parsing
	13.2.3.5 Preprocessing the input stream

	13.2.4 Parse state
	13.2.4.1 The insertion mode
	13.2.4.2 The stack of open elements
	13.2.4.3 The list of active formatting elements
	13.2.4.4 The element pointers
	13.2.4.5 Other parsing state flags

	13.2.5 Tokenization
	13.2.5.1 Data state
	13.2.5.2 RCDATA state
	13.2.5.3 RAWTEXT state
	13.2.5.4 Script data state
	13.2.5.5 PLAINTEXT state
	13.2.5.6 Tag open state
	13.2.5.7 End tag open state
	13.2.5.8 Tag name state
	13.2.5.9 RCDATA less-than sign state
	13.2.5.10 RCDATA end tag open state
	13.2.5.11 RCDATA end tag name state
	13.2.5.12 RAWTEXT less-than sign state
	13.2.5.13 RAWTEXT end tag open state
	13.2.5.14 RAWTEXT end tag name state
	13.2.5.15 Script data less-than sign state
	13.2.5.16 Script data end tag open state
	13.2.5.17 Script data end tag name state
	13.2.5.18 Script data escape start state
	13.2.5.19 Script data escape start dash state
	13.2.5.20 Script data escaped state
	13.2.5.21 Script data escaped dash state
	13.2.5.22 Script data escaped dash dash state
	13.2.5.23 Script data escaped less-than sign state
	13.2.5.24 Script data escaped end tag open state
	13.2.5.25 Script data escaped end tag name state
	13.2.5.26 Script data double escape start state
	13.2.5.27 Script data double escaped state
	13.2.5.28 Script data double escaped dash state
	13.2.5.29 Script data double escaped dash dash state
	13.2.5.30 Script data double escaped less-than sign state
	13.2.5.31 Script data double escape end state
	13.2.5.32 Before attribute name state
	13.2.5.33 Attribute name state
	13.2.5.34 After attribute name state
	13.2.5.35 Before attribute value state
	13.2.5.36 Attribute value (double-quoted) state
	13.2.5.37 Attribute value (single-quoted) state
	13.2.5.38 Attribute value (unquoted) state
	13.2.5.39 After attribute value (quoted) state
	13.2.5.40 Self-closing start tag state
	13.2.5.41 Bogus comment state
	13.2.5.42 Markup declaration open state
	13.2.5.43 Comment start state
	13.2.5.44 Comment start dash state
	13.2.5.45 Comment state
	13.2.5.46 Comment less-than sign state
	13.2.5.47 Comment less-than sign bang state
	13.2.5.48 Comment less-than sign bang dash state
	13.2.5.49 Comment less-than sign bang dash dash state
	13.2.5.50 Comment end dash state
	13.2.5.51 Comment end state
	13.2.5.52 Comment end bang state
	13.2.5.53 DOCTYPE state
	13.2.5.54 Before DOCTYPE name state
	13.2.5.55 DOCTYPE name state
	13.2.5.56 After DOCTYPE name state
	13.2.5.57 After DOCTYPE public keyword state
	13.2.5.58 Before DOCTYPE public identifier state
	13.2.5.59 DOCTYPE public identifier (double-quoted) state
	13.2.5.60 DOCTYPE public identifier (single-quoted) state
	13.2.5.61 After DOCTYPE public identifier state
	13.2.5.62 Between DOCTYPE public and system identifiers state
	13.2.5.63 After DOCTYPE system keyword state
	13.2.5.64 Before DOCTYPE system identifier state
	13.2.5.65 DOCTYPE system identifier (double-quoted) state
	13.2.5.66 DOCTYPE system identifier (single-quoted) state
	13.2.5.67 After DOCTYPE system identifier state
	13.2.5.68 Bogus DOCTYPE state
	13.2.5.69 CDATA section state
	13.2.5.70 CDATA section bracket state
	13.2.5.71 CDATA section end state
	13.2.5.72 Character reference state
	13.2.5.73 Named character reference state
	13.2.5.74 Ambiguous ampersand state
	13.2.5.75 Numeric character reference state
	13.2.5.76 Hexadecimal character reference start state
	13.2.5.77 Decimal character reference start state
	13.2.5.78 Hexadecimal character reference state
	13.2.5.79 Decimal character reference state
	13.2.5.80 Numeric character reference end state

	13.2.6 Tree construction
	13.2.6.1 Creating and inserting nodes
	13.2.6.2 Parsing elements that contain only text
	13.2.6.3 Closing elements that have implied end tags
	13.2.6.4 The rules for parsing tokens in HTML content
	13.2.6.4.1 The "initial" insertion mode
	13.2.6.4.2 The "before html" insertion mode
	13.2.6.4.3 The "before head" insertion mode
	13.2.6.4.4 The "in head" insertion mode
	13.2.6.4.5 The "in head noscript" insertion mode
	13.2.6.4.6 The "after head" insertion mode
	13.2.6.4.7 The "in body" insertion mode
	13.2.6.4.8 The "text" insertion mode
	13.2.6.4.9 The "in table" insertion mode
	13.2.6.4.10 The "in table text" insertion mode
	13.2.6.4.11 The "in caption" insertion mode
	13.2.6.4.12 The "in column group" insertion mode
	13.2.6.4.13 The "in table body" insertion mode
	13.2.6.4.14 The "in row" insertion mode
	13.2.6.4.15 The "in cell" insertion mode
	13.2.6.4.16 The "in select" insertion mode
	13.2.6.4.17 The "in select in table" insertion mode
	13.2.6.4.18 The "in template" insertion mode
	13.2.6.4.19 The "after body" insertion mode
	13.2.6.4.20 The "in frameset" insertion mode
	13.2.6.4.21 The "after frameset" insertion mode
	13.2.6.4.22 The "after after body" insertion mode
	13.2.6.4.23 The "after after frameset" insertion mode

	13.2.6.5 The rules for parsing tokens in foreign content

	13.2.7 The end
	13.2.8 Speculative HTML parsing
	13.2.9 Coercing an HTML DOM into an infoset
	13.2.10 An introduction to error handling and strange cases in the parser
	13.2.10.1 Misnested tags: <i></i>
	13.2.10.2 Misnested tags: <p></p>
	13.2.10.3 Unexpected markup in tables
	13.2.10.4 Scripts that modify the page as it is being parsed
	13.2.10.5 The execution of scripts that are moving across multiple documents
	13.2.10.6 Unclosed formatting elements

	13.3 Serializing HTML fragments
	13.4 Parsing HTML fragments
	13.5 Named character references

	14 The XML syntax
	14.1 Writing documents in the XML syntax
	14.2 Parsing XML documents
	14.3 Serializing XML fragments
	14.4 Parsing XML fragments

	15 Rendering
	15.1 Introduction
	15.2 The CSS user agent style sheet and presentational hints
	15.3 Non-replaced elements
	15.3.1 Hidden elements
	15.3.2 The page
	15.3.3 Flow content
	15.3.4 Phrasing content
	15.3.5 Bidirectional text
	15.3.6 Sections and headings
	15.3.7 Lists
	15.3.8 Tables
	15.3.9 Margin collapsing quirks
	15.3.10 Form controls
	15.3.11 The hr element
	15.3.12 The fieldset and legend elements

	15.4 Replaced elements
	15.4.1 Embedded content
	15.4.2 Images
	15.4.3 Attributes for embedded content and images
	15.4.4 Image maps

	15.5 Widgets
	15.5.1 Native appearance
	15.5.2 Writing mode
	15.5.3 Button layout
	15.5.4 The button element
	15.5.5 The details and summary elements
	15.5.6 The input element as a text entry widget
	15.5.7 The input element as domain-specific widgets
	15.5.8 The input element as a range control
	15.5.9 The input element as a color well
	15.5.10 The input element as a checkbox and radio button widgets
	15.5.11 The input element as a file upload control
	15.5.12 The input element as a button
	15.5.13 The marquee element
	15.5.14 The meter element
	15.5.15 The progress element
	15.5.16 The select element
	15.5.17 The textarea element

	15.6 Frames and framesets
	15.7 Interactive media
	15.7.1 Links, forms, and navigation
	15.7.2 The title attribute
	15.7.3 Editing hosts
	15.7.4 Text rendered in native user interfaces

	15.8 Print media
	15.9 Unstyled XML documents

	16 Obsolete features
	16.1 Obsolete but conforming features
	16.1.1 Warnings for obsolete but conforming features

	16.2 Non-conforming features
	16.3 Requirements for implementations
	16.3.1 The marquee element
	16.3.2 Frames
	16.3.3 Other elements, attributes and APIs

	17 IANA considerations
	17.1 text/html
	17.2 multipart/x-mixed-replace
	17.3 application/xhtml+xml
	17.4 text/ping
	17.5 application/microdata+json
	17.6 text/event-stream
	17.7 web+ scheme prefix

	Index
	Elements
	Element content categories
	Attributes
	Element interfaces
	All interfaces
	Events
	HTTP headers
	MIME types

	References
	Acknowledgments
	Intellectual property rights

